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ABSTRACT
Kirigami is defined as the ancient Japanese art of cutting

and folding paper to create three-dimensional structures, which
is a subset of the larger term. Recent developments in kirigami-
based structures have sparked interest in the engineering com-
munity for the development of mechanical metastructures with
customized behavior such as negative Poisson’s ratio, out-of-
plane buckling, and soft robot locomotion. In this manuscript,
nonlinear springs based on kirigami are developed; the springs
can be used to create customized nonlinear oscillators and vibra-
tion suppression systems. A Helmholtz-Duffing oscillator with
nonlinear damping is created by attaching a mass to a smooth
track with the kirigami springs attached to it.

Kirigami springs were made by strategically cutting plastic
sheets in predetermined patterns and arranging them in a ring.
Identification of the unknown system parameters is accomplished
through the use of a two-step procedure. To determine the quasi-
static behavior of the spring, it was first subjected to tensile test-
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ing. These parameters serve as the foundation for developing
a strategy for determining the unknown energy loss parameters
in a system. In the second step, the Method of Multiple Scales
is used to develop an approximate solution for the transient re-
sponse, which is then tested. This solution is coupled with an
optimization routine that, by modifying the unknown model pa-
rameters, seeks to reduce the error between the experimental free
oscillations and the developed analytical solution as closely as
possible.

1 INTRODUCTION
Kirigami is the Japanese craft of paper cutting. It is a vari-

ation of origami that is based on 3-dimensional cutting of pa-
per rather than folding. The word kirigami is derived from two
Japanese words ”kiri” meaning to cut and ”kami” meaning paper.
While the origami has been widely used to inspire the design of
novel engineering structures and materials [1,2,3]. Kirigami has
only recently been used to inspire the engineering community
to application ranging from grasping robots [4], programmable
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shapes [5], crawling robots [6], to morphable structures [7]. To
the author’s knowledge, the use of kirigami in vibration applica-
tions is largely unexplored and is currently with prominent exam-
ple being studies characterizing the modal properties of kirigami
structures [8], flexural wave control [9], and pressure sensing via
a resonant circuit [10].

The purpose of this study is to characterize the properties
of kirigami springs that are slitted membranes through the use
of static and dynamic tests. The proposed springs provide a
straightforward method for tuning the stiffness of a system and
may be used to design novel nonlinear oscillators.

2 MOTIVATION
Assuming that the kirigami spring’s resistive force can be

decomposed into elastic and viscous components then the linear
elastic behavior of the programmable kirigami springs is based
on two concepts: geometric nonlinearity and topological modifi-
cation of stiffness through various cutting patterns. The concept
is best illustrated by considering a stretched membrane of length
L. Using a one-dimensional approximation a kirigami spring that
is stretched in its elastic region and subject to a static force F will
experience a transverse displacement. The relationship between
the force and displacement can be written as

F = k

(
1− Lo√

(∆L+Lo)2 + x2

)
x, (1)

where k is the characteristic stiffness of the string and ∆L is the
stretch in the spring due to the application of the spring. Consid-
ering small displacements, the fractional term in Eqn. (1) can be
written as

1√
(∆L+Lo)2 + x2

≈ 1
∆L+Lo

− x2

2(∆L+Lo)3

+
3x4

8(∆L+Lo)3 +O(x6), (2)

using a Taylor series expansion about x = 0. The force displace-
ment relationship can then be approximated as

F ≈ k
((

∆L
∆L+Lo

)
x+
(

Lo

2(∆L+Lo)3

)
x3
)
+O(x5), (3)

where k = EA/Le f f . Note that nominally Le f f = ∆L+Lo. Exam-
ining Eqn. (3) reveals two paths to change the force displacement
relationship given a fixed geometric configuration. The first is to
change the stretch ∆L in the spring and the second is to modify

the effective stiffness of the material. The concept introduced in
this work is to modify k by having changes in Le f f through the
introduction of cuts in the membrane.
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FIGURE 1: An example of the proposed kirigami spring with
annotated segments and dimensions. Sections in grey indicate
the programmable region. Inset shows the characteristics of each
pattern. The specimens in this work have characteristics lm1 =
30.0 mm, lm2 = 40.0 mm, lp = 80.0 mm, and w = 48.0 mm.

3 MATERIALS AND METHODS
This section describes the manufacturing process for

kirigami springs, as well as the static and dynamic tests used
to characterize their properties. The springs are made of Grafix
sheets that measure 304.8 mm by 304.8 mm and have a thickness
of 0.1778 mm. A Silhouette Cameo cutter is used to cut 260 mm
long by 48 mm wide sheet springs. The springs are made up of
three segments: 1) a mounting segment of 30 mm to ground the
spring, 2) an active section of 80 mm that is the programmable
region, and 3) a 40 mm segment to attach the spring to a proof
mass or directly apply a load. Sections 1) and 2) are mirrored
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(a) Pattern 1-2, Ne f f = 28 (b) Pattern 1-5, Ne f f = 68 (c) Pattern 3-2, Ne f f = 42 (d) Pattern 3-3, Ne f f = 60

(e) Pattern 3-6, Ne f f = 120 (f) Pattern 4-3, Ne f f = 60 (g) Pattern 5-1, Ne f f = 24 (h) Pattern 5-5, Ne f f = 102

FIGURE 2: Schematic drawings for the kirigami for the various patterns.

about the center of the spring, Fig. 1. Segments 1) and 3) contain
mounting holes to secure the spring to ground or a mass.

4 Pattern Selection
In order to fully exploit the observations in previous section

a characterization of the relationship between kirigami pattern
and mechanical characteristics, a pattern of straight, horizontal
cuts on a rectangular spring was chosen, Fig. 1. Eight samples
were chosen and based on the work of Yang et al. [11], the length
of cut is designated lc and the horizontal spacing is lx, while the
vertical spacing ly. For this work, a constant cut length (lc) of
12 mm was used such that only the spacing of cuts are varied
between patterns. The patterns are designated as by the nomen-
clature lc/ly - lc/lx. Eight patterns are considered in this work
patterns 1-2, 1-5, 3-2, 3-3, 3-6, 4-3, 5-1, and 5-5 where five spec-
imens are created for each pattern. Finally, the number of effec-
tive cuts, Ne f f , in the turning region is calculated; the number of
complete cuts is counted; smaller counts are added and rounded
to a complete cut. It should be noted that due to the loading of
the springs the multistable behavior of the structures proposed by

Yang et al. [11] are not retained but their designation provides an
efficient methodology to introduce patterns that will change the
effective stiffness of the spring.

5 Quasi-Static Testing

A Mark-10 ESM 1500 motorized tension test stand was used
to perform quasi-static testing to determine the force displace-
ment relationship of the springs due to the geometric nonlinear-
ity. The springs are tested at rate of 50 mm/min. As shown in
Figure 3b, the springs were mounted on 3D printed test stands
that were positioned so that each spring was initially stretched
by 5 mm before the Mark 10 was lowered to introduce additional
tension to the spring. Each spring was subjected to a displace-
ment that alternated between the initial configuration and a peak
displacement of 30 mm using this setup. Each specimen was
loaded a total of five times. A minimal amount of hysterisis was
evident between the loading and unloading curve and the average
of these curves was used for the quasi-static characterization.
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FIGURE 3: Quasi-static characterization of kirigami springs: (a) Schematic and (b) image of force vs. displacement test. (c) Theoretical
and experimental force versus displacement for 1-2 pattern. (d) Theoretical fit and residual for force versus displacement for 1-2 pattern.
(e) Force versus displacement relationship for all patterns considered.

6 Dynamic Testing
In order to refine the stiffness parameters and to determine

damping of the kirigami springs an impact hammer was used to
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FIGURE 4: Schematic of the dynamic test apparatus. The
two kirigami springs (in green) are attached to the sliding mass
through the 3D printed support (blue) and to the pre-stretch sys-
tem (vertical bar). The velocity of the system was measured with
the Polytec OFV 501/Fiber Interferometer Laser vibrometer; the
Data Physics Abaqus DP 901-6C DSP acquisition system, not
depicted in figure, complete the experimental set-up.

initiate a transient response of spring attached to a mass, creating
a single degree of freedom oscillator. Figure 4 shows the exper-
imental setup used to determine the model parameters. The sys-
tem is composed of two pre-streched nonlinear kirigami springs
connected to a mass through 3D printed supports. The mass is
free to oscillate on the friction-less track with a triangular profile,
with outlet holes that allows air to escape resulting in low fric-
tion movement of the mass as it glides along the track. The inlet
pressure for the air-truck is 0.5 psi. The total mass of the cart
and the 3D printed supports is 118.4 g while the springs’ mass is
assumed to be negligible. The velocity of the system is acquired
using the Polytec OFV 501/Fiber Interferometer laser vibrome-
ter and the Data Physics Abaqus DP 901-6C DSP is used for data
acquisition. The velocity response is measured for 25 seconds.

7 PARAMETER ESTIMATION
This section details both the parameter estimation using both

the quasi-static and transient response test. The primary parame-
ters of the spring are it stiffness components as well as the energy
loss parameters associated with plastic.

7.1 Characterizing the Static Stiffness
Before attempting to characterize the stiffness of each

spring, the form of the force displacement relationship must first
be determined. Using the observations from Eqn. (3), the ge-
ometric nonlinearity is assumed elastic and the resistive force
exerted by the spring is assumed to be a cubic polynomial of the

form

F(x) = k1x+ k3x3, (4)

where k1 is linear stiffness and k3 is the cubic stiffness. The
test data for each spring was fit to this form using iteratively
reweighted least-squares (IRLS) [12] in Matlab and the coeffi-
cients k1 and k3. Note the loss mechanism is not captured in
these test and the next section presents a mechanism to quantify
damping.

7.2 Dynamic Model
The equation of motion a single degree of freedom oscillator

with two kirigami springs in series and floating on a frictionless
track can be written as

ẍ+ c1ẋ+ c2ẋ|ẋ|+ c3ẋ3 + k̄1x+ k̄2x2 + k̄3x3 = 0, (5)

where x is the displacement of the mass k̄1, and k̄3 are the linear
and cubic stiffness whose initial estimates are provided from the
quasi-static test. The k2 is to account for asymmetries due to mis-
alignment of the springs. Furthermore, the damping has linear
and cubic coefficients of c1 and c3, respectively. The quadratic
damping coefficient c2 is again due to misalignment. In this case,
the mass is tilted slightly while oscillating on the track, leading
to some air resistance. It is worth noting that the linear and cubic
stiffness terms were determined using the experimental tension
tests described previously. Additionally, it should be also noted
that the k̄1 and k̄3 as the appear in the Eqn. (6) are the equivalent
spring stiffness of two nonlinear springs in series obtained as in
Radomirovic et al. [13] based on the values of stiffness (k1and
k3) from the fit in Eqn.(4). Finally, it should be noted that the
equations of motion are in the form of Helmholtz-Duffing oscil-
lator with nonlinear damping [14].

Examining the system, the stiffness and damping coeffi-
cients are unknown. This model simplifies the energy loss mech-
anism to a nonlinear viscous term, in which the damping mech-
anism is a function of the velocity that opposes relative motion
between the mass and the track. To facilitate an analytical solu-
tion, the equation of motion is cast in non-dimensional form us-
ing respectively a characteristic length scale of the system (Lc),
which we assumed to be the pre-stretch of the springs, and a time
scale τ = ωnt. Using these transformations, the non-dimensional
equations of motion can be written as

χ̈ + ĉ1χ̇ + ĉ2χ̇|χ̇|+ ĉ3χ̇
3 +χ + k̂2χ

2 + k̂3χ
3 = 0, (6)

5 Copyright © 2022 by ASME



where the non-dimensional terms are defined as

χ = x
Lc
, τ = ωnt, Ω = ω

ωn
, ĉ1 =

c1
mωn

,

ĉ2 =
c2Lc

m , ĉ3 =
c3ωnL2

c
m , k̂2 =

k̄2Lc
k̄1

, k̂3 =
k̄3L2

c
k̄1

.

In the following, uniformly valid solutions for the equation
in (6) are obtained using the Method of Multiple Scales for the
motion in free vibration.

7.3 Method of Multiples Scales
It is convenient to reorganize the equation of motion by in-

troducing a book keeping parameter ε and collecting terms with
the same order. The equation of motion can be written as follows

χ̈ +χ + ε k̂2χ
2 + ε

2 (k̂3χ
3 + ĉ1χ̇ + ĉ2χ̇|χ̇|+ ĉ3χ̇

3)= 0. (7)

Note that the damping coefficients and the cubic stiffness are
scaled at order ε2 and the quadratic stiffness term is scaled on
the order of ε . This implies that the following inequality must
hold k̂3 < k̂2 < k̂1 for the asymptotic solution presented below to
be valid.

The initial conditions can be written in their non-
dimensional form as χ(0) = x(0)/Lc and χ̇(0) = ẋ(0)/(Lcωn).
The time dependence is expanded into multiple scales Tn =
εnτ, and the time derivatives can be written as

∂

∂ t =D0 + εD1 + ε
2D2 +O(ε3), (8a)

∂ 2

∂ t2 =D2
0 +2εD0D1 + ε

2 (D2
1 +2D0D2

)
+O(ε3), (8b)

where Dn = ∂/∂Tn. Furthermore, the the time-dependent non-
dimensional displacement χ can be expressed as

χ(t;ε) =
2

∑
i=0

ε
i
χi(T0,T1,T2)+O(ε3). (9)

Substituting Eqns.(8) and (9) in the Eqn.(7) and gathering terms
with the same power of ε yields

O(ε0) : D2
0χ0 +χ0 =0, (10a)

O(ε1) : D2
0χ1 +χ1 =−2D0D1χ0 − k̂2χ

2
0 , (10b)

O(ε2) : D2
0χ2 +χ2 =−2D0D1χ1 −D2

1χ0 −2D0D2χ0

−2k̂2χ0χ1 − k̂3χ
3
0 − ĉ1D0χ0 − ĉ3(D0χ0)

3

− ĉ2

(
g1 exp(iT0)dT0 +

∞

∑
−∞
n̸=1

gn exp(inT0)

)
,

(10c)

where g’s are the Fourier’s coefficients used to approximate the
function ẋ|ẋ|, gn = gn(A, Ā).

Solutions to the O(ε0) expansion in Eqn. (10a) can be writ-
ten as

χ0 = A(T1,T2)exp (iT0)+ Ā(T1,T2)exp (−iT0), (11)

where Ā is the complex conjugate of A. Substituting into
Eqn. (10b) yields

D2
0χ1 +χ1 =−2iD1Aexp(iT0)− k̂2

(
A2 exp(2iT0)+AĀ

)
+ cc,

(12)

where cc denotes complex conjugate. To derive uniformly valid
expansion, we must eliminate secular terms from the Eqn. (12)
hence, D1A = 0; therefore, A = A(T2). The solution Eqn. (12)
can be written as

χ1 = k̂2

(
A2

3
exp(2iT0)−AĀ

)
+ cc. (13)

In view of the Eqns. (11) and (13), the O(ε2) expansion in (10c)
writes

D2
0χ2 +χ2 =

(
2iD2A+ iĉ1A+

iĉ2A2

2π

∫ 2π

0
sin2(φ)

∣∣sin(φ)
∣∣dφ

+3iĉ3A2Ā+3k3A2Ā+ 10
3 k̂2

2A2Ā
)

exp(iT0)

−
(

2k̂2
2A2 (A

3 +2Ā
)
− k̂3A3 − iĉ1A3

− iĉ3A3
)

exp(3iT0)− ĉ2

∞

∑
−∞
n̸=1

gn exp(inT0).

(14)

Secular terms can be eliminated from the expression of χ2 if

i
(

2D2A+ ĉ1A+
ĉ2A2

2π

∫ 2π

0
sin2(φ)

∣∣sin(φ)
∣∣dφ +3ĉ3A2Ā

)
+3k3A2Ā+ 10

3 k̂2
2A2Ā = 0,

(15)

where φ = T0 + β . It is then convenient to express A in polar
form, i.e.

A = 1
2 aexp (iβ ), (16)
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where a and β are real functions of the time scale T2. Follow-
ing that, by substituting Eqn.(16) into Eqn.(15) and separating
the real and imaginary parts, the following set of equations is
obtained.

ȧ =− ĉ1

2
a− 4ĉ2

3π
a2 − 3ĉ3

8
a3, and (17a)

aβ̇ =
10k̂2

2 −9k̂3

24
a3. (17b)

Finally, a0 and β0 are evaluated imposing the initial conditions
as follows

a0 cos(β0) = 0 and a0 sin(β0) =−χ̇(0), (18)

which yields

a0 =−χ̇(0), and β0 =
π

2 +2mπ, where m ∈ Z. (19)

The modulation equations (17) were solved via numerical inte-
gration. Once the numerical solutions for the equations in (17) is
obtained, the zeroth-order time response can be reconstituted as

χ = a(τ)cos(τ +β (τ)). (20)

A numerical optimization is used to fit the experimental time
responses to that obtained via numerical integration using the
Dormand-Prince Runge-Kutta integration scheme [15]. The ob-
jective optimization was to determine the unknown parameters,
i.e. the quadratic stiffness term and the damping terms which
minimize a modified least square functional. Each recorded time
history is truncated. Notably, we used the first 10 seconds to cal-
culate the damping coefficients and the quadratic stiffness. The
parameters obtained via the optimization were then used to com-
pare the experimental and numerical velocities over the full 25
seconds window. An example of the results obtained using this
procedure is presented in Figure 5. Further details concerning
the optimization are reported in the Appendix 9.

The time traces match closely for the first ten seconds and
then exhibit a distinct phase shift, indicating that the modulation
equations governing phase do not accurately represent the re-
sponse; this is most likely due to an incomplete nonlinear damp-
ing model. However, the amplitudes closely match throughout
the time interval.

8 Results and Discussion
This section discusses the results of the quasi-static fit and

the dynamic testing of parameters. The discussion begins with
the quasi-static results.

FIGURE 5: Comparison of the experimental and numerical
(Dormand-Prince Runge-Kutta) velocity with respect to time for
spring with pattern 5-5. The two curves overlap for the entire
time window used for the optimization (∆t = 10 seconds) then
the two signal drift yet having the same amplitude.

Figure 3 shows sample curve fits for the 1-2 pattern. In par-
ticular Fig. 3 (c) shows the curve fit for the average loading and
unloading curves, and Fig. 3 (d) shows the curve fit and residuals
between the curve fit and the loading and unloading data, note
that they are an order of magnitude lower than curve fit values.
Finally, Fig. 3 (e) shows the curve fits fo the force versus dis-
placement for all patterns Table 1 shows the average linear and
cubic stiffness and the standard deviation in their values obtained
from the quasi-static test. Notably the measurements are quite
similar across the 5 samples for each pattern. In general, patterns
with larger cut densities, i.e., 5-5 and 3-6, are more compliant
that other patterns. Furthermore there is an order of magnitude
difference in linear stiffness between the most and least compli-
ant sample.

For all the systems analyzed, the optimum values for the
quadratic spring term and the damping coefficients are re-
ported in Table 2. For completeness we report in Table 2
also the non-dimensional cubic stiffness; by virtue of the non-
dimensionalisation, the non-dimensional linear stiffness k̂1 = 1
for all the system considered and thus is not included in the ta-
ble. A cursory inspection of the quadratic stiffness terms for the
various systems unveils that they are inversely proportional to
the k3. The quadratic stiffness term’s random nature and its lim-
ited variability compared k̂1 and k̂3 allow us to conclude that the
quadratic term is unrelated to the kirigami pattern and is mainly
due to misalignment of the two springs as speculated above.

In Figure 6 we compare the amplitude of vibrations cal-
culated with the method of multiple scales against the velocity
measured experimentally. Although we used only the first order
approximation, i.e χ0, and regardless of the pattern considered,
we found that the predicted and measured amplitude are in good
agreement.
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FIGURE 6: Comparison of the experimental time responses against the amplitude of vibrations as predicted using the Method of Multiple
Scales for springs. Experimental time responses are in red, amplitude of vibrations are in black.

Pattern k1 (N/mm) k3 (N/mm3)

Average Standard Average Standard

Deviation Deviation

1-2 0.1912 0.007978 8.8781E-4 1.3710E-5

1-5 0.2061 0.009597 7.2126E-4 1.4630E-5

3-2 0.2877 0.008847 2.4723E-4 3.5371E-5

5-1 0.1172 0.004096 8.7702E-4 1.1205E-5

3-3 0.1913 0.004917 6.8183E-5 6.8874E-6

4-3 0.1620 0.010473 5.3534E-5 4.9023E-6

3-6 0.0597 0.004949 1.7500E-5 7.6658E-7

5-5 0.0663 0.002295 1.5588E-5 1.4443E-6

TABLE 1: Average and standard deviation of experimental linear
and cubic stiffness for each spring pattern.

9 Conclusions
Kirigami, the ancient Japanese art of paper cutting, has the

potential to enable the development of structures with tunable

TABLE 2: Non-dimensional parameters for the various systems
considered in the present study. The results pertain the BC series.
The non-dimensional linear spring stiffness is k̂1 = 1 for all the
system considered.

Pattern k̂2 k̂3 ĉ1 ĉ2 ĉ3

1-2 3.4609E-1 3.8998E-2 2.7999E-3 3.5159E-3 6.1803E-4

1-5 3.8948E-2 4.2529E-2 5.6999E-3 1.5304E-3 1.1713E-3

3-2 4.3608E-2 1.4387E-2 3.5599E-3 2.8928E-3 3.3471E-4

5-1 4.1282E-2 5.4289E-2 3.3999E-3 5.0544E-3 .7514E-4

3-3 2.2639E-1 7.1657E-3 2.5999E-3 2.4246E-3 2.3515E-4

4-3 2.0242E-1 6.7939E-3 4.8043E-3 1.2186E-3 7.2505E-5

3-6 3.3564E-1 3.8560E-3 1.9993E-4 2.3226E-2 1.7980E-3

5-5 1.8475E-1 2.7833E-3 3.2011E-3 2.9852E-3 2.3884E-4

elastic properties. The purpose of this manuscript is to character-
ize plastic kirigami springs for use in vibration applications. The
spring’s elastic and damping properties are determined in two
steps. Elastic and viscous behavior are assumed to be decou-
pled. The first step employs quasi-static analysis to quantify the
stiffness associated with the geometric nonlinearity that occurs
as the spring deforms. The springs have a cubic force versus dis-

8 Copyright © 2022 by ASME



placement curve. The damping properties of a single degree of
freedom oscillator with kirigami springs are determined using the
transient response. The modulation equations are derived using
the Multiple Scale Method. The modulation equations are solved
numerically and used to approximate the transient response to a
first order level. The damping and stiffness parameters due to
asymmetries are determined by matching semi-analytical and ex-
perimental results using an optimization algorithm. This study is
a first step toward incorporating kirigami-based structures into
vibration applications.
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Appendix A: OPTIMIZATION
The optimization was implemented in Matlab’s by means of

the fmincon function and using the interior-point algorithm. The
optimization variables were the quadratic stiffness term and the
damping coefficients. Denoting with χ̇ the velocity of the sys-
tem governed by the Eqn.(6) and with T H the non-dimensional
experimental time history, the optimization problem write

min
Ci ∑

t∈[0,10]

(
χ̇ −T H

)2

max
(
|χ̇ −T H|

)
,

subject to: k̂3 ≤ k̂2 ≤ k̂1,

0 ≤ ĉ1 ≤ η ĉcr,

0 ≤ ĉ2 ≤ η ĉcr,

0 ≤ ĉ3 ≤ η ĉcr.

(21)

where C = {ĉ1, ĉ2, ĉ3, ĉ2} and η ≪ 1. For each SDOF oscillator,
we minimized the residual between the experimental time history
and the numerical solutions of the SDOF. For the optimization
we considered only the first 10 seconds of the time histories.
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“Bioinspired spring origami.” Science Vol. 359 No. 6382
(2018): pp. 1386–1391.

[4] Yang, Yi, Vella, Katherine and Holmes, Douglas P. “Grasp-
ing with kirigami shells.” Science Robotics Vol. 6 No. 54
(2021): p. eabd6426.

[5] Jin, Lishuai, Forte, Antonio Elia, Deng, Bolei, Rafsanjani,
Ahmad and Bertoldi, Katia. “Kirigami-inspired inflatables
with programmable shapes.” Advanced Materials Vol. 32
No. 33 (2020): p. 2001863.

[6] Rafsanjani, Ahmad, Zhang, Yuerou, Liu, Bangyuan, Ru-
binstein, Shmuel M and Bertoldi, Katia. “Kirigami skins
make a simple soft actuator crawl.” Science Robotics Vol. 3
No. 15 (2018): p. eaar7555.

[7] Rafsanjani, Ahmad, Jin, Lishuai, Deng, Bolei and Bertoldi,
Katia. “Propagation of pop ups in kirigami shells.” Pro-
ceedings of the National Academy of Sciences Vol. 116
No. 17 (2019): pp. 8200–8205.

[8] Soleimani, H., Goudarzi, T. and Aghdam, M.M. “Advanced
structural modeling of a fold in Origami/Kirigami inspired
structures.” Thin-Walled Structures Vol. 161 (2021): p.
107406.

[9] Zhu, R, Yasuda, H, Huang, GL and Yang, JK. “Kirigami-
based elastic metamaterials with anisotropic mass density
for subwavelength flexural wave control.” Scientific reports
Vol. 8 No. 1 (2018): pp. 1–11.

[10] Gandla, Srinivas, Song, Jaewoo, Shin, Jonghwan, Baek,
Seungho, Lee, Minwoo, Khan, Danial, Lee, Kang-Yoon,
Kim, Jung Ho and Kim, Sunkook. “Mechanically Stable
Kirigami Deformable Resonant Circuits for Wireless Vi-
bration and Pressure Sensor Applications.” ACS Applied
Materials & Interfaces Vol. 13 No. 45 (2021): pp. 54162–
54169.

[11] Yang, Yi, Dias, Marcelo A and Holmes, Douglas P. “Multi-
stable kirigami for tunable architected materials.” Physical
Review Materials Vol. 2 No. 11 (2018): p. 110601.

[12] Holland, Paul W. and Welsch, Roy E. “Robust regression
using iteratively reweighted least-squares.” Communica-
tions in Statistics - Theory and Methods Vol. 6 No. 9 (1977):
pp. 813–827.

[13] Radomirovic, Dragi and Kovacic, Ivana. “An equivalent
spring for nonlinear springs in series.” European Journal
of Physics Vol. 36 No. 5 (2015): p. 055004.

[14] Kovacic, Ivana and Gatti, Gianluca. “Helmholtz, duff-
ing and helmholtz-duffing oscillators: exact steady-state
solutions.” IUTAM Symposium on Exploiting Nonlinear
Dynamics for Engineering Systems: pp. 167–177. 2018.
Springer.

[15] Dormand, John R and Prince, Peter J. “A family of embed-

9 Copyright © 2022 by ASME



ded Runge-Kutta formulae.” Journal of computational and
applied mathematics Vol. 6 No. 1 (1980): pp. 19–26.

10 Copyright © 2022 by ASME


	INTRODUCTION
	MOTIVATION
	MATERIALS AND METHODS
	Pattern Selection
	Quasi-Static Testing
	Dynamic Testing
	PARAMETER ESTIMATION
	Characterizing the Static Stiffness
	Dynamic Model
	Method of Multiples Scales

	Results and Discussion
	Conclusions

