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Abstract

In this paper we survey some recent progress on the Gaussian approximation for
nonstationary dependent structures via martingale methods. First we present general
theorems involving projective conditions for triangular arrays of random variables and
then present various applications for rho-mixing and alpha-dependent triangular arrays,
stationary sequences in a random time scenery, application to the quenched FCLT, ap-
plication to linear statistics with alpha-dependent innovations, application to functions
of a triangular stationary Markov chain.
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1 Introduction and notations

A time dependent series, in a discretized form, consists of a triangular array of random
variables. Examples of this kind are numerous and we can cite, for instance, the time varying
regression model. On another hand, a Markov chain with stationary transition operator is
not stationary when it does not start from its equilibrium and it rather starts at a point.
Nonstationary type of behavior also appears when we study evolutions in random media. It
is also well-known that the blocking procedure, used to weaken the dependence for studying a
stationary process or a random field, introduces triangular arrays of variables. Furthermore,
many of the results for functions of stationary random fields, often incorporate in their proofs
complicated inductions, which lead to triangular arrays of random variables.

Historically, the most celebrated limit theorems in nonstationary setting are, among oth-
ers, the limit theorems involving nonstationary sequences of martingale differences. For more
general dependent sequences one of the basic techniques is to approximate them with mar-
tingales. A remarkable early result obtained by using this technique is due to Dobrushin [8],
who studied the central limit theorem for nonstationary Markov Chains. In order to treat
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more general dependent structures, McLeish [23, 24] introduced the notion of mixingales,
which are martingale-like structures, and imposed conditions to the moments of projections
of an individual variable on past sigma fields to derive the functional form of the central limit
theorem. This method is very fruitful, but still involves a large degree of stationarity. In gen-
eral, the theory of nonstationary martingale approximation has remained much behind the
theory of martingale methods for stationary processes. In the stationary setting, the theory
of martingale approximations was steadily developed. We mention the well-known results,
such as the celebrated results by Gordin [13], Heyde [19], Maxwell and Woodroofe [22] and
the more recent results by Peligrad and Utev [31], Zhao and Woodroofe [44], Gordin and
Peligrad [15], among many others. In the context of random fields, the theory of martingale
approximation has been developed in the last decade, with several results by Gordin [14],
Volný and Wang [42], Cuny et al. [3], El Machkouri and Giraudo [11], Peligrad and Zhang
[33, 34, 35], Giraudo [12] and Volný [40, 41]. Due to these results we know now necessary and
sufficient conditions for various types of martingale approximations which lead to a variety
of maximal inequalities and limit theorems.

The goal of this paper is to survey some results obtained in the recent book [26] and the
recent papers [25, 27] concerning the functional form of the central limit theorem for non nec-
essarily stationary dependent structures. These results are obtained by using nonstationary
martingale techniques and, as we shall see, the results are in the spirit of those obtained by
McLeish [23, 24]. More precisely the conditions can be compared to the mixingales conditions
imposed in his paper.

Still concerning Gaussian approximation for non necessarily stationary dependent struc-
tures, we would like to mention the paper by Wu and Zhou [43] who show that, under mild
conditions, the partial sums of a non homogeneous function of an i.i.d. sequence can be ap-
proximated, on a richer probability space, by sums of independent Gaussian random variables
with nearly optimal errors in probability. As a byproduct, a CLT can be derived provided the
underlying random variables have moments of order 2 + δ, δ > 0. Their proof combines mar-
tingale approximation with m-dependent approximation. The fact that the random variables
are functions of an i.i.d. sequence is a crucial assumption in their paper.

We shall point out classes of nonstationary time series, satisfying certain projective cri-
teria (i.e. conditions imposed to conditional expectations), which benefit from a martingale
approximation. We shall stress the nonstationary version of the Maxwell-Woodroofe condi-
tion, which will be essential for obtaining maximal inequalities and asymptotic results for the
following examples: functions of linear processes with nonstationary innovations; quenched
version of the functional central limit theorem for a stationary sequence; evolutions in ran-
dom media such as a process sampled by a shifted Markov chain; nonstationary ρ−mixing
and α−mixing processes.

The basic setting will be mostly of a sequence of real-valued random variables (Xk)k≥1
defined on the probability space (Ω,K, P ), adapted to an increasing filtration Fk ⊂ K. Set
Sn =

∑n
i=1Xi for n ≥ 1 and S0 = 0.

We shall also consider real-valued triangular arrays (Xk,n)1≤k≤n adapted to Fk,n ⊂ K.
This means that Xk,n is Fk,n measurable and Fk−1,n ⊂ Fk,n for all n ≥ 1 and all 1 ≤ k ≤ n.

In this case we set Sk = Sk,n =
∑k

i=1Xi,n n ≥ 1, and S0 = 0.
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We shall be interested in both CLT, i.e.

Sn − an
bn

⇒ N(0, σ2),

where⇒ denotes the convergence in distribution and N is a normal distributed variable, and
also in its functional (FCLT) form, i.e.

{Wn(t), t ∈ [0, 1]} ⇒ |σ|W in (D([0, 1]), ‖ · ‖∞),

where Wn(t) = b−1n (S[nt]−a[nt]) and W is a standard Brownian motion (here and everywhere
in the paper [x] denotes the integer part of x).

We shall consider centered real-valued random variables which are square integrable. The
normalizations will be taken an = 0 and b2n = n or b2n = σ2n = Var(Sn).

In the sequel, we shall often use the notation Ei(X) = E(X|Fi), to replace the conditional
expectation. In addition all along the paper we shall use the notation an � bn to mean that
there exists a universal constant C such that, for all n, an ≤ Cbn.

2 Projective criteria for nonstationary time series

One of the first projection condition, in the nonstationary setting, goes back to McLeish
[23]. To simplify the exposition let us state it in the adapted case, i.e. when (Fi)i≥0 is a
non-decreasing sequence of σ-algebras such that Xi is Fi-measurable for any i ≥ 1.

Theorem 1 Let (Xk)k∈Z be a sequence of random variables, centered, with finite second mo-
ment and adapted to a non-decreasing sequence (Fk)k∈Z of σ-algebras. Assume that (X2

k)k∈Z
is uniformly integrable and that, for any k and i,

‖E(Xi+k|Fi)‖2 ≤ Ck−1/2(log k)−(1+ε) , (1)

and there exists a nonnegative constant c2 such that

E(S2
[nt])

n
→ c2t for any t ∈ [0, 1] and

Ek−m(Sk+n − Sk)2

n
→ c2 in L1 ,

as min(k,m, n)→∞. Then {n−1/2S[nt], t ∈ [0, 1]} ⇒ cW in (D([0, 1]), ‖ · ‖∞), where W is a
standard Brownian motion.

However, in the stationary case, a more general projection condition than (1) is known
to be sufficient for both CLT and its functional form. Let us describe it briefly.

Let (Xk)k∈Z be a strictly stationary and ergodic sequence of centered real-valued random
variables in L2, adapted to a strictly stationary filtration (Fk)k∈Z and such that∑

k≥1

‖E0(Sk)‖2
k3/2

<∞. (2)

Under condition (2), Maxwell-Woodroofe [22] proved the CLT under the normalization
√
n
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and Peligrad-Utev [31] proved its functional form, namely:

{n−1/2S[nt], t ∈ [0, 1]} ⇒ cW in (D([0, 1]), ‖ · ‖∞),

where c2 = limn n
−1E(S2

n).
It is known that (2) is equivalent to

∑
k≥0 2−k/2‖E0(S2k)‖2 <∞ and it is implied by∑

k>0

k−1/2‖E0(Xk)‖2 <∞. (3)

It should be noted that condition (2) is a sharp condition in the sense that if it is barely
violated, then the sequence (n−1/2Sn) fails to be stochastically bounded (see [31]).

The Maxwell-Woodroofe condition is very important for treating the class of ρ−mixing
sequences whose definition is based on maximum coefficient of correlation. In the stationary
case this is

ρ(k) = sup corr
(
f(Xi,, i ≤ 0), g(Xj , j ≥ k)

)
→ 0,

where sup is taken over all functions f, g which are square integrable.
It can be shown that condition (2) is implied by

∑
k≥0 ρ(2k) < ∞ (which is equivalent

to
∑

k≥1 k
−1ρ(k) < ∞). It is therefore well adapted to measurable functions of stationary

Gaussian processes. To give another example of a sequence satisfying (2) let

Xk = f
(∑
i≥0

aiεk−i

)
− Ef

(∑
i≥0

aiεk−i

)
,

where (εk) are i.i.d. with variance σ2 and let f be a function such that

|f(x)− f(y)| ≤ c(|x− y|) for any (x, y) ∈ R2,

where c is a concave non-decreasing function such that∑
k≥1

k−1/2c
(

2σ
∑
i≥k
|ai|
)
<∞ .

Then (3) holds (and then (2) also).
The question is, could we have similar results, which extend condition (2) to the nonsta-

tionary case and improve on Theorem 1?

2.1 Functional CLT under the standard normalization
√
n

We shall discuss first FCLT in the non-stationary setting under the normalization
√
n. With

this aim, we impose the Lindeberg-type condition in the form:

sup
n≥1

1

n

n∑
j=1

E(X2
j ) ≤ C <∞ and, for any ε > 0, lim

n→∞

1

n

n∑
k=1

E{X2
kI(|Xk| > ε

√
n)} = 0 . (4)

For any k ≥ 0, let
δ(k) = max

i≥0
‖E(Sk+i − Si|Fi)‖2
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and for any k,m ≥ 0, let

θmk = m−1
m−1∑
i=1

Ek(Sk+i − Sk).

The following FCLT in the non-stationary setting under the normalization
√
n was proven

by Merlevède et al. [25, 26].

Theorem 2 Assume that the Lindeberg-type condition (4) holds. Suppose also that∑
k≥0

2−k/2δ(2k) <∞ (5)

and there exists a constant c2 such that, for any t ∈ [0, 1] and any ε > 0,

lim
m→∞

lim sup
n→∞

P
(∣∣∣ 1
n

[nt]∑
k=1

(
X2
k + 2Xkθ

m
k

)
− tc2

∣∣∣ > ε
)

= 0 . (6)

Then {n−1/2S[nt], t ∈ [0, 1]} ⇒ cW in (D([0, 1]), ‖ · ‖∞).

We mention that (5) is equivalent to
∑

k>0 k
−3/2δ(k) <∞ and it is implied by∑

k>0

k−1/2 sup
i≥0
‖Ei(Xk+i)‖2 <∞. (7)

About condition (6) we would like to mention that in the stationary and ergodic case, it
is verified under condition (2). Indeed, by the ergodic theorem, for any k ≥ 0,

lim
n→∞

E
∣∣∣ 1
n

[nt]∑
k=1

(X2
k + 2Xkθ

m
k )− c2t

∣∣∣ = t
∣∣EX2

0 + 2E(X0θ
m
0 )− c2

∣∣ .
and note that, under condition (2), it has been proved in [31] that

1

m
E(S2

m) = E(X2
0 ) + 2E(X0θ

m
0 )→ c2 as m→∞.

Therefore Theorem 2 is indeed a generalization of the results in Peligrad and Utev [31].
A first application of Theorem 2 is the following:

Example 3 Application to stationary sequences in a random time scenery.
We are interested to investigate the limiting behavior of the partial sums associated with

the process defined by
Xk = ζk+φk ,

where {ζj}j∈Z is a stationary sequence (observables/random scenery), and {φk}k≥0 is a
Markov chain (random time).

The sequence {φn}n≥0 is a “renewal”-type Markov chain defined as follows: {φk; k ≥ 0}
is a discrete Markov chain with the state space Z+ and transition matrix P = (pi,j) given by
pk,k−1 = 1 for k ≥ 1 and p0,j−1 := pj = P(τ = j), j = 1, 2, . . ..
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We assume that E[τ ] < ∞ which ensures that {φn}n≥0 has a stationary distribution
π = (πi, i ≥ 0) given by

πj = π0

∞∑
i=j+1

pi , j = 1, 2 . . . where π0 = 1/E(τ) .

We also assume that pj > 0 for all j ≥ 0. Hence the Markov chain is irreducible.
We are interesting by the asymptotic behavior of

{
n−1/2

[nt]∑
k=1

Xk, t ∈ [0, 1]
}

when the Markov chain starts at 0 (so under Pφ0=0).
Under Pφ0=0, one can prove that E(X1X2) 6= E(X2X3) and hence stationarity is ruled

out immediately. Let assume the following assumption on the random time scenery:

Condition (A1) {ζj}j≥0 is a strictly stationary sequence of centered random variables in L2,
independent of (φk)k≥0 and such that∑

k≥1

‖E(ζk|G0)‖2√
k

<∞ and lim
n→∞

sup
j≥i≥n

‖E(ζiζj |G0)− E(ζiζj)‖1 = 0,

where Gi = σ(ζk, k ≤ i).

Corollary 4 Assume that E(τ2) <∞ and that {ζj}j≥0 satisfies condition (A1). Then, under
Pφ0=0, {n−1/2S[nt], t ∈ [0, 1]} converges in distribution in D[0, 1] to a Brownian motion with
parameter c2 defined by

c2 = E(ζ20 )
(

1 + 2
∑
i≥1

iπi

)
+ 2

∑
m≥1

E(ζ0ζm)

m∑
j=1

(P j)0,m−j ,

where (P j)0,b = Pφ0=0(φj = b).

The idea of proof is the following. We take A = σ(φk, k ≥ 0) and Fk = σ(A, Xj , 1 ≤ j ≤
k). One can show that

sup
k≥0
‖E(Xk+m|Fk)‖22 ≤ b2([m/2]) + b2(0)P(τ > [m/2]),

where b(k) = ‖E(ζk|G0)‖2. To prove that condition (6) holds, we use in particular the ergodic
theorem for recurrent Markov chains (together with many tedious computations).

An additional comment. In the stationary case, other projective criteria can be con-
sidered to get the FCLT such as the so-called Hannan’s condition [18]:

E(X0|F−∞) = 0 a.s. and
∑
i≥0
‖P0(Xi)‖2 <∞ ,

where P0(·) = E0(·)− E−1(·).
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The Hannan’s condition and condition (2) have different areas of applications and are not
comparable (see [10]).

If the scenery is a sequence of martingale difference sequence and the process is sampled
by the renewal Markov Chain, then under Pφ0=0, one can prove that

sup
k≥0
‖Pk−m(Xk)‖2 ∼ C

√
P(τ > m).

Hence, in this case, supk≥0 ‖Pk−m(Xk)‖2 and supk≥0 ‖E(Xk+m|Fk)‖2 are of the same
order of magnitude and∑

m≥0
sup
k≥0
‖Pk−m(Xk)‖2 <∞ ⇐⇒

∑
m≥0

√
P(τ > m) <∞ .

On the other hand (7) holds provided
∑

k≥1
√
P(τ > k)/

√
k <∞.

2.2 A more general FCLT for triangular arrays

Let {Xi,n, 1 ≤ i ≤ n} be a triangular array of square integrable (E(X2
i,n) < ∞), centered

(E(Xi,n) = 0), real-valued random variables adapted to a filtration (Fi,n)i≥0.
We write as before Ej,n(X) = E(X|Fj,n) and set

Sk,n =
k∑
i=1

Xi,n and θmk,n = m−1
m−1∑
i=1

Ek,n(Sk+i,n − Sk,n) . (8)

We assume that the triangular array satisfies the following triangular Lindeberg-type condi-
tion:

sup
n≥1

n∑
j=1

E(X2
j,n) ≤ C <∞, and lim

n→∞

n∑
k=1

E{X2
k,nI(|Xk,n| > ε)} = 0 , for any ε > 0. (9)

For a non-negative integer u and positive integers `,m, define the following martingale-type
dependence characteristics:

A2(u) = sup
n≥1

n−1∑
k=0

‖Ek,n(Sk+u,n − Sk,n)‖22

and

B2(`,m) = sup
n≥1

[n/`]∑
k=0

‖S̄k,n(`,m)‖22 ,

where

S̄k,n(`,m) =
1

m

m−1∑
u=0

(
E(k−1)`+1,n(S(k+1)`+u,n − Sk`+u,n)

)
.
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We mention that if Xk,n = Xk/
√
n,

A2(u) ≤ δ2(u) and B2(`,m) ≤ δ2(`− 1)/`.

The next theorem was proven by Merlevède et al. [25].

Theorem 5 Assume that the Lindeberg condition (9) holds and that

lim
j→∞

2−j/2A(2j) = 0 and lim inf
j→∞

∑
`≥j

B(2`, 2j) = 0 . (10)

Moreover, assume that there exists a sequence of non-decreasing and right-continuous func-
tions vn(·) : [0, 1]→ {0, 1, 2, . . . , n} and a non-negative real c2 such that, for any t ∈ (0, 1],

lim
m→∞

lim sup
n→∞

P
(∣∣∣ vn(t)∑

k=1

(
X2
k,n + 2Xk,nθ

m
k,n

)
− tc2

∣∣∣ > ε
)

= 0 . (11)

Then
{∑vn(t)

k=1 Xk,n, t ∈ [0, 1]
}

converges in distribution in D([0, 1]) to cW where W is a
standard Brownian motion.

The proof is based on a suitable triangular (non-stationary) martingale approximation.
More precisely, for any fixed integer m, we write

X`,n = Dm
`,n + θm`−1,n − θm`,n + Y m

`−1,n , (12)

where θm`,n is defined in (8), Y m
`,n = 1

mE`,n(S`+m,n − S`,n) and, with the notation P`,n(·) =
E`,n(·)− E`−1,n(·),

Dm
`,n =

1

m

m−1∑
i=0

P`,n(S`+i) =
1

m

m−1∑
i=0

P`(S`+i − S`−1) . (13)

Then we show that the FCLT for
{∑vn(t)

k=1 Xk,n, t ∈ [0, 1]
}

is reduced to prove the FCLT for

sums associated to a triangular array of martingale differences, namely for
{∑vn(t)

k=1 Dmn
k,n , t ∈

[0, 1]
}
, where (mn) is a suitable subsequence.

Comment 6 Let us make some comments on the Lindeberg-type condition (9) which is
commonly used to prove the CLT when we deal with dependent structures. We refer for
instance to the papers by Neumann [28] or Rio [37] where this condition is also imposed and
examples satisfying such a condition are provided. In addition, in many cases of interest, the
considered triangular array takes the following form: Xk,n/σn where σ2n = Var(Sn) and then
the first part of (9) reads as : there exists a positive constant C such that for any n ≥ 1,

n∑
k=1

E(X2
k,n) ≤ CVar(Sn) , (14)

which then imposed a certain growth of the variance of the partial sums. Let us give another
example where this condition is satisfied. Assume that Xi = fi(Yi) where Yi is a Markov chain
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satisfying ρY (1) < 1, then according to [29, Proposition 13], C ≤ (1 + ρY (1))(1 − ρY (1))−1.
Here (ρY (k))k≥0 is the sequence of ρ-mixing coefficients of the Markov chain (Yi)i. On another
hand, avoiding a condition as (14) is a big challenge and is one of the aims of the Hafouta’s
recent paper [17]. His main new idea is a linearization of the variance of the partial sums,
which, to some extent, allows us to reduce the limit theorems to the case when Var(Sn) grows
linearly fast in n. To give more insights, the partial sums are partitioned into blocks, so we
write Sn =

∑kn
i=1 Yi,n, where kn is of order Var(Sn) and the summands Yi,n are uniformly

bounded in some Lp (see [17, section 1.4] for more details). Then the FCLT has to be obtained
for the new triangular array (Yi,n, 1 ≤ i ≤ kn).

To verify condition (11), one can use the following proposition proved in [25].

Proposition 7 Assume that the Lindeberg-type condition (9) holds. Assume also that for
any non-negative integer `,

lim
b→∞

lim sup
n→∞

n∑
k=b+1

‖Ek−b,n(Xk,nXk+`,n)− E0,n(Xk,nXk+`,n)‖1 = 0

and, for any t ∈ [0, 1],

lim
m→∞

lim sup
n→∞

P
(∣∣∣ vn(t)∑

k=1

(
E0,n(X2

k,n) + 2E0,n(Xk,nθ
m
k,n)
)
− tc2

∣∣∣ > ε
)

= 0 . (15)

Then condition (11) is satisfied.

Starting from (12) and summing over `, we get

vn(t)∑
`=1

(X2
`,n + 2X`,nθ

m
`,n) =

vn(t)∑
`=1

(Dm
`,n)2 + (θm0,n)2 − (θmvn(t),n)2 +

vn(t)∑
`=1

2Dm
`,n(θm`−1 + Y m

`−1,n) +Rn ,

where

Rn =

vn(t)−1∑
`=0

(Y m
`,n)2 + 2

vn(t)−1∑
k=0

θmk Y
m
k,n .

Clearly

vn(t)∑
`=1

E(X2
`,n + 2X`,nθ

m
`,n) =

vn(t)∑
`=1

E(Dm
`,n)2 + E(θm0,n)2 − E(θmvn(t),n)2 + E(Rn) .

The Lindeberg’s condition implies that E(θm0,n)2 + E(θmvn(t),n)2 is tending to zero as n → ∞,
whereas

E(Rn)� m−2
(
A2(m) +A(m)

m∑
i=1

A(i)) .
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Hence, if we assume that m−1A2(m)→ 0 as m→∞, we derive

lim
m→∞

lim sup
n→∞

∣∣∣ vn(t)∑
`=1

E(X2
`,n + 2X`,nθ

m
`,n)−

vn(t)∑
`=1

E(Dm
`,n)2

∣∣∣ = 0 .

Note also that under the Lindeberg’s condition and the following reinforced version of con-
dition (10)

lim
m→∞

m−1/2A(m) = 0 and lim
m→∞

∑
`≥[log2(m)]

B(2`,m) = 0 , (16)

we have

lim
m→∞

lim sup
n→∞

∥∥∥ vn(t)∑
`=1

X`,n −
vn(t)∑
`=1

Dm
`,n

∥∥∥
2

= 0 .

Lemma 5.4 in [25] can be used to see this (note that in this lemma, there is a misprint in
the statement since in the last term of the RHS of its inequality, the term 2−j/2 has to be
deleted, as it can be clearly derived from their inequality (5.22)). Therefore, as soon as we
consider F0,n = {∅,Ω} (so E0,n(·) = E(·)), condition (15) can be verified with the help of the
following proposition.

Proposition 8 Assume that the Lindeberg-type condition (9) holds and that (16) is satisfied.
Assume also that there exists a constant c2 such that, for any t ∈ [0, 1],

E(S2
vn(t),n

)→ c2t . (17)

Then

lim
m→∞

lim sup
n→∞

∣∣∣ vn(t)∑
k=1

E
(
X2
k,n + 2Xk,nθ

m
k,n

)
− tc2

∣∣∣ = 0 .

3 Applications

3.1 Application to ρ-mixing triangular arrays

Theorem 5 gives the following result for ρ-mixing triangular arrays.
Let {Xi,n, 1 ≤ i ≤ n} be a triangular array of square integrable centered real-valued

random variables. Denote by σ2k,n = Var
(∑k

`=1X`,n

)
and σ2n = σ2n,n. For 0 ≤ t ≤ 1, let

vn(t) = inf
{
k; 1 ≤ k ≤ n :

σ2k,n
σ2n
≥ t
}

and Wn(t) = σ−1n

vn(t)∑
i=1

Xi,n . (18)

Assume that the triangular array is ρ-mixing in the sense that

ρ(k) = sup
n≥1

max
1≤j≤n−k

ρ
(
σ(Xi,n, 1 ≤ i ≤ j), σ(Xi,n, j + k ≤ i ≤ n)

)
→ 0

where ρ(U, V ) = sup{|corr(X,Y )| : X ∈ L2(U), Y ∈ L2(V )}.
The following is a FCLT for ρ-mixing triangular arrays:
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Theorem 9 Assume that

sup
n≥1

σ−2n

n∑
j=1

E(X2
j,n) ≤ C <∞ ,

lim
n→∞

σ−2n

n∑
k=1

E{X2
k,nI(|Xk,n| > εσn)} = 0 , for any ε > 0

and ∑
k≥0

ρ(2k) <∞ .

Then
{
Wn(t), t ∈ [0, 1]

}
converges in distribution in D([0, 1]) (equipped with the uniform

topology) to W .

This is the functional version of the CLT obtained by Utev [39]. It answers an open
question raised by Ibragimov in 1991.

Theorem 9 follows from an application of Theorem 5 to the triangular array {σ−1n Xk,n, 1 ≤
k ≤ n}n≥1 and the σ-algebras Fk,n = σ(Xi,n, 1 ≤ i ≤ k) for k ≥ 1 and Fk,n = {∅,Ω} for
k ≤ 0.

In what follows, to soothe the notations, we omit the index n involved in the variables
and in the σ-algebras.

To check condition (5), we used the fact that, by the definition of the ρ-mixing coefficient,
for any b > a ≥ 0,

‖Ek(Sk+b − Sk+a)‖2 ≤ ρ(a)‖Sk+b − Sk+a‖2 ,

and that, under
∑

k≥0 ρ(2k) <∞, by the variance inequality of Utev [39], there exists κ such
that for any integers a and b,

‖Sb − Sa‖22 ≤ κ
b∑

i=a+1

‖Xi‖22 .

We then obtain

m−1A2(m)�
{
ρ2([
√
m]) +m−1/2

}
and B(2r,m)� ρ(2r − 1) .

Since ρ(n)→ 0, in order to prove condition (11), we use both Proposition 7 (by recalling that
F0,n is the trivial field {∅,Ω}) and Proposition 8. Therefore the proof of (11) is reduced to
show that

σ−2n E
(
S2
vn(t)

)
→ t , as n→∞,

which holds by the definition of vn(t) and the Lindeberg’s condition (9).

For the ρ−mixing sequences we also obtain the following corollary:

Corollary 10 Let (Xn)n≥1 be a sequence of centered random variables in L2(P). Let Sn =∑n
k=1Xk and σ2n = Var(Sn). Suppose that the Lindeberg condition is satisfied and that∑
k≥0 ρ(2k) < ∞. In addition assume that σ2n = nh(n) where h is a slowly varying function

at infinity. Then Wn =
{
σ−1n

∑[nt]
k=1Xk, t ∈ (0, 1]

}
converges in distribution in D([0, 1]) to W

where W is a standard Brownian motion.

11



If Wn converges weakly to a standard Brownian motion, then necessarily σ2n = nh(n)
where h(n) is a slowly varying function. If in Corollary 10 we assume that σ2n = nαh(n)
where α > 0, then one can prove that Wn ⇒ {G(t), t ∈ [0, 1]} in D([0, 1]) where G(t) =√
α
∫ t
0 u

(α−1)/2dW (u).
In the strictly stationary case, condition

∑
k≥0 ρ(2k) <∞ implies that σ2n/n→ σ2 and if

σ2n → ∞ then σ > 0. Therefore the functional limit theorem holds under the normalization√
nσ. We then recover the FCLT obtained by Shao [38] (the CLT was first proved by Ibrag-

imov [20]). In this context, condition
∑

k≥0 ρ(2k) < ∞ is minimal as provided by several
examples by Bradley, which are discussed in [1, Chap. 34] .

Comment 11 In a recent paper, denoting by PX the law of a random variable X and by Ga
the normal distribution N(0, a), Dedecker et al. [7] have proved quantitative estimates for the
convergence of PSn/σn to G1, where Sn is the partial sum associated with either martingale
differences sequences or more general dependent sequences, and σ2n = Var(Sn). In particular
they considered the case of ρ-mixing sequences and, under reinforced conditions compared
to those imposed in Theorem 9 or in Corollary 10, they obtained rates in the CLT. Let us
describe their result. Let (Xi)i≥1 be a sequence of centered (E(Xi) = 0 for all i), real-valued
bounded random variables, which are ρ-mixing in the sense that

ρ(k) = sup
j≥1

sup
v>u≥j+k

ρ
(
σ(Xi, 1 ≤ i ≤ j), σ(Xu, Xv)

)
→ 0 , as k →∞ ,

where σ(Xt, t ∈ A) is the σ-field generated by the r.v.’s Xt with indices in A. Let us assume
the following set of assumptions

(H) :=

1) Θ =
∑

k≥1 kρ(k) <∞ .

2) For any n ≥ 1, Cn := max
1≤`≤n

∑n
i=` E(X2

i )

E(Sn − S`−1)2
<∞ .

Denoting by Kn = max1≤i≤n ‖Xi‖∞, they proved in their Section 4.2 that if Kn is uniformly
bounded then, for any positive integer n,∫

R
|Fn(t)− Φ(t)|dt� Cnσ

−1
n log(2 + Cnσ

2
n) and ‖Fn − Φ‖∞ � σ−1/2n

√
Cn log(2 + Cnσ2n) ,

where Fn is the c.d.f. of Sn/σn and Φ is the c.d.f. of a standard Gaussian r.v. We also refer
to [17, Section 2.2] for related results concerning rates in the FCLT in terms of Prokhorov
distance.

3.2 Application to functions of linear processes

Assume that
Xk = fk

(∑
i≥0

aiεk−i
)
− Efk

(∑
i≥0

aiεk−i
)
,

where (εi)i∈Z are independent random variables such that (ε2i )i∈Z is a uniformly integrable
family and supi∈Z ‖εi‖2 := σ. The functions fk are such that, for any k,

|fk(x)− fk(y)| ≤ c(|x− y|) for any (x, y) ∈ R2 ,

12



where c is concave, non-decreasing and such that limx→0 c(x) = 0 (we shall say that fk ∈
L(c)).

Applying Theorem 5 with Xk,n = Xk/σn, we derive the following FCLT.

Corollary 12 Assume that σ2n = nh(n) where h(n) is a slowly varying function at infinity
such that lim infn→∞ h(n) > 0 and∑

k≥1
k−1/2c

(
2σ
∑
i≥k
|ai|
)
<∞ . (19)

Then
{
σ−1n

∑[nt]
k=1Xk, t ∈ [0, 1]

}
converges in distribution in D([0, 1]) to a standard Brownian

motion.

The detailed proof can be found in Section 5.6 of [25] but let us briefly describe the arguments
allowing to verify conditions (7) and (11) with vn(t) = [nt] and Xk,n = Xk/σn (recall that
(7) implies (5), which in turn implies (10) since σ2n = nh(n) with lim infn→∞ h(n) > 0).

We first consider the following choice of (Fi)i≥0: F0 = {∅,Ω} and Fi = σ(X1, . . . , Xi),
for i ≥ 1. Denote by Eε the expectation with respect to ε := (εi)i∈Z and note that since
Fi ⊂ Fε,i where Fε,i = σ(εk, k ≤ i), for any i ≥ 0, ‖E(Xk+i|Fi)‖2 ≤ ‖E(Xk+i|Fε,i)‖2. Next,
for any i ≥ 0, note that

∣∣E(Xk+i|Fε,i)
∣∣ =

∣∣∣Eε(f( k−1∑
`=0

a`ε
′
k+i−`+

∑
`≥k

a`εk+i−`

))
−Eε

(
f
( k−1∑
`=0

a`ε
′
k+i−`+

∑
`≥k

a`ε
′
k+i−`

))∣∣∣ ,
where (ε′i)i∈Z is an independent copy of (εi)i∈Z. Therefore, using [6, Lemma 5.1],

‖E(Xk+i|Fi)‖2 ≤
∥∥∥c(∑

`≥k
|a`||εk+i−` − ε′k+i−`|

)∥∥∥
2
≤ c
(

2σε
∑
`≥k
|a`|
)
,

proving that (7) holds under (19).
On another hand, to verify condition (11) with vn(t) = [nt] and Xk,n = Xk/σn, Propo-

sition 7 can be used. Hence, because of the Lindeberg’s condition and the choice of the
filtration (Fi)i≥0 it is sufficient to prove

lim
b→∞

lim sup
n→∞

σ−2n

n∑
k=b+1

‖Ek−b(XkXk+`)− E(XkXk+`)‖1 = 0 (20)

and that, for any t ∈ [0, 1],

lim
m→∞

lim sup
n→∞

1

σ2n

∣∣∣ [nt]∑
k=1

{
E(X2

k) + 2E(Xkθ
m
k )
}
− t
∣∣∣ = 0 . (21)

Condition (20) can be proved by using similar arguments as those leading to (7). On another
hand, (21) follows from an application of Proposition 8 with vn(t) = [nt] and Xk,n = Xk/σn.
Indeed, the Lindeberg’s condition can be verified, (7) is satisfied and it is also assumed that
σ2n = nh(n) where h(n) is a slowly varying function at infinity with lim infn→∞ h(n) > 0.
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3.3 Application to the quenched FCLT

We should also note that the general FCLT in Theorem 2 also leads as an application to the
quenched FCLT under Maxwell-Woodroofe condition (previously proved by Cuny-Merlevède
[2], with a completely different proof).

More precisely the result is the following:

Corollary 13 Let (Xk)k∈Z be an ergodic stationary sequence of L2 centered random vari-
ables, adapted to (Fk) and satisfying∑

k>0

k−3/2‖E0(Sn)‖2 <∞.

then limn→∞ n
−1/2E(S2

n) = c2 and, on a set of probability one, for any continuous and
bounded function f from (D([0, 1), ‖ · ‖∞) to R,

lim
n→∞

E0(f(Wn)) =

∫
f(zc)W (dz) ,

where Wn = {n−1
∑[nt]

k=1Xk, t ∈ [0, 1]} and W is the distribution of a standard Wiener process.

The idea of proof is to work under P0 (the conditional probability given F0) and verify
that the conditions of our general FCLT hold with probability one. For instance, we need to
verify (6), that is: with probability one, there exists a constant c2 such that, for any t ∈ [0, 1]

lim
m→∞

lim sup
n→∞

P0

(∣∣∣ 1
n

[nt]∑
k=1

(
X2
k +

2

m
Xk

m−1∑
i=1

Ek(Sk+i − Sk)
)
− tc2

∣∣∣ > ε
)

= 0 .

But, by the ergodic theorem,

lim
m→∞

lim
n→∞

| 1
n

[nt]∑
k=1

(X2
k +

2

m
Xk

m−1∑
i=1

Ek(Sk+i − Sk))− tc2| = 0 a.s.

Hence, by the properties of the conditional expectation, the desired convergence follows.

3.4 Application to locally stationary processes

Let consider
{
n−1/2

∑[nt]
k=1Xk,n, t ∈ [0, 1]

}
when (Xk,n, 1 ≤ k ≤ n) is a locally stationary

process in the sense that Xk,n can be locally approximated by a stationary process X̃k(u) in
some neighborhood of u, i.e. for those k where |(k/n)− u| is small.

Assume that E(Xk,n) = 0. For each u ∈ [0, 1], let X̃k(u) be a stationary and ergodic
process such that

(S0) max1≤j≤n n
−1/2

∣∣∣∑j
k=1Xk,n −

∑j
k=1 X̃k(k/n)

∣∣∣→P 0.

(S1) supu∈[0,1] ‖X̃k(u)‖2 <∞ and

lim
ε→0

sup
|u−v|≤ε

‖X̃k(u)− X̃k(v)‖2 = 0.
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(D) There exists a stationary non-decreasing filtration (Fk)k≥0 such that, for each u ∈ [0, 1],
X̃k(u) is adapted to Fk and the following condition holds:

∑
k≥0 2−k/2 δ̃(2k) < ∞, where

δ̃(k) = supu∈[0,1] ‖E(S̃k(u)|F0)‖2 and S̃k(u) =
∑k

i=1 X̃i(u).

Let us give an example. For any u ∈ [0, 1], let

Yk(u) =
∑
i≥0

(α(u))iεk−i and X̃k(u) = f(Yk(u))− Ef(Yk(u))

with f ∈ L(c) (this space of functions has been defined in subsection 3.2) and α(·) a Lipschitz
continuous function such that supu∈[0,1] |α(u)| = α < 1.

Define
Xk,n = X̃k(k/n) + n−3/2un(εk + · · ·+ εk−n)

where un → 0.
Condition (S0) is satisfied and conditions (S1) and (D) also, provided∫ 1

0

c(t)

t
√
| log t|

dt <∞ .

Theorem 14 Assume the above conditions. Then there exists a Lebesgue integrable function
σ2(·) on [0, 1] such that, for any u ∈ [0, 1], where

lim
m→∞

E(S̃m(u))2 = σ2(u)

and the sequence of processes {n−1/2Wn(t), t ∈ [0, 1]} converges in distribution in D([0, 1])
to {∫ t

0
σ(u)dW (u), t ∈ [0, 1]

}
,

where W is a standard Brownian motion.

Compared to the results in Dahlhaus, Richter and Wu [4], this result has a different range
of applications. In addition, we do not need to assume that ‖ supu∈[0,1] |X̃k(u)|‖2 < ∞ nor

that X̃k(u) takes the form H(u, ηk) with H a measurable function and ηk = (εj , j ≤ k) where
(εj)j∈Z a sequence of iid real-valued random variables.

4 The case of α-dependent triangular arrays

We start this section by defining weak forms of strong-mixing-type coefficients for a triangular
array of random variables (Xi,n). For any integer i ≥ 1, let fi,n(t) = 1{Xi,n≤t} − P(Xi,n ≤ t).
For any non-negative integer k, set

α1,n(k) = sup
i≥0

max
i+k≤u

sup
t∈R

∥∥E(fu,n(t)|Fi,n
)∥∥

1
,

and
α2,n(k) = sup

i≥0
max

i+k≤u≤v
sup
s,t∈R

∥∥E(fu,n(t)fv,n(s)|Fi,n
)
− E

(
fu,n(t)fv,n(s)

)∥∥
1
,
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where, for i ≥ 1, Fi,n = σ(Xj,n1 ≤ j ≤ i} and F0,n = {∅,Ω}. In the definitions above we
extend the triangular arrays by setting Xi,n = 0 if i > n. Assume that

σ2n,n = Var
( n∑
`=1

X`,n

)
= 1 , (22)

and, for 0 ≤ t ≤ 1, define vn(t) and Wn(t) as in (18).
We shall now introduce two conditions that combine the tail distributions of the variables

with their associated α-dependent coefficients:

lim
m→∞

lim sup
n→∞

n∑
k=1

n∑
i=m

∫ α1,n(i)

0
Q2
k,n(u)du = 0 (23)

and

lim
m→∞

lim sup
n→∞

n∑
k=1

∫ α2,n(m)

0
Q2
k,n(u)du = 0 , (24)

where Qk,n is the quantile function of Xk,n i.e., the inverse function of t 7→ P(|Xk,n| > t).

Under the conditions above and using a similar martingale approximation approach as in
the proof of Theorem 2, the following result holds (see [27]):

Theorem 15 Suppose that (9), (22), (23) and (24) hold. Then
{
Wn(t), t ∈ [0, 1]

}
converges

in distribution in D([0, 1]) (equipped with the uniform topology) to W, where W is a standard
Brownian motion.

Under the assumptions of Theorem 15, we then get that
∑n

k=1Xk,n ⇒ N(0, 1). To see
this, it suffices to notice that by (22), proving that

∥∥Wn(1) −
∑n

k=1Xk,n

∥∥
2
→ 0 is reduced

to prove that Cov(
∑vn(1)

k=1 Xk,n,
∑n

k=1+vn(1)
Xk,n)→ 0 which follows from (23) by using Rio’s

covariance inequality [36] and taking into account the Lindeberg’s condition.

Very often, for the sake of applications, it is convenient to express the conditions in terms
of mixing rates and moments:

Corollary 16 Assume that conditions (9) and (22) hold. Suppose in addition that, for some
δ ∈ (0,∞],

sup
n

n∑
k=1

‖Xk,n‖22+δ <∞ and
∑
i≥1

i2/δα1(i) <∞

and that
lim
m→∞

lim sup
n→∞

α2,n(m) = 0 .

Then the conclusion of Theorem 15 holds.

There are numerous counterexamples to the CLT, involving stationary strong mixing
sequences, in papers by Davydov [5], Bradley [1], Doukhan et al. [9], Häggström [16] among
others. We know that in the stationary case our conditions reduce to the minimal ones.
These examples show that we cannot just assume that only the moments of order 2 are finite.
Furthermore the mixing rate is minimal in some sense (see [9]).
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We also would like to mention that a central limit theorem was obtained by Rio [37] which
also implies the CLT in Corollary 16.

4.1 Application to functions of α-dependent Markov chains.

Let Yi,n = fi,n(Xi) where X = (Xi)i∈Z is a stationary Markov process with Kernel operator
K and invariant measure ν and, for each i and n, fi,n is such that ν(fi,n) = 0 and ν(f2i,n) <∞.

Let σ2n = Var(
∑n

i=1 Yi,n) and Xi,n = σ−1n Yi,n. Note that the weak dependent coefficients α1(i)
of X can be rewritten as follows: Let BV1 be the class of bounded variation functions h such
that |h|v ≤ 1 (where |h|v is the total variation norm of the measure dh). Then

α1(i) =
1

2
sup
f∈BV1

ν
(
|Ki(f)− ν(f)|

)
.

We mention that α2(i) will have the same order of magnitude as α1(i) if the space BV1 is
invariant under the iterates Kn of K, uniformly in n, i.e., there exists a positive constant C
such that, for any function f in BV1 and any n ≥ 1,

|Kn(f)|v ≤ C|f |v .

The Markov chains such that α2(n)→ 0, as n→∞, are not necessarily mixing in the sense
of Rosenblatt.

Let us give an example. In what follows, for γ ∈]0, 1[, we consider the Markov chain
(Xk)k≥1 associated with the transformation Tγ defined from [0, 1] to [0, 1] by

Tγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1] .

This is the so-called LSV [21] map with parameter γ. There exists a unique Tγ-invariant
measure νγ on [0, 1], which is absolutely continuous with respect to the Lebesgue measure
with positive density denoted by hγ . We denote by Kγ the Perron-Frobenius operator of Tγ
with respect to νγ (recall that for any bounded measurable functions f and g, νγ(f ·g ◦Tγ) =
νγ(Kγ(f)g)). Then (Xi)i≥0 will be the stationary Markov chain with transition KernelKγ and
invariant measure νγ . In addition, we assume that, for any i and n fixed, fi,n is monotonic
on some open interval and 0 elsewhere. It follows that the weak dependence coefficients
associated with (Xi,n) are such that α2,n(k) ≤ Ck1−1/γ , where C is a positive constant not
depending on n. By applying Corollary 16, we derive that if the triangular array (Xi,n)
satisfies the Lindeberg condition (9) and if

γ ∈ (0, 1/2) and sup
n≥1

1

σ2n

n∑
i=1

(∫ 1

0
f2+δi,n (x)x−γdx

)2/(2+δ)
<∞ for some δ >

2γ

1− 2γ
,

then the conclusion of Theorem 15 is satisfied for the triangular array (Xi,n) defined above.
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4.2 Application to linear statistics with α−dependent innovations

We consider statistics of the type

Sn =

n∑
j=1

dn,jXj , (25)

where dn,j are real valued weights and (Xj) is a strictly stationary sequence of centered real-
valued random variables in L2. This model is also useful to analyze linear processes with
dependent innovations and regression models. It was studied in Peligrad and Utev [30], Rio
[37] and also in Peligrad and Utev [32], where a central limit theorem was obtained by using
a stronger form of the mixing coefficients.

We assume that the sequence of constants satisfy the following two conditions:

n∑
i=1

d2n,i → c2 and
n∑
i=1

(dn,j − dn,j−1)2 → 0 as n→∞ , (26)

where c2 > 0. Also, we impose the conditions

∑
i≥0

∫ α1(i)

0
Q2(u)du <∞ (27)

and
α2(m)→ 0, (28)

where Q is the quantile function assciated with X0.
Condition (27) implies that

∑
k≥0 |Cov(X0, Xk)| < ∞ and therefore that the sequence

(Xj) has a continuous spectral density f(x). Note also that if the spectral density f is
continuous and (26) is satisfied then

σ2n = Var(Sn)→ 2πc2f(0), as n→∞ .

We refer for instance to [26, Lemma 1.5] for a proof of this fact. Note also that (26) implies
the Lindeberg condition (4). Indeed, condition (26) entails that max1≤`≤n |dn,`| → 0, as
n→∞ (see [26, Lemma 12.12]).

By applying Theorem 15 we obtain the following result (see Merlevède-Peligrad [27]).

Theorem 17 Let Sn =
∑n

j=1 dn,jXj, where dn,j are real valued weights and (Xj) is a strictly
stationary sequence. Assume that (26), (27) and (28) are satisfied. Then Sn converges in
distribution to

√
2πf(0)|c|N where N is a standard Gaussian random variable. Let v2k,n =∑k

i=1 d
2
n,i. Define

vn(t) = inf
{
k; 1 ≤ k ≤ n : v2k,n ≥ c2t

}
and Wn(t) =

vn(t)∑
i=1

dn,iXi .

Then Wn(·) converges weakly to
√

2πf(0)|c|W where W is the standard Brownian motion.
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Comment 18 To apply Theorem 15, we do not need to impose condition (26) in its full
generality. Indeed, this condition can be replaced by the following ones

n∑
i=1

d2n,i → c2 and max
1≤`≤n

|dn,`| → 0 as n→∞ , (29)

and, for any positive k, there exists a constant ck such that

lim
n→∞

∑n−k
`=1 dn,`dn,`+k∑n

`=1 d
2
n,`

→ ck . (30)

Indeed condition (29) implies the Lindeberg condition (4) whereas condition (30) together
with

∑
k≥0 |Cov(X0, Xk)| <∞ (which is, in particular, implied by (27)) entail that

σ2n∑n
`=1 d

2
n,`

→ σ2 = Var(X0) + 2
∑
k≥1

ckCov(X0, Xk) , as n→∞ . (31)

Note that if condition (26) holds then (30) is satisfied with ck = 1 for all positive integer
k and therefore σ2 = 2πf(0). Hence, if in the statement of Theorem 17, condition (26) is
replaced by conditions (29) and (30) then, its conclusions hold with σ2 replacing 2πf(0),
where σ2 is defined in (31). To end this comment, let us give an example where conditions
(29) and (30) are satisfied but the second part of (26) fails. With this aim, let x be a real
such that x /∈ πZ and let dn,k = sin(xk)/

√
n. For this choice of triangular array we have∑n

i=1 d
2
n,i → 1/2 and, for any positive k,

∑n−k
`=1 dn,`dn,`+k → 2−1 cos(xk). Therefore (30) is

satisfied with ck = cos(xk) and (26) does not hold.

Remark 19 We refer to Dedecker et al. [7, Section 4] for various results concerning rates of
convergence in the central limit theorem for linear statistics of the above type with dependent
innovations. In particular, they proved the following result (see their corollary 4.1 and their
remark 4.2). Let p ∈ (2, 3]. Assume that

P(|X0| ≥ t) ≤ Ct−s for some s > p and
∑
k≥1

k(α2(k))2/p−2/s <∞ ,

and that the spectral density of (Xi) satisfies inft∈[−π,π] |f(t)| = m > 0. Then, setting mn =
max1≤`≤n |dn,`|, the following upper bounds holds: for any positive integer n,

∫
R
|Fn(t)− Φ(t)|dt� C(n, p) :=


mp−2
n

σn

( n∑
`=1

d2n,`

)(3−p)/2
if p ∈ (2, 3)

mn

σn
log
(
m−1n

n∑
`=1

d2n,`

)
if p = 3,

(32)

where we recall that Fn is the c.d.f. of Sn/σn and Φ is the c.d.f. of a standard Gaussian r.v.
Note that if we replace the condition that the spectral density has to be bounded away from
0 by the weaker one: f(0) > 0, and if, as a counterpart, we assume the additional condition
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∑
k>0 k

2|Cov(X0, Xk)| <∞, then an additional term appears in (32); namely, we get

∫
R
|Fn(t)− Φ(t)|dt� C(n, p) +

(∑n+1
k=1(dn,k − dn,k−1)2

)1/2
σn

.

See [7, Corollary 4.2].

In what follows, we apply Theorem 17 to the model of the nonlinear regression with fixed
design. Our goal is to estimate the function `(x) such that

y(x) = `(x) + ξ(x),

where ` is an unknown function and ξ(x) is the noise. If we fix the design points xn,i we get

Yn,i = y(xn,i) = `(xn,i) + ξi(xn,i).

According to [32], the nonparametric estimator of `(x) is defined to be

ˆ̀
n(x) =

n∑
i=1

wn,i(x)Yn,i, (33)

where

wn,i(x) = K
(xn,i − x

hn

)
/

n∑
i=1

K
(xn,i − x

hn

)
.

We apply Theorem 17 to find sufficient conditions for the convergence of the estimator ˆ̀
n(x).

To fix the ideas we shall consider the following setting: The kernel K is a density func-
tion, continuous with compact support [0, 1]. The design points will be xn,i = i/n and
(ξi(xn,1), . . . , ξi(xn,i)) is distributed as (X1, . . . , Xn), where (Xk)k∈Z is a stationary sequence
of centered sequence of random variables satisfying (27) and (28). We then derive the normal
asymptotic limit for

Vn(x) =

(
n∑
i=1

w2
n,i(x)

)−1/2 (
ˆ̀
n(x)− E(ˆ̀

n(x))
)
.

The following theorem was established in Merlevède-Peligrad [27].

Theorem 20 Assume for x fixed that ˆ̀
n(x) in defined by (33) and the sequence (Xj) is a

stationary sequence satisfying (27) and (28). Assume that the kernel K is a density, it is
square integrable, has compact support and is continuous. Assume nhn → ∞ and hn → 0.
Then

√
nhn(ˆ̀

n(x)−E(ˆ̀
n(x))) converges in distribution to

√
2πf(0)|c|N where N is a standard

Gaussian random variable and c2 is the second moment of K.

4.3 Application to functions of a triangular stationary Markov chain

Let us consider a triangular version of the Markov chain defined in Example 3.
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For any positive integer n, (ξi,n)i≥0 is an homogeneous Markov chain with state space N
and transition probabilities given by

P(ξ1,n = i|ξ0,n = i+ 1) = 1 and P(ξ1,n = i|ξ0,n = 0) = pi+1,n for i ≥ 1,

where, for i ≥ 2, pi,n = ca/(vni
a+2) with a > 0, ca

∑
i≥2 1/ia+2 = 1/2, (vn)n≥1 a sequence of

positive reals and p1,n = 1 − 1/(2vn). (ξi,n)i≥0 has a stationary distribution πn = (πj,n)j≥0
satisfying

π0,n =
(∑
i≥1

ipi,n

)−1
and πj,n = π0,n

∑
i≥j+1

pi,n for j ≥ 1.

Let Yi,n = Iξi,n=0 − π0,n. Let b2n = Var
(∑n

k=1 Yk,n

)
and set Xi,n = Yi,n/bn. Provided that

a > 1 and vn/n→ 0, (Xk,n)k>0 satisfies the functional central limit theorem given in Theorem
15.
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[27] Merlevède, F. Peligrad, M. (2020). Functional CLT for nonstationary strongly mixing
processes. Statist. Probab. Lett. 156, 108581, 10 pp.

[28] Neumann, M. H. (2013). A central limit theorem for triangular arrays of weakly depen-
dent random variables, with applications in statistics. ESAIM Probab. Stat. 17 120-134

[29] Peligrad, M. (2012). Central limit theorem for triangular arrays of non-homogeneous
Markov chains. Probab. Theory Related Fields 154 no. 3-4, 409–428

[30] Peligrad, M., and Utev, S. (1997). Central limit theorem for linear processes. Ann.
Probab. 25 443–456.

[31] Peligrad, M. and Utev, S. (2005). A new maximal inequality and invariance principle for
stationary sequences. Annals of Probability 33 798-815.

[32] Peligrad, M. and Utev, S. (2006). Central limit theorem for stationary linear processes.
Ann. Probab. 34 1608-1622.

[33] Peligrad, M. and Zhang, Na (2018). On the normal approximation for random fields via
martingale methods. Stochastic Process. Appl. 128(4), 1333-1346.

[34] Peligrad, M. and Zhang, Na (2018). Martingale approximations for random fields. Elec-
tron. Commun. Probab. 23, Paper No. 28, 9 pp.

[35] Peligrad, M. and Zhang, Na (2019). Central limit theorem for Fourier transform and
periodogram of random fields. Bernoulli. 25(1), 499-520.

[36] Rio, E. (1993). Covariance inequalities for strongly mixing processes. Ann. Inst. Henri
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[42] Volný, D. and Wang, Y. (2014). An invariance principle for stationary random fields
under Hannan’s condition. Stochastic Proc. Appl. 124 4012-4029.

23



[43] Wu, W.B. and Zhou, Z. (2011). Gaussian approximations for non-stationary multiple
time series. Statist. Sinica 21, no. 3, 1397-1413.

[44] Zhao, O. and Woodroofe, M. (2008). On Martingale approximations, Ann. Appl. Probab.
18, no. 5, 1831-1847.

24


