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Abstract 

Plants produce a vast array of metabolites, the biosynthetic routes of which remain largely 
undetermined. Genome-scale enzyme and pathway annotations and omics technologies have 
revolutionized research to decrypt plant metabolism and produced a growing list of functionally 
characterized metabolic genes and pathways. However, what is known is still a tiny fraction of 
the metabolic capacity harbored by plants. Here, we review plant enzyme and pathway 
annotation resources and cutting-edge omics approaches to guide discovery and 
characterization of plant metabolic pathways. We also discuss strategies for improving enzyme 
function prediction by integrating protein 3D structure information and single cell omics. This 
review aims to serve as a primer for plant biologists to leverage omics datasets to facilitate 
understanding and engineering plant metabolism. 
 

Introduction 
Plants harbor tremendous metabolic diversity, which is essential to cope with many of the 
world’s challenges, including food security, drug development, and ecosystem functioning [1–3]. 
The social and economic importance of plant metabolites has motivated research to elucidate 
how they are biosynthesized. Yet, the overall understanding of the genetic basis for plant 
metabolism is still limited [4]. Plants are predicted to synthesize over 1 million metabolites [5], 
but only about 0.1% of the biosynthetic pathways have been functionally elucidated [6]. 
Molecular genetics and analytical biochemistry are classic approaches to uncover the 
biochemical functions of individual metabolic genes and pathways [7,8]. However, this process 
tends to be labor intensive and limits the functional study of enzymatic genes to species that are 
amenable for genetic analysis [8].  
  
Advances in metabolic pathway mapping infrastructure and omics approaches facilitate the 
discovery of novel pathways in diverse plant species. Several publicly available knowledge 
bases provide annotations for enzymes and pathways. The widely cited resources for enzyme 
annotation include UniProt, BRENDA, and Rhea [9–11] (Table 1).The infrastructure for 
metabolic pathway mapping is available at MetaCyc, Kyoto Encyclopedia of Genes and 
Genomes (KEGG), PlantReactome, and the Plant Metabolic Network (PMN) [12–16] (Table 1). 
Besides resources for genome-scale enzyme annotation and gene-to-pathway mapping, tools 
are available to predict metabolic gene clusters (MGCs), which are formed by physically co-
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localized genes catalyzing reactions in the same biosynthetic pathway  [6,17,18]. These 
resources and tools enable the initial identification of metabolic pathways and gene clusters in 
the species of interest. Omics technologies (e.g. genomics, transcriptomics, proteomics, and 
metabolomics) can further enhance characterization of metabolic pathways by prioritizing 
candidate genes responsible for producing metabolites of interest in certain tissue types and 
conditions (Fig. 1). Here, we discuss recent advances in enzyme and pathway annotation 
resources and omics approaches to guide novel pathway characterization. First, we summarize 
widely applied pathway annotation resources and tools that can systematically identify 
metabolic genes, pathways, and metabolic gene clusters. Then, we discuss cutting-edge 
approaches for leveraging omics datasets to guide novel pathway discovery. We also provide 
perspectives on future directions for metabolic gene function prediction to enhance high 
throughput discovery of pathways important for agriculture, healthcare, and the environment.  
 
Plant enzyme function annotation and pathway mapping 

Effective omics-guided metabolic pathway discovery requires accessing enzyme annotations 
and gene-to-pathway mapping infrastructure. The growing list of experimentally characterized 
enzymes expands the understanding of the genetic basis underlying the biosynthesis of diverse 
groups of metabolites. Several public databases continue to expand the inventory of enzymes 
with experimental evidence by curating the data from the literature (Table 1) [6,9,11,13,15,16]. 
These resources are valuable for inferring the function of unknown genes based on sequence 
homology to generate genome-scale annotations for all enzymes in a species [16].  
 
Once enzyme annotations are established, pathways can be inferred by connecting enzymes 
involved in making the same metabolite. A widely applied strategy is to assemble enzymes into 
pathways by searching against “gold standard” databases that contain all experimentally 
characterized pathways, such as MetaCyc and PlantCyc [4,6,15,16,19]. Then a validation step 
is followed to compute whether a pathway is present in each species based on the fraction of its 
constituent reactions predicted in that species. This approach can systematically map enzymes 
into pathways in sequenced genomes (Fig. 1A). The prediction of metabolic gene clusters 
requires a different strategy to capture physically co-localized metabolic genes that might be 
involved in a biosynthetic pathway [17,18,20*–22*]. Several tools have been developed to 
predict MGCs in sequenced plant genomes. Most predict MGCs based on sequence homology 
to known clusters and local metabolic gene density [20*,22*]. PlantiSMASH represents a 
homology-based prediction tool, which compares protein sequence similarity for the co-localized 
metabolic genes within a genomic region to the enzyme families associated with all 
characterized clusters [23]. In contrast, PlantClusterFinder (PCF) is a de novo prediction 
method based on local enzyme density [6]. PCF scans the genome to find regions that are 
highly enriched with metabolic genes and the loci containing at least three enzymes catalyzing 
two different reactions are identified as MGCs. The inferred metabolic pathway and gene 
clusters can be integrated with omics datasets to further dissect functional patterns of 
metabolism and accelerate novel pathway discovery.  
 
Leveraging co-expression and gene-metabolite correlation 
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Genes participating in the same biological process often show coordinated expression patterns 
in response to genetic or environmental perturbations [21,24,25]. Built upon this foundation, co-
expression analysis has been widely applied to identify candidate genes associated with 
pathways of interest (Fig. 1B). For example, co-expression analysis facilitates identifying a 
triterpenoid metabolic network derived from the metabolites produced by known MGCs [26**]. In 
Arabidopsis, four MGCs have been characterized to produce triterpenoids and genes within 
each cluster show high co-expression [27,28]. Interestingly, several metabolic genes scattered 
in the genome are also highly co-expressed with terpene synthases in the clusters, but their 
function remains characterized [26**]. Co-transformation assays in N. benthamiana showed that 
these metabolic genes can use terpenoids produced by the gene clusters as substrates to 
synthesize new metabolites [26**]. Disrupting the biosynthesis of terpenoid-derived metabolites 
using Arabidopsis mutants resulted in shifted microbe communities in the rhizosphere, which 
may affect plant-microbe interactions [26**]. This study shows how genes catalyzing novel 
reactions can be discovered based on co-expression analysis with known pathways. 
 
Besides co-expression, correlation between gene expression and metabolite accumulation has 
been used to prioritize candidate genes involved in synthesizing metabolites of interest (Fig. 

1B) [29*]. A prominent example is the discovery of the falcarindiol biosynthesis pathway in 
tomato. Falcarindiol is a highly modified lipid, which can be induced by different biotic stresses 
in tomato to promote resistance against fungal and bacterial pathogens [30**]. Based on the 
chemical structure of falcarindiol, an acetylenase was hypothesized to catalyze early steps of 
the biosynthesis using linoleic acid as the precursor [31]. To identify the acetylenase involved in 
falcarindiol biosynthesis, correlation analysis was applied to identify the candidate enzyme 
whose gene expression pattern showed the highest similarity to falcarindiol accumulation under 
diverse biotic stress conditions [30**]. The top candidate identified from this analysis showed 
expected enzymatic activity based on experimental validation in a heterologous system and 
native plants [30**]. This study demonstrates the advantage of correlation analysis between 
gene expression and metabolite accumulation in elucidating previously unknown pathways.  
 
Exploiting metabolic diversity of natural populations 
Genome-wide association studies (GWAS) have been widely applied to dissect genetic 
architectures underlying phenotypes of interest [32]. Combining GWAS with metabolic profiling 
facilitates identifying genes underpinning metabolic diversity using the content of metabolites as 
phenotypic traits [33,34]. Metabolite GWAS (mGWAS) can discover various types of genes, 
such as transcription factors and biosynthetic genes, associated with a metabolic trait (Fig. 1C) 
[34–38]. For example, a mGWAS was conducted using kernels of seven hundred maize 
genotypes grown at multiple locations and resulted in over 1,000 associations between genomic 
loci and metabolic traits. Two candidate genes highly associated with phenolamides, PHT 
(Putrescine Hydroxycinnamoyl-Transferase) and CCoAOMT (Caffeoyl-CoA O-

MethylTransferase), were tested for function using mutants in rice and maize. Metabolite 
composition analysis confirmed that these two enzymes catalyzing early reactions involved in 
phenolamide biosynthesis using both arginine and putrescine as substrates [35**]. Despite the 
usefulness of mGWAS, it can be challenging to functionally validate causal genes for the trait of 
interest as multiple SNPs can be associated with the same metabolic feature [38]. Co-
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expression and gene-metabolite correlation analysis can serve as orthogonal approaches to 
mGWAS to prioritize causal genes and eliminate false positives, which facilitates downstream 
functional validation using molecular genetics [29*,39]. 
 
Harnessing evolutionary diversification of metabolism  
Plant metabolism diversification arises from gradual modification of existing enzymes, which is 
mainly caused by gene duplication followed by sub- or neo-functionalization. This can lead to 
the emergence of new metabolic pathways and metabolites in specific lineages [40–42].  
Combining the taxonomic distribution of a metabolite and evolutionary patterns of enzymes help 
prioritize candidates involved in synthesizing the compound of interest in specific lineages (Fig. 

1D). This approach was used to discover the biosynthesis of various economically important 
metabolites showing lineage specific distribution [43,44**]. A prominent example is the 
identification of the enzyme catalyzing the first committed step of anthraquinone biosynthesis in 
a medicinal plant Senna tora. S. tora belongs to the Fabaceae family and accumulates high 
levels of anthraquinones, which are a group of aromatic polyketides that have been used as a 
traditional herbal medicine to treat various diseases [44**]. To elucidate anthraquinone 
biosynthesis in S. tora, phylogenomics was used to distinguish the two hypothesized routes to 
produce this compound in plants. This approach identified a group of chalcone synthase-like 
proteins that have the catalytic capacity to generate anthraquinone scaffold and showed 
lineage-specific expansion in S. tora. Combining transcriptomics and in vitro enzymatic assays, 
CHS-L9 was identified as the enzyme candidate for catalyzing the initial step of anthraquinone 
biosynthesis via the polyketide pathway [44**]. This study demonstrates the power of leveraging 
evolutionary diversification to discover pathways.   
 

Future directions 

Fruitful progress has been made in discovering metabolic pathways, yet, this only represents a 
small fraction of the metabolic capacity in plants [16]. To accelerate metabolic pathway 
characterization, high quality enzyme function annotation is essential. Sequence similarity 
serves as the major criterion to propagate function annotation between homologs. This strategy 
has limited power to distinguish enzymes with high sequence similarity in large protein families 
or polyploid genomes. To establish accurate homologous relationships between species, gene 
expression patterns can serve as an additional feature besides sequence similarity [45]. With 
the advances of single cell technologies in plants, high resolution gene expression maps are 
becoming available across diverse cell types, which can further enhance ortholog prediction and 
enzyme function annotation [45,46*]. Besides sequence homology, developing a holistic 
understanding of enzymes can improve function prediction, especially for orphan genes with 
limited prior knowledge. This goal can be achieved by integrating diverse types of information to 
infer function. For example, protein 3D structures generated by AlphaFold provide new 
opportunities to infer substrate-enzyme pairs using protein sequences [47]. Taken together, 
integrating various types of omics resources facilitates toolset innovation and functional 
characterization of novel metabolic pathways.  
 
Conclusion  
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Massive amounts of omics datasets can help delineate novel metabolic pathways in non-model 
species, which represent major sources for economically significant metabolites [8,30**,44**]. In 
this review, we summarized publicly available knowledge bases that enable the identification of 
metabolic genes and pathways and discussed cutting-edge omics-guided approaches for 
elucidating the biosynthetic routes for metabolites of interest. The growing list of genome-scale 
resources can help guide traditional molecular genetics and biochemical studies. Future 
advances in enzyme annotation and integrated omics will inform the characterization and 
engineering of plant metabolism, which promotes sustainable agriculture, healthcare innovation, 
and climate stabilization. 
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Figure 1. Omics-guided strategies to elucidate novel metabolic pathways: A. Plant metabolic 
pathway databases, B. Correlation analysis, C. metabolic genome wide association studies 
(mGWAS), D. phylogenomics.  G1 to G8 represent metabolic genes. Red circle highlights the 
gene of unknown function (GU) discovered by each omics approach. M1 and M2 represent 
metabolites.  
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Table 1. Summary of publicly available knowledge bases that provide enzyme annotation 

and gene to pathway mapping infrastructure.  
 

Database Resources available 
Number of 

curated enzymes 

Number of 

tested 

pathways 
Plant 

specific? 
Metabolism 

specific? 

UNIPROT[9] Enzyme annotation 107,868 NA No No 

BRENDA[11] Enzyme annotation 113,179 NA No No 

Rhea[10] Enzyme annotation Unavailable NA No Yes 

MetaCyc[15] 
Enzyme annotation and 
pathway mapping 13,540 2,980 No No 

KEGG[12] 
Enzyme annotation and 
pathway mapping Unavailable 543 No No 

Plant 
Reactome[14] 

Enzyme annotation and 
pathway mapping 1,824 298 Yes No 

PMN[16] 
Enzyme annotation and 
pathway mapping 3,769 1,163 Yes Yes 
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Box 1. Outstanding questions that can be addressed to further leverage omics resources 

to investigate plant metabolism 

 
 

1. What new infrastructures are required to provide high-resolution annotation for genes 
and pathways from leveraging single cell or single-molecule level omics datasets? 

2. What resources need to be developed (e.g. data generation standards, data processing 
tools, repository databases, benchmarking data) to make publicly available omics 
datasets Findable, Accessible, Interoperable, and Reusable (FAIR) [48]? 

3. What are the best methods of integrating different types of omics datasets (e.g. 
transcription factor binding, epigenomics, chromatin accessibility assays) to provide a 
holistic view of information flow from genes to phenotypes in the context of metabolism? 
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