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ABSTRACT 
High-cost stochastic number generators (SNGs) are the main 
source of stochastic numbers (SNs) in stochastic computing. 
Interacting SNs must usually be uncorrelated for satisfactory 
results, but deliberate correlation can sometimes dramatically 
reduce area and/or improve accuracy. However, very little is known 
about the correlation behavior of SNGs. In this work, a core SNG 
component, its probability conversion circuit (PCC), is analyzed to 
reveal important tradeoffs between area, correlation, and accuracy. 
We show that PCCs of the weighted binary generator (WBG) type 
cannot consistently generate correlated bitstreams, which leads to 
inaccurate outputs for some designs. In contrast, comparator-based  
PCCs (CMPs) can generate highly correlated bitstreams but are 
about twice as large as WBGs. To overcome these area-correlation 
limitations, a novel class of PCCs called multiplexer majority 
chains (MMCs) is introduced. Some MMCs are area efficient like 
WBGs but can generate highly correlated SNs like CMPs and can 
reduce the area of a filtering circuit by 30% while sacrificing only 
7% accuracy. The large influence of PCC design on circuit area and 
accuracy is explored and suggestions are made for selecting the best 
PCC based on a target system’s correlation requirements. 
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Figure 1: (a) SN generator using a random number source 
(RNS) and a probability conversion circuit (PCC) to create SN 
X. (b) Sharing an RNS between two SN generators to create 
correlated SNs X and Y. 

1 Introduction 
Modern edge devices can benefit greatly from implementing 
computationally demanding algorithms on-chip [1]. However, they 
often have strict energy and area budgets that make such 
implementations difficult or infeasible. A potential solution to this 
challenge is stochastic computing (SC) [2]. In SC, data are encoded 
into pseudo-random bitstreams called stochastic numbers (SNs) 
which are used to perform very low-cost computation. For instance, 
a single AND gate can multiply two SNs. Low multiplication cost 
and other features of SC like fault tolerance have made SC a 
promising technology for on-chip implementations of useful 
algorithms related to digital filtering [3][4], image processing 
[5][6][7], and neural networks [8][9][10]. 

Although SC is cheap, encoding non-stochastic data into SNs is 
very costly and subject to various subtle error types. A typical SN 
generator (Fig. 1a) consists of a random number source (RNS) and 
a probability conversion circuit (PCC). The RNS supplies a 
sequence of random numbers which the PCC converts to a 
probabilistic bit-stream forming SN X. SN generators are needed 
not only for primary input variables, but also to restore internal SNs 
whose randomness has been degraded by prior computation. SN 
generators often form the largest part of a stochastic circuit, and 
their high cost is a major obstacle to the deployment of SC [5]. 

Partly in response to SNG cost, there has been growing interest 
in stochastic circuits that deliberately take advantage of correlation 
[11]. Examples are found in image processing and neural networks 
[6][7][9][10]. Correlation-based circuits can lower SNG overhead 
by allowing two or more SNs to share one RNS, as in Fig. 1b. Such  
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Figure 2: Comparison of output error for various circuit types 
whose PCCs are either CMPs (solid bars) or WBGs (striped 
bars). Examples include basic multiplication, weighted 
addition [3] used in digital filtering or neural networks, and 
edge detection used in image processing [5].  

designs, however, still require one PCC per distinct SN, making 
PCCs the predominant factor influencing stochastic circuit area. 
Optimizing PCC design can therefore greatly improve cost. For 
example, replacing traditional comparator-based PCCs (which we 
call CMPs) with weighted binary generators (WBGs) can reduce 
overall circuit area by 50-60% in SC digital filter designs [3][4]. 

In addition to circuit size, PCC design can significantly affect 
circuit accuracy, a fact that has been noticed, but has received little 
attention [3][12]. Fig. 2 shows the expected error level for three 
diverse stochastic designs [3][5]. In each case, the average output 
error is measured when using either CMP or WBG PCCs. As can 
be seen, the PCC’s impact on errors varies widely. A key 
motivation for this work is to explain behavior like that depicted in 
Fig. 2 and show when and how PCC choice influences accuracy. 

The main contributions of this work are: 
1. Demonstration that area-efficient WBG PCCs cannot 

generate maximally correlated SNs and so are unsuitable for 
correlation-reliant designs. 

2. The novel multiplexer-majority chain (MMC) PCC design 
which enables flexible area-correlation trade-offs in SC. 

3. Two case studies that illustrate important, but subtle, area-
accuracy trade-offs in PCC design. 

2 Background 
Here, we review relevant concepts from stochastic computing. 

2.1 Stochastic Computing Basics 
SC uses SNs to represent data. An SN X is a sequence of random 
bits 𝑥1, 𝑥2, … , 𝑥𝑁  where each bit has the same probability 𝑃𝑋  of 
taking value 1, namely, 𝑃𝑋 = ℙ(𝑥𝑖 = 1). X’s value depends on the 
format used. Here, we focus on unipolar format where X’s value is 
simply 𝑃𝑋, but our results readily extend to the bipolar SN format 
which is used to represent negative numbers in SC. 

A central advantage of SN encoding is that arithmetic is 
performed using simple logic elements. For example, the AND gate 
in Fig. 3 with SN inputs X and Y and output Z acts as a multiplier 
because 𝑃𝑍 = 𝑃𝑋𝑃𝑌  if X and Y’s bits are independent or 
uncorrelated. Addition also has very low cost in SC. Both 
multiplexer (mux) and majority (maj) gates can be used to add SNs 
X and Y by using a control SN R with value 𝑃𝑅 = 0.5. For a maj  
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Figure 3: Generic SC system using SN generators (SNGs) to 
convert from fixed-point format to SNs, and a counter to 
convert output SN Z to a fixed-point estimate of Z’s value.  

adder, R serves as the third input along X and Y while for a mux 
adder, R serves as the select signal. In both cases, the mux or maj 
outputs Z with 𝑃𝑍 = 0.5(𝑃𝑋 + 𝑃𝑌) [13]. 

2.2 SN Generation and Estimation 

Fig. 3 shows a how an SC circuit is embedded in a traditional 
computing system. SN generators are used to convert fixed-point 
values 𝑃𝑋 and 𝑃𝑌 into SNs X and Y. Then X and Y are processed 
through an SN datapath such as a multiplier. The computation 
output Z is converted back to fixed-point by a counter. Often, the 
area of an SC system is dominated by the SN generators [5]. 

Fig. 1a shows the prototypical SNG consisting of an RNS and a 
PCC where an LFSR serves as the RNS [2]. The output of the RNS 
during the its clock cycle is 𝑅𝑖 ∈ [0,1), a uniform random variable. 
While LFSRs normally do not output 𝑅𝑖 = 0, they can be easily 
modified to do so [14] and all LFSRs considered in this paper are 
assumed to be modified in this way. The PCC uses 𝑅𝑖 along with 
its value input 𝑃𝑋 to generate an SN bit 𝑥𝑖 that satisfies 

ℙ(𝑥𝑖 = 1) = 𝑃𝑋. (1) 

For example, a digital comparator that outputs 𝑥𝑖 = 𝑅𝑖 < 𝑃𝑋 is 
a common PCC type. Since 𝑅𝑖  is uniformly distributed, ℙ(𝑥𝑖 =
1) = ℙ(𝑅𝑖 < 𝑃𝑋) = 𝑃𝑋  confirming that the comparator satisfies 
(1) and is therefore a valid PCC. Another PCC type is the weighted 
binary generator (WBG) [15] whose two-stage implementation is 
illustrated in Fig. 4. 

After generation, SNs are processed through an SN arithmetic 
circuit (e.g., an AND gate multiplier or a mux adder) and produce 
an output SN Z, as illustrated in Fig. 3. If Z’s length 𝐿 is a power 
of two, a digital counter can then be used to determine the 
frequency of 1s in Z as 𝑃̂𝑍 =

1

𝐿
∑ 𝑧𝑖
𝐿
𝑖=1 , effectively converting from 

the SC domain back to the fixed-point domain. 
The counter’s output 𝑃̂𝑍 is an estimate of Z’s target value 𝑃𝑍∗, 

which is the intended result of the computation. The difference 
between 𝑃̂𝑍 and 𝑃𝑍∗ is the circuit’s error which fluctuates randomly 
due to the stochasticity of Z. Expected error can be quantified with 
the mean square error (MSE) metric 

MSE = 𝔼[𝑃𝑍
∗ − 𝑃̂𝑍] (2) 

Generally, SC has a fundamental accuracy-latency trade-off as 
using longer SNs leads to lower MSE because random errors tend 
to average out over many clock cycles [16]. 
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Figure 4: An n-bit weighted binary generator (WBG) used as a 
PCC to generate SN 𝐗 = 𝒙𝟏𝒙𝟐…𝒙𝑵 with P(𝒙𝒊 = 𝟏) = 𝑷𝑿. 

2.3 Correlation 
Correlations often arise between SN bits with major implications 
on circuit function and accuracy. In SC, the stochastic cross-
correlation (SCC) metric [11] is typically used to quantify 
correlation between bits of two SNs X and Y. 

SCC(𝐗, 𝐘) =

{
 

           
𝑃𝑋∧𝑌 − 𝑃𝑋𝑃𝑌

min(𝑃𝑋, 𝑃𝑌) − 𝑃𝑋𝑃𝑌
        if 𝑃𝑋∧𝑌 ≥ 𝑃𝑋𝑃𝑌

𝑃𝑋∧𝑌 − 𝑃𝑋𝑃𝑌
𝑃𝑋𝑃𝑌 −max(𝑃𝑋 + 𝑃𝑌 − 1,0)

   otherwise

(3) 

SCC’s numerator is the difference between the actual overlap of 
1s in two SNs (𝑃𝑋∧𝑌 = ℙ(𝑥𝑖 ∧ 𝑦𝑖 = 1)) and the expected overlap 
of 1s (𝑃𝑋𝑃𝑌). SCC’s denominator normalizes the value such that an 
SCC of +1 indicates maximum overlap of 1s based on 𝑃𝑋 and 𝑃𝑌. 
Likewise, SCC = −1  indicates a minimum overlap of 1s, and 
SCC = 0 indicates that the two SNs are uncorrelated. For example, 
𝐀 = 110101  and 𝐁 = 100101  have an estimated SCC  of +1 
because their 1s overlap as much as possible, while A and 𝐂 =
001010  have an estimated SCC  of −1  because their 1s never 
overlap. Two SNs X and Y have SCC = 0 when 𝑃𝑋∧𝑌 = 𝑃𝑋𝑃𝑌. 

In SC design, correlation can be exploited to change circuit 
function [11]. For example, an AND gate multiplies uncorrelated 
inputs X and Y with SCC = 0 , but an AND gate outputs 𝑃𝑍 =
min(𝑃𝑋, 𝑃𝑌) when X and Y are maximally correlated with SCC =
1. Using correlated SNs to implement functions like min, max and 
absolute value has practical applications in image processing [6][7] 
sorting networks [17] and neural networks [9][10]. For example, a 
neural network’s max pooling and ReLU activation functions rely 
on the maximum function which can be implemented with just an 
OR gate if the input SNs are correlated. 

3 Multiplexer Majority Chains 
This section introduces a novel and flexible PCC design style based 
on systematically combining mux and maj gates. 

3.1 Design 
Fig. 5 shows a 5-bit version of our proposed multiplexer-majority 
chain (MMC) framework. Like all 5-bit PCCs, the MMC has a 
random input 𝑅𝑖 = 𝑟4𝑟3𝑟2𝑟1𝑟0 and a value input 𝑃𝑋 = 𝑝4𝑝3𝑝2𝑝1𝑝0; 
it outputs a single SN bit 𝑥𝑖. Each 𝑀 block in the MMC performs 
the same stochastic add operation [2]: 
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Figure 5: MMC framework. (a) 5-bit MMC. Each M block 
computes (4) and is implemented by either a mux or maj gate. 
Note the leftmost M block always simplifies to an AND gate 
because 𝒄𝟎 = 𝟎. (b-c) Examples of 5-bit MMC PCCs.  

ℙ(𝑐𝑗+1 = 1) =
1

2
(ℙ(𝑝𝑗 = 1) + ℙ(cj = 1)) (4) 

The chain’s output 𝑥𝑖 = 𝑐5 is seen to satisfy the PCC equation (1) 
by recursively applying (4) and noting that 𝑃𝑋’s bits are nonrandom 
(ℙ(𝑝𝑗 = 1) = 𝑝𝑗). In particular, 

ℙ(𝑥𝑖 = 1) =
1

2
(𝑝4 +

1

2
(𝑝3 +

1

2
(𝑝2 +

1

2
(𝑝1 +

1

2
(𝑝0 + 0))))) 

which, when expanded, yields 

ℙ(𝑥𝑖 = 1) =
1

2
𝑝4 +

1

4
𝑝3 +

1

8
𝑝2 +

1

16
𝑝1 +

1

32
𝑝0 = 𝑃𝑋 

implying that (1) is satisfied and that the MMC is a valid PCC. 
The stochastic operation (4) of each M-block is equivalent to a 

basic SN scaled addition operation. In a similar vein as SN addition, 
each M-block can be implemented by either a mux or a maj gate 
[13]. For example, Fig. 5b is a mux-maj chain that uses two muxes 
and two maj gates while Fig. 5c uses one mux and three maj gates. 
Figs. 5b and 5c also explicitly show that the leftmost M-block 
always simplifies to an AND gate because 𝑐0 = 0. 

An important constraint we impose on an MMC’s design is that 
the chain must consist of mux gates followed by maj gates, as 
illustrated in Fig. 5. In other words, maj gates always occupy the 
chain stages corresponding to the most significant bits (MSBs) of 
the PCC’s 𝑅𝑖 and 𝑃𝑋 inputs. Although designs that do not follow 
this rule are still valid PCCs, the restriction has a significant effect 
on correlation, as explained in Sec. 3.3. Adhering to this restriction 
implies that there are n possible n-bit MMC designs. 

A specific MMC can be identified by a parameter k, the number 
of maj gates used in the design. When 𝑘 = 0, each M-block is 
implemented as a mux gate. The resulting PCC is a chain of mux 
gates which has appeared before [8] and is logically equivalent to a 
WBG. Thus, the WBG is special case of an MMC. Likewise, when 
𝑘 = 𝑛 − 1, each M-block in an n-bit MMC is implemented as a maj 
gate. The resulting maj chain design has also appeared before [18] 
but has rarely been explicitly used. 



 
 

 

Figure 6: MMC correlation-area tradeoff. Synthesized 8-bit 
MMC area per SN. Area is normalized by dividing by the PCC 
area of one CMP-type PCC. 

Interestingly, a chain of n maj gates forms the carry (or borrow) 
logic of an n-bit ripple subtracter and can be shown to compute 
𝑅̅𝑖 < 𝑃𝑋  where 𝑅̅𝑖 = 𝑟̅𝑛−1𝑟̅𝑛−2… 𝑟̅0.  Since ℙ(𝑟𝑗 = 1) = 𝑃(𝑟𝑗 =
0) = 0.5, the inversions on 𝑅̅𝑖’s bits can be absorbed into the RNS 
allowing us to henceforth consider a chain of maj gates as 
implementing a standard CMP that computes 𝑅𝑖 < 𝑃𝑋 . Thus, in 
terms of Boolean logic, both WBGs and CMPs are special cases of 
MMCs. The MMC framework also generalizes to novel PCC 
designs which are implemented with a mix of mux and maj gates. 
Examples of new PCC designs include Figs. 5b and 5c. Next, we 
analyze the area and correlation properties of MMCs. 

3.2 Area Analysis 
SN generators often dominate the area of a stochastic circuit [5]. 
Thus, minimizing PCC cost is crucial to meeting SC’s promise of 
low-cost, yet computationally powerful circuits. Here, we 
investigate how an MMC’s area varies with 𝑘, the number of maj 
gates in the chain. To synthesize all designs, Synopsys Design 
Compiler (DC) with the Nangate 45nm cell library [19] is used. 
Synopsys DC is given a Verilog description of the MMC’s logic 
and the final synthesized area is reported. The objective of this area 
analysis is to characterize the PCC based on its Boolean function 
rather than its physical chip area; the objective is not to compare 
chain implementations against non-chain implementations of 
PCCs. Note that the design synthesized by DC is not necessarily a 
chain of mux and maj gates.  

The 𝑀 = 1 curve in Fig. 6 shows that a single MMC area’s 
increases linearly with 𝑘. When 𝑘 = 7, the MMC resembles a CMP 
and area is at its highest. When 𝑘 = 0, the MMC is a WBG, and 
has an area 28% lower than that of a CMP. We also synthesized 6-
bit through 12-bit MMCs and found similar results (which are 
omitted here for brevity). 

When generating two or more correlated SNs with a shared RNS 
as in Fig. 1b, considerable area can be saved by sharing part of the 
WBG alongside the shared RNS [4]. In contrast, no portion of a 
CMP can be shared in a similar manner, and so WBGs become even 
more area efficient than CMPs when generating many correlated 
SNs. Here, we extend [4] by asking: Do MMCs become more area 
efficient when generating correlated SNs? 

Fig. 6 shows the per-SN area cost of using MMCs to generate 
𝑀 correlated SNs with 𝑀 = 3,  5 , 10  or 50 . For each 𝑀 , the 
MCCs’ area increases linearly with 𝑘 as in the single 𝑀 = 1 SN  

 

Figure 7: SCC(X,Y) as a function of 𝑷𝑿, 𝑷𝒀  for 8-bit MMCs 
with various numbers of maj gates, 𝒌. The desired SCC in all 
plots is 𝐒𝐂𝐂(𝐗, 𝐘) = 𝟏 (dark purple) for all 𝑷𝑿, 𝑷𝒀. 

case, but the area efficiency improves. For example, when 𝑀 = 50 
the area per SN for WBGs is 62% lower than for CMPs. This 62% 
difference is much better than the 28% difference noted in the 
single SN case. When 1 ≤ 𝑘 ≤ 6, the per-SN area of the MMC is 
also reduced compared to the single SN case, implying that hybrid 
MMCs also become more area efficient when generating SNs with 
a shared RNS, particularly for small 𝑘. Note that 𝑀 in Fig. 6 is 
determined by the application, specifically by how many input SNs 
that share an RNS are needed. 

3.3 Correlation Analysis 
Recent work has demonstrated that correlation amongst input SNs 
can sometimes drastically change a circuit’s function [11] or 
improve its area or accuracy [3][4]. The most frequent correlation 
level required by such techniques is a pairwise SCC of +1 between 
all or most input SNs. The correlated SN generator in Fig. 1b is 
often used to generate SNs with SCC(𝐗, 𝐘) = 1 , however, the 
actual SCC of the generated SNs can vary wildly depending on the 
PCC used, as we show next. 

 Fig. 7 plots SCC(𝐗, 𝐘) as a function of 𝑃𝑋, 𝑃𝑌 when using the 
correlated SN generator in Fig. 1b with various PCCs. Fig. 7d 
corresponds to using CMPs and shows SCC = 1 for all 𝑃𝑋, 𝑃𝑌, as 
desired. In contrast, Fig. 7a uses WBGs and shows that the SCC 
varies greatly with 𝑃𝑋, 𝑃𝑌  and that the SCC  often takes negative 
values, which is antithetical to the goal of SCC = 1. Thus, although 
WBGs are very area efficient at producing SNs with a shared RNS 
(Fig. 6), a WBG is unable to consistently generate maximally 
correlated SNs. This drawback of WBGs is an important conclusion 
of our work, and we examine its consequences in Sec. 4. 

Next, Fig. 7b shows how SCC(X,Y) varies with 𝑃𝑋 and 𝑃𝑌, for 
an 8-bit MMC with 𝑘 = 1. The overall correlation is much higher 
than in the WBG case (Fig. 7a) although the number of maj gates 
𝑘 has only increased from 0 to 1. When 𝑘 is increased further to 
𝑘 = 2 , Fig. 7c shows that SCC approaches +1 for many more 
values of 𝑃𝑋, 𝑃𝑌. To illustrate this trend, Fig. 8 plots SCC(X,Y)  



 

 

Figure 8: SCC averaged across all possible values of 𝑷𝑿, 𝑷𝒀 
when using 8-bit MMCs in a correlated SN generator. 

averaged over all 𝑃𝑋, 𝑃𝑌 against the MMC parameter 𝑘. When 𝑘 =
0, the MMC is equivalent to a WBG, and the average SCC is nearly 
0. As 𝑘  increases, the average SCC quickly rises until it hits a 
maximum value 1 when 𝑘 = 7 and the MMC is a CMP-type PCC. 
The reason for the rapid growth of correlation in Fig. 8 is that the 
maj gates always act on the MSBs of the MMCs’ value inputs 𝑃𝑋 
and 𝑃𝑌. Consequently, the maj gates have significant influence on 
the MMC output and cause the correlation to reflect that of a CMP 
more so than that of a WBG. 

4 Digital Filtering Case Studies 
The following two case studies use MMCs to show the large 
influence that PCCs have on circuit cost and accuracy. For both 
cases, the SNG precision is set to 8 bits and 256-bit SNs are used. 
The SNGs employ MMC PCCs where 𝑘 varies from 0 to 7.  

4.1 Finite Impulse Response Filtering 
Digital finite impulse response (FIR) filters are widely used to 
denoise signals. CeMux is an SC mux-based addition method 
designed to implement low-cost FIR filtering [3]. CeMux computes 

𝑍𝑡 =
1

∑ |ℎ𝑘|
𝑀−1
𝑘=0

∑ ℎ𝑘𝑋𝑡−𝑘

𝑀−1

𝑘=0

(5) 

where 𝑀 is the number of filter taps, 𝑋𝑡 is the noisy input signal, 
ℎ𝑘 are the constant filter coefficients, and 𝑍𝑡 is the filtered signal. 
To implement (5), CeMux encodes the input signal 𝑋𝑡 into a set of 
SNs X1, X2 …, XM that are processed through a tree of multiplexers 
whose final output is Z with value 𝑍𝑡 (5) [3]. CeMux is up to 12x 
more accurate than other mux-based adders and relies heavily on 
correlation to reduce error. For example, it uses a shared RNS with 
CMP PCCs to carefully correlate its input SNs X1, X2, ..., XM in a 
way that improves accuracy. 

Here, we investigate how CeMux’s area and accuracy vary with 
its MMC parameter 𝑘  when implementing an electrocardiogram 
(ECG) denoising task like that of [3]. CeMux is synthesized using 
Synopsys DC and signal-to-noise ratio (SNR) is used to quantify 
CeMux’s accuracy: 

SNR = 10 log10
𝔼[𝑃𝑍𝑡

2 ]

MSE
(6) 

where 𝔼[𝑃𝑍2] is the average signal power and MSE (2) quantifies 
the average noise power. 

Fig. 9a illustrates the experimental results. Since PCCs account 
for about 80% of CeMux’s area [3], its area is highly influenced by  

 

Figure 9: Influence of MMC design on circuit area and 
accuracy for (a) CeMux FIR filter; (b) SC median filter. 
Normalized values are computed by dividing by the area or 
SNR corresponding to 𝒌 = 𝟕. 

the MMC design and CeMux’s overall area increases linearly with 
k . Compared to CMPs, using WBGs leads to a significant area 
savings of 40% but degrades accuracy by about 25% because 
WBGs fail to maximally correlate input SNs. In contrast, using 
MMC PCCs with 𝑘 = 1  in CeMux saves 30% area while only 
degrading accuracy by about 7% because the MMCs mostly 
generate highly correlated input SNs. 

Overall, when accuracy must be maximized, CeMux should 
employ CMPs, i.e., MMCs with 𝑘 = 7 . However, area can be 
greatly reduced in exchange for a small amount of accuracy by 
using MMCs with fewer maj gates. Using MMCs with 𝑘 = 1 
yields the best trade-off where a significant 30% of area is saved in 
exchange for 7% lower SNR. MMCs with higher 𝑘 values can also 
be used if slightly more accuracy is desired. 

4.2 Median Filtering 
Median filters are effective at filtering out impulse noise types. For 
example, the image in Fig. 10a corrupted by salt-and-pepper noise 
can be mostly recovered by convolving the noisy image with a 3x3 
median filter as shown by the filtered image in Fig. 10d. A 3x3 
median filter replaces each noisy image pixel with the median value 
of its surrounding 8 noisy pixels and itself. In SC, a median filter 
can be implemented very efficiently by using AND/OR gates to 
implement a series of MIN and MAX operations on correlated SNs 
[6][17]. For accurate computation, SC median filters require that 
their input SNs be maximally correlated with a pairwise SCC of +1. 

To evaluate the tradeoff between area and performance for the 
3x3 median filter circuit, we corrupted 10 grayscale test images 
from the MATLAB image processing toolbox with random salt-
and-pepper noise. Each pixel was assigned a 5% chance of 
becoming corrupted to all-black or all-white. An SC median filter 
was then simulated with each corrupted image as input and the 
structural similarity index measure (SSIM) [20] between the 
circuit’s output and target output was calculated.  

In [20], it is shown that two distorted images having the same 
MSE relative to an unmodified image can vary substantially in 
terms of perceived visual quality. SSIM is a similarity measure 
designed to better capture perceptual differences between images. 
It is based on the hypothesis that the human visual system is better  



 
 

 

Figure 10: (a) Image corrupted by random salt-and-pepper 
noise. Image filtered by SC median filter with (b) WBG PCCs; 
(c) CMP PCCs; (d) MMC PCCs with 𝒌 = 𝟒 maj gates.  

adapted to perceiving large-scale structural features of images 
compared to low-level details or differences in luminance and 
contrast. SSIM varies between 0 and 1 where a higher SSIM 
implies the two images are more visually similar. 

Fig. 9b shows how the median filter’s area and SSIM varies with 
the MMC parameter 𝑘. The median filter area, including the SNGs 
and median filter circuit, varies linearly with 𝑘. Using WBG PCCs 
in place of CMPs leads to an area savings of 30%, but also a low 
SSIM of 0.78. Fig. 9b indicates that SSIM grows with 𝑘, but its 
growth exhibits diminishing returns after 𝑘 > 4, implying that 𝑘 =
4 is a good choice for the median filter MMCs. In that case, the 
SSIM is 0.965 out of a maximum of 1 and area is 10% lower than 
using CMPs. 

Fig. 10 shows the “cameraman” test image and the SC median 
filter’s output when using MMCs with different 𝑘  values. The 
filtering performed is poor when using WBG PCCs, which 
highlights the drawback of employing low-cost WBG PCCs in 
designs that require highly correlated SNs. In contrast, MMC PCCs 
with 𝑘 = 4 maj gates lead to effective filtering and an SSIM of 
0.97, with an area savings of about 10% compared to using CMPs. 

5 Discussion 
The influence of PCC design on circuit area and accuracy varies 
with the application as demonstrated by Fig. 2 and Sec. 4’s case 
studies. Circuits like CeMux that benefit from, but do not require, 
correlated input SNs can use CMPs to maximize accuracy or can 
use MMCs with few maj gates (e.g., 𝑘 = 1 ) to save area in 
exchange for some accuracy loss. Circuits like SC median filters 
that require highly correlated inputs can use CMPs to maximize 
accuracy or use MMCs with many maj gates (e.g., 𝑘 = 4 for 8-bit 
precision) to save area at the cost of some accuracy. Finally, circuits 
that require independent inputs, like the SN multiplier should use 

separate RNSs to ensure SN independence and should always 
employ WBG PCCs to achieve the lowest area. 

Overall, input correlation revolves around SN generator design. 
Here, we introduced MMCs to obtain a unified view of WBG and 
CMP PCCs, which enabled in-depth analysis of the area and 
correlation properties of PCC designs. As demonstrated in the two 
case studies, MMCs not only provide insight into correlation, but 
they also enable designers to trade off cost and accuracy in SN 
generation. 
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