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Globally, aphids cause immense economic damage to several
crop plants. In addition, aphids vector several plant viral
diseases that accelerate crop yield losses. While feeding,
aphids release saliva that contains effectors, which modulate
plant defense responses. Although there are many studies that
describe the mechanisms that contribute to dicot plant-aphid
interactions, our understanding of monocot crop defense
mechanisms against aphids is limited. In this review, we focus
on the interactions between monocot crops and aphids and
report the recently characterized aphid effectors and their
functions in aphid adaptation to plant immunity. Recent studies
on plant defense against aphids in monocot-resistant and
-tolerant crop lines have exploited various ‘omic’ approaches to
understand the roles of early signaling molecules,
phytohormones, and secondary metabolites in plant response
to aphid herbivory. Unraveling key regulatory mechanisms
underlying monocot crop resistance to aphids will lead to
deeper understanding of sap-feeding insect management
strategies for increased food security and sustainable
agriculture.
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Introduction
Aphids are one of the most damaging pests that feed on
the phloem sap of diverse plants. Aphids, such as other

sap-feeding insects, utilize their slender stylets present
in their mouth parts to feed on the plant sap and inflict
severe damage to host plants. Aphid honeydew, which is
the digestive waste product, deposited on the leaf sur-
face, facilitates fungal growth and negatively impacts the
photosynthetic capability of plants. Additionally, aphids
act as vectors of several plant pathogens [1,2]. Aphid-
transmitted viruses also manipulate the host physiology
[3e], which further enhances the impact of aphid colo-
nization on host plants and intensifies yield losses.

In the last two decades, significant progress has been
made in understanding the dicot plant—aphid interac-
tions at the molecular—genetic level. For example, there
are several studies that used Arabidopsis—aphid patho-
system to understand the plant defense mechanisms
against sap-feeding insects. Availability of complete
genome sequences and the ease with which the plants
can be transformed may have led to rapid knowledge
accumulation on dicot plants and the dicot plant—-aphid
interactions. On the contrary, we know little about
monocot crop—aphid interactions, especially at the phy-
siological, molecular, and  biochemical levels.
Technological advances and availability of novel
genome-editing tools in the recent years are significantly
contributing to the development of effective methods
for transformation of monocot crops [4,5], which could
potentially be exploited to characterize monocot crop
responses against phloem-feeding insects. In this review
paper, we summarize our current understanding of
monocot crop—aphid interactions with specific emphasis
on the genes, metabolites, and/or molecular mechanisms
that modulate monocot crop resistance to aphids and
how aphids adapt to plants. With these foci, we will
conclude by highlighting the importance of filling the
knowledge gaps in monocot crop—aphid interactions and
suggestions for future research directions.

Monocot crops as host of aphids

Monocot crops such as maize, wheat, rice, barley, and
sorghum are among the world’s economically significant
crops, and hence damage by sap-feeding insects to these
crops has severe economic consequences. For instance,
greenbugs (Schizaphis graminum), which comprise of
multiple biotypes, are very serious pests of wheat,
barley, sorghum, and many other grasses, and cause
significant crop losses in the United States [6].
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Figure 1
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Representative images of aphids on host plants. Left panel: corn leaf aphid; Middle panel: greenbug; Right panel: sugarcane aphid.

Greenbugs are also responsible for vectoring barley
yellow dwarf virus (BYDV) and maize dwarf mosaic
virus. Different aphid species vector BYDV in wheat and
can cause grain losses ranging from 5% to 80% [7]. Su-
garcane aphid (Melanaphis sacchari) is another destructive
aphid causing up to 50-100% vyield losses in sorghum in
25 sorghum-grown states in the United States since 2013
[6,8]. Similarly, corn leaf aphid (Riopalosiphum maidis) is
a significantly important pest on maize and other grasses,
causing yield losses through direct feeding on crops and
vectoring plant disease viruses [9]. Representative
images of these sap-sucking aphids are shown in
Figure 1.

Aphid effectors

While feeding on the host plant, aphids release salivary
factors that can manipulate the plant defenses. These
‘factors’ or herbivore-associated molecular patterns are
recognized by the plant pattern recognition receptors,
leading to trigger the pattern-triggered immunity [10].
Aphid feeding also leads to the release of effectors,
which can suppress the plant defense responses [11,12].
The recognition of effectors by the resistance (R) pro-
teins further triggers effector-triggered immunity (E'TT)
in the host plants [13]. Essentially, these effector mo-
lecules determine successful entry and aphid coloniza-
tion on host plants (Figure 2).

In the past decade, characterizing aphid effectors has
been facilitated by the advancement of omics techni-
ques and enabled prediction of putative or candidate
effectors in a wide range of aphid species [14e]. Al-
though many studies were focused on identifying ef-
fectors of aphids that feed on dicot plants, studies
related to characterizing salivary effectors of aphids that
feed on monocot crops have gained momentum in recent
years. Intriguingly, it is suggested that aphid salivary
effectors interact with plants in a host species-specific

manner, which may have occurred due to plant-aphid
coevolution [15]. For example, MpC002 (salivary protein
C002 of Myzus persicae) expression in its host plants
Arabidopsis and Nicotiana enhanced susceptibility to M.
persicae, however, the expression of ApC002 (C002 or-
tholog of Acyrthosiphon pisum) did not enhance suscept-
ibility to M. persicae [16]. Escudero-Martinez et al. (2020)
also observed similar results when bird cherry-oat aphid
(R. padi) effectors (RpC002 and Rpl), orthologs of M.
persicae eftectors (MpC002 and Mp1), expressed in barley,
promoted susceptibility to R. padi but reduced sus-
ceptibility to M. persicae [17°°]. However, when ex-
pressed in Arabidopsis and N. benthamiana, RpC002 and
Rp1 promoted susceptibility to M. persicae [17¢¢]. Taken
together, these studies demonstrated the host plant
specificity of aphid effectors. Additionally, comparison of
aphid effector orthologs revealed that the effectors are
fast-evolving due to high nonsynonymous versus sy-
nonymous nucleotide substitution rates, which could
potentially contribute to host specialization and di-
versification [16,18].

Identifying and characterizing aphid effectors are critical
for understanding the complex defense mechanisms
involved in monocot crop—aphid interactions. Recent
studies have discovered and characterized novel aphid
effector proteins and shed light on aphid effectors as-
sociated with defense suppression in monocots. For ex-
ample, the grain aphid (Sitobion miscanthi) salivary
effector protein $m9723, which was specifically ex-
pressed in the aphid salivary glands, was highly ex-
pressed after feeding on wheat plants [11]. The silencing
of §m9723 using nanocarrier-mediated dsRNA delivery
system resulted in decreased fecundity and survival of
the grain aphid on wheat plants. Further, monitoring of
aphid feeding behavior patterns using the electrical pe-
netration graph demonstrated shortened phloem sap
consumption and prolonged nonprobing by $m9723-
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Figure 2

Monocot crop-aphid interactions Mou et al. 3
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Model depicting plant defense signaling in monocot crop—aphid interactions. Utilizing the slender stylets present in the mouth region, aphids penetrate
the host cells on their way to the phloem tissue to uptake the nutrients present in the phloem sap (1). While maneuvering different plant tissues, aphids
release effectors to modulate the plant defense responses (2). Upon recognition of the effectors by the plant R proteins or NBS-LRR proteins,
monocot plants induce ETI (3). The aphid effectors also induce Ca®* ion fluxes (4), which along with ETI-mediated defenses, results in further
downstream activation of defense responses. ETI induces several TFs (5) and results in induction of different phytohormones, secondary metabolites,
BXs, and callose deposition that may provide resistance to aphids (5a, 5b, 6). Aphid feeding-induced Ca?* ion fluxes (7) also lead to the accumulation
of callose deposition (7a) as well as activation of the nicotinamide adenine dinucleotide phosphate oxidase complex (7b), resulting in oxidative ROS
burst-mediated hypersensitive response leading to cell death (7c, 7d). This figure is prepared based on the data compiled from several monocot crop

plants’ response to aphid feeding. C: cuticle; EP: epidermal cells; MS: mesophyll cells; BS: bundle sheath cells; P: phloem.

silenced aphids compared with control aphids on wheat
plants [11]. Transient overexpression of §79723 in N.
benthamiana demonstrated inhibition of BAX- and INF1-
induced programmed cell death, suppression of callose
deposition, and decreased expression of jasmonic acid
(JA)- and salicylic acid (SA)-related defense genes, sug-
gesting that $79723 may be involved in suppressing
direct defenses in host plants [11].

Similar to the grain aphid, the greenbug salivary effector
protein §g2204 enhanced wheat susceptibility to green-
bugs [12]. Silencing §g2204 in greenbug resulted in re-
duced aphid feeding and performance on host plants. On
the other hand, overexpression of 8§g2204 in wheat en-
hanced greenbug feeding and promoted aphid body
weight and fecundity compared with the control wheat
plants [12]. Additionally, expression of greenbug Sg2204
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in N. benthamiana inhibited BAX- and INF1-induced
programmed cell death, suppressed callose deposition,
and SA- and JA-related gene expressions [12]. Likewise,
expression of bird cherry-oat aphid effector proteins, Rp/
and RpC002, in barley, promoted barley susceptibility to
R. padi by suppressing expression of defense-related
genes [17¢¢]. Further characterization of Rp/-transgenic
barley plants revealed reduced expression of plant hor-
mone signaling genes, suggesting that Rp/ may enhance
susceptibility to R. padi by suppressing plant defenses
[17ee]. In Arabidopsis, aphid feeding promotes pre-
mature leaf senescence and enhances the upregulation
of a subclass of SENESCENCE ASSOCIATED GENES
(SAG) [19,20]. Aphid feeding-induced leaf senescence
acts as a defense mechanism to potentially counter the
ability of aphids to colonize host plants [21]. R. padi
feeding on barley plants also induced the expression of a
gene encoding a SAG-12-/ike cysteine protease, which is
involved in hypersenescence [22]. In contrast, expres-
sion of SAG-12-/ike gene was strongly reduced to basal
levels in Rpl-transgenic barley plants compared with the
wild-type control plants. Collectively, these data suggest
that similar to the results with Arabidopsis—aphid inter-
actions, monocot crops may also modulate senescence-
associated physiological and developmental changes to
curb the aphid colonization. However, whether the se-
nescence-associated changes in monocot crops have a
direct or indirect effect on aphid fecundity and coloni-
zation has not been tested. In T'able 1, we summarize
the recently identified aphid effectors of monocot crops.
However, functional evaluation is needed for the studies
that proposed putative effector candidates (e.g. [15]).

Plant defense elicitors

Unlike aphid effectors that suppress plant defenses, eli-
citors trigger plant defense responses. Several studies
have shown that aphid feeding on different monocot
crops triggers plant defense responses [23-27]. However,
how these elicitors are being perceived and induce de-
fenses in monocot crops, and the molecular/biochemical
function of these aphid elicitors, remains to be de-
termined. Interestingly, it was shown that the application
of a protein elicitor PeaT'l, which is isolated from the
fungal pathogen Alrernaria tenuissima, induces nonspecific
systemic resistance in wheat and rice against drought [28]
and virus pathogen [29]. Exogenous application of PeaT'1
in wheat induced SA and JA accumulation and enhanced
the production of more trichomes and quantity of wax,
which resulted in decreased reproduction, growth rate,
and prolonged nonprobing duration of the English grain
aphid (Sizobion avenae) [30]. Pea’T'l application also en-
hanced plant resistance to aphids in dicot plants, such as
in tomato and cucumber plants against M. persicae [31,32]
and strawberry plants against buckthorn potato aphid
(Aphis nasturrii) [33]. Thus, exogenous application of eli-
citors may contribute to aphid integrated pest

management (IPM) by reducing the frequent insecticide
use and resulting in a lower probable emergence of pes-
ticide-resistant aphid population.

Plant perception of aphid effectors

As discussed before, aphids use their stylets to maneuver
different tissues in the plants. Once aphid stylet enters
the cell wall, several intricate molecular interactions
determine resistance or susceptibility to the aphid pests
[1,34].  Nucleotide-binding site-leukine-rich repeat
(NBS-LLRR) genes are the largest class of plant re-
sistance genes that encode proteins that contain
NBS-LRR domains, and these genes play a critical role
in plant resistance to aphids [35]. For example, the Dn4
gene in wheat has been reported to provide resistance
against the Russian wheat aphid, Diuraphis noxia [36]. In
sorghum, the RMES1 (resistance to Melanaphis sacchari 1)
locus has been identified to contain five genes, namely,
S$§606g001620, Sb06g001630, S§b06g001640, SH06g001645,
and $6006g001650, which encode for three NBS-LLRR
proteins beside an RNA-binding protein and an innate
immunity-associated WD40 protein [37]. Additionally,
79 NBS-LRR genes were discovered using whole-
genome-wide analysis in sorghum [13]. Among those,
one NBS gene (80bic.003G325100) was highly expressed
in response to greenbug feeding on the sorghum plants
for 4- and 6 days post infestation (dpi), indicating its
significance in plant defense against aphids [13]. Simi-
larly, inheritance of sugarcane aphid resistance in a cross
between the susceptible and resistant sorghum lines
identified a single dominant locus, which associated with
increased expression of several NBS-LLRR genes [38],
further bolsters the potential role of these genes in
monocot crops in providing resistance to aphids.

Early signaling molecules

When aphid effectors are recognized by the plant re-
ceptors, a number of secondary messenger molecules,
including calcium (Ca®*) channels, reactive oxygen
species  (ROS), mitogen-activated protein  Kinases
(MAPK), and transcription factors (TFs), have been
documented to play a critical role in triggering defenses
[39]. For instance, overexpression of IQD1, a nuclear
protein with calmodulin (CaM)-binding domain, pro-
vides resistance to Trichoplusia ni and M. persicae in
Arabidopsis [40]. Green peach aphid feeding on Arabi-
dopsis resulted in rapid rise in cytosolic Ca** influx,
which was regulated by the interaction between the
plant defense coreceptor BRASSINOSTEROID INS-
ENSITIVE-ASSOCIATED KINASE1 (BAK1), the
plasma membrane ion channels GLUTAMATE REC-
EPTOR-LIKE 3.3 and 3.6 (GLR3.3 and GLLR3.6), and
the vacuolar ion channel TWO-PORE CHANNEL1
[41]. Pretreatment of wheat seeds with CaCl, resulted in
significant upregulation of 7zCaM genes as well as cal-
lose synthase genes, thereby rendering plants resistant to
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Wheat Enhanced plant susceptibility to

Sitobion miscanthi

Sm9723

aphids

Schizaphis graminum Wheat Enhanced plant susceptibility to

2]

Inhibited BAX- and INF1-induced programmed cell death, suppressed callose deposition,

and JA-/SA-related defense genes

Sg2204

aphids
Wheat Provided resistance to aphids

Induced SA and JA accumulation and enhanced the production of more trichomes and [30]

quantity of wax

Sitobion avenae

PeaT1 (elicitor)

Monocot crop-aphid interactions Mou et al. 5

greenbugs [42]. However, the underlying mechanisms
involved in Ca**-regulated defense signaling upon aphid
infestation are yet to be explored in monocot crops.
Additionally, a recent study with sorghum-sugarcane
aphid interactions reported the induced expression of
several ROS-scavenging enzymes besides H,0, at 3, 6,
and 9 dpi in the resistant line compared with the sus-
ceptible sorghum line [43]. Thus, Ca®* and ROS have
emerged as critical factors inducing the plant defense
signaling upon aphid infestation in monocot crops.
However, further work is required to understand the
underlying mechanisms by which these factors modulate
defenses in monocot crops.

Upon activation of membrane-bound channels and re-
ceptors, leading to Ca®* and H,0, accumulation, sub-
sequent downstream events occur that lead to
phosphorylation and transcriptional activation. In wheat,
feeding by greenbugs upregulated genes in the
MAPK-WRKY pathway and ROS-scavenging activities
(2 and 6 hours post infestation [hpi]) [44]. Silencing of
wheat Associated with Dn  resistance 1 (Adnrl), an
NBS-LRR gene that contained integrated WRKY do-
mains (NLR-ID), attenuated resistance response and
supported higher numbers of Russian wheat aphids
compared with control plants [45]. Additionally, a
genome-wide association study identified a WRKY TF,
SOWRKYS6, as a key gene responsible for providing
sorghum resistance to sugarcane aphids [46¢]. Further,
heterologous expression of SOWRKYS86 in Arabidopsis and
N. benthamiana significantly reduced green peach aphid
proliferation [46¢]. Overexpression of S/WRKYS6 in
Arabidopsis enhanced callose deposition, which acts as a
defense mechanism to curb aphid colonization in host
plants [46¢]. Similarly, wheat TF MYB31 functions as a
regulator of the genes involved in the biosynthesis of
benzoxazinoids (BXs) [47¢], which are indole-derived
secondary metabolites in monocot crops. RNA-seq ana-
lysis identified upregulation of two 7TaMYB31 homo-
logous genes in wheat after feeding by bird cherry-oat
aphids. Further, TaMYB31-silenced wheat plants sig-
nificantly reduced BX metabolites and supported higher
numbers of aphids compared with the control plants
[47¢]. Collectively, these studies provide interesting
examples to further tease apart how these rapid signals
induced within the first minute after aphid invasion on
monocot crops trigger downstream defense responses.

Phytohormones and secondary metabolites

Phytohormones and secondary metabolites play a key
role in protecting plants from various biotic and abiotic
stresses. SA is one of the major phytohormones triggered
in monocot and dicot plant systems upon attack by dif-
ferent aphid species [25,48]. SA is derived from either
phenylalanine or isochorismate by the action of pheny-
lalanine ammonia lyase (PAL) and isochorismate syn-
thase, respectively [49]. Genome-wide analysis of PAL
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26]
[63]
55]

Enabled aphids to settle on host plant

Sorghum M. sacchari

Maize

Secondary metabolite Long-chain alcohols

Secondary metabolite Terpenoids

Aphid feeding induced several genes involved in terpenoid biosynthesis pathway

Provided resistance to aphids

R. maidis

Sorghum M. sacchari

Trehalose and fructose

Sugars

family genes in sorghum demonstrated that eight PAL
genes were highly induced after sugarcane aphid in-
festation in the aphid-resistant sorghum line [50¢].
Exogenous application of SA also enhanced sorghum
resistance to sugarcane aphids [50¢]. A recent proteomic
study on sorghum-sugarcane aphid interaction also
identified enhanced accumulation of several SA-marker
proteins such as pathogenesis-related proteins after
aphid feeding [51], suggesting the significance of SA-
mediated defenses in protecting sorghum plants against
sap-feeding insects. In wheat, exogenous application of
SA also enhanced resistance to English grain aphid (8-
tobion avenae) [52]. Interestingly, SA was not a key player
in providing sorghum tolerance, in which a plant can
withstand or recover from damage caused by insects, to
sugarcane aphids [53ee]. It was hypothesized that the
tolerant plants maintain their growth and development
by not activating the SA-mediated defense pathway,
because elevated SA levels may inhibit plant growth and
development [53¢¢ 54]. Instead, it was reported that the
sorghum plants utilize abscisic acid and aphid feeding-
induced cytokinins to ‘tolerate’ aphid’s attack on sor-
ghum plant aphids [53ee].

The dual role of JA has been recently reported in sor-
ghum-sugarcane aphid interactions [55¢]. At early time
points (6 and 24 hpi), JA deters the aphids on settling,
however, at a later time point (7 dpi), JA acts as a sus-
ceptibility factor that promoted sugarcane aphid fe-
cundity on sorghum plants. Moreover, JA influences the
sugar metabolism, which modulates the aphid re-
production on sorghum plants. Sorghum plants impaired
in JA synthesis had elevated levels of aphid feeding-
induced trehalose and fructose, which had a direct ne-
gative impact on SCA fecundity [55¢¢]. In another
genome-wide association study, sorghum plants that
were exposed to aphids identified several genes related
to JA pathway along with CaM-dependent protein ki-
nases, WRKY TFs, and flavonoid biosynthesis [56]. Se-
quential herbivory on sorghum plants revealed that the
sorghum plants pre-infested with greenbugs negatively
impacted sugarcane aphid proliferation, however, aphid
numbers were comparable when the sorghum plants
were pre-infested with sugarcane aphids [57]. Greenbug
pre-infested sorghum plants induced the expression of
SA and JA defense-responsive marker genes and flavo-
noid pathway genes and impacted subsequent sugarcane
aphid colonization on sorghum plants [57]. Recently, it
has also been shown that the long-chain fatty alcohols
present in the cuticular wax contents of young sorghum
plants influenced host plant selection by aphids [26].
However, the presence of long-chain fatty alcohols did
not alter sugarcane aphid survival and reproduction on
sorghum plants [26]. In several economically important
monocot crops, for example, maize, barley, and wheat,
various secondary metabolites have been reported to act
as either toxic or growth inhibitors against a wide range

Current Opinion in Insect Science 2023, 57:101038

www.sciencedirect.com



of aphids [58]. In maize, BX or BX-derived metabolites
were involved in enhanced callose accumulation,
thereby providing increased resistance to aphids [59,60].
Ultimately, monocot crops utilize a combination of
strategies to resist aphid invasion and the interplay
among phytohormones and secondary metabolites plays
a critical role in tailoring plant resistance to biotic
stresses (Figure 2). Important plant genes/defense
compounds in monocot crop—aphid interactions are
listed in Table 2.

Conclusions and future directions

We have only begun to scratch the surface of the me-
chanisms underlying monocot crop defense mechanisms
to aphids and how aphids adapt to these plant defense
responses. Elucidating these mechanisms will unravel
the key regulatory mechanisms underlying monocot crop
resistance to sap-feeding aphid pests. Most studies
conducted on monocot crop—aphid interactions are per-
formed in a controlled environment, requiring a suc-
cessful lab-to-field transition. Future studies should also
consider the impact of plant- and aphid-associated mi-
croorganisms, host attack by multiple aphids and diverse
pests, which will further shed light on understanding the
monocot crop—aphid multitrophic interactions in natural
and agricultural conditions. Although there are many
recent studies that focus on transcriptomic, proteomic,
and metabolomics data, the impact of aphid’s feeding on
monocot epigenome is yet to be explored. Previously, it
was shown that the DNA methylation in pea aphids
could impact aphid development through interacting
with juvenile hormone, a key endocrine signal in insects
[61]. Thus, it is plausible that the modification of the
aphid’s epigenome may enable aphids to acquire new
host plants [62e¢]. Likewise, the mechanisms involved
in the epigenetic variation in the monocot crops after
aphid feeding may provide new insights on the adapta-
tion and the regulation of the monocot crop defense
mechanisms. Future research in this direction may also
play a crucial role in understanding the intricacies be-
hind host specificity and pest compatibility.
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