

1 **Spatially Resolved Transcriptomic Analysis of the Germinating Barley Grain**

2

3 Marta Peirats-Llobet¹⁺, Changyu Yi¹⁺, Lim Chee Liew¹, Oliver Berkowitz¹, Reena Narsai¹,
4 Mathew G. Lewsey^{1*}, James Whelan^{1,2*}.

5 ¹Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical
6 and Environmental Sciences, La Trobe University, Bundoora, Victoria, Australia. ²Research
7 Centre for Engineering Biology, College of Life Science, Zhejiang University, 718 East
8 Haizhou Road, Haining, Jiaxing, Zhejiang, China.

9

10

11

12 *Author(s) for Correspondence:

13 James Whelan – Email: jimwhelan@zju.edu.cn

14 Mathew G. Lewsey – Email: M.lewsey@latrobe.edu.au

15

16 + = These authors made equal contribution to the manuscript

17

18

19

1 **Abstract**

2 Seeds, which provide a major source of calories for humans, are a unique stage of a flowering
3 plant's lifecycle. During seed germination the embryo reactivates rapidly and goes through
4 major developmental transitions to become a seedling. This requires extensive and complex
5 spatiotemporal coordination of cell and tissue activity. Existing gene expression profiling
6 methods, such as laser capture microdissection followed by RNA-seq and single-cell RNA-
7 seq, suffer from either low throughput or the loss of spatial information about the cells
8 analysed. Spatial transcriptomics methods couple high throughput analysis of gene
9 expression simultaneously with the ability to record the spatial location of each individual
10 region analysed. We developed a spatial transcriptomics workflow for germinating barley grain
11 to better understand the spatiotemporal control of gene expression within individual seed cell
12 types. More than 14,000 genes were differentially regulated across 0, 1, 3, 6 and 24 hours
13 after imbibition. This approach enabled us to observe that many functional categories
14 displayed specific spatial expression patterns that could be resolved at a sub-tissue level.
15 Individual aquaporin gene family members, important for water and ion transport, had specific
16 spatial expression patterns over time, as well as genes related to cell wall modification,
17 membrane transport and transcription factors. Using spatial autocorrelation algorithms, we
18 were able to identify auxin transport genes that had increasingly focused expression within
19 subdomains of the embryo over germination time, suggestive of a role in establishment of the
20 embryo axis. Together, our data provides an unprecedented spatially resolved cellular map
21 for barley grain germination and specific genes to target for functional genomics to define
22 cellular restricted processes in tissues during germination. The data can be viewed at
23 <https://spatial.latrobe.edu.au/>.

24

25

1 **Introduction**

2 Seeds provide 70% of human calorie intake and are essential for sustainable food security.
3 This unique stage of the life cycle of flowering plants not only allows plants to optimise survival
4 strategies, but has also formed the basis of settled human civilisation. Consequently, plants
5 have been bred for seed yield and quality since the foundation of agriculture and the study of
6 breeding continues intensively¹. While the genome sequence of agricultural crops greatly
7 accelerates efforts to breed for desirable traits, it is the dynamic expression of the genome in
8 the millions of cells that defines these traits. Thus, while whole-organ or tissue-specific
9 transcriptome data is valuable in fundamental research and applications, recent technologies
10 enabling the interrogation of gene expression at single-cell resolution have revolutionised our
11 ability to understand plant growth and function at the basic level of organisation, i.e. the cell².

12 Several approaches to obtain single-cell transcriptomes have been developed, with
13 microfluidics-based single-cell sequencing (scRNA-seq) currently of wide use due to the high-
14 throughput nature of this technology. The first scRNA-seq studies in plants were applied to
15 root tissues³⁻⁵ because of their spatially defined developmental profile along the longitudinal
16 axis and the relative ease of isolating individual cells. scRNA transcriptomes are also emerging
17 for other organs, showing that this approach can be successfully applied to a variety of
18 tissues⁶⁻⁹.

19 It has been proposed that the plant science community come together around the goal of
20 creating a complete plant cell atlas, which should incorporate transcriptomic information about
21 all cells in an entire plant¹⁰. scRNA-seq is considered a foundational technology for this goal,
22 but the technology has limitations that prevent it being a full solution for the plant cell atlas.
23 Some cell populations or types may not be assayed in scRNA-seq experiments, due to the
24 varying size of plant cells, different cell wall compositions, the necessity and difficulty of
25 optimising protoplast or nuclei isolation methods for individual tissue types, the requirements
26 for substantial amounts of input tissue and the relative rarity of certain cell types. Moreover,
27 scRNA-seq requires the dissociation of tissues into individual cells for microfluidic handling.
28 This discards crucial information on the spatial origin of those cells, which defines their identity
29 and function. As a result, scRNA-seq data analysis reconstructs cell identities and defines cell
30 developmental trajectories by relying on cell-type-specific marker genes and gene co-
31 expression. These approaches are bioinformatically challenging and may introduce
32 biases^{4,11,12}.

33 Spatial transcriptomics is an emerging approach in plant biology that promises to overcome
34 some of the limitations of scRNA-seq^{13,14}. This approach can be applied to any plant tissue
35 that can be sectioned and morphology maintained, which has occurred extensively for many

1 crop plants. When sectioning is optimised, it requires small amounts of tissue, employs fixation
2 to preserve a full snapshot at a particular time, and retains cell spatial information, which are
3 all very attractive qualities. These indicate spatial transcriptomics could make a significant
4 contribution to obtaining cell-specific transcriptomes in plants, complementing scRNA-seq
5 approaches and opening an exciting era for plant biology.

6 Few spatial transcriptomic studies have been reported in plants, contrasting with mammalian
7 systems where these technologies have been successfully applied to gain insights into
8 development and disease progression^{15,16}. The first plant spatial transcriptomic study used a
9 100 µm resolution array to demonstrate the applicability of the method on the *Arabidopsis*
10 *thaliana* inflorescence meristem, *Populus tremula* leaf buds and *Picea abies* female cones¹⁷.
11 A second study that used a different technology, Stereo-seq, with a 220 nm resolution array
12 detected almost 20,000 expressed genes. Here, subtle differences were revealed in the
13 expression of genes associated with photosynthesis across the *Arabidopsis* leaf cells.
14 However, the authors noted that some cells associated with vascular bundles were missing¹⁸.
15 Most recently, a gene expression map of flower development in orchids was generated using
16 the 10x Visium technology at 55 µm resolution¹⁹ and this technology was also used to confirm
17 the laser microdissection description of the spatial integration of C₄ and CAM photosynthetic
18 metabolism²⁰. However, as yet no spatiotemporal studies with a plant developmental process
19 have been reported.

20

21 Here, we present a time-series spatial transcriptomic analysis of germinating barley grain at
22 55 µm resolution. We detected the expression of >14,000 genes over five to six tissue types,
23 at 0, 1, 3, 6 and 24 hours after imbibition (HAI). We analysed and distinguished the discrete
24 spatial and temporal transcriptional activity between barley grain tissues and between
25 domains within tissues. This allowed us to analyse the distinct and subtle expression domains
26 of individual gene family members, for example ion and auxin transporters, transcription and
27 translation and relate them to specific spatial functions. This spatial and temporal resolution
28 in gene expression will provide specific targets for grain improvements and promoters to drive
29 precise expression for synthetic biology approaches to alter grain quality.

30

31

32

1 **Results**

2 **Establishing a spatial transcriptomics workflow for barley grains**

3 To obtain the transcriptional signature of barley grains from thinly sliced sections whilst
4 preserving spatial information, we optimised spatial transcriptomics using Visium technology
5 (10x Genomics) for germinating barley grains (0, 1, 3, 6 and 24 HAI) (Supplementary Fig. 1a).
6 The grains were cut in half, snap-frozen in an isopentane bath and embedded in optimal
7 cutting temperature to generate cryoblocks (Supplementary Fig. 1b). We prepared eight μ m
8 thick longitudinal sections of the barley grains, then mounted them onto the active sequencing
9 areas of Visium Gene Expression slides (6.5 x 6.5 mm², 10x Genomics, Supplementary Fig.
10 1b). These active areas contain ~5,000 spot arrays with a diameter of 55 μ m and a centre-to-
11 centre distance of 100 μ m (Supplementary Fig. 1c). The spots on these slides are coated with
12 spot-specific positional barcodes attached to oligo (dT) primers and unique molecular
13 identifiers (UMIs) used for locating, capturing and identifying the mRNAs, respectively (see
14 methods and Supplementary Fig. 1). In total, we prepared and analysed 20 samples, i.e. four
15 sections per grain for each of the five time points (Supplementary Fig. 1b). To assess whether
16 the detected transcript signal was stringently confined under individual plant cells, we used
17 the Visium Tissue Optimization kit (10x Genomics) with modifications to suit barley grains (see
18 methods and Supplementary Fig. 2, adapted from²¹. To further determine the optimal
19 conditions for the starchy barley grain, we compare the sequencing quality of a pre-
20 permeabilization method described in ²¹ and the standard permeabilization method (10x
21 Genomics) using sections from two different seeds at the 24 HAI time point. A similar number
22 of genes (c. 13,000) was detected in all six of these sections (Supplementary Fig. 2e) leading
23 to the use of the standard permeabilization method for all subsequent gene expression
24 experiments given its faster processing time.

25

26 **Spatiotemporal gene expression dynamics during barley grain germination**

27 We applied the optimised spatial transcriptomics workflow to study spatiotemporal gene
28 expression dynamics during barley germination in an unbiased manner. We collected grains
29 across a time-series of 0 (dry), 1, 3, 6 and 24 HAI and obtained four serial sections (per time
30 point) along their longitudinal axis. Space Ranger (10x Genomics) was used for primary data
31 processing and gene expression data overlaid upon grain section images using Loupe
32 Browser. Among all sections, the minimum number of spots covered by tissue is 1171 and the
33 highest number of tissue-covered spots is 1858. Within those tissue-covered spots, the mean
34 number of reads per spot ranges from 57,397 to 103,993. The median UMI counts per spot

1 varied between 69 to 1689 with median genes per spot between 57 and 1092 across the
2 different sections. (Supplementary Fig. 3, Supplementary Table 1). Note that the embryo
3 tissues show much higher UMI and gene numbers (Supplementary Fig. 4, Supplementary Fig.
4 5). Secondary analysis used Seurat and SCTransform to generate clusters across four
5 sections for each time point with the uniform manifold approximation and projection (UMAP)
6 algorithm for dimensionality reduction^{22,23}. Resulting outputs for 24 HAI are shown in Fig. 1a-
7 d and for all other time points in Supplementary Fig. 6, 7, 8 and 9 for 0 HAI, 1 HAI, 3 HAI and
8 6 HAI, respectively. A total of 11 clusters were identified at 24 HAI based on histological
9 features and spatial transcriptomic data, with one cluster each for the coleorhiza, scutellum
10 and aleurone, three for the embryo and five for the endosperm (Fig. 1a-b, Supplementary Fig.
11 10). The four sections showed high correlation with a Pearson correlation coefficient from 0.89
12 to 0.96 at 24 HAI (Fig. 1c-d), and the high correlation across sections were also observed at
13 other time points (Supplementary Fig. 11). Furthermore, the four sections showed a similar
14 proportion of number of spots (Supplementary Fig. 12) and a high correlation (Supplementary
15 Fig. 13, 14, 15, 16, and 17) for clusters at each time point. These results again showed the
16 high reproducibility across different sections. Marker genes for each tissue/cluster were
17 identified by comparison to their expression in all other clusters at all time points
18 (Supplementary Table 2).

19 We compared our spatial transcriptomic analysis to a published tissue-specific transcriptome
20 analysis of barley grains generated by hand dissection to determine how closely the two
21 approaches agreed with each other²⁴. The tissue-specific analysis detected expression of
22 19,611 genes across all tissues, compared with 14,594 genes detected across our complete
23 spatial transcriptomic dataset (Fig. 1e). Expression was next benchmarked per tissue. The
24 spatial transcriptomic approach consistently detected between 83% and 90% of expressed
25 genes present in the same tissue of the tissue-specific RNA-seq experiment, except for in the
26 endosperm (Fig. 1e). Spatial transcriptomics detected twice as many expressed genes in the
27 endosperm than tissue-specific RNA-seq, but with almost all the expressed genes detected
28 by hand dissection also present in the spatial transcriptomic dataset (Fig. 1e). Note that the
29 spatial transcriptomic data presented here comprises four sections of eight μm thickness each
30 along the longitudinal axis of a grain that is around 5,000 μm wide. Therefore, in comparison
31 to tissue-specific sequencing only a portion of the whole grain will have been sampled which
32 might not include all cell types. Correlations of gene expression across the different time points
33 between the embryo, scutellum and aleurone of the spatial transcriptomics and the tissue-
34 specific RNA-seq were R^2 ranging from 0.42 to 0.59. For the endosperm, no correlation was
35 observed with R^2 between 0.09 and 0.16 (Supplementary Fig. 18). In bulk RNA sequencing
36 the expression of a gene is averaged over thousands to millions of cells, and the expression

1 can represent a high abundance in a few cells or uneven expression levels, which remains
2 unresolved following Simpson's paradox²⁵. Based on these benchmarks, spatial
3 transcriptomics on barley grain is comparable in depth to tissue-specific sequencing with the
4 added advantage of spatial resolution that eliminates any potential errors that arise due to
5 averaging of expression levels that may be present in a cellular landscape²⁶.

6 Sets of expressed marker genes which were defined by comparing gene expression of
7 different clusters pair-wisely (see methods) could be clearly defined for each cluster, which
8 corresponded to individual tissues or regions within tissues, at 24 HAI (Fig. 2a). Again, we
9 detected a higher number of UMIs and genes in the embryo tissues (Supplementary Fig. 19 ,
10 Supplementary Fig. 20). In coleorhiza (cluster col-1) expression of a distinct set of four genes
11 was observed, with a second set that overlapped the radicle (cluster emb-3) (Fig. 2a,
12 Supplementary Table 3). The latter is not unexpected given the relationships between radicle
13 and coleorhiza. The scutellum (cluster scu-1) expressed a distinct set of marker genes as well
14 as some additional marker genes that overlapped with the endosperm, which is again not
15 unexpected. The embryo was divided into three clusters. Of these, the coleoptile (cluster emb-
16 1) expressed a distinct set of marker genes, whilst the radicle (cluster emb-3) and mesocotyl
17 (cluster emb-2) expressed some overlapping marker genes that were differentiated by
18 magnitude of expression. The endosperm was partitioned into five clusters, that could not be
19 distinguished from one another by small sets of marker transcripts. It is therefore likely that
20 the endosperm clusters arose from more complex or subtle differences in gene expression
21 patterns. These five clusters may reflect differential water uptake and mobilisation of reserves
22 across the endosperm upon imbibition, demonstrating the spatial heterogeneity in the
23 magnitude of expression of genes between cells in the same tissue. Considered together,
24 these results demonstrate the advantage of the spatial transcriptomic approach. It allows
25 tissues and regions within tissues to be distinguished by a combination of their physical
26 location and gene co-expression, rather than by co-expression alone. We were consequently
27 able to manually assign and curate spot locations to tissues without solely relying on marker
28 genes or bioinformatic algorithms.

29

30 **Validation of spatial expression by RNA *in situ* hybridisation**

31 The expression patterns of transcripts detected by spatial transcriptomics were orthogonally
32 validated using RNA *in situ* hybridisation (Fig. 2b). *THIONIN* genes encode low molecular
33 weight basic cysteine-rich antimicrobial peptides and are highly expressed early in
34 germination in a tissue-specific manner in rice coleoptiles²⁷. Spatial transcriptomic analysis at

1 24 HAI indicated a coleorhiza-specific expression pattern for a *THIONIN* gene
2 (*HORVU6Hr1G000960*) (Fig. 2b i). This was confirmed by RNA *in situ* hybridisation (Fig. 2b
3 i). α -amylases are critical enzymes for the mobilisation of starch reserves in germinating barley
4 grains and have a scutellum and aleurone expression pattern²⁸. Spatial transcriptomics
5 detected *HORVU6Hr1G080790* gene expression in the scutellum at 24 HAI, with strongest
6 expression at the ventral end (Fig. 2b ii). RNA *in situ* hybridisation confirmed a scutellum
7 expression pattern but could not distinguish expression magnitude across the scutellum. Any
8 localised gradient in expression is difficult to resolve by RNA *in situ* hybridisation due to the
9 non-linear nature of colorimetric detection methods that are end-product inhibited. For the
10 radicle, the specific expression of an *O* *METHYLTRANSFERASE* 1 gene
11 (*HORVU1Hr1G011930*) involved in lignin biosynthesis was confirmed²⁹ (Fig. 2b iii). Coleoptile
12 and leaf specific expression of a gene encoding a non-specific lipid transfer protein
13 (*HORVU4Hr1G022780*) has been previously reported in barley^{30,31}. A similar pattern was
14 observed here by RNA *in situ* hybridization and spatial transcriptomics (Fig. 2b iv).

15 Thus, the spatial transcriptomics results for germinating barley grain were consistent with the
16 localisation, abundance and depth obtained with other approaches, but had the advantage of
17 combining all data into a single high-throughput approach.

18

19 **Conservation of spatial expression patterns across species**

20 Given the extensive transcript profiling studies in *Arabidopsis* tissues we undertook an
21 orthology approach to determine if the marker genes defined in this study also displayed tissue
22 specific expression in *Arabidopsis*. For the top 10 genes per cluster based on specificity, per
23 time point the *Arabidopsis* orthologs were defined using OMA³². This identified 14 *Arabidopsis*
24 genes for endosperm, 25 genes for aleurone, 44 genes for scutellum and 145 genes for
25 embryo. Note that most genes have a many-to-many relationship in each orthogroup, however
26 paralogs were not included in this number. Analysis of the tissue expression pattern for these
27 genes using Genevestigator³³ revealed that only 10% to 30% of the marker genes defined in
28 barley displayed a restricted expression in a comparable tissue in *Arabidopsis* (Supplementary
29 Fig. 21, 22, 23, 24 and 25). Thus, the spatial expression of genes in seeds of the two species
30 shows limited conservation.

31

32 **Spatiotemporal analysis of key biological processes during germination of barley 33 grains**

1 To reveal spatial and temporal patterns in the function of expressed genes, functional
2 categories present in at least three time points per tissue or containing at least five genes at
3 any time point were visualised, as well as categories present across the same time point in at
4 least two tissues (Fig. 3a). The number of genes in the 26 identified functional categories are
5 indicated as black data bars, and this revealed the spatiotemporal patterns linking expression
6 and function (Fig. 3a). Four major functional groups were identified including DNA/RNA
7 metabolism and translation, seed storage and metabolism, transport and miscellaneous
8 functions (Fig. 3a). The majority of genes encoding transcription and translation functions were
9 expressed in the embryo. Specifically, 56 to 133 genes encoding ribosomal proteins were
10 expressed from 0 HAI to 24 HAI in the embryo tissue, peaking at 24 HAI. A temporal pattern
11 for these was also observed with the expression of 51 and 89 genes encoding ribosomal
12 proteins highly expressed at 24 HAI in the scutellum and endosperm, contrasting with much
13 fewer, if any, observed at other time points for these tissues (Fig. 3a). A similar pattern of
14 expression was also observed for the genes encoding transcription factors, elongation factors
15 and heat shock factors, indicating an embryo specific expression pattern, peaking at 24 HAI
16 for many of these genes (Fig. 3a). Notably, functions that were associated with translation,
17 ribosomal proteins, elongation factors and heat shock proteins (chaperones), were expressed
18 in the embryo at all time points, compared to other tissues. This spatial gene expression
19 pattern suggests that the ability of germination to proceed without transcription, but requiring
20 translation^{34,35}, is an embryo specific function.

21 Distinct functions were also expressed in the endosperm and aleurone. Genes encoding rRNA
22 N-glycosidase and rRNA intron-encoded homing endonucleases showed more specific
23 expression in the aleurone and endosperm, with 32 of the 93 genes in the genome encoding
24 the latter showing highly specific expression at 24 HAI in the aleurone (Fig. 3a). Similarly,
25 genes encoding seed storage and metabolism functions also showed more specific
26 expression in the endosperm and aleurone. Notably, genes encoding late embryogenesis
27 abundant (LEA) proteins also showed temporal specific expression with the highest number
28 of genes expressed at 0 HAI in four of the five tissue types, with the highest number (13 genes)
29 expressed in the 0 HAI coleorhiza tissue (Fig. 3a). Dehydrins, which are a type of LEA that
30 are known to have important roles associated with phenotypic traits³⁶ also showed a similar
31 pattern with the eight of the 13 dehydrin encoding genes in the genome expressed at 0 HAI in
32 the coleorhiza (Fig. 3a). Based on studies in wheat³⁷, the expression of prolamin encoding
33 genes such as the low molecular weight glutenin and gamma gliadin genes were highly
34 specific to the endosperm and here we see this specificity in the aleurone as well (Fig. 3a).
35 This pattern was also observed for genes encoding seed metabolism functions, including
36 alpha-amylase, alpha-amylase inhibitor and trypsin inhibitor CME, which is also known to be

1 specific to the endosperm in barley³⁸. Four genes encoding pathogenesis-related thaumatin
2 like proteins were expressed specifically in the aleurone, with thaumatin like proteins known
3 to have roles in defence, development and seed germination with specific expression
4 observed during germination³⁹. In contrast to starch metabolism, lipid metabolism functions
5 including bifunctional inhibitor/lipid transfer protein as well as non-specific lipid transfer protein
6 encoding genes showed more specific expression in the coleorhiza and embryo specifically,
7 with the peak number of genes expressed at 24 HAI (Fig. 3a).

8 Aquaporin and thionin encoding genes were expressed specifically in the coleorhiza and
9 embryo, peaking at 24 HAI. Aquaporins are important proteins involved in the movement of
10 water in the seed⁴⁰ and expression of aquaporin genes was seen from 0 HAI in the coleorhiza,
11 while thionin encoding genes were only observed at 24 HAI indicating temporal specific
12 regulation in the expression of these genes as well (Fig. 3a). Notably, of the seven genes
13 encoding beta purothionins, which are involved in defence (as are thionins) and are known to
14 be expressed in wheat endosperm⁴¹, two genes were expressed in all five time points in the
15 endosperm and three time points in the aleurone, indicating highly specific expression (Fig.
16 3a). It has been shown that beta-purothionin can modify lipid packing and form channels at
17 the bilayer surface to increase water accessibility in the interfacial region⁴¹, thus the genes
18 showing these specific expressions are worth exploring further. Interestingly, four genes
19 encoding metallothioneins, from the nine genes encoding these in the genome, showed highly
20 specific expression in the scutellum (Fig. 3a), collectively indicating that defence and water
21 transport genes are tightly regulated in a spatio-temporal specific manner during seed
22 germination in barley. Lastly, for the genes encoding peroxidases, kinases and glutathione-s-
23 transferases, it is evidenced that these show a more temporal specific expression pattern with
24 the greatest number of these expressed at 24 HAI and more specifically in the embryo (Fig.
25 3a).

26 We also identified 45 genes showing exclusive spatial specific expression patterns, defined
27 by expression in all five time points in a particular tissue, with no specific expression or
28 expression in just one time point in other tissues (Fig. 3b). In this way, 16 genes encoding
29 ribosomal proteins, four genes encoding elongation factors, other three other genes with RNA
30 binding functions were revealed embryo specific in expression (Fig. 3b). Similarly, a gene
31 encoding UDP-glucose 4-epimerase 3 was scutellum specific in expression (Fig. 3b), and is
32 orthologous to AtUGE1 and AtUGE3, which are known to be co-regulated with carbohydrate
33 catabolic enzymes and have roles in growth and pollen development⁴². Whilst no endosperm
34 specific genes met the above criteria for specificity, eight genes were identified which were
35 expressed at all five time points in the endosperm and at least two time points in the aleurone,
36 shown near the endosperm-aleurone junction (Fig. 3b, Supplementary Table 4). Notably, two

1 genes encoding beta-purothionin were identified as endosperm-aleurone specific (Fig. 3b) and
2 these are known endosperm specific potent antimicrobial proteins in wheat⁴³ . Similarly,
3 gamma-gliadin and glutenin encoding genes were identified as endosperm-aleurone specific
4 here (Fig. 3b), and these are known endosperm storage proteins in wheat, with significant
5 roles in affecting flour quality⁴⁴ . Interestingly, two pathogenesis-related (P-R) thaumatin
6 superfamily protein encoding genes showed aleurone specific expression across all time
7 points (Fig. 3b), whilst another two were also aleurone specific but at 24 HAI only (Fig. 3a).
8 The *Arabidopsis* orthologue to one of the two aleurone specific genes (*HORVU4Hr1G002650*)
9 is osmotin 34 (AtOSM34), which has been shown to function as a positive regulator of ABA
10 responses is under post-translational control⁴⁵ , thus further investigation into the function of
11 these in barley germination could reveal insight into whether this regulatory role is conserved.
12 Lastly, to identify genes that were not specific to a given tissue, genes that were expressed in
13 at least 15 of the 25 samples making up the five time-points in the five tissues were examined,
14 revealing nine genes (Fig. 3c). Six of these had 10 *Arabidopsis* orthologues (OMA browser³²),
15 all of which were expressed across the developmental tissues (BAR). Apart from *At3G57520*
16 and *At3G16640*, which showed moderately high expression during germination, the other
17 eight genes showed the highest expression in dry seeds and/or during seed germination. For
18 example, all three *Arabidopsis* genes that were orthologous to the barley 60S ribosomal
19 protein L10-2 (*HORVU1Hr1G024710*) were co-expressed showing maximum expression in
20 the germinating seed specifically. Similarly, both *Arabidopsis* genes orthologous to barley
21 metallothionein-like protein 4B (*HORVU1Hr1G052180*) and both *Arabidopsis* genes
22 orthologous to dehydrogenase/reductase SDR family member 4 (*HORVU1Hr1G018140*)
23 showed maximal expression in the dry seed, just prior to germination. Notably, reducing
24 expression of both *AtMT4a* and *AtMT4b* resulted in reduced seed weight and affected post-
25 germinative early seedling growth, with over-expression resulting in the opposite effects⁴⁶ .
26 The same study also revealed these to have a role in zinc accumulation in seeds, thus this
27 gene in barley could represent a conserved orthologue, possibly having a similar role.
28 Likewise, the other *Arabidopsis* genes that were orthologous to other genes in barley (Fig. 3c)
29 have been shown to have roles in seed lipid accumulation, embryo development and organ
30 development (Fig. 3c), thus the conserved expression revealed here could suggest these
31 genes may have similar functional roles in seeds and development in barley. Interestingly, the
32 three genes encoding a histone-lysine N-methyltransferase (*HORVU4Hr1G003060*), an
33 undescribed protein (*HORVU5Hr1G002130*) and drought-induced 21 (*HORVU3Hr1G035470*)
34 did not have significant orthologues in *Arabidopsis*. Considering their expression in all five
35 tissues and at multiple time points for most tissues suggest these could be excellent targets
36 to examine for functional roles in seed germination in barley.

1 **Aquaporin gene family members have distinct spatiotemporal expression patterns**

2 To dissect further the spatial expression of genes, we examined in greater resolution the
3 expression of some gene families associated with the functions outlined above. Transport of
4 water, ions, solutes and other elements is essential for successful germination and occurs
5 during imbibition in the earliest phase of germination⁴⁷. We assembled a list of genes encoding
6 proteins involved in transport processes, focusing on aquaporins (Fig. 4a, full list in
7 Supplementary Fig. 26). Aquaporins are best known for their ability to facilitate water flow, but
8 also transport other substrates such as various ions, solutes and CO₂⁴⁸. They are located in
9 the plasma membrane (plasma membrane intrinsic proteins, PIPs) or the tonoplast (tonoplast
10 intrinsic proteins, TIPs). The expression patterns of several TIPs and PIPs were assessed (Fig.
11 4a). Interestingly, at 24 HAI, we found highly expressed isoforms in the mesocotyl, scutellum
12 and coleorhiza (Fig. 4b), illustrating that expression of aquaporin family genes is highly
13 spatially distributed and organised during germination. The *HORVU4Hr1G079230* gene
14 encodes a tonoplast intrinsic protein 1;1 (TIP1;1) that is the most abundantly expressed
15 isoform of the TIP family⁴⁹, which was also confirmed by our data. TIP1;1 is a housekeeping
16 aquaporin and establishes a basal level of tonoplast hydraulic conductance^{50,51}. In the spatial
17 transcriptomic data, it was expressed mainly in the coleorhiza at early timepoints (0-6 HAI),
18 then expression strongly increased at 24 HAI in coleorhiza and in the radicle and mesocotyl
19 of the embryo (Fig. 4c, top). Another aquaporin gene, *HORVU1Hr1G043890*, encodes
20 TONOPLAST INTRINSIC PROTEIN 3;1 (HvTIP3;1) which accumulates in the aleurone and
21 outer layers of the barley seed⁵². We found this gene to be highly expressed in the embryo
22 tissues at 0 and 1 HAI, followed by expression in the scutellum and aleurone layer at 3 and 6
23 HAI and in some areas of the aleurone/subaleurone layers at 24 HAI (Fig. 4c, bottom). These
24 results illustrate the different spatiotemporal expression patterns of gene family members and
25 how specific aquaporins regulate water transport in distinct tissues during seed germination.

26

27 **Expression dynamics of cell wall metabolism genes**

28 Transcription of genes involved in cell wall metabolism are up-regulated during the early
29 stages of seed germination⁵³ (Supplementary Fig. 27). Cell wall degradation, modification and
30 precursor synthesis are essential processes in weakening of the tissues, e.g. during radicle
31 expansion. We detected spatially distinct and dynamic expression of cell wall-related genes
32 across barley grain germination. For example, *HORVU3Hr1G073780*, encoding a type of
33 cellulose synthase, was expressed at a relatively low level up until 6 HAI, but increased at 24
34 HAI (Supplementary Fig. 28a). It further displayed a very particular spatial pattern in the radicle,
35 possibly the epidermis and cortex, suggesting this gene might be involved in new cell wall

1 formation. Expansins were originally identified because of their ability to induce cell wall
2 extension and are key regulators of cell growth⁵⁴. We found that *ALPHA EXPANSIN 2*
3 (*HORVU3HR1g081180*) was highly expressed in the late germination phase (6 and 24 HAI)
4 around the expansion zone of the radicle (Supplementary Fig. 28b), implicating it in radicle
5 protrusion for germination. Another cell wall-related gene, *HORVU5HR1g080860*, encodes a
6 UDP-glucose epimerase (*HvUGE*) which participates in sugar precursor synthesis for cell wall
7 biogenesis. Despite being identified in barley developing seed, leaf tips and mature roots⁵⁵,
8 our spatial study located *HvUGE* in the scutellum at all time points of germination
9 (Supplementary Fig. 28c), which suggests this epimerase participates in cell wall
10 polysaccharide synthesis during several barley developmental stages.

11

12 **Transcription factors involved in the spatiotemporal gene regulatory landscape**

13 We sought insight into the gene regulatory landscape in barley by examining the expression
14 of genes encoding transcription factors (Supplementary Fig. 29). One of the strongest
15 expressed genes encoding a transcription factor was *HORVU1Hr1G086580*, a bZIP type
16 transcription factor that responds to karrikin. Karrikins are small organic compounds known to
17 be promoters of germination⁵⁶. The spatial expression of *HORVU1Hr1G086580* is highest in
18 early germination (0-3 HAI) in the scutellum and the adjacent endosperm area and then
19 declines during germination (Supplementary Fig. 30b i). An *Arabidopsis* ortholog, *DELAY OF*
20 *GERMINATION 1-LIKE 4* (*DOGL4/AT4G18650*), is a maternally expressed imprinted gene
21 found in the endosperm of dry seeds and was described as a negative regulator of seed
22 dormancy⁵⁷. The *HORVU4Hr1G009730* gene encodes the *BARLEY KNOX3* (*BKN3*)
23 transcription factor that plays a pivotal role in shoot apical meristem (SAM) formation and
24 maintenance as well as some morphogenetic processes during plant development⁵⁸. We
25 detected no expression of *BKN3* during early phases of germination (0-6HAI), but a very
26 distinctive and localised expression at 24 HAI in the SAM (Supplementary Fig. 30b ii). The
27 *HORVU2Hr1G104040* gene encodes a novel myc-related bHLH transcription factor and its
28 ortholog in *Arabidopsis*, *Phytochrome-interacting factor 1* (*PIF1*), mediates light-regulated
29 control of seed germination^{59,60}. Our analysis showed that it is not expressed during early
30 stages of germination (0-6 HAI) but expressed at 24HAI in the scutellum (Supplementary Fig.
31 26b iii). Another transcription factor, *HORVU7Hr1G026940*, encodes a DREB subfamily A-5
32 of ERF/AP2 transcription factor. DREBs are dehydration response element binding factors
33 and one of the main groups of transcription factors that regulate expression of abiotic stress-
34 inducible genes⁶¹. Spatial transcriptomics showed the expression of this transcription factor
35 was restricted to the scutellum and endosperm during the early time points of germination (0-

1 3 HAI) but it increased and moved to the aleurone layer at 6 HAI and 24 HAI (Supplementary
2 Fig. 30b iv).

3 It is clear from the above examples for critical processes in germination that considerable
4 variation in transcript abundance occurs with tissues (i.e. clusters) that has previously gone
5 undetected.

6

7 **Non-biased discovery approaches define spatiotemporal domains during seed
8 germination of barley**

9 Expression of genes is not necessarily uniform across all cells within a tissue or cluster. Non-
10 uniform expression within tissues reflects spatial organisation of function within that tissue.
11 We assessed the ability of spatial transcriptomics to identify genes that had discrete patterns
12 of spatial expression within tissues. To do so we focussed on the embryo tissues across all
13 time points and applied Moran's I spatial autocorrelation statistics to all expressed genes. This
14 metric defines the correlation of gene expression of a local spot with its neighbouring spots
15 and thus is a measure for non-random spatial patterns (see method for details)⁶². Moran's I
16 varies from -1 to 1, and a positive value indicates that cells with similar gene expression
17 patterns are clustered together in a coherent domain. A value close to zero designates random
18 spatial distribution of similar gene expression patterns, whilst a negative value shows that cells
19 with similar gene expression patterns are spatially separated from each other. We considered
20 genes that had a Moran's I > 0.25, an adjusted p value < 0.01, expression in more than 5% of
21 spots in a section, and meeting those thresholds in at least two sections for a time point, as
22 having coherent expression domains; these are subsequently referred to as spatially variable
23 genes (SVGs)⁶³. The lowest number of SVGs was detected at 3 HAI and the highest number
24 at 24 HAI (Fig. 5a, Supplementary Table 5). Among those SVGs, there were 204, 147, 68,
25 201 and 1098 SVGs consistently detected in all four sections for 0 HAI, 1 HAI, 3 HAI, 6 HAI,
26 and 24 HAI, respectively (Supplementary Fig.3, Supplementary Table 5).

27 Many SVGs also had temporally specific expression; 1,812 SVGs were specific to one time
28 point whilst 755 were spatially variable in more than one time point (Fig. 5b). Combined
29 spatiotemporal expression patterns of SVGs were diverse. For example, a histone
30 deacetylase 2B (HD2B, Fig. 5c i) with a Moran's I = 0.64 at 24 HAI was enriched at the active
31 growth centres including the radicle and shoot meristem in the embryo. HD2B histone
32 deacetylase is associated with seed dormancy in *Arabidopsis*⁶⁴. Two components of the
33 histone deacetylation complex positively regulate seed dormancy while inhibiting seed
34 germination by integrating ABA, ethylene and auxin signalling pathways^{65,66}.
35 *HORVU4Hr1G003340*, an ortholog of *Arabidopsis* bHLH25, is a transcription factor enriched

1 in the radicle at 24 HAI (Moran's I = 0.63, Fig. 5c ii). Overexpression of *Arabidopsis* bHLH25
2 results in increased lateral root numbers⁶⁷. *HORVU7Hr1G042390* encodes a homolog of the
3 GAST1 PROTEIN HOMOLOG 4 (GASA4) protein, which is a regulator of gibberellic acid-
4 dependent seed germination and expressed in the shoot apex and embryo in *Arabidopsis*^{68,69}.
5 Its expression was focussed on the coleoptile with Moran's I = 0.6 (Fig. 5c iii), consistent with
6 the important role of GA in seed germination^{70,71}. Moreover, the previously identified coleoptile-
7 specific gene, *HORVU4Hr1G022780*, encoding a NON-SPECIFIC LIPID-TRANSFER
8 PROTEIN 4, was also identified as an SVG (Fig. 5c iv).

9 Groups of SVGs may be expressed within similar spatial patterns because they have related
10 or associated functions in the underlying cells. To examine this potential spatial co-expression
11 we performed a high dimensional co-expression network analysis with the 1,889 significant
12 SVGs from 24 HAI sample using hdWGCNA⁷². We determined seven co-expression modules
13 and visualized their spatial expression patterns using eigengenes, which represent the
14 common expression pattern of all genes within a module (Fig. 6a, Supplementary Table 6).
15 Gene functions within modules were assessed using gene ontology (GO) enrichment analysis
16 (Fig. 6b). Genes in the green module were highly expressed in the apex of radicle and were
17 enriched for functions in glutathione (GSH) metabolic process and sulfur compound metabolic
18 process. GSH is critical for (embryonic) root development in *Arabidopsis*, partly via modulation
19 of auxin transport and signalling⁷³⁻⁷⁵. The turquoise module was expressed most highly at the
20 base of the radicle and enriched for cell wall biogenesis and organization. Plant cell wall
21 biogenesis and organization are important developmental processes for radicle emergence⁷⁶
22⁷⁸. The brown module was expressed most highly in the mesocotyl and genes within this
23 module were associated with water and fluid transport, which corresponds to the presence of
24 the vascular tissues in this region. The yellow module was expressed most highly in the
25 coleoptile and consisted of genes enriched in photosynthesis and chlorophyll biosynthetic
26 processes. This corresponds to the role of the coleoptile as the first photosynthetically active
27 tissue during transition from heterotrophic to autotrophic growth. Expression of the blue and
28 red modules was highest in the embryo root and shoot, with expression of the blue module
29 highest in the embryo leaves whilst the difference between the embryonic leaf and root was
30 less notable in red module. Both modules were enriched for chromatin and nucleosome
31 assembly, with the blue module is also enriched for ribosome biogenesis. This is consistent
32 with the known presence of rapidly dividing cells in these meristematic regions. In summary,
33 this analysis was able to correlate functional relationships of genes and their spatial
34 distribution on a sub-tissue level. The grey module was highly expressed in the shoot apical
35 meristem and consisted of genes involved in auxin signalling.

1 Auxin has a critical role in embryo development and growth^{79,80}. An in-depth evaluation of the
2 SVGs list revealed 24 auxin-related genes showing spatially variable expression in at least
3 one time point, with 18 of them found at 24 HAI (Supplementary Table 5). From these 18
4 auxin-related genes, we further focused on seven genes which belong to auxin efflux carriers
5 and transporter-like families (Fig. 6c). An auxin efflux carrier family protein
6 (*HORVU7Hr1G038700*) and one auxin transporter-like protein (*HORVU4Hr1G063650*) were
7 mainly expressed at 24 HAI while the other five genes were dominantly expressed at more
8 than two time points (Fig. 6c). Interestingly, the four auxin efflux carrier family genes were
9 mainly expressed in the embryo root and enriched towards the basal root
10 (*HORVU3Hr1G080640*, *HORVU3Hr1G114270*), the inner embryo apex
11 (*HORVU7Hr1G038700*) and epidermis (*HORVU7Hr1G110470*) (Fig. 6d). The three members
12 of auxin transporter-like proteins also display an obvious spatial-dependent expression
13 pattern (Fig. 6d). Auxin transporter-like protein 1 was enriched in the mesocotyl as well as the
14 root tip. Auxin transporter-like protein 2 and 3 are both enriched in the embryo SAM with auxin
15 transporter-like protein 3 also showed high expression in the inner layers of the embryo
16 radicle. The complementary expression of those auxin-related genes suggests the transport
17 and accumulation of auxin in the barley embryo is controlled by a spatially complex distribution
18 of auxin transporters, similar to the well-defined role of auxin for the formation of the embryonic
19 apical–basal axis established in *Arabidopsis*⁸¹.

20

21 **Discussion**

22 Here, we have presented a spatially resolved transcriptomic analysis of germinating barley
23 grain at a resolution of 55 µm over 24 HAI. The accuracy of the spatial determination of
24 expression was confirmed using RNA *in situ* hybridisation. The quantitative nature of the
25 approach shows reasonable correlation with bulk RNA-seq. As different cells will be
26 expressing genes at different levels depending on the cellular landscape²⁵, such variation is
27 lost in bulk-sequencing, but retained in spatial transcriptomics. The number of genes detected
28 and that changed in expression in our study was also comparable to bulk sequencing. We
29 developed a web application to allow users to visualize and explore our datasets. The web
30 application gives access to: i) the spatial distribution of clusters in four sections for each time
31 point; ii) expression of genes of interest in a spatial way as well as UMAP and Violin plot; iii)
32 expression of embryo SVGs; iv) marker gene list of each time point and Moran's I value for
33 embryo SVGs. The web application can be accessed at <https://spatial.la.trobe.edu.au>.

34 In our experiments, we observed consistently isolated individual spots of expression for some
35 genes on single sections. The biological interpretation of such isolated expression is unclear;

1 does it represent transcriptional ‘noise’ that has been proposed to occur⁸², or does it represent
2 an artifact? A larger number of replicates will help interpret such signals, and these larger
3 datasets will additionally drive the development of bioinformatic approaches to allow individual
4 cell expression to be visualised and placed in context of the transcriptional landscape of the
5 tissue as a whole. As an advantage for plant biology, the spatial transcriptomic approach
6 works well with fresh frozen tissue. The ability to obtain cell sections from a large variety of
7 plant tissues even with limited amounts means that profiling of cells that have been previously
8 lost either in bulk or protoplast approaches because of their limited numbers will be avoided.
9 A cost limitation currently of this technology is to develop a 3D cell expression atlas of the
10 target tissue. This would require at least tens of sections at each time point. With different
11 commercial technologies emerging in this area and uptake cost should come down in the
12 future⁸³, but large scientific consortia like the Plant Cell Atlas (<https://www.plantcellatlas.org>)
13 and STOC (Spatio-Temporal Omics Consortium - [https://www.sto-](https://www.sto-consortium.org/news_events.html)
14 [consortium.org/news_events.html](https://www.sto-consortium.org/news_events.html)) will be valuable in providing access to individuals to larger
15 funded studies.

16 From our data the spatial heterogeneity in expression of gene family members and their
17 gradients of expression over time were apparent. The analyses revealed that significant
18 enrichment of different processes occurs in specific locations, e.g. translation in the embryo
19 (Fig. 3), auxin signalling pathways in the coleorhiza (Fig. 6). It is well established that
20 translation, not transcription, is essential for germination to commence. This study shows that
21 this is confined to the embryo, and that 45 genes encoding proteins associated with translation
22 are embryo specific. A variety of genes in other tissues that are associated with grain or
23 processing quality, gamma gliadin, can also now be located to specific areas and promoters
24 associated with this expression defined. Auxin has emerged as a key player in regular pattern
25 for the formation of lateral roots with oscillations in auxin defining the lateral root pattern⁸⁴⁻⁸⁶.
26 An auxin maximum precedes lateral root formation which depends on auxin transport.
27 Furthermore, the repression of lateral roots in response to loss of contact with water is
28 regulated by movement of ABA from the phloem⁸⁷. Here, we show that genes encoding auxin
29 transporters already show spatially distinct patterns at the time the radicle emerges from the
30 seed coat. Knowing what auxin transporter(s) (and other hormone transporters) are expressed
31 where and how they respond to environmental changes will allow breeding strategies to target
32 these processes more efficiently. Previously it has been shown that auxin represses aquaporin
33 expression to allow lateral root emergence. The spatial and temporal expression patterns
34 determined here can identify the molecular components involved in this process⁸⁸ and provide
35 approaches to alter these responses for agricultural purposes.

1 Comparison of marker genes defined using spatial transcriptomics in this study to orthologs
2 in *Arabidopsis* revealed that while some *Arabidopsis* genes had similar a same expression
3 pattern on a tissue basis, the majority did not. This is similar to studies using scRNA-seq
4 showing the expression of some genes in meristems (root or shoot apical meristem) were
5 conserved, and, in general, patterns are conserved across species when similar functions and
6 structures are required⁹. Approximately 65% of genes in plant genomes are duplicates and
7 most crops are polyploid, consequently for many important agronomic traits such as seed size
8 and disease resistance the spatial expression pattern of genes arising from
9 subfunctionalisation and subneofunctionalisation is an important mechanism for retaining
10 duplicates⁸⁹. Thus, determination of the precise sub-tissue expression pattern of genes is key
11 to using molecular approaches for plant improvement in the future.

12 It is essential that crop varieties that respond to environmental changes are developed to
13 produce the food for a growing world population. While the cessation of growth under
14 environmental limitations has been traditionally viewed as a resource allocation problem, e.g.
15 resources are used for pathogen defence not growth, detailed molecular studies have
16 revealed that growth limitation is due to antagonistic transcriptional pathways⁹⁰. For example,
17 mutation in *PHYTOCHROME B* rescues the growth retardation of jasmonate mutants that
18 have a constitutively active defence response, but this depends on the levels of the defence
19 response and tryptophan biosynthesis⁹¹. It has also been shown that different stresses can be
20 mediated via different tissue types⁹². Thus, the understanding of where genes are expressed
21 and how they respond to environmental conditions is vital to future strategies to breed plants
22 that can respond to the environment and maintain growth⁹³. The concept of specialised
23 plastids is proposed for sensing and responding to stress in a tissue specific manner⁹⁴. Spatial
24 transcriptomics provides the high throughput technique to allow these emerging concepts to
25 be developed and further our knowledge of how plants respond to the environment from a
26 cellular to whole plant level.

27

1 Methods

2 Spatial transcriptomics tissue preparation

3 **Plant growth and tissue preparation.** Barley grains (cv La Trobe) were surface sterilized
4 using the chlorine-gas method in a fume hood, germinated on top of two layers of sterilized
5 filter paper with 12 ml of sterile water added and wrapped with foil at 23 °C. Seeds were
6 harvested at 0, 1, 3, 6 and 24 HAI.

7 **Grain sectioning.** The seeds for the Visium experiment were collected at the indicated time-
8 points and hand-dissected longitudinally. The seeds were immediately snap frozen in an
9 isopentane bath (2-methylbutane, Sigma Aldrich, cat no. 270342-1L) for 1 min, subsequently
10 embedded in Optimal Cutting Temperature (OCT, Tissue-Tek, cat no. 4583) and the blocks
11 frozen in an isopentane bath and kept on dry ice. The cryoblocks were cut on a cryostat (Leica
12 Biosystems; MA, USA) to a thickness of eight µm at -18°C. The sections were carefully place
13 on a prechilled Tissue Optimization (TO) or Gene Expression (GE) slide and kept frozen at -
14 80 °C until required.

15 **Fixation, staining, and imaging.** The slides were dried on a metal plate (PN-1000317, 10x
16 Genomics) in the thermocycler at 37 °C for 1 min, fixed with chilled methanol at -20°C for 30
17 min, stained with 0.1% (w/v) Safranin O (Sigma-Aldrich, cat no. S8884-25G) in 50% (vol/vol)
18 Ethanol with 2 U/µl RNase inhibitor at room temperature (RT) for 5 min and washed in
19 increasing concentrations of EtOH until the discarded liquid was clear. After drying at 37°C for
20 1 min, the slides were mounted in 85% (v/v) glycerol + 2 U/µl RNase inhibitor, covered with a
21 coverslip and images of sections were taken using Axio-Imager.M2 microscope (Zeiss). TO
22 slides were captured in on image while GE slide capture areas were imaged individually. Raw
23 images were stitched together using Zen blue software v2.5 (Zeiss). Prior to imaging, the
24 microscope settings were validated using the Visium Imaging Test Slide (PN-2000235). The
25 optimised settings were saved into the TO macro for following experiments. After imaging, the
26 coverslip was removed immediately, and the slide immersed at 45° angle in 3x SSC buffer
27 and washed once with 3x SSC buffer before air drying.

28 **Tissue pre-permeabilization, permeabilization and reverse transcription.** To pre-
29 permeabilize the tissue, the slides were mounted in a plastic cassette and sections incubated
30 in pre-permeabilization solution²¹ (48 µl Exonuclease I buffer, NEB, cat no. B0293S; 4.5 µl of
31 BSA, Sigma-Aldrich, cat no. A7039-100G; and 2% (w/v) PVP40, Sigma-Aldrich, cat no.
32 PVP40-1KG) at 37 °C for 30 min. This was followed with a wash with 0.1× SSC buffer (Sigma-
33 Aldrich, cat no. S6639L). The sections were permeabilized with Permeabilization mix™ (10x
34 Genomics) at 37°C for different times (1, 3, 6, 15, 30 min TO slides) or for 3 min (GE slides).

1 Then, wells were washed with 0.1x SSC buffer. After permeabilization, Reverse transcription
2 mixture™ (10x Genomics) was added to each section and incubated at 56 °C for 45 min as
3 described in the 10x Genomics User guide (PN-1000186,
4 CG000239_VisiumSpatialGeneExpression_UserGuide_RevD).

5 **Tissue removal and washes (TO slide only).** To remove the tissue, a hydrolytic enzyme
6 mixture was prepared by adding 70 µl of each enzyme (Supplementary Table 7); cellulase
7 (Yakult -"ONOZUKA" R-10, cat no. YAKL0012), pectate lyase (Megazyme, cat no. E-
8 PCLYAN2), xyloglucanase (Megazyme, cat no. E-XEGP), endo 1,4 β-xylanase (Megazyme,
9 cat no. E-XYNACJ), endo 1,4 β-mannanase (Megazyme, cat no. E-BMACJ) and lichenase
10 (Megazyme, cat no. E-LICHN) to 140 µl of 250 mM sodium citrate buffer (Sigma-Aldrich, cat.
11 no. 71497-250 G), pH 6.6. The enzymatic mixture was added to the wells and incubated in a
12 Thermo Mixer at 37 °C for 90 min with shaking (300 r.p.m.). The wells were washed with 0.1x
13 SSC buffer.

14 Samples were incubated with 10% (v/v) Triton X-100 solution in a Thermo Mixer at 56 °C for
15 1 h with shaking (300 r.p.m.), followed by a wash with 0.1x SSC buffer. Next wash consisted
16 in a mixture of RLT buffer (Qiagen ref.79216) with 1% (v/v) β-mercaptoethanol, which was
17 incubated in a Thermo Mixer at 56 °C for 1 h with shaking (300 r.p.m.) and followed by a wash
18 with 0.1x SSC buffer. A final incubation with 70 µl proteinase K mixture (60 µl of proteinase K
19 (Qiagen, cat no. 19131) and 420 µl of PKD buffer (Qiagen, cat no. 1034963) was performed
20 in a Thermo Mixer at 56 °C for 1 h with shaking (300 r.p.m.).

21 Hybridization chamber was detached, and the slide washed in a petri dish with 50 °C pre-
22 warmed wash buffer 1 (2x SSC/0.1% SDS) at 50 °C for 10 min with shaking (300 rpm). The
23 slides were further washed with wash buffer 2 (0.2x SSC) and wash buffer 3 (0.1x SSC) at RT
24 for 1 min with shaking (300 rpm). The slide was spin-dried in a swing-bucket centrifuge.

25 **Fluorescence imaging or library preparation, and sequencing.** When using the Tissue
26 Optimization workflow, a fluorescent image (mRFP filter, Excitation: 559/85 Emission: 600/90)
27 of the cDNA footprint was taken. The whole slide was recorded using a Plan-Apochromat
28 10X/0.45 M27 objective and the tiling function of the Axio-Imager.M2 microscope (Zeiss). The
29 final file included each of the eight capture areas, 8 x 8 mm (the fiducial frame and the capture
30 area); with the microscope set to ~1-2 mm beyond the fiducial frame for optimal image
31 alignment. The capture resolution was 0.454 µm/pixel. Raw images were stitched together
32 using Zen blue software v2.5 (Zeiss). When following the Gene Expression workflow, libraries
33 from the different capture areas were synthesized as described in 10x User guide (PN-
34 1000190, CG000239_VisiumSpatialGeneExpression_UserGuide_RevD).

1 Visium libraries were sequenced on an Illumina NextSeq 550 platform according to the 10X
2 Genomics Visium manufacturer's instructions (NextSeq 500/550 High Output kit v2.5 (150
3 cycles) 20024907, CG000239_VisiumSpatialGeneExpression_UserGuide_RevD), targeting
4 100 million reads using dual indexing kit TT set A (PN-1000215, 10x Genomics).

5

6 **Visium Spatial Gene Expression Analysis**

7 **Imaging and data processing.** Images of the bright field sections were loaded into Loupe
8 browser software (10x Genomics) and the fiducial frames were manually adjusted. The
9 resulting loupe files were used for downstream analysis.

10 **Spatial transcriptomics data processing.** Selection of spots and image alignment was
11 performed in Loupe Browser (v. 6.2.0, 10x Genomics) to generate alignment files for each
12 section. The sequencing data, bright field images and alignment files were used as input for
13 the Space Ranger (v. 1.3.1, 10x Genomics) to generate gene-spot matrices. IBSCv2 barley
14 genome assembly was used as the reference genome for Space Ranger⁹⁵. For each section,
15 spots with a total UMI count less than 30 and less than 10 expressed genes were excluded
16 from the following analysis. For each time point, the data from four sections were merged with
17 the “merge” function from Seurat package (v. 4.1.0) and normalized using SCTransform
18 (settings: variable.features.n = NULL, variable.features.rv.th = 1)¹². Section variability within
19 the data were regressed out using the “vars.to.regress” function from SCTransform. Principal
20 component analysis (PCA) was performed on the genes with residual variance greater than
21 1, and the 30 most significant components were retained as input for Uniform Manifold
22 Approximation and Projection (UMAP)⁹⁶ and for spot clustering. Generation of spot clusters
23 was made using the “FindNeighbors” (settings: reduction = “pca”, dims = 1:30) followed by the
24 “FindClusters” functions in Seurat, where the default algorithm was used to construct a Shared
25 Nearest Neighbor (SSN) graph and apply the Louvain algorithm for cluster generation. Cluster
26 resolution was set from 0.4 to 0.8. The identity of the clusters was assigned based on their
27 location in the section according to the morphology of a barley grain. To identify marker genes
28 for each cluster, pair-wise comparisons of individual clusters against all other clusters were
29 performed using the “FindAllMarkers” function (settings: min.pct = 0.05, logfc.threshold = 0.25,
30 only.pos = T) with Wilcoxon rank sum test in the Seurat package. The marker genes were
31 further filtered with an adjusted p value < 0.05²².

32 **Orthology analysis.** *Arabidopsis* orthologues to barley genes were identified using the
33 genome pair orthology tool (OMA browser - <https://omabrowser.org/oma/genomePW/>)³². Note
34 that many of the genes were many to many orthologues, but only those within the set that
35 were orthologous to the genes in our subset are shown.

1 **Temporal and spatial specific analyses.** Supplementary Table 2 show the marker genes of
2 each cluster identified at 0, 1, 3, 6 and 24 HAI. These genes were matched to all the genes in
3 the genome and re-organised such that the marker genes in each of the time points in each
4 of the tissues can be compared across rows (Supplementary Table 4). This revealed that
5 1,412 genes were identified as marker genes in at least one tissue in at least one time point.
6 In order to unveil any biological processes that may be specific to a tissue, the gene
7 descriptions for each time point for each tissue (25 input sets) were independently examined
8 using a wordcloud generator (<https://monkeylearn.com/word-cloud/>) to identify the terms
9 occurring multiple times. Note, the words “protein”, “superfamily” and “family” were first
10 removed to avoid bias. Outputs were returned as tables containing terms and number of
11 occurrences for that term in each set. The outputs were then filtered keeping only the terms
12 that were present in the gene-sets from at least three time points for a given tissue or contained
13 five or more genes with that term i.e. spatial expression. Similarly, the terms that were present
14 in the gene-sets from the same time point across at least three tissues were kept i.e. temporal
15 specific expression. In this way, 26 functional descriptions/categories were identified, and
16 these are shown in Fig. 3a.

17 **Identification of spatially variable genes and co-expression gene modules.** Spots that
18 annotated as embryo tissues were identified for each time point and their expression data
19 normalized using SCTransform as described above⁹⁶. For each section, spatial information
20 between the spots were represented by an adjacency weight matrix which was calculated
21 using the spot coordinates and Moran’s I spatial autocorrelation statistics were computed
22 using the normalized expression data along with associated spatial adjacency weight matrix
23 using the MERINGUE framework⁹⁷. SVGs were defined as Moran’s I > 0.25, adjusted p value
24 < 0.01, expressed in more than 5% spots in a section, and at least two sections for a time
25 point were considered as for that time point. hdWGCNA was used to perform co-expression
26 analysis for 24 HAI SVGs⁷² using a signed network and ‘bicor’ correlation. Module detection
27 was performed with default settings, and the minimal module size was set to 50 genes. After
28 module detection, highly correlated modules were merged using a tree cut height of 0.45. For
29 each module, an eigengene, which is defined as the first principal component of the module’s
30 expression pattern, was calculated. The intra-modular connectivity (kME) was calculated
31 using the SignedKME algorithm for each gene, which represents its correlation with the
32 module eigengene value. Gene ontology (GO) annotation of barley were retrieved from Shiny
33 GO database (Version 0.75)⁹⁸ and GO enrichment analysis was performed with the
34 clusterProfiler package⁹⁹. Overrepresentation of GO terms in the category “biological process”
35 was identified by hypergeometric distribution.

36

1 **Spatial transcriptomics validation**

2 **RNA *in situ* hybridisation.** Seeds were cut longitudinally to equal half and fixed in ice-cold
3 farmers fixative (3:1 ethanol:acetic acid). Samples were placed in the cold room (4 °C)
4 overnight. The fixed tissue was dehydrated using the Leica Semi-Enclosed Benchtop Tissue
5 Processor TP1020 (Leica Biosystems, Mount Waverley, Australia) at room temperature in a
6 graded series of ethanol (1 h each 75%, 85%, 100%, 100%, and 100% v/v). The tissues were
7 then shifted to a graduated ethanol:xylene series (80 min in 75%:25%, 50%:50%, 25%:75%
8 v/v), finished with a xylene series (100% (v/v) twice for 1 h). Tissue was then added to molten
9 Surgipath Paraplast® Paraffin (Leica Biosystems) at 65 °C for 2h. Paraplast blocks were then
10 prepared with half seed in each block using the Leica Heated Paraffin Embedding Module
11 EG1150 H with the added Leica Cold Plate for Modular Tissue Embedding System EG1150
12 C (Leica Biosystems). with vacuum infiltration. Embedded tissues were cut at 8 µm sections
13 and *in situ* hybridization was carried out according to modified protocols from¹⁰⁰ 50 °C
14 hybridization temperature and 0.2x SSC washes¹⁰⁰. Gene of interest was amplified using
15 designed primers (Supplementary Table 8) and cloned into pGEMT-Easy vector (Promega).
16 Using the DIG RNA Labelling Kit (Roche Diagnostics), Digoxigenin-labelled antisense and
17 sense RNA probes were transcribed from T7 or SP6 promoter of pGEMT-Easy vector
18 (Promega) according to manufacturer's instructions. All hybridization results were observed
19 and photographed using a Zeiss Axio Observer A1 microscope (Carl Zeiss AG).

20

1 **Data Availability**

2 The accession number for the raw sequencing data and Space Ranger processed data
3 reported in this paper is Gene Expression Omnibus (GEO): GSE218970
4 (<https://www.ncbi.nlm.nih.gov/geo/>). Any additional information required to reanalyse the data
5 reported in this paper is available upon request.

6 The interactive web browser can be explored at <https://spatial.latrobe.edu.au/> with the
7 username: reviewer and the password: barley_pass.

8

9 **Acknowledgements**

10 We thank Dr. Matthew Tucker for kindly providing the barley grains for this experiment. We
11 thank Dr. Jacqueline Orian and her laboratory for their guidance setting up the cryosectioning.
12 Work in M.G.L.'s lab is funded by the Australian Research Council (ARC) Discovery Program
13 grant DP220102840. J.W. and L.C.L. were funded by an ARC Discovery Program grant
14 DP210103258. J.W. is supported by a Kun Peng Fellowship from the Zhejiang Provincial
15 government.

16

17 **Figure Legends**

18 **Figure 1 | Spatially resolved transcriptome analysis of barley grain.**

19 **a**, Spatial visualization of the unbiased spot clustering for four 24 hours after imbibition (HAI)
20 barley sections. Top left panel, bright field image of section D, top middle panel, spatial
21 localization of each cluster of section D, top right panel, merged bright field image and spatial
22 clusters of section D. Bottom panels, merged bright field image and spatial clusters of other
23 three sections. The tissue/cell-type identity of each cluster was assigned based on the location
24 of each cluster. Col: coleorhiza, emb: embryo, scu: scutellum, ale: aleurone, end: endosperm.

25 **b**, Uniform manifold approximation and projection (UMAP) of spatial spots from four 24 HAI
26 barley sections. Dots correspond to individual spots on the Visium slide; n = 6961 spots;
27 colours indicate cluster association for each spot. **c**, UMAP of spatial spots from four 24 HAI
28 barley sections. Colours indicate different sections for each spot. **d**, Pair-wise Pearson
29 correlation between different sections for 24 HAI. Dots correspond to genes expressed in at
30 least 5 spots. X axis and Y axis show the average of normalized count of tissue covered spots
31 from two different sections, respectively. Pearson correlation coefficient is indicated as R . **e**,

32 Number and overlap between genes detected by bulk RNA-seq of barley grain tissues and
33 spatial transcriptomics. For genes identified by spatial transcriptomics, their presence or

1 absence in the same location as in a tissue-specific bulk RNA-seq experiment²⁴ was
2 determined. The bar chart indicates the number of genes across comparable time points and
3 tissues between both experiments. The cut-offs for inclusion in this comparison were at least
4 five transcripts per million (TPM) for the RNA-seq experiment and at least five UMI per million
5 for the spatial transcriptomics data, respectively.

6

7 **Figure 2 | Identification of tissue-specific marker genes and their validation by *in situ***
8 **hybridisation.**

9 **a**, Spatial representation of the 11 clusters determined at the 24 HAI timepoint (left panel) and
10 bubble plot (right panel) showing transcript enrichment (average expression and percentage)
11 of representative cell type-specific marker genes in the 11 clusters. Spot colours correspond
12 to the same tissues in the bubble plot. Genes highlighted in red were validated by *in situ*
13 hybridisation. **b**, *in situ* hybridization of selected marker genes (i) *HORVU6Hr1G000960*; (ii)
14 *HORVU6Hr1G080790*; (iii) *HORVU1Hr1G011930*; (iv) *HORVU4Hr1G022780* confirmed
15 localization of tissue-type specific transcripts at 24 HAI timepoint. For each *in situ*
16 hybridisation, top panels show hybridisation with the sense probes (negative controls) and
17 bottom panels with the antisense probes. *In situ* images on the right correspond to 40x
18 magnifications of images on the left. Scale bars correspond to 200 μ m and colour scales
19 represent normalised counts. Coleorrhiza (Cr, Col), Radicle (R), Coleoptile (Cp), Shoot apical
20 meristem (SAM), Aleurone (A, Ale), Starchy endosperm (SE, End), Embryo (E, Emb),
21 Scutellum (S, Scu). Black arrows indicate the expression areas.

22

23 **Figure 3 | Spatiotemporal analysis of key biological processes during barley**
24 **germination.**

25 **a**, Tissue specific functional category analysis. The categories identified from wordcloud
26 outputs for the gene lists at each time point and tissue are shown, for those categories
27 identified in at least three time points for a given tissue type or those with >5 genes at a given
28 time point. The numbers of genes expressed at each time point and tissue are shown for each
29 functional category using black databars across the rows. The white numbers indicate the
30 genes corresponding to that category at the specific tissue and time point. Bars with no
31 number correspond to 1. Bold white numbers on the bars indicate the category maximum
32 number. The number of genes in the genome for that category is indicated in parentheses. **b**,
33 Wordcloud categories representing highly tissue specific genes. There were 45 genes
34 identified as having highly tissue specific expression. These were highly expressed in all 5

1 time points for one tissue, with no expression or specific expression in just one time point in
2 other tissues. **c**, Most highly expressed genes across all samples. The table shows the genes
3 expressed in 15 or more of the 25 samples making up all time-points and tissues. The number
4 of time points at which a gene is expressed for each tissue is indicated in coloured columns
5 as well as the *Arabidopsis* orthologue(s) and its description.

6

7 **Figure 4 | Spatio-temporal expression of aquaporin genes during barley germination.**

8 **a**, Bubble plots showing the spatially resolved expression of aquaporin gene family members
9 (plasma membrane intrinsic proteins, PIPs; tonoplast intrinsic proteins, TIPs) across the
10 experimental time-course. Circle size indicates the percentage of expression and colour
11 indicates average expression after z-scoring. The x-axis represents individual clusters
12 identified across tissues. For genes highlighted in green and red expression patterns are also
13 shown in c). **b**, Highly expressed aquaporin family genes and their specific locations at 24 HAI.
14 **c**, Time course expression of TIP genes: *HORVU4Hr1G079230* (TIP1;1) gene at the top panel
15 and *HORVU1Hr1G043890* gene (TIP3;1) at the bottom panel. Colour scales represent the
16 normalised counts with the same cut-off in each row or with cut-offs individually specified on
17 the image. Black arrows indicate areas of expression. col: coleorhiza, emb: embryo, scu:
18 scutellum, ale: aleurone, end: endosperm.

19

20 **Figure 5 | Spatial autocorrelation defines domains in the embryo of the germinating**
21 **barley grain.**

22 **a**, Number of SVGs showing significant spatial coherence for each time point. For each
23 section, Moran's I was calculated for embryo-expressed genes, and genes with Moran's I >
24 0.25, adjusted p < 0.01 and expressed percentage in embryo spots > 5% were considered
25 having significant spatial coherence within a domain of the embryo. For each time point, SVGs
26 showing significant spatial heterogeneity in at least two sections were plotted. **b**, Heatmap
27 showing the Moran's I of 2567 SVGs showing significant spatial coherence. The coloured text
28 and black text indicate the number of time point-specific and time point-common genes,
29 respectively. **c**, Examples of SVGs increasing spatial coherence. Colour scales represent
30 normalised counts. I, Moran's I value.

31

32 **Figure 6 | Co-expression of spatially variable genes in the embryo of 24 HAI germinating**
33 **barley grain.**

1 **a**, Module eigengenes, a proxy for expression of genes within each module, of seven co-
2 expressed modules. The top left panel show the bright field microscopic image, the other
3 panels show the overlayed expression data for spots. SVGs showing spatial coherence in
4 embryo of 24h germinating barley grain were grouped into co-expression modules using
5 hdWGCNA⁷². Gene number in each module is given in the brackets. **b**, Gene Ontology
6 enrichment of the co-expression modules. The top six enriched biological process terms for
7 each module are shown. GeneRatio: number of genes annotated with a GO term in a cluster
8 divided by the total number of genes annotated with this GO term. p.adjust: adjusted p value
9 using Benjamini & Hochberg method. **c**, Expression of auxin efflux carrier and transport genes
10 showing spatial coherence at 24 HAI. Normalised counts were used to indicate expression
11 level. **d**, Spatial expression of auxin efflux carrier and transport genes showing spatial
12 coherence, colour scales represent normalised counts.

13

14 **Supplementary Figure 1.** Overview of Spatial Transcriptomics experiment on barley
15 germinating grains.

16 a, Representative graph of barley germination showing images of the barley grains collected
17 at the given time points of the experiment and the main processes occurring during the span
18 of 48 h. Scale bar corresponds to 1 mm. b, Representative Visium capture areas containing a
19 barley grain section at the given time points. Sections correspond to one out of four with 8- μ m
20 longitudinal thickness and the embryo in the bottom left corner and the endosperm on the top
21 right. Cryosections at the same time point were collected from the same seed in serial
22 sections. c, Each gene expression (GE) slide contains four capture areas (6.5 x 6.5 mm)
23 defined by an outside fiduciary frame (total area size 8 x 8 mm). Each capture area contains
24 exactly 4992 gene expression spots with spatial primers. These include Illumina TruSeq Read
25 1 for sequencing, 16 nucleotides (nt) spatial barcode that identifies the spot location within the
26 array, 12 nt unique molecular identifier (UMI) that identifies each mRNA and 30 nt poly(dT)
27 sequence that captures the polyA tail of the mRNA for cDNA synthesis. The spots are 55 μ m
28 in diameter and 100 μ m centre to centre. d, On-slide Optimized Visium Gene Expression
29 solution workflow: (i) adequate sections of the tissue are prepared using a cryostat, (ii)
30 cryosections are positioned on top of an array covered with primers, (iii) samples are fixed in
31 methanol and stained with Safranin O, (iv) sections are imaged using an Axio-Imager M.2
32 microscope (Zeiss). Then (v) sections are permeabilized using the permeabilization solution
33 and finally, (vi) cDNA is synthesized to amplify the mRNAs, UMIs and spatial barcodes. Scale
34 bars correspond to 5 mm. e, Off-slide Visium Gene Expression solution workflow consists of
35 library preparation, sequencing and visualization of the data. 10x Genomics Visium solution

1 data are analysed using Space Ranger software and the outputs are visualized using Loupe
2 browser. Scale bars correspond to 5 mm.

3

4 **Supplementary Figure 2.** Spatial transcriptomics tissue optimisation protocol for barley
5 grains.

6 a, For optimization experiments, tissue optimization (TO) slides were used. Each capture area
7 on the slide, eight in total, is defined by an edge. Each area is uniformly coated with
8 oligonucleotides for mRNA capture, the probes have poly(dT) primers to enable cDNA
9 synthesis from the poly-adenylated mRNAs. There are no spatial barcodes in these primers.
10 The TO slides are designed to test the permeabilization conditions for the experiment and it is
11 recommended to use one slide per tissue type. b, The optimized permeabilisation time was
12 defined by visualizing the fluorescent footprint of the cDNA on top of the array. BF corresponds
13 to the brightfield imaging of the fixed, safranin-stained TO slide, RFP, to the fluorescent cDNA
14 footprint after RT reaction and Z, to the white square area in RFP picture. E, starchy
15 endosperm; S, scutellum; E, embryo. Scale bars correspond to 1 mm. c, Visium spatial tissue
16 optimisation workflow. Optimised protocol from 10x Genomics for mammalian tissues. The
17 protocol can be performed in one day. d, Visium Spatial PLANT tissue optimization workflow.
18 First difference between the protocols was the dye used for barley grain staining. Safranin O
19 was determined to be performing better to protect the grain architecture. Tissue removal steps
20 were also modified in this protocol. Tissue removal #1 consisted of a hydrolytic mixture of
21 enzymes (Supplementary Table 7). Tissue removal #2 consisted of several incubation steps.
22 e, Intersect analysis of 24 HAI samples using the two different permeabilization methods:
23 permeabilization (perm) and pre-permeabilization (pre-perm), which shows the number of
24 genes identified by either of the methods are similar.

25

26 **Supplementary Figure 3.** UMI number and gene number in different sections.

27 a, Log transformed UMI number in different sections of 0 HAI (i), 1 HAI (ii), 3 HAI (iii), 6 HAI
28 (iv) and 24 HAI (v). Each dot is a spot. b, Number of genes with UMI > 0 in different sections
29 of 0 HAI (i), 1 HAI (ii), 3 HAI (iii), 6 HAI (iv) and 24 HAI (v). Each dot is a spot.

30

31 **Supplementary Figure 4.** UMI number in spatial feature plot across different time points.

32 UMI number of 0 HAI (a), 1 HAI (b), 3 HAI (c), 6 HAI (d) and 24 HAI (e).

1

2 **Supplementary Figure 5.** Gene number in spatial feature plot across different time points.
3 Gene number of 0 HAI (a), 1 HAI (b), 3 HAI (c), 6 HAI (d) and 24 HAI (e).

4

5 **Supplementary Figure 6.** Spatial transcriptome of 0 HAI germinating barley grain.

6 a, Spatial visualization of the unbiased clustering of spots for four 0 HAI barley sections. Top
7 left panel, BF microscopic image of section C, top middle panel, spatial localization of each
8 cluster of section C, right panel, merged BF image and spatial clusters of section C. Bottom
9 panels, merged BF image and spatial clusters of other three sections. The tissue/cell-type
10 identity of each cluster was assigned based on the location of each cluster. b, Uniform
11 manifold approximation and projection (UMAP) of spatial spots from four 0 HAI barley
12 sections. Dots, individual spots from the Visium slide; n = 4744 spots; colours indicate the
13 cluster number that each spot belongs to. c, UMAP of spatial spots from four 0 HAI barley
14 sections, colours indicate different sections for each spot. d, Expression of the top five marker
15 genes of coleorhiza, embryo, scutellum, aleurone and endosperm. Circle size indicates the
16 percentage of spots expressing the marker and colour represents z-scored expression value.
17 Col: coleorhiza, emb: embryo, scu: scutellum, ale: aleurone, end: endosperm.

18

19 **Supplementary Figure 7.** Spatial transcriptome of 1 HAI germinating barley grain.

20 a, Spatial visualization of the unbiased clustering of spots for four 1 HAI barley sections. Top
21 left panel, BF microscopic image of section D, top middle panel, spatial localization of each
22 cluster of section D, top right panel, merged BF image and spatial clusters of section D. Bottom
23 panels, merged BF image and spatial clusters of other three sections. The tissue/cell-type
24 identity of each cluster was assigned based on the location of each. b, Uniform manifold
25 approximation and projection (UMAP) of spatial spots from four 1 HAI barley sections. Dots,
26 individual spots from the Visium slide; n = 5712 spots; colours indicate the cluster that each
27 spot belongs to. c, UMAP of spatial spots from four 1 HAI barley sections, colours indicate
28 different sections for each spot. d, Expression of the top five marker genes of coleorhiza,
29 embryo, scutellum, aleurone and endosperm. Circle size indicates the percentage of spots
30 expressing the marker and colour represents z-scored expression value. Col: coleorhiza, emb:
31 embryo, scu: scutellum, ale: aleurone, end: endosperm.

32

33 **Supplementary Figure 8.** Spatial transcriptome of 3 HAI germinating barley grain.

1 a, Spatial visualization of the unbiased clustering of spots for four 3 HAI barley sections. Top
2 left panel, BF microscopic image of section A, top middle panel, spatial localization of each
3 cluster of section A, top right panel, merged BF image and spatial clusters of section A. Bottom
4 panels, merged BF image and spatial clusters of other three sections. The tissue/cell-type
5 identity of each cluster was assigned based on the location of each cluster. b, Uniform
6 manifold approximation and projection (UMAP) of spatial spots from four 3 HAI barley
7 sections. Dots, individual spots from the Visium slide; n = 5881 spots; colours indicate the
8 cluster number that each spot belongs to. c, UMAP of spatial spots from four 3 HAI barley
9 sections, colours indicate different sections for each spot. d, Expression of the top five marker
10 genes of coleorhiza (col), embryo (emb), scutellum (scu), aleurone (ale) and endosperm (end).
11 Circle size indicates the percentage of spots expressing the marker and colour represents z-
12 scored expression value. Col: coleorhiza, emb: embryo, scu: scutellum, ale: aleurone, end:
13 endosperm.

14

15 **Supplementary Figure 9.** Spatial transcriptome of 6 HAI barley grain.

16 a, Spatial visualization of the unbiased clustering of spots for four 6 HAI barley section. top left
17 panel, BF microscopic image of section A, top middle panel, spatial localization of each cluster
18 of section A, top right panel, merged BF image and spatial clusters of section A. Bottom
19 panels, merged BF image and spatial clusters of other three sections. The tissue/cell-type
20 identity of each cluster was assigned based on the location of each cluster.

21 b, Uniform manifold approximation and projection (UMAP) of spatial spots from four 6 HAI
22 barley sections. Dots, individual spots from the Visium slide; n = 4172 spots; colours indicate
23 the cluster number that each spot belongs to. c, UMAP of spatial spots from four 6 HAI barley
24 sections, colours indicate different sections for each spot. d, Expression of the top five marker
25 genes of coleorhiza, embryo, scutellum, aleurone and endosperm. Circle size indicates the
26 percentage of spots expressing the marker and colour represents z-scored expression value.
27 Col: coleorhiza, emb: embryo, scu: scutellum, ale: aleurone, end: endosperm.

28

29 **Supplementary Figure 10.** Barley grain anatomy and tissue annotations at 24 HAI.

30 a, Tissue architecture of a 24 HAI barley grain cv La Trobe. b, Tissue annotations based on
31 the histology of the 24 HAI barley grain.

32

33 **Supplementary Figure 11.** Correlation between different sections at each time point.

1 Pair-wise Pearson correlation between different sections at 0 HAI (a), 1 HAI (b), 3 HAI (c) and
2 6 HAI (d). Dots correspond to genes expressed in at least 5 spots. X axis and Y axis show the
3 average of normalized count of tissue covered spots from two different sections, respectively.
4 Pearson correlation coefficient is indicated as R .

5

6 **Supplementary Figure 12.** Percentage of spots of four barley sections for each cluster for
7 different time point.

8 Percentage of spots of four barley sections for each cluster for 0 HAI (a), 1 HAI (b), 3 HAI (c),
9 6 HAI (d) and 24 HAI (e). The number of spots were also shown in the parentheses.

10

11 **Supplementary Figure 13.** Cluster correlation across different sections of 0 HAI.

12 Pair-wise Pearson correlation of different clusters across different sections at 0 HAI. Genes
13 with UMI > 0 in at least 5 spots were used in this analysis. For each gene, the average of
14 normalized count of all spots per cluster and section were used to calculate the Pearson
15 correlation coefficient. A, B, C and D indicate different sections. The same cluster from four
16 sections were shown in a black box.

17

18 **Supplementary Figure 14.** Cluster correlation across different sections of 1 HAI.

19 Pair-wise Pearson correlation of different clusters across different sections at 1 HAI. Genes
20 with UMI > 0 in at least 5 spots were used in this analysis. For each gene, the average of
21 normalized count of all spots per cluster and section were used to calculate the Pearson
22 correlation coefficient. A, B, C and D indicate different sections. The same cluster from four
23 sections were shown in a black box.

24

25 **Supplementary Figure 15.** Cluster correlation across different sections of 3 HAI.

26 Pair-wise Pearson correlation of different clusters across different sections at 3 HAI. Genes
27 with UMI > 0 in at least 5 spots were used in this analysis. For each gene, the average of
28 normalized count of all spots per cluster and section were used to calculate the Pearson
29 correlation coefficient. A, B, C and D indicate different sections. The same cluster from four
30 sections were shown in a black box.

31

1 **Supplementary Figure 16.** Cluster correlation across different sections of 6 HAI.
2 Pair-wise Pearson correlation of different clusters across different sections at 6 HAI. Genes
3 with UMI > 0 in at least 5 spots were used in this analysis. For each gene, the average of
4 normalized count of all spots per cluster and section were used to calculate the Pearson
5 correlation coefficient. A, B, C and D indicate different sections. The same cluster from four
6 sections were shown in a black box.

7

8 **Supplementary Figure 17.** Cluster correlation across different sections of 24 HAI.
9 Pair-wise Pearson correlation of different clusters across different sections at 24HAI. Genes
10 with UMI > 0 in at least 5 spots were used in this analysis. For each gene, the average of
11 normalized count of all spots per cluster and section were used to calculate the Pearson
12 correlation coefficient. A, B, C and D indicate different sections. The same cluster from four
13 sections were shown in a black box.

14

15 **Supplementary Figure 18.** Correlation of gene expression in Spatial transcriptomics and
16 tissue-specific RNA-seq experiments.

17 Gene expression of genes detected across comparable tissues in the Spatial transcriptomics
18 experiment and a tissue-specific RNA-seq experiment²⁴ were correlated. Only genes with
19 expression above 5 UMI or 5 TPM, respectively, were included. To allow for the comparison
20 of the two experiments, gene expression was averaged across spots of the same tissue for
21 the Spatial transcriptomics experiment and across the three aleurone sections of the tissue-
22 specific RNA-seq experiment. The coefficient of determination (R^2) for the linear regression is
23 indicated in each panel.

24

25 **Supplementary Figure 19.** UMI number of different clusters across different time points.

26 UMI number of different clusters at 0 HAI (a), 1 HAI (b), 3 HAI (c), 6 HAI (d) and 24 HAI (e).
27 Col: coleorhiza, emb: embryo, scu: scutellum, ale: aleurone, end: endosperm.

28

29 **Supplementary Figure 20.** Gene number of different clusters across different time points.

30 Gene number of different clusters at 0 HAI (a), 1 HAI (b), 3 HAI (c), 6 HAI (d) and 24 HAI (e).
31 Col: coleorhiza, emb: embryo, scu: scutellum, ale: aleurone, end: endosperm.

1

2 **Supplementary Figure 21.** Analysis of the tissue expression pattern of the *Arabidopsis*
3 *thaliana* orthologs of the top 10 marker genes per cluster for endosperm at each time point.
4 The *Arabidopsis* orthologs indicated in red displayed a similar tissue expression pattern (green
5 box) to the barley ortholog.

6

7 **Supplementary Figure 22.** Analysis of the tissue expression pattern of the *Arabidopsis*
8 *thaliana* orthologs of the top 10 marker genes per cluster for aleurone at each time point. The
9 *Arabidopsis* orthologs indicated in red displayed a similar tissue expression pattern (green box)
10 to the barley ortholog.

11

12 **Supplementary Figure 23.** Analysis of the tissue expression pattern of the *Arabidopsis*
13 *thaliana* orthologs of the top 10 marker genes per cluster for scutellum at each time point. The
14 *Arabidopsis* orthologs indicated in red displayed a similar tissue expression pattern (green
15 box) to the barley ortholog.

16

17 **Supplementary Figure 24.** Analysis of the tissue expression pattern of the *Arabidopsis*
18 *thaliana* orthologs of the top 10 marker genes per cluster for embryo at each time point. The
19 *Arabidopsis* orthologs indicated in red displayed a similar tissue expression pattern (green
20 box) to the barley ortholog.

21

22 **Supplementary Figure 25.** Summary of the orthologous genes from *Arabidopsis* and barley
23 that show similar tissue specific expression.

24

25 **Supplementary Figure 26.** Transport-related gene expression during barley germination.

26 Bubble plot of transport-related genes highly expressed during barley germination. Circle size
27 indicates the percentage of expression and colour indicates average expression after z-
28 scoring. Col: coleorhiza, emb: embryo, scu: scutellum, ale: aleurone, end: endosperm.

29

30 **Supplementary Figure 27.** Cell wall-related gene expression during barley germination.

1 Bubble plot of cell wall-related genes highly and specifically expressed during barley
2 germination. Circle size indicates the percentage of expression and colour indicates average
3 expression after z-scoring. Col: coleorhiza, emb: embryo, scu: scutellum, ale: aleurone, end:
4 endosperm. Coloured HORVU IDs correspond to spatial images in Supplementary Fig. 19.

5

6 **Supplementary Figure 28.** Spatio-temporal expression of cell wall protein-related genes
7 during barley germination.

8 a, Spatio-temporal expression of *HORVU3Hr1G073780* gene, a glucan synthase, in charge
9 of cellulose biosynthesis was spatially expressed in the outer layers of the radicle at 24 HAI.
10 b, Spatio-temporal expression of *HORVU3Hr1G081180* gene, an alpha-expansin expressed
11 during later germination and involved in cell wall modification. c, Spatio-temporal expression
12 of *HORVU5Hr1G080860* gene, a glucose epimerase related to carbohydrate precursor
13 synthesis, expressed in scutellum across all time points during germination. Black arrows
14 indicate areas of expression. Colour scales represent normalised counts.

15

16 **Supplementary Figure 29.** Transcription factor-related gene expression during barley
17 germination.

18 Bubble plot of transcription factor-related genes highly expressed during barley germination.
19 Circle size indicates the percentage of expression and colour indicates average expression
20 after z-scoring. Col: coleorhiza, emb: embryo, scu: scutellum, ale: aleurone, end: endosperm.

21

22 **Supplementary Figure 30.** Spatio-temporal expression of transcription factors during barley
23 germination.

24 a, Bubble plot showing the spatially resolved expression of several transcription factor
25 encoding genes. Circle size indicates the percentage of expression and colour indicates
26 average expression after z-scoring. The x-axis represents individual clusters identified across
27 tissues. b, Spatial expression of transcription factor genes, (i) Karrikin-responsive bZIP (ii)
28 *BARLEY KNOX3 (BKN3)*, (iii) WUSCHEL-related homeobox, (iv) bHLH PHY-related and (v)
29 AP2/EREB RAP2.9. Colour scales represent the normalised counts with the same cut-off in
30 each row or with cut-offs individually specified on the image. Black arrows indicate areas of
31 expression. Col: coleorhiza, emb: embryo, scu: scutellum, ale: aleurone, end: endosperm.

1 **Supplementary Figure 31.** Overlap of number of SVGs in different sections across different
2 time points.

3 Number of SVGs in different sections at 0 HAI (a), 1 HAI (b), 3 HAI (c), 6 HAI (d) and 24 HAI
4 (e). Yellow: genes with Moran's I > 0.25, adjusted p value < 0.01, expressed in more than 5%
5 spots in at least two sections, and the total number were boxed with yellow and plotted in
6 Figure 5a. Blue, genes with Moran's I > 0.25, adjusted p value < 0.01, expressed in more than
7 5% spots in only one section.

8

9 **Supplemental Tables**

10 **Supplemental Table 1.** Sequencing data quality metrics.

11

12 **Supplemental Table 2.** Cluster marker gene of all datasets.

13

14 **Supplemental Table 3.** Top 10 marker genes for all clusters at all time points.

15

16 **Supplemental Table 4.** Marker genes of each identified cluster in 0 HAI, 1 HAI, 3 HAI, 6 HAI
17 and 24 HAI germination barley seed.

18

19 **Supplemental Table 5.** Spatial heterogeneity of embryo expressed genes.

20

21 **Supplemental Table 6.** Co-expression module membership of 24 HAI significant spatially
22 variable genes.

23

24 **Supplemental Table 7.** Hydrolytic enzymes used in tissue removal step.

25

26 **Supplemental Table 8.** *In situ* hybridisation sequencing primer list.

27

28

29

30

31

1 References

2

3 1 McSteen, P. & Kellogg, E. A. Molecular, cellular, and developmental foundations of grass
4 diversity. *Science* **377**, 599-602, doi:10.1126/science.abo5035 (2022).

5 2 Wen, L. *et al.* Single-cell technologies: From research to application. *Innovation (Camb)* **3**,
6 100342, doi:10.1016/j.xinn.2022.100342 (2022).

7 3 Efroni, I. *et al.* Root Regeneration Triggers an Embryo-like Sequence Guided by Hormonal
8 Interactions. *Cell* **165**, 1721-1733, doi:10.1016/j.cell.2016.04.046 (2016).

9 4 Denyer, T. *et al.* Spatiotemporal Developmental Trajectories in the Arabidopsis Root
10 Revealed Using High-Throughput Single-Cell RNA Sequencing. *Dev Cell* **48**, 840-852.e845,
11 doi:10.1016/j.devcel.2019.02.022 (2019).

12 5 Shulse, C. N. *et al.* High-Throughput Single-Cell Transcriptome Profiling of Plant Cell Types.
13 *Cell Rep* **27**, 2241-2247.e2244, doi:10.1016/j.celrep.2019.04.054 (2019).

14 6 Liu, Z. *et al.* Identification of novel regulators required for early development of vein pattern
15 in the cotyledons by single-cell RNA-sequencing. *Plant J* **110**, 7-22, doi:10.1111/tpj.15719
16 (2022).

17 7 Roszak, P. *et al.* Cell-by-cell dissection of phloem development links a maturation gradient to
18 cell specialization. *Science* **374**, eaba5531, doi:10.1126/science.aba5531 (2021).

19 8 Tenorio Berrío, R. *et al.* Single-cell transcriptomics sheds light on the identity and
20 metabolism of developing leaf cells. *Plant Physiol* **188**, 898-918, doi:10.1093/plphys/kiab489
21 (2022).

22 9 Zhu, M., Taylor, I. W. & Benfey, P. N. Single-cell genomics revolutionizes plant development
23 studies across scales. *Development* **149**, doi:10.1242/dev.200179 (2022).

24 10 Jha, S. G. *et al.* Vision, challenges and opportunities for a Plant Cell Atlas. *eLife* **10**,
25 doi:10.7554/eLife.66877 (2021).

26 11 Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of single-
27 cell RNA-seq data. *Nat Rev Genet* **20**, 273-282, doi:10.1038/s41576-018-0088-9 (2019).

28 12 Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq
29 data using regularized negative binomial regression. *Genome Biol* **20**, 296,
30 doi:10.1186/s13059-019-1874-1 (2019).

31 13 Cox, K. L., Jr. *et al.* Organizing your space: The potential for integrating spatial
32 transcriptomics and 3D imaging data in plants. *Plant Physiol* **188**, 703-712,
33 doi:10.1093/plphys/kiab508 (2022).

34 14 Giacomello, S. A new era for plant science: spatial single-cell transcriptomics. *Curr Opin Plant
35 Biol* **60**, 102041, doi:10.1016/j.pbi.2021.102041 (2021).

36 15 Chen, S. *et al.* Wolframin is a novel regulator of tau pathology and neurodegeneration. *Acta
37 Neuropathol* **143**, 547-569, doi:10.1007/s00401-022-02417-4 (2022).

38 16 Ben-Moshe, S. *et al.* The spatiotemporal program of zonal liver regeneration following acute
39 injury. *Cell Stem Cell* **29**, 973-989.e910, doi:10.1016/j.stem.2022.04.008 (2022).

40 17 Giacomello, S. *et al.* Spatially resolved transcriptome profiling in model plant species. *Nat
41 Plants* **3**, 17061, doi:10.1038/nplants.2017.61 (2017).

42 18 Xia, K. *et al.* The single-cell stereo-seq reveals region-specific cell subtypes and
43 transcriptome profiling in Arabidopsis leaves. *Dev Cell* **57**, 1299-1310.e1294,
44 doi:10.1016/j.devcel.2022.04.011 (2022).

45 19 Liu, C. *et al.* A spatiotemporal atlas of organogenesis in the development of orchid flowers.
46 *Nucleic Acids Res* **50**, 9724-9737, doi:10.1093/nar/gkac773 (2022).

47 20 Moreno-Villena, J. J. *et al.* Spatial resolution of an integrated C₄+CAM
48 photosynthetic metabolism. *Science Advances* **8**, eabn2349, doi:doi:10.1126/sciadv.abn2349
49 (2022).

1 21 Giacomello, S. & Lundeberg, J. Preparation of plant tissue to enable Spatial Transcriptomics
2 profiling using barcoded microarrays. *Nat Protoc* **13**, 2425-2446, doi:10.1038/s41596-018-
3 0046-1 (2018).

4 22 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587.e3529,
5 doi:10.1016/j.cell.2021.04.048 (2021).

6 23 Becht, E. *et al.* Dimensionality reduction for visualizing single-cell data using UMAP. *Nat
7 Biotechnol*, doi:10.1038/nbt.4314 (2018).

8 24 Betts, N. S. *et al.* Isolation of tissues and preservation of RNA from intact, germinated barley
9 grain. *Plant J* **91**, 754-765, doi:10.1111/tpj.13600 (2017).

10 25 Trapnell, C. Defining cell types and states with single-cell genomics. *Genome Res* **25**, 1491-
11 1498, doi:10.1101/gr.190595.115 (2015).

12 26 Waddington, C. H. & Kacser, H. *The Strategy of the Genes: A Discussion of Some Aspects of
13 Theoretical Biology*. (Allen & Unwin, 1957).

14 27 Kitanaga, Y. *et al.* Sequential regulation of gibberellin, brassinosteroid, and jasmonic acid
15 biosynthesis occurs in rice coleoptiles to control the transcript levels of anti-microbial
16 thionin genes. *Biosci Biotechnol Biochem* **70**, 2410-2419, doi:10.1271/bbb.60145 (2006).

17 28 Sugimoto, N., Takeda, G., Nagato, Y. & Yamaguchi, J. Temporal and Spatial Expression of the
18 α -Amylase Gene during Seed Germination in Rice and Barley. *Plant and Cell Physiology* **39**,
19 323-333, doi:10.1093/oxfordjournals.pcp.a029373 (1998).

20 29 Do, C. T. *et al.* Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-
21 methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl
22 malate biosynthesis in Arabidopsis. *Planta* **226**, 1117-1129, doi:10.1007/s00425-007-0558-3
23 (2007).

24 30 Wei, K. & Zhong, X. Non-specific lipid transfer proteins in maize. *BMC Plant Biol* **14**, 281,
25 doi:10.1186/s12870-014-0281-8 (2014).

26 31 Gausling, K. Lipid transfer protein genes specifically expressed in barley leaves and
27 coleoptiles. *Planta* **192**, 574-580, doi:10.1007/bf00203596 (1994).

28 32 Altenhoff, A. M. *et al.* OMA orthology in 2021: website overhaul, conserved isoforms,
29 ancestral gene order and more. *Nucleic Acids Res* **49**, D373-d379, doi:10.1093/nar/gkaa1007
30 (2021).

31 33 Hruz, T. *et al.* Genevestigator v3: a reference expression database for the meta-analysis of
32 transcriptomes. *Adv Bioinformatics* **2008**, 420747, doi:10.1155/2008/420747 (2008).

33 34 Rajjou, L. *et al.* The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the
34 distinct roles of stored and neosynthesized mRNAs during germination. *Plant Physiol* **134**,
35 1598-1613, doi:10.1104/pp.103.036293 (2004).

36 35 Bai, B. *et al.* Seed-Stored mRNAs that Are Specifically Associated to Monosomes Are
37 Translationally Regulated during Germination. *Plant Physiol* **182**, 378-392,
38 doi:10.1104/pp.19.00644 (2020).

39 36 CAMPBELL, S. A. & CLOSE, T. J. Dehydrins: genes, proteins, and associations with phenotypic
40 traits. *New Phytologist* **137**, 61-74, doi:<https://doi.org/10.1046/j.1469-8137.1997.00831.x>
41 (1997).

42 37 D'Ovidio, R. & Masci, S. The low-molecular-weight glutenin subunits of wheat gluten. *Journal
43 of Cereal Science* **39**, 321-339, doi:10.1016/j.jcs.2003.12.002 (2004).

44 38 Alfonso-Rubí, J., Ortego, F., Castañera, P., Carbonero, P. & Díaz, I. Transgenic expression of
45 trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice
46 weevil *Sitophilus oryzae*. *Transgenic Res* **12**, 23-31, doi:10.1023/a:1022176207180 (2003).

47 39 Iqbal, I., Tripathi, R. K., Wilkins, O. & Singh, J. Thaumatin-Like Protein (TLP) Gene Family in
48 Barley: Genome-Wide Exploration and Expression Analysis during Germination. *Genes
(Basel)* **11**, doi:10.3390/genes11091080 (2020).

1 40 Footitt, S., Clewes, R., Feeney, M., Finch-Savage, W. E. & Frigerio, L. Aquaporins influence
2 seed dormancy and germination in response to stress. *Plant Cell Environ* **42**, 2325-2339,
3 doi:10.1111/pce.13561 (2019).

4 41 Richard, J. A., Kelly, I., Marion, D., Pézolet, M. & Auger, M. Interaction between beta-
5 Purothionin and dimyristoylphosphatidylglycerol: a (31)P-NMR and infrared spectroscopic
6 study. *Biophys J* **83**, 2074-2083, doi:10.1016/s0006-3495(02)73968-4 (2002).

7 42 Rösti, J. *et al.* UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing
8 UDP-galactose for cell wall biosynthesis and growth of *Arabidopsis thaliana*. *Plant Cell* **19**,
9 1565-1579, doi:10.1105/tpc.106.049619 (2007).

10 43 Oard, S. & Karki, B. Mechanism of beta-purothionin antimicrobial peptide inhibition by metal
11 ions: molecular dynamics simulation study. *Biophys Chem* **121**, 30-43,
12 doi:10.1016/j.bpc.2005.12.004 (2006).

13 44 Qi, P. F. *et al.* The gamma-gliadin multigene family in common wheat (*Triticum aestivum*)
14 and its closely related species. *BMC Genomics* **10**, 168, doi:10.1186/1471-2164-10-168
15 (2009).

16 45 Park, E. J. & Kim, T. H. *Arabidopsis OSMOTIN 34 Functions in the ABA Signaling Pathway and*
17 *Is Regulated by Proteolysis*. *Int J Mol Sci* **22**, doi:10.3390/ijms22157915 (2021).

18 46 Ren, Y. *et al.* Type 4 metallothionein genes are involved in regulating Zn ion accumulation in
19 late embryo and in controlling early seedling growth in *Arabidopsis*. *Plant Cell Environ* **35**,
20 770-789, doi:10.1111/j.1365-3040.2011.02450.x (2012).

21 47 Ma, Z., Bykova, N. V. & Igamberdiev, A. U. Cell signaling mechanisms and metabolic
22 regulation of germination and dormancy in barley seeds. *The Crop Journal* **5**, 459-477,
23 doi:<https://doi.org/10.1016/j.cj.2017.08.007> (2017).

24 48 Maurel, C., Verdoucq, L., Luu, D. T. & Santoni, V. Plant aquaporins: membrane channels with
25 multiple integrated functions. *Annu Rev Plant Biol* **59**, 595-624,
26 doi:10.1146/annurev.arplant.59.032607.092734 (2008).

27 49 Knipfer, T., Besse, M., Verdeil, J. L. & Fricke, W. Aquaporin-facilitated water uptake in barley
28 (*Hordeum vulgare L.*) roots. *J Exp Bot* **62**, 4115-4126, doi:10.1093/jxb/err075 (2011).

29 50 Maurel, C., Reizer, J., Schroeder, J. I. & Chrispeels, M. J. The vacuolar membrane protein
30 gamma-TIP creates water specific channels in *Xenopus* oocytes. *Embo J* **12**, 2241-2247,
31 doi:10.1002/j.1460-2075.1993.tb05877.x (1993).

32 51 Regon, P., Panda, P., Kshetrimayum, E. & Panda, S. K. Genome-wide comparative analysis of
33 tonoplast intrinsic protein (TIP) genes in plants. *Funct Integr Genomics* **14**, 617-629,
34 doi:10.1007/s10142-014-0389-9 (2014).

35 52 Utsugi, S., Shibasaki, M., Maekawa, M. & Katsuhara, M. Control of the Water Transport
36 Activity of Barley HvTIP3;1 Specifically Expressed in Seeds. *Plant and Cell Physiology* **56**,
37 1831-1840, doi:10.1093/pcp/pcv104 (2015).

38 53 An, Y. Q. & Lin, L. Transcriptional regulatory programs underlying barley germination and
39 regulatory functions of Gibberellin and abscisic acid. *BMC Plant Biol* **11**, 105,
40 doi:10.1186/1471-2229-11-105 (2011).

41 54 Li, Y., Jones, L. & McQueen-Mason, S. Expansins and cell growth. *Curr Opin Plant Biol* **6**, 603-
42 610, doi:10.1016/j.pbi.2003.09.003 (2003).

43 55 Zhang, Q., Hrmova, M., Shirley, N. J., Lahnstein, J. & Fincher, G. B. Gene expression patterns
44 and catalytic properties of UDP-D-glucose 4-epimerases from barley (*Hordeum vulgare L.*).
45 *Biochem J* **394**, 115-124, doi:10.1042/bj20051329 (2006).

46 56 Flematti, G. R., Dixon, K. W. & Smith, S. M. What are karrikins and how were they
47 'discovered' by plants? *BMC Biology* **13**, 108, doi:10.1186/s12915-015-0219-0 (2015).

48 57 Zhu, H. *et al.* DNA demethylase ROS1 negatively regulates the imprinting of DOGL4 and seed
49 dormancy in *Arabidopsis thaliana*. *Proc Natl Acad Sci U S A* **115**, E9962-e9970,
50 doi:10.1073/pnas.1812847115 (2018).

1 58 Osnato, M. *et al.* Cross talk between the KNOX and ethylene pathways is mediated by intron-
2 binding transcription factors in barley. *Plant Physiol* **154**, 1616-1632,
3 doi:10.1104/pp.110.161984 (2010).

4 59 Dirk, L. M. A., Kumar, S., Majee, M. & Downie, A. B. PHYTOCHROME INTERACTING FACTOR1
5 interactions leading to the completion or prolongation of seed germination. *Plant Signal
6 Behav* **13**, e1525999, doi:10.1080/15592324.2018.1525999 (2018).

7 60 Yang, L., Jiang, Z., Jing, Y. & Lin, R. PIF1 and RVE1 form a transcriptional feedback loop to
8 control light-mediated seed germination in Arabidopsis. *J Integr Plant Biol* **62**, 1372-1384,
9 doi:10.1111/jipb.12938 (2020).

10 61 Zhang, M., Liu, W. & Bi, Y. P. [Dehydration-responsive element-binding (DREB) transcription
11 factor in plants and its role during abiotic stresses]. *Yi Chuan* **31**, 236-244,
12 doi:10.3724/sp.j.1005.2009.00236 (2009).

13 62 Schmal, C., Myung, J., Herzl, H. & Bordugov, G. Moran's I quantifies spatio-temporal
14 pattern formation in neural imaging data. *Bioinformatics* **33**, 3072-3079,
15 doi:10.1093/bioinformatics/btx351 (2017).

16 63 Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially variable
17 genes. *Nat Methods* **15**, 343-346, doi:10.1038/nmeth.4636 (2018).

18 64 Yano, R., Takebayashi, Y., Nambara, E., Kamiya, Y. & Seo, M. Combining association mapping
19 and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with
20 seed dormancy in Arabidopsis thaliana. *Plant J* **74**, 815-828, doi:10.1111/tpj.12167 (2013).

21 65 Wang, Z. *et al.* Arabidopsis seed germination speed is controlled by SNL histone deacetylase-
22 binding factor-mediated regulation of AUX1. *Nat Commun* **7**, 13412,
23 doi:10.1038/ncomms13412 (2016).

24 66 Wang, Z. *et al.* Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly
25 regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone
26 deacetylation. *Plant Cell* **25**, 149-166, doi:10.1105/tpc.112.108191 (2013).

27 67 Jin, J., Hewezi, T. & Baum, T. J. The Arabidopsis bHLH25 and bHLH27 transcription factors
28 contribute to susceptibility to the cyst nematode *Heterodera schachtii*. *Plant J* **65**, 319-328,
29 doi:10.1111/j.1365-313X.2010.04424.x (2011).

30 68 Rubinovich, L. & Weiss, D. The Arabidopsis cysteine-rich protein GASA4 promotes GA
31 responses and exhibits redox activity in bacteria and in planta. *Plant J* **64**, 1018-1027,
32 doi:10.1111/j.1365-313X.2010.04390.x (2010).

33 69 Roxrud, I., Lid, S. E., Fletcher, J. C., Schmidt, E. D. & Opsahl-Sorteberg, H. G. GASA4, one of
34 the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed
35 development. *Plant Cell Physiol* **48**, 471-483, doi:10.1093/pcp/pcm016 (2007).

36 70 Holgersen, E. M. *et al.* Transcriptome-Wide Off-Target Effects of Steric-Blocking
37 Oligonucleotides. *Nucleic Acid Ther* **31**, 392-403, doi:10.1089/nat.2020.0921 (2021).

38 71 Zhong, C. *et al.* Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of
39 Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis.
40 *Plant Physiol* **169**, 2288-2303, doi:10.1104/pp.15.00858 (2015).

41 72 Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E. & Swarup, V. High dimensional co-
42 expression networks enable discovery of transcriptomic drivers in complex biological
43 systems. *bioRxiv*, 2022.2009.2022.509094, doi:10.1101/2022.09.22.509094 (2022).

44 73 Vernoux, T. *et al.* The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a
45 glutathione-dependent pathway involved in initiation and maintenance of cell division
46 during postembryonic root development. *Plant Cell* **12**, 97-110, doi:10.1105/tpc.12.1.97
47 (2000).

48 74 Bashandy, T. *et al.* Interplay between the NADP-linked thioredoxin and glutathione systems
49 in Arabidopsis auxin signaling. *Plant Cell* **22**, 376-391, doi:10.1105/tpc.109.071225 (2010).

1 75 Koprivova, A., Mugford, S. T. & Kopriva, S. Arabidopsis root growth dependence on
2 glutathione is linked to auxin transport. *Plant Cell Rep* **29**, 1157-1167, doi:10.1007/s00299-
3 010-0902-0 (2010).

4 76 Liew, L. C. *et al.* Temporal tissue-specific regulation of transcriptomes during barley
5 (*Hordeum vulgare*) seed germination. *Plant J* **101**, 700-715, doi:10.1111/tpj.14574 (2020).

6 77 Narsai, R. *et al.* Extensive transcriptomic and epigenomic remodelling occurs during
7 *Arabidopsis thaliana* germination. *Genome Biol* **18**, 172, doi:10.1186/s13059-017-1302-3
8 (2017).

9 78 Yang, J. *et al.* Dynamic transcriptome and metabolome analyses of two types of rice during
10 the seed germination and young seedling growth stages. *BMC Genomics* **21**, 603,
11 doi:10.1186/s12864-020-07024-9 (2020).

12 79 Dresselhaus, T. & Jürgens, G. Comparative Embryogenesis in Angiosperms: Activation and
13 Patterning of Embryonic Cell Lineages. *Annu Rev Plant Biol* **72**, 641-676,
14 doi:10.1146/annurev-arplant-082520-094112 (2021).

15 80 Du, Y. & Scheres, B. Lateral root formation and the multiple roles of auxin. *J Exp Bot* **69**, 155-
16 167, doi:10.1093/jxb/erx223 (2018).

17 81 Möller, B. & Weijers, D. Auxin control of embryo patterning. *Cold Spring Harb Perspect Biol*
18 **1**, a001545, doi:10.1101/cshperspect.a001545 (2009).

19 82 Abley, K. & Locke, J. C. W. Noisy transcription under the spotlight. *Nat Plants* **7**, 996-997,
20 doi:10.1038/s41477-021-00987-x (2021).

21 83 Asp, M., Bergenstråhle, J. & Lundeberg, J. Spatially Resolved Transcriptomes-Next
22 Generation Tools for Tissue Exploration. *Bioessays* **42**, e1900221,
23 doi:10.1002/bies.201900221 (2020).

24 84 van den Berg, T. *et al.* A reflux-and-growth mechanism explains oscillatory patterning of
25 lateral root branching sites. *Dev Cell* **56**, 2176-2191.e2110, doi:10.1016/j.devcel.2021.07.005
26 (2021).

27 85 Perianez-Rodriguez, J. *et al.* An auxin-regulable oscillatory circuit drives the root clock in
28 *Arabidopsis*. *Sci Adv* **7**, doi:10.1126/sciadv.abd4722 (2021).

29 86 Leftley, N., Banda, J., Pandey, B., Bennett, M. & Voß, U. Uncovering How Auxin Optimizes
30 Root Systems Architecture in Response to Environmental Stresses. *Cold Spring Harb Perspect
31 Biol* **13**, doi:10.1101/cshperspect.a040014 (2021).

32 87 Mehra, P. *et al.* Hydraulic flux-responsive hormone redistribution determines root
33 branching. *Science* **378**, 762-768, doi:10.1126/science.add3771 (2022).

34 88 Péret, B. *et al.* Auxin regulates aquaporin function to facilitate lateral root emergence. *Nat
35 Cell Biol* **14**, 991-998, doi:10.1038/ncb2573 (2012).

36 89 Panchy, N., Lehti-Shiu, M. & Shiu, S. H. Evolution of Gene Duplication in Plants. *Plant Physiol*
37 **171**, 2294-2316, doi:10.1104/pp.16.00523 (2016).

38 90 Fiorucci, A. S. To Grow or Defend? More on the Plant Cornelian Dilemma. *Plant Physiol* **183**,
39 437-438, doi:10.1104/pp.20.00497 (2020).

40 91 Major, I. T. *et al.* A Phytochrome B-Independent Pathway Restricts Growth at High Levels of
41 Jasmonate Defense. *Plant Physiol* **183**, 733-749, doi:10.1104/pp.19.01335 (2020).

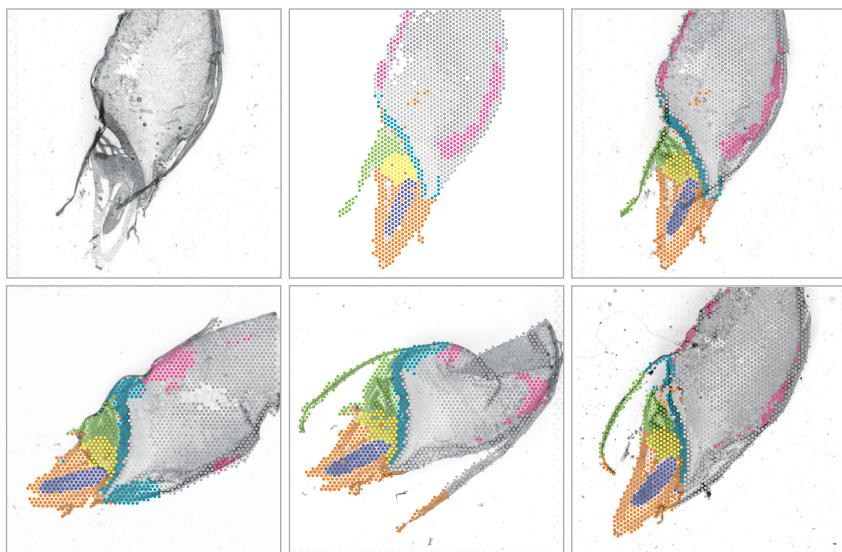
42 92 Zandalinas, S. I. & Mittler, R. Vascular and nonvascular transmission of systemic reactive
43 oxygen signals during wounding and heat stress. *Plant Physiol* **186**, 1721-1733,
44 doi:10.1093/plphys/kiab157 (2021).

45 93 Xu, Y. *et al.* Smart breeding driven by big data, artificial intelligence, and integrated genomic-
46 enviromic prediction. *Mol Plant* **15**, 1664-1695, doi:10.1016/j.molp.2022.09.001 (2022).

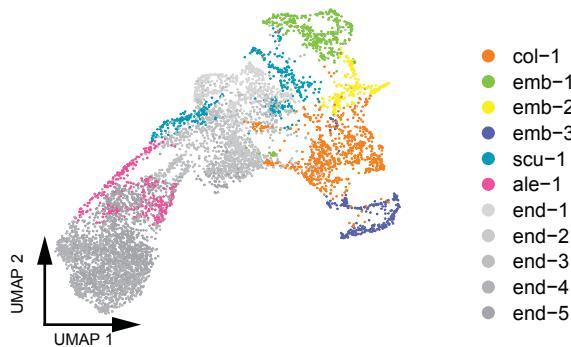
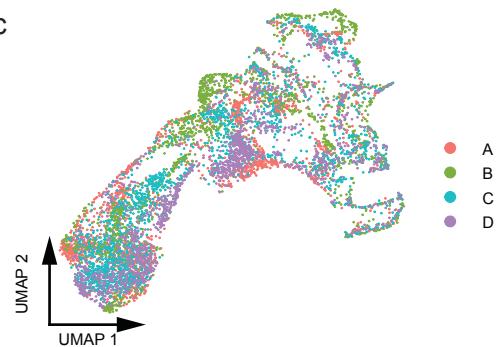
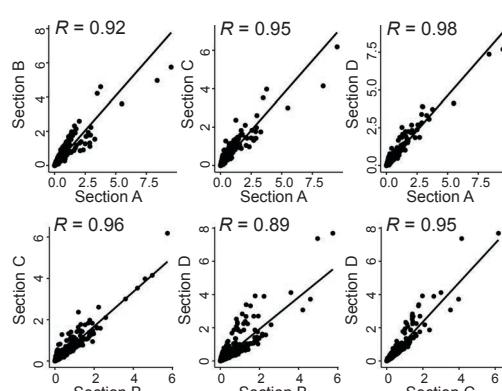
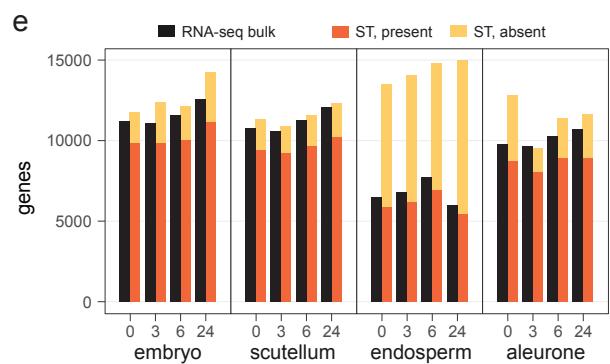
47 94 Mackenzie, S. A. & Mullineaux, P. M. Plant environmental sensing relies on specialized
48 plastids. *J Exp Bot* **73**, 7155-7164, doi:10.1093/jxb/erac334 (2022).

49 95 Mascher, M. *et al.* A chromosome conformation capture ordered sequence of the barley
50 genome. *Nature* **544**, 427-433, doi:10.1038/nature22043 (2017).

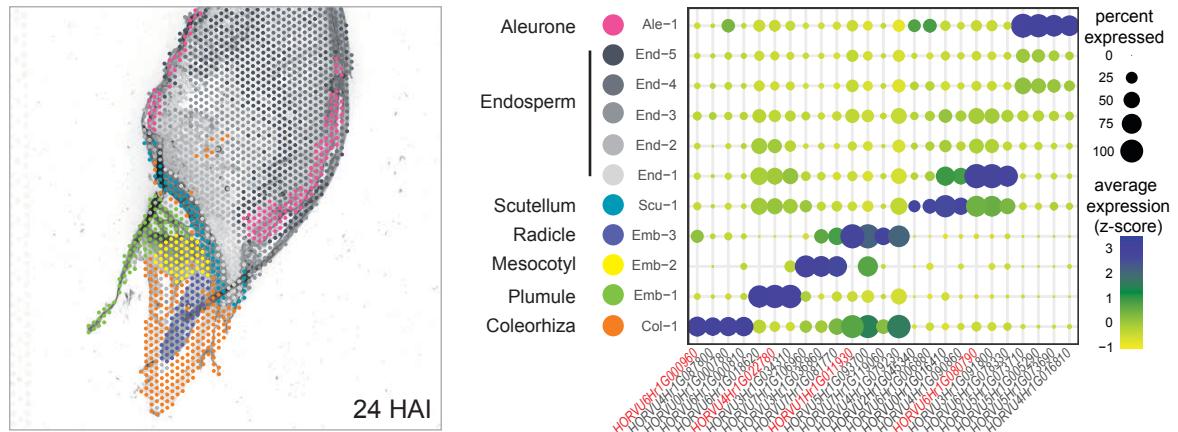
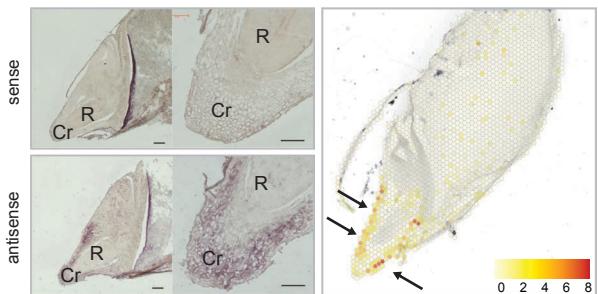
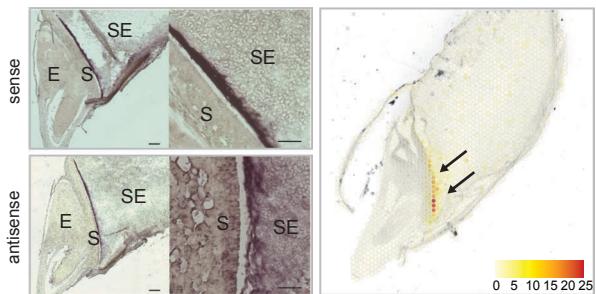
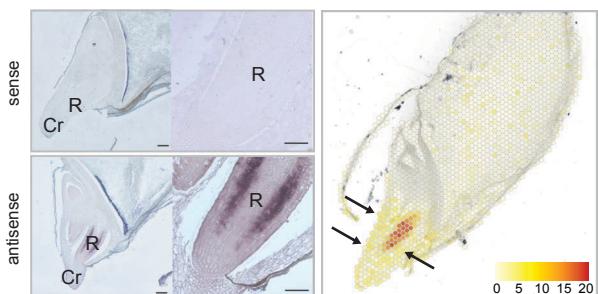
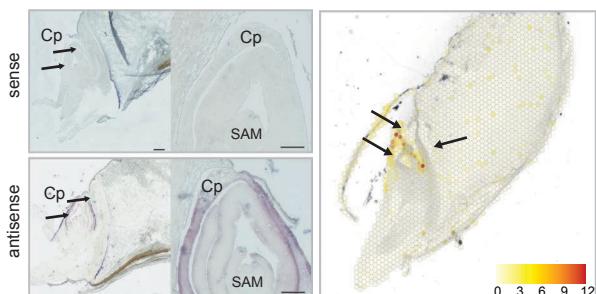
1 96 Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq
2 data using regularized negative binomial regression. *Genome Biology* **20**, 296,
3 doi:10.1186/s13059-019-1874-1 (2019).


4 97 Miller, B. F., Bambah-Mukku, D., Dulac, C., Zhuang, X. & Fan, J. Characterizing spatial gene
5 expression heterogeneity in spatially resolved single-cell transcriptomic data with
6 nonuniform cellular densities. *Genome Res* **31**, 1843-1855, doi:10.1101/gr.271288.120
7 (2021).

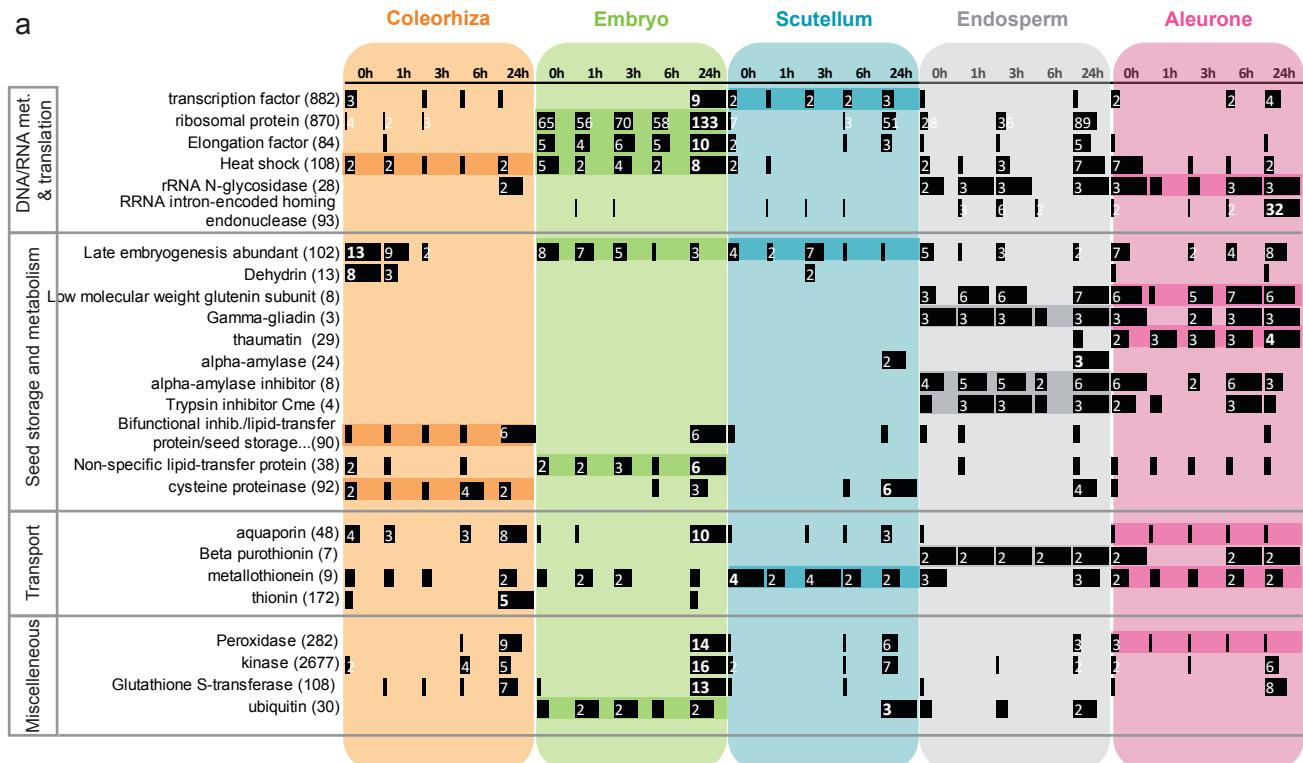
8 98 Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and
9 plants. *Bioinformatics* **36**, 2628-2629, doi:10.1093/bioinformatics/btz931 (2019).





10 99 Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological
11 themes among gene clusters. *OMICS* **16**, 284-287, doi:10.1089/omi.2011.0118 (2012).

12 100 Jackson, D. P. in *In: Molecular Plant Pathology: A Practical Approach*. Vol. 1 *Practical
13 Approach Series* (Oxford University Press, 1991).






14

a

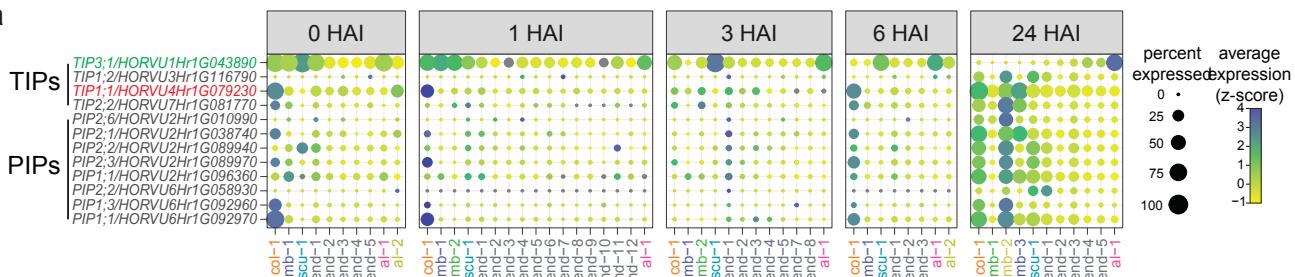
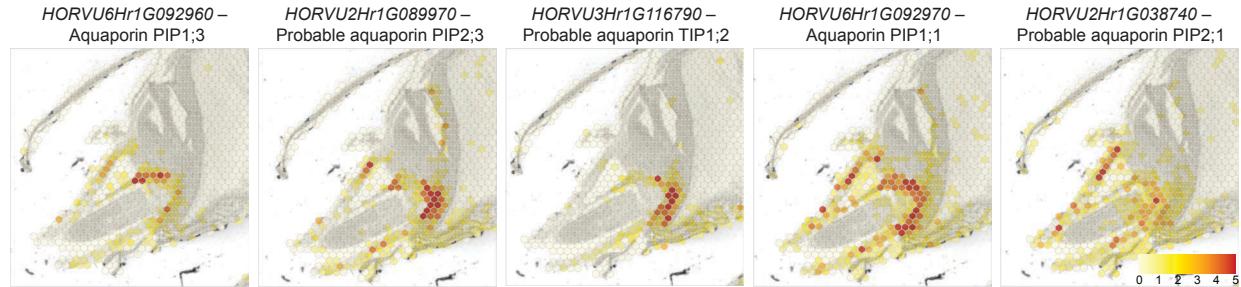
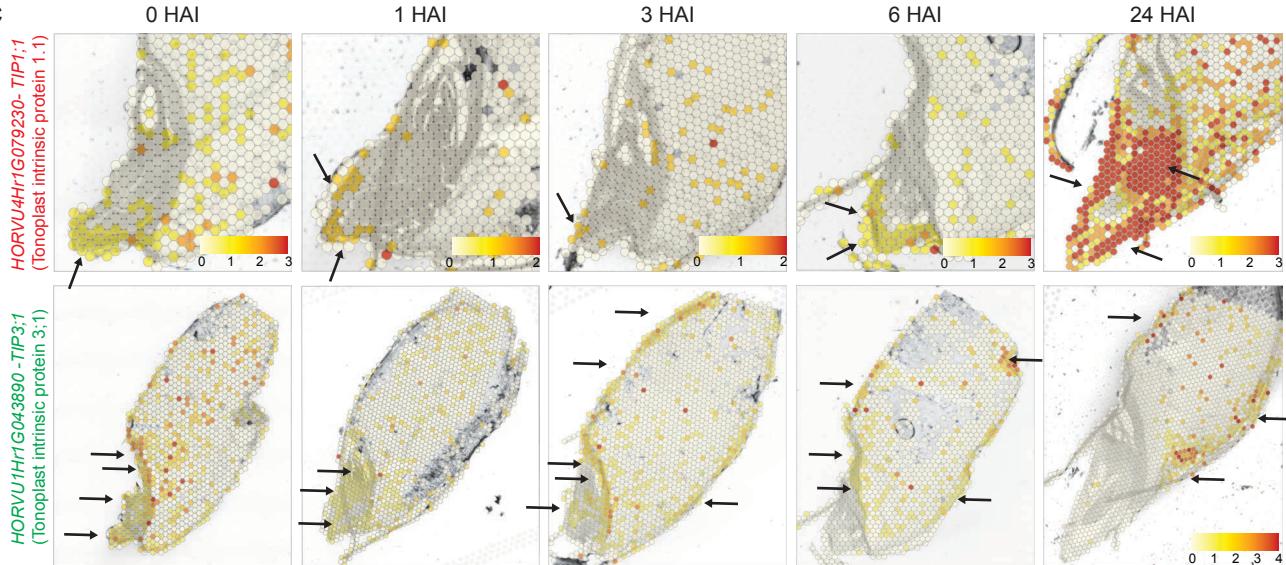

- col-1
- emb-1
- emb-2
- emb-3
- scu-1
- ale-1
- end-1
- end-2
- end-3
- end-4
- end-5

b**c****d****e**

Figure 1 | Spatially resolved transcriptome analysis of barley grain.

a**b****(i) Coleorhiza - *HORVU6Hr1G000960* - Thionin****(ii) Scutellum/endosperm - *HORVU6Hr1G080790* - Alpha amylase****(iii) Radicle - *HORVU1Hr1G011930* - O methyltransferase 1****(iv) Coleoptile - *HORVU4Hr1G022780* - Non-specific lipid transfer protein****Figure 2 | Identification of tissue-specific marker genes and their validation by *in situ* hybridisation.**

a




b

c

Description	Col	Em	Scu	End	Ale	Locus	Orth - AGI	AGI - description
Metallothionein-like protein 4B	3	3	4	2	5	HORVU1Hr1G052180 AT2g242000 AMT74a, Type 4 metallothionein (MT) genes. Involved in embryo dev.		
Histone-lysine N-methyltransferase	4	5	4	2	1	HORVU4Hr1G0003060		
undescribed protein	5	5	3	1	1	HORVU5Hr1G0002130		
drought-induced 21	4	5	2	3	2	HORVU3Hr1G0354740		
60S ribosomal protein L10-2	4	5	2	3	1	HORVU1Hr1G024710 AT1G14320 L10 ribosomal protein L10, may be involved in translation regulation.		
Alkaline a-galactosidase seed imbibition protein	4	3	4	1	3	HORVU3Hr1G020780 AT3G57520 ATSP2, SEED IMBITION 2. Raffinose-specific alpha-galactosidase.		
Dehydrogenase/reductase SDR family member 4	2	3	3	2	5	HORVU1Hr1G018140 AT1G54870 CHADR, Choroplast Aldehyde Reductase.		
oleosin 1	3	3	3	1	5	HORVU5Hr1G056030 AT3G55260 NAD(P)-binding Rossmann-fold superfamily protein.		
translationally controlled tumor protein	4	5	4	2	0	HORVU4Hr1G033200 AT3G1640 Translationaly controlled tumor protein, TCTP1, likely involved in organ development.		

Figure 3 | Spatiotemporal analysis of key biological processes during barley germination.

a**b****c**

Figure 4 | Spatio-temporal expression of aquaporin genes during barley germination.

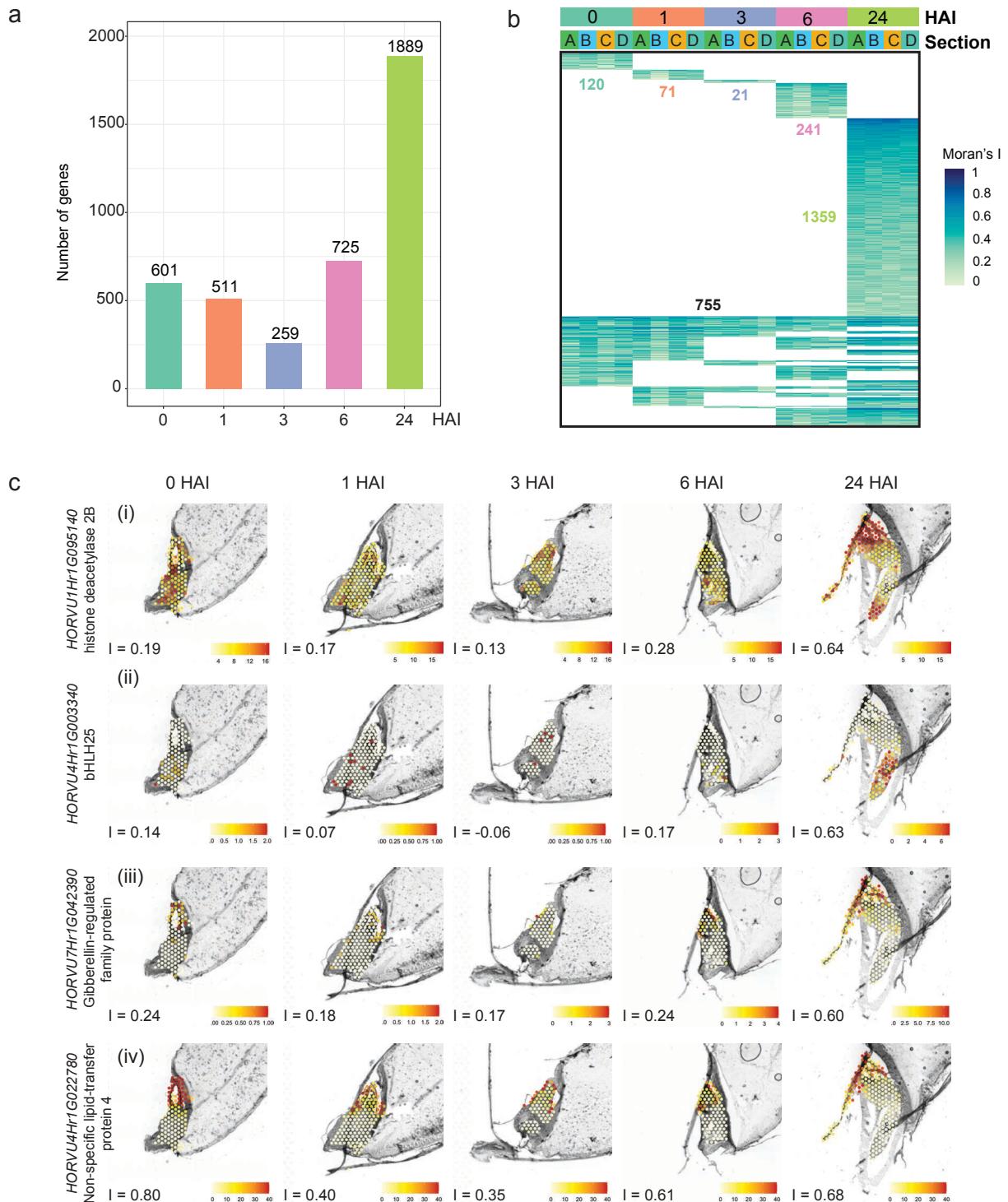
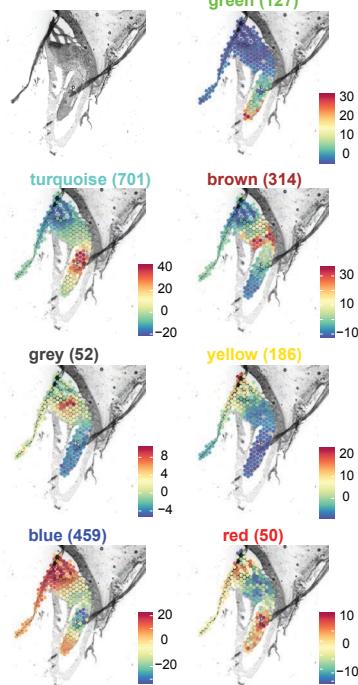
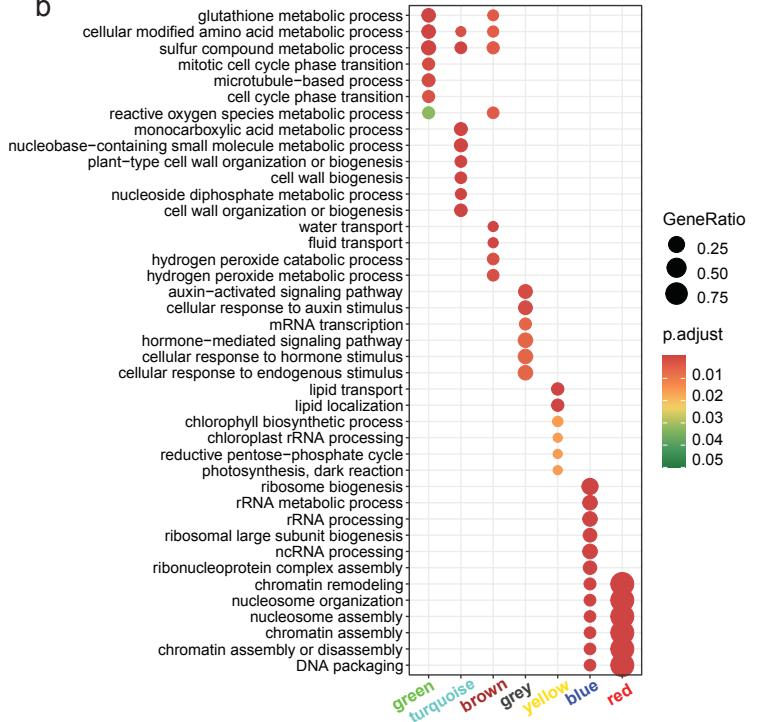
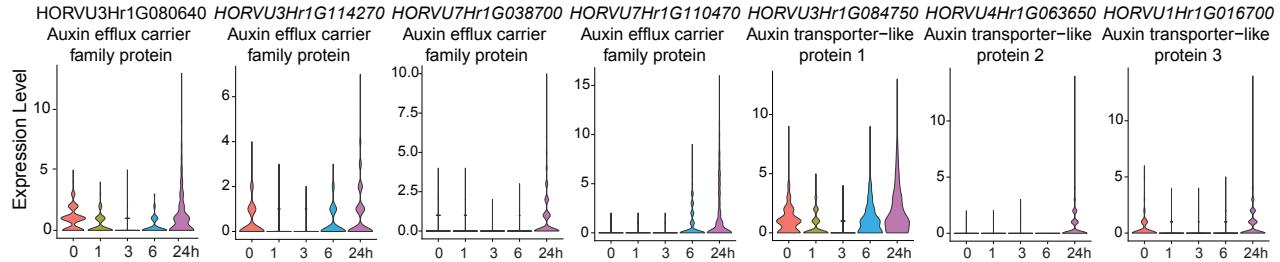
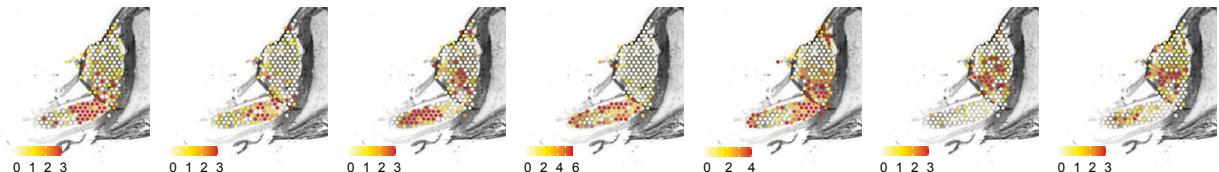






Figure 5 | Spatial autocorrelation defines domains in the embryo of the germinating barley grain.

a**b****c****d**

Figure 6 | Co-expression of spatially variable genes in the embryo of 24 HAI germinating barley grain.