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ABSTRACT

High-cost stochastic number generators (SNGs) are the main
source of stochastic numbers (SNs) in stochastic computing.
Interacting SNs must usually be uncorrelated for satisfactory
results, but deliberate correlation can sometimes dramatically
reduce area and/or improve accuracy. However, very little is known
about the correlation behavior of SNGs. In this work, a core SNG
component, its probability conversion circuit (PCC), is analyzed to
reveal important tradeoffs between area, correlation, and accuracy.
We show that PCCs of the weighted binary generator (WBG) type
cannot consistently generate correlated bitstreams, which leads to
inaccurate outputs for some designs. In contrast, comparator-based
PCCs (CMPs) can generate highly correlated bitstreams but are
about twice as large as WBGs. To overcome these area-correlation
limitations, a novel class of PCCs called multiplexer majority
chains (MMCs) is introduced. Some MMCs are area efficient like
WBGs but can generate highly correlated SNs like CMPs and can
reduce the area of a filtering circuit by 30% while sacrificing only
7% accuracy. The large influence of PCC design on circuit area and
accuracy is explored and suggestions are made for selecting the best
PCC based on a target system’s correlation requirements.
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Figure 1: (a) SN generator using a random number source
(RNS) and a probability conversion circuit (PCC) to create SN
X. (b) Sharing an RNS between two SN generators to create
correlated SNs X and Y.

1 Introduction

Modern edge devices can benefit greatly from implementing
computationally demanding algorithms on-chip [1]. However, they
often have strict energy and area budgets that make such
implementations difficult or infeasible. A potential solution to this
challenge is stochastic computing (SC) [2]. In SC, data are encoded
into pseudo-random bitstreams called stochastic numbers (SNs)
which are used to perform very low-cost computation. For instance,
a single AND gate can multiply two SNs. Low multiplication cost
and other features of SC like fault tolerance have made SC a
promising technology for on-chip implementations of useful
algorithms related to digital filtering [3][4], image processing
[5][6][7], and neural networks [8][9][10].

Although SC is cheap, encoding non-stochastic data into SN is
very costly and subject to various subtle error types. A typical SN
generator (Fig. 1a) consists of a random number source (RNS) and
a probability conversion circuit (PCC). The RNS supplies a
sequence of random numbers which the PCC converts to a
probabilistic bit-stream forming SN X. SN generators are needed
not only for primary input variables, but also to restore internal SNs
whose randomness has been degraded by prior computation. SN
generators often form the largest part of a stochastic circuit, and
their high cost is a major obstacle to the deployment of SC [5].

Partly in response to SNG cost, there has been growing interest
in stochastic circuits that deliberately take advantage of correlation
[11]. Examples are found in image processing and neural networks
[6][7][9][10]. Correlation-based circuits can lower SNG overhead
by allowing two or more SNs to share one RNS, as in Fig. 1b. Such
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Figure 2: Comparison of output error for various circuit types
whose PCCs are either CMPs (solid bars) or WBGs (striped
bars). Examples include basic multiplication, weighted
addition [3] used in digital filtering or neural networks, and
edge detection used in image processing [5].

designs, however, still require one PCC per distinct SN, making

PCCs the predominant factor influencing stochastic circuit area.

Optimizing PCC design can therefore greatly improve cost. For

example, replacing traditional comparator-based PCCs (which we

call CMPs) with weighted binary generators (WBGs) can reduce

overall circuit area by 50-60% in SC digital filter designs [3][4].

In addition to circuit size, PCC design can significantly affect
circuit accuracy, a fact that has been noticed, but has received little
attention [3][12]. Fig. 2 shows the expected error level for three
diverse stochastic designs [3][5]. In each case, the average output
error is measured when using either CMP or WBG PCCs. As can
be seen, the PCC’s impact on errors varies widely. A key
motivation for this work is to explain behavior like that depicted in

Fig. 2 and show when and how PCC choice influences accuracy.

The main contributions of this work are:

1. Demonstration that area-efficient WBG PCCs cannot
generate maximally correlated SNs and so are unsuitable for
correlation-reliant designs.

2. The novel multiplexer-majority chain (MMC) PCC design
which enables flexible area-correlation trade-offs in SC.

3. Two case studies that illustrate important, but subtle, area-
accuracy trade-offs in PCC design.

2 Background

Here, we review relevant concepts from stochastic computing.

2.1 Stochastic Computing Basics

SC uses SN to represent data. An SN X is a sequence of random
bits x4, x5, ..., xy Where each bit has the same probability Py of
taking value 1, namely, Py = P(x; = 1). X’s value depends on the
format used. Here, we focus on unipolar format where X’s value is
simply Py, but our results readily extend to the bipolar SN format
which is used to represent negative numbers in SC.

A central advantage of SN encoding is that arithmetic is
performed using simple logic elements. For example, the AND gate
in Fig. 3 with SN inputs X and Y and output Z acts as a multiplier
because P, = PxyPy if X and Y’s bits are independent or
uncorrelated. Addition also has very low cost in SC. Both
multiplexer (mux) and majority (maj) gates can be used to add SNs
X and Y by using a control SN R with value P, = 0.5. For a maj
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Figure 3: Generic SC system using SN generators (SNGs) to
convert from fixed-point format to SNs, and a counter to
convert output SN Z to a fixed-point estimate of Z’s value.

adder, R serves as the third input along X and Y while for a mux
adder, R serves as the select signal. In both cases, the mux or maj
outputs Z with P, = 0.5(Px + Py) [13].

2.2 SN Generation and Estimation

Fig. 3 shows a how an SC circuit is embedded in a traditional
computing system. SN generators are used to convert fixed-point
values Py and Py into SNs X and Y. Then X and Y are processed
through an SN datapath such as a multiplier. The computation
output Z is converted back to fixed-point by a counter. Often, the
area of an SC system is dominated by the SN generators [5].

Fig. 1a shows the prototypical SNG consisting of an RNS and a
PCC where an LFSR serves as the RNS [2]. The output of the RNS
during the its clock cycle is R; € [0,1), a uniform random variable.
While LFSRs normally do not output R; = 0, they can be easily
modified to do so [14] and all LFSRs considered in this paper are
assumed to be modified in this way. The PCC uses R; along with
its value input Py to generate an SN bit x; that satisfies

P(x; = 1) = Px. 1)

For example, a digital comparator that outputs x; = R; < Py is
a common PCC type. Since R; is uniformly distributed, P(x; =
1) = P(R; < Px) = Py confirming that the comparator satisfies
(1) and is therefore a valid PCC. Another PCC type is the weighted
binary generator (WBG) [15] whose two-stage implementation is
illustrated in Fig. 4.

After generation, SNs are processed through an SN arithmetic
circuit (e.g., an AND gate multiplier or a mux adder) and produce
an output SN Z, as illustrated in Fig. 3. If Z’s length L is a power
of two, a digital counter can then be used to determine the
frequency of 1s in Z as P, = %215:1 z;, effectively converting from
the SC domain back to the fixed-point domain.

The counter’s output P, is an estimate of Z’s target value P,
which is the intended result of the computation. The difference
between P, and P; is the circuit’s error which fluctuates randomly
due to the stochasticity of Z. Expected error can be quantified with
the mean square error (MSE) metric

MSE = E[P; — P;] (2)

Generally, SC has a fundamental accuracy-latency trade-off as
using longer SNs leads to lower MSE because random errors tend
to average out over many clock cycles [16].
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Figure 4: An n-bit weighted binary generator (WBG) used as a
PCC to generate SN X = x1x, ... xy with P(x; = 1) = Py.

2.3 Correlation

Correlations often arise between SN bits with major implications
on circuit function and accuracy. In SC, the stochastic cross-
correlation (SCC) metric [11] is typically used to quantify
correlation between bits of two SNs X and Y.

Pxny — PxPy
min(Px,Py) - PXpy
Pyny — PyP 3
XAY XY otherwise
PXpy_maX(Px+Py_1,0)

if Pyany = PxPy
SCC(X,Y) =

SCC’s numerator is the difference between the actual overlap of
Is in two SNs (Pxay = P(x; Ay; = 1)) and the expected overlap
of 1s (PxPy). SCC’s denominator normalizes the value such that an
SCC of +1 indicates maximum overlap of 1s based on Py and Py.
Likewise, SCC = —1 indicates a minimum overlap of 1s, and
SCC = 0 indicates that the two SNs are uncorrelated. For example,
A =110101 and B = 100101 have an estimated SCC of +1
because their 1s overlap as much as possible, while A and C =
001010 have an estimated SCC of —1 because their 1s never
overlap. Two SNs X and Y have SCC = 0 when Px,y = PxPy.

In SC design, correlation can be exploited to change circuit
function [11]. For example, an AND gate multiplies uncorrelated
inputs X and Y with SCC = 0, but an AND gate outputs P, =
min(Py, Py) when X and Y are maximally correlated with SCC =
1. Using correlated SNs to implement functions like min, max and
absolute value has practical applications in image processing [6][7]
sorting networks [17] and neural networks [9][10]. For example, a
neural network’s max pooling and ReLU activation functions rely
on the maximum function which can be implemented with just an
OR gate if the input SN are correlated.

3 Multiplexer Majority Chains

This section introduces a novel and flexible PCC design style based
on systematically combining mux and maj gates.

3.1 Design

Fig. 5 shows a 5-bit version of our proposed multiplexer-majority
chain (MMC) framework. Like all 5-bit PCCs, the MMC has a
random input R; = 1,137,747y and a value input Py = pap3p2P1P0;
it outputs a single SN bit x;. Each M block in the MMC performs
the same stochastic add operation [2]:
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Figure 5: MMC framework. (a) 5-bit MMC. Each M block
computes (4) and is implemented by either a mux or maj gate.
Note the leftmost M block always simplifies to an AND gate
because ¢y = 0. (b-c) Examples of 5-bit MMC PCCs.

1

P(cjyy =1) = E(P(pj =1)+P(g = 1)) (4)

The chain’s output x; = c5 is seen to satisfy the PCC equation (1)
by recursively applying (4) and noting that Py’s bits are nonrandom

(P(p; = 1) = p;). In particular,
1 1 1 1 1
Px; = 1) = E(p4 +§(p3 + E(pz + E(pl + E(Po +0)))))

which, when expanded, yields

1 1 1 1 1
P(x; = 1)=§p4+ZP3 +§p2 +1_6P1 +3—2p0 = Py

implying that (1) is satisfied and that the MMC is a valid PCC.

The stochastic operation (4) of each M-block is equivalent to a
basic SN scaled addition operation. In a similar vein as SN addition,
each M-block can be implemented by either a mux or a maj gate
[13]. For example, Fig. 5b is a mux-maj chain that uses two muxes
and two maj gates while Fig. Sc uses one mux and three maj gates.
Figs. 5b and Sc also explicitly show that the leftmost M-block
always simplifies to an AND gate because ¢y = 0.

An important constraint we impose on an MMC’s design is that
the chain must consist of mux gates followed by maj gates, as
illustrated in Fig. 5. In other words, maj gates always occupy the
chain stages corresponding to the most significant bits (MSBs) of
the PCC’s R; and Py inputs. Although designs that do not follow
this rule are still valid PCCs, the restriction has a significant effect
on correlation, as explained in Sec. 3.3. Adhering to this restriction
implies that there are n possible n-bit MMC designs.

A specific MMC can be identified by a parameter &, the number
of maj gates used in the design. When k = 0, each M-block is
implemented as a mux gate. The resulting PCC is a chain of mux
gates which has appeared before [8] and is logically equivalent to a
WBG. Thus, the WBG is special case of an MMC. Likewise, when
k = n — 1, each M-block in an n-bit MMC is implemented as a maj
gate. The resulting maj chain design has also appeared before [18]
but has rarely been explicitly used.



% Generating M
D 0.9 ¥ | " SNs with
0.8/ shared RNS
c- : -

8 0.7 1 M=1
2 06 -+ M=3
05 -4 M=5
g0

E o -m M=10
o U %"

S -4 M=50

0o 1 2 3 4 5 6 1
Number of maj gates, k
Figure 6: MMC correlation-area tradeoff. Synthesized 8-bit

MMC area per SN. Area is normalized by dividing by the PCC
area of one CMP-type PCC.

Interestingly, a chain of #» maj gates forms the carry (or borrow)
logic of an n-bit ripple subtracter and can be shown to compute
R; < Py where R; = Tp_1Ty_5..75. Since P(r; =1) = P(r; =
0) = 0.5, the inversions on R;’s bits can be absorbed into the RNS
allowing us to henceforth consider a chain of maj gates as
implementing a standard CMP that computes R; < Pyx. Thus, in
terms of Boolean logic, both WBGs and CMPs are special cases of
MMCs. The MMC framework also generalizes to novel PCC
designs which are implemented with a mix of mux and maj gates.
Examples of new PCC designs include Figs. 5b and 5c. Next, we
analyze the area and correlation properties of MMCs.

3.2 Area Analysis

SN generators often dominate the area of a stochastic circuit [5].
Thus, minimizing PCC cost is crucial to meeting SC’s promise of
low-cost, yet computationally powerful circuits. Here, we
investigate how an MMC’s area varies with k, the number of maj
gates in the chain. To synthesize all designs, Synopsys Design
Compiler (DC) with the Nangate 45nm cell library [19] is used.
Synopsys DC is given a Verilog description of the MMC’s logic
and the final synthesized area is reported. The objective of this area
analysis is to characterize the PCC based on its Boolean function
rather than its physical chip area; the objective is not to compare
chain implementations against non-chain implementations of
PCCs. Note that the design synthesized by DC is not necessarily a
chain of mux and maj gates.

The M = 1 curve in Fig. 6 shows that a single MMC area’s
increases linearly with k. When k = 7, the MMC resembles a CMP
and area is at its highest. When k = 0, the MMC is a WBG, and
has an area 28% lower than that of a CMP. We also synthesized 6-
bit through 12-bit MMCs and found similar results (which are
omitted here for brevity).

When generating two or more correlated SNs with a shared RNS
as in Fig. 1b, considerable area can be saved by sharing part of the
WBG alongside the shared RNS [4]. In contrast, no portion of a
CMP can be shared in a similar manner, and so WBGs become even
more area efficient than CMPs when generating many correlated
SNs. Here, we extend [4] by asking: Do MMCs become more area
efficient when generating correlated SNs?

Fig. 6 shows the per-SN area cost of using MMCs to generate
M correlated SNs with M =3, 5, 10 or 50. For each M, the
MCCs’ area increases linearly with k as in the single M = 1 SN

SN Y's value, Py

05 0.75 0 025 05 075
SN X's value, Px

SCC(X,Y)W

-1.0 -0.5 0.0 0.5 1.0
Figure 7: SCC(X,Y) as a function of Py, Py for 8-bit MMCs
with various numbers of maj gates, k. The desired SCC in all
plots is SCC(X,Y) = 1 (dark purple) for all Py, Py.

case, but the area efficiency improves. For example, when M = 50
the area per SN for WBGs is 62% lower than for CMPs. This 62%
difference is much better than the 28% difference noted in the
single SN case. When 1 < k < 6, the per-SN area of the MMC is
also reduced compared to the single SN case, implying that hybrid
MMCs also become more area efficient when generating SNs with
a shared RNS, particularly for small k. Note that M in Fig. 6 is
determined by the application, specifically by how many input SNs
that share an RNS are needed.

3.3 Correlation Analysis

Recent work has demonstrated that correlation amongst input SNs
can sometimes drastically change a circuit’s function [11] or
improve its area or accuracy [3][4]. The most frequent correlation
level required by such techniques is a pairwise SCC of +1 between
all or most input SNs. The correlated SN generator in Fig. 1b is
often used to generate SNs with SCC(X,Y) = 1, however, the
actual SCC of the generated SNs can vary wildly depending on the
PCC used, as we show next.

Fig. 7 plots SCC(X,Y) as a function of Py, Py when using the
correlated SN generator in Fig. 1b with various PCCs. Fig. 7d
corresponds to using CMPs and shows SCC = 1 for all Py, Py, as
desired. In contrast, Fig. 7a uses WBGs and shows that the SCC
varies greatly with Py, Py and that the SCC often takes negative
values, which is antithetical to the goal of SCC = 1. Thus, although
WBGs are very area efficient at producing SNs with a shared RNS
(Fig. 6), a WBG is unable to consistently generate maximally
correlated SNs. This drawback of WBGs is an important conclusion
of our work, and we examine its consequences in Sec. 4.

Next, Fig. 7b shows how SCC(X,Y) varies with Px and Py, for
an 8-bit MMC with k = 1. The overall correlation is much higher
than in the WBG case (Fig. 7a) although the number of maj gates
k has only increased from 0 to 1. When k is increased further to
k = 2, Fig. 7c shows that SCC approaches +1 for many more
values of Py, Py. To illustrate this trend, Fig. 8 plots SCC(X,Y)
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Figure 8: SCC averaged across all possible values of Py, Py
when using 8-bit MMCs in a correlated SN generator.

averaged over all Py, Py against the MMC parameter k. When k =
0, the MMC is equivalent to a WBG, and the average SCC is nearly
0. As k increases, the average SCC quickly rises until it hits a
maximum value 1 when k = 7 and the MMC is a CMP-type PCC.
The reason for the rapid growth of correlation in Fig. 8 is that the
maj gates always act on the MSBs of the MMCs’ value inputs Py
and Py. Consequently, the maj gates have significant influence on
the MMC output and cause the correlation to reflect that of a CMP
more so than that of a WBG.

4 Digital Filtering Case Studies

The following two case studies use MMCs to show the large
influence that PCCs have on circuit cost and accuracy. For both
cases, the SNG precision is set to 8 bits and 256-bit SNs are used.
The SNGs employ MMC PCCs where k varies from 0 to 7.

4.1 Finite Impulse Response Filtering

Digital finite impulse response (FIR) filters are widely used to
denoise signals. CeMux is an SC mux-based addition method
designed to implement low-cost FIR filtering [3]. CeMux computes

1 M-1
Zy = _72 hy X 5)
t Z?€4=01|hk|k=0 kAt—k

where M is the number of filter taps, X; is the noisy input signal,
hy are the constant filter coefficients, and Z, is the filtered signal.
To implement (5), CeMux encodes the input signal X, into a set of
SNs X1, X2 ..., Xm that are processed through a tree of multiplexers
whose final output is Z with value Z; (5) [3]. CeMux is up to 12x
more accurate than other mux-based adders and relies heavily on
correlation to reduce error. For example, it uses a shared RNS with
CMP PCCs to carefully correlate its input SNs X1, Xo, ..., Xmin a
way that improves accuracy.

Here, we investigate how CeMux’s area and accuracy vary with
its MMC parameter k when implementing an electrocardiogram
(ECG) denoising task like that of [3]. CeMux is synthesized using
Synopsys DC and signal-to-noise ratio (SNR) is used to quantify
CeMux’s accuracy:

E[PZ]

MSE
where E[P2] is the average signal power and MSE (2) quantifies
the average noise power.

Fig. 9a illustrates the experimental results. Since PCCs account
for about 80% of CeMux’s area [3], its area is highly influenced by

SNR = 101logy, (6)
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Figure 9: Influence of MMC design on circuit area and
accuracy for (a) CeMux FIR filter; (b) SC median filter.
Normalized values are computed by dividing by the area or
SNR corresponding to k = 7.

the MMC design and CeMux’s overall area increases linearly with
k. Compared to CMPs, using WBGs leads to a significant area
savings of 40% but degrades accuracy by about 25% because
WBGs fail to maximally correlate input SNs. In contrast, using
MMC PCCs with k =1 in CeMux saves 30% area while only
degrading accuracy by about 7% because the MMCs mostly
generate highly correlated input SNs.

Overall, when accuracy must be maximized, CeMux should
employ CMPs, i.e., MMCs with k = 7. However, area can be
greatly reduced in exchange for a small amount of accuracy by
using MMCs with fewer maj gates. Using MMCs with k =1
yields the best trade-off where a significant 30% of area is saved in
exchange for 7% lower SNR. MMCs with higher k values can also
be used if slightly more accuracy is desired.

4.2 Median Filtering

Median filters are effective at filtering out impulse noise types. For
example, the image in Fig. 10a corrupted by salt-and-pepper noise
can be mostly recovered by convolving the noisy image with a 3x3
median filter as shown by the filtered image in Fig. 10d. A 3x3
median filter replaces each noisy image pixel with the median value
of its surrounding 8 noisy pixels and itself. In SC, a median filter
can be implemented very efficiently by using AND/OR gates to
implement a series of MIN and MAX operations on correlated SNs
[6][17]. For accurate computation, SC median filters require that
their input SNs be maximally correlated with a pairwise SCC of +1.

To evaluate the tradeoff between area and performance for the
3x3 median filter circuit, we corrupted 10 grayscale test images
from the MATLAB image processing toolbox with random salt-
and-pepper noise. Each pixel was assigned a 5% chance of
becoming corrupted to all-black or all-white. An SC median filter
was then simulated with each corrupted image as input and the
structural similarity index measure (SSIM) [20] between the
circuit’s output and target output was calculated.

In [20], it is shown that two distorted images having the same
MSE relative to an unmodified image can vary substantially in
terms of perceived visual quality. SSIM is a similarity measure
designed to better capture perceptual differences between images.
It is based on the hypothesis that the human visual system is better



Figure 10: (a) Image corrupted by random salt-and-pepper
noise. Image filtered by SC median filter with (b) WBG PCCs;
(¢) CMP PCCs; (d) MMC PCCs with k = 4 maj gates.

adapted to perceiving large-scale structural features of images
compared to low-level details or differences in luminance and
contrast. SSIM varies between 0 and 1 where a higher SSIM
implies the two images are more visually similar.

Fig. 9b shows how the median filter’s area and SSIM varies with
the MMC parameter k. The median filter area, including the SNGs
and median filter circuit, varies linearly with k. Using WBG PCCs
in place of CMPs leads to an area savings of 30%, but also a low
SSIM of 0.78. Fig. 9b indicates that SSIM grows with k, but its
growth exhibits diminishing returns after k > 4, implying that k =
4 is a good choice for the median filter MMCs. In that case, the
SSIM is 0.965 out of a maximum of 1 and area is 10% lower than
using CMPs.

Fig. 10 shows the “cameraman” test image and the SC median
filter’s output when using MMCs with different k values. The
filtering performed is poor when using WBG PCCs, which
highlights the drawback of employing low-cost WBG PCCs in
designs that require highly correlated SNs. In contrast, MMC PCCs
with k = 4 maj gates lead to effective filtering and an SSIM of
0.97, with an area savings of about 10% compared to using CMPs.

5 Discussion

The influence of PCC design on circuit area and accuracy varies
with the application as demonstrated by Fig. 2 and Sec. 4’s case
studies. Circuits like CeMux that benefit from, but do not require,
correlated input SNs can use CMPs to maximize accuracy or can
use MMCs with few maj gates (e.g., k =1) to save area in
exchange for some accuracy loss. Circuits like SC median filters
that require highly correlated inputs can use CMPs to maximize
accuracy or use MMCs with many maj gates (e.g., k = 4 for 8-bit
precision) to save area at the cost of some accuracy. Finally, circuits
that require independent inputs, like the SN multiplier should use

separate RNSs to ensure SN independence and should always
employ WBG PCCs to achieve the lowest area.

Overall, input correlation revolves around SN generator design.
Here, we introduced MMC:s to obtain a unified view of WBG and
CMP PCCs, which enabled in-depth analysis of the area and
correlation properties of PCC designs. As demonstrated in the two
case studies, MMCs not only provide insight into correlation, but
they also enable designers to trade off cost and accuracy in SN
generation.
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