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ABSTRACT
In this article we propose a theoretical investigation of the

nonlinear dynamical response of a class of planar resonators
dubbed the V-Shaped resonator. The resonators are intended for
energy harvesting purpose and are designed to exhibit two-to-
one internal resonance. In particular, we navigate the design
space for the generalized V-shaped resonator to investigate the
influence of shape parameters on the performance of the Vibra-
tion Energy Harvester. Notably, we introduce two metrics that
help elucidating the role of the shape parameter in dictating the
behavior of the system in terms of peak voltage and operational
bandwidth width. For simplicity, we consider that the system is
subjected to harmonic excitations near its primary resonances.

INTRODUCTION
The dynamical response of multi-member structures has

been extensively studied over the past decades [1]. Perhaps, the

∗Address all correspondence to this author.

simplest yet most studied multi-member structure is the L-shaped
beam [2, 3, 4, 5, 6, 7, 8, 3, 9, 10, 11, 12, 13, 14, 15, 16], i.e. a struc-
ture that is composed of two members attached perpendicularly.
Despite its simplicity, the L-shaped structure exhibits a rich dy-
namical behavior which includes: (a) energy exchange (pump-
ing) between the modes of vibration [2, 3, 4, 5], (b) phase and
amplitude modulations [6], (c) Hopf and saddle-node bifurca-
tions [7, 8], (d) saturation phenomenon [3], and (e) chaotic vi-
brations [9]. Moreover, under certain geometric parameters, the
L-shaped structure exhibits coupled torsional and out-of-plane
bending modes [10, 11, 12, 13]. The internally resonant behav-
ior of the L-shaped structure has been exploited, for instance, to
widen the range of frequencies that energy can be extracted in vi-
brational energy harvesters [14, 15]. Additionally, the saturation
phenomenon has been used to increase the average power scav-
enged when the harvester is subject to excitations that contain
harmonic components and significant amounts of noise [16].

To design more efficient energy harvesters, Danzi et. al [17,
18, 19, 20, 21, 22] introduced the V -shaped resonator, i.e. a class
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of two-members structures that exhibit two-to-one internal reso-
nance. Particularly, they noted that the space of feasible designs
depends on the parameters defining the topology of the oscilla-
tor and is a manifold S ∈ R12 (see Figure 1). Moreover, they
showed in [19] that solutions to the problem of having commen-
surate frequencies in a ratio two-to-one are quadratic functions
of the members’ length. Therefore, in most cases, two solutions
are possible according to the members’ lengths ratio. Using the
same nomenclature adopted in [22], the two families of solutions,
are dubbed the inner (L2/L1 ≤ 1) and the outer (L2/L1 > 1) enve-
lope respectively. Besides the length ratio L2/L1, and assuming
that the Young’s modulus and the density of the two members are
equal, two other nondimensional parameters define the topology
of the system, i.e the thickness ratio h2/h1 and the folding an-
gle ϕ . In [22], they detailed how, leveraging topology, one can
design a system whose nonlinear dynamical response exhibits:
the co-existence of stable solutions, saddle-node bifurcations,
modal interactions, and modal saturation. The above nonlinear
dynamical behavior can be triggered at a frequency of interest
by leveraging the effect of the folding angle; moreover, the res-
onators can be scaled by the Buckingham (π)-theorem to exhibit
the same natural frequencies. Prompted by these results, here we
extend the investigation of the dependency of shape parameters,
performed in [22] for a mechanical system, to a Vibration Energy
Harvester (VEH) device. In particular, we focus on the effect of
the shape parameters on the voltage/energy that the system can
harness and, the frequency bandwidth at which high amplitude
vibrations can be sustained. We consider the case of harmonic
excitations near the primary and secondary resonance of the sys-
tem.

1 Consideration on the Mathematical Model
The mathematical model governing the finite amplitude vibra-

tions for the generalized V-shaped resonator has been exten-
sively discussed by Danzi et al. in [22]. In this manuscript,
we de-emphasize the mathematical derivation in favor of a more
in-depth understanding and interpretation of the results for the
electro-mechanical model. Contrary to Danzi et al. [22], that
considered only the mechanical model, we examine the coupled
electro-mechnical system. In particular, we speculated that the
piezo-electric transduction mechanism is (a) attached to the first
member for a limited length thereafter indicated as Lp, (b) uni-
morph and, (c) its bending stiffness is negligible compared to
that of the hosting structure. Following Harne et al. [16], we as-
sumed that the transduction element has weak coupling effects of
the mechanical equations of motion and hence the voltage of the
device is proportional to the strain rate of the beam. The latter
assumption allows us to write the expression of the voltage as

Vp(t) =−θ

∫ Lp

0

∂w3
1 (s1, t)

∂ 2s1∂ t
ds1 (1)

where θ is a coefficient related to the capacitance of the piezo-
electric materials, the resistive load, the electro-mechanical cou-
pling coefficient, and the lowest order short-circuit natural fre-
quency of the system. In the equation in 1, w1 is the bending
displacement of the first beam member and s1 is the curvilinear
abscissa in the local reference frame.

For the class of thin multi-member structures considered
herein, the model’s complexity and the nonlinear order consid-
ered vary depending on the level of excitation provided. Indeed,
if the excitation exceeds a certain threshold level, which depends
on the stiffness and inertial properties of the resonator, third-
or higher-order nonlinearities must be included [10]. Moreover,
when the excitation exceeds the threshold level, one should also
consider that the in-plane bending motion will no longer be de-
coupled from the out-of-plane bending and torsion [11]. There-
fore, the complete model should include also the out-of plane
bending displacement and the torsion. Contrarily, the results
shown in the sequel are only valid if the resonator undergoes
planar motion. Following [22], we limit the base excitation to
ẅb = 1g. For the resonators considered in this study, the onset
of nonlinear responses was experimentally and numerically ob-
served at a g-level as low as ẅb = 0.1g [22]; however, the motion
of the system remains planar up to large g-levels which exceed
the one considered herein. This justifies the set of assumptions
listed below:

1. the beam members composing the resonators are inexten-
sible; therefore, the longitudinal displacement ui of the ith

member can be expressesd as

ui ≈
∫ si

0
−1

2

(
dwi

dsi

)2

dsi. (2)

2. the resonators are composed of two prismatic, homogeneous
and isotropic beams having the shear center aligned with the
principal axis of inertia. The effect of transverse shear is
neglected. Moreover, the effect of gravity is not included in
the model;

3. only second order nonlinearities are retained as in [3] and the
literature thereafter. The effect of higher order nonlinearities
is neglected;

4. the system is subjected to finite amplitude vibrations and the
motion of the multi-members beam lies at any time in the xy
plane. Therefore, the effect of out of plane bending and tor-
sion is neglected as in [3] and the citing literature thereafter;

5. motivated by the results reported by Danzi et al. [22], only
proportional viscous damping is considered. In particular it
is assumed that the modal damping coefficients associated
to the first and second modes are equal and independent of
the angle of orientation of the members.

The equations of motion assume the following form:
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FIGURE 1: Generalized V-shaped resonator. (a) Exemplification of the deformed and undeformed structure. (b) Polar envelope at fixed
thickness ratio (ĥ = h2/h1 = 0.5), (c,d) Polar representation of the 3D design envelope. The curves in red and blue correspond to the
solutions depicted in (b) for the inner (c) and outer (d) envelope. The green curves in (c,d) represent the L-shaped solution.
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u2ü2


+ ẅB
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(3)

where we introduced the nondimensional time τ = ωt and dis-
placement w̄i = wi/L1, and the transformation from physical to
modal coordinates u⃗ = Vw̃, V are the mass normalized eigenvec-
tors of the linear problem, u are the modal coordinates and, η is
ratio of modal frequencies ω2/ω1. The lengthy expressions of
the coefficients reported in the eqn. in 3 are omitted for brevity
and can be found in [22]. The equation in 1 completes the system
of equations governing the dynamics of the two members VEH.

Examining the electro-mechanical equation of motion re-
ported in 3, it is worthwhile to notice that two of the parametric
excitation terms reported therein are explicit functions of the co-
sine of the folding angle. These parametric excitations are zero
for the case of the L-shaped beam while contribute to the rich
dynamical behavior of the system when the angle differs from
π/2. On the other hand, one could argue that the same applies
when the folding angle is close to 0 or π; however, in this case,
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solutions either do not exist ϕ = 0, or are unfeasible ϕ = π be-
cause the two beam members overlap. In the following, we limit
our investigation to the voltage amplitude and on the bandwidth
width at which large amplitude of vibrations can be sustained.
The next section introduces two metrics that are useful to com-
pare the different VEHs’ configurations.

2 Metrics Adopted for the Comparative Study
Restricting the vibration energy harvesters to be subject to a

harmonic excitation, its performance can be characterized by two
metrics, the peak power it harvests and its bandwidth [23]. These
metrics arise naturally when considering that harmonic excita-
tions can be grouped into (a) fixed frequency excitation, and (b)
fixed frequency excitation that drifts. If the harmonic excitation
has a fixed frequency then the peak power at that frequency must
be maximized regardless of the harvester’s bandwidth. If the
harmonic excitation has a frequency that slightly drifts around
a center value, then the peak power and the bandwidth around
the central frequency are both important for optimal scavenging.
Here, we will arbitrarily define bandwidth as the difference in
the frequency where the occurrences of jump from the low am-
plitude response trajectory to the higher amplitude response tra-
jectory and the subsequent downward jump is observed. Alter-
natively, one could adopt the definition given in [24], where the
low amplitude solution branches were considered to define the
SDOF vibration energy harvester in presence of co-existing low-
amplitude and high-amplitude branches. The peak power will be
defined as the high amplitude response at the jump. An exem-
plification of two metrics adopted in this analysis is depicted in
Figure 2.

3 Approximate Solution to Governing Equations
We seek approximate solutions to the nonlinear equations

governing the dynamics of the systems through the method of
multiple time scales. We defined the nth time scale as Tn = εnt
where ε is a small bookkeeping parameter, furthermore the con-
stants are scaled to ε . This allows the time derivatives to be writ-
ten as

d
dt

= D0 + εD1 +O(ε2), (4a)

d2

dt2 = D2
0 +2εD0D1 +O(ε2), (4b)

where Dn = ∂/∂Tn. Additionally, we expand u1 and u2 as

u1(t) = u10(T0,T1)+ εu11(T0,T1)+O(ε2), (5a)

u2(t) = u20(T0,T1)+ εu21(T0,T1)+O(ε2). (5b)
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FIGURE 2: Exemplification of the nonlinear response (Ampli-
tude vs frequency) of the V-shaped resonator. The figure shows
the general frequency response function with bifurcation and co-
existence of stable solutions. The two metrics adopted in this
manuscript are annotated in the figure to emphasize their physi-
cal significance.

Finally, the constant parameters are scaled such that the coeffi-
cients of the nonlinear terms, forcing and damping are scaled to
the order epsilon

O(ε0):

D2
0u10 +u10 = 0, (6a)

D2
0u20 +η

2u20 = 0, (6b)

O(ε1):

D2
0u11 +u11 =−2D0D1u10 −2ζ1D0u10

− ā11(D0u10)
2 − ā12D0u10D0u20 − ā13(D0u20)

2

− b̄11(D2
0u10)u10 − b̄12(D2

0u20)u10

− b̄13(D2
0u10)D0u20 − b̄14(D2

0u20)u20 +g f̄1 cosΩ̄t,
(7a)

D2
0u21 +η

2u21 =−2D0D1u20 −2ζ2ηD0u20

− ā21(D0u10)
2 − ā22D0u10D0u20 − ā23(D0u20)

2

− b̄21(D2
0u10)u10 − b̄22(D2

0u20)u10 − b̄23(D2
0u10)D0u20

− b̄24(D2
0u20)u20 +g f̄2 cosΩ̄t.

(7b)
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The solution to order epsilon to the order zero-th problem can be
written as

u10 = A1(T1)eiT0 + cc, and u20 = A2(T1)eiηT0 + cc. (8)

Which allows the order O(ε1) problem to be written as

D2
0u11 +u11 =−2i(D1 +ζ1)A1eiT0 +(ā11 + b̄11)A2

1e2iT0

+(ā12η + b̄12η
2 + b̄13)A1A2ei(η+1)T0

+(ā13 + b̄14)η
2A2

2e2iηT0

+(b̄13 − ā12 + b̄12η
2)Ā1A2ei(η−1)T0

− (ā11 + b̄11)A1Ā1

− (ā13 + b̄14)η
2A2Ā2 +

1
2

g f̄1eiΩT0 + cc,

(9a)

D2
0u21 +η

2u21 =−2i(D2 +ζ2)A2eiT0 +(ā21 + b̄12)A2
1e2iT0

+(ā22η + b̄22η
2 + b̄23)A1A2ei(η+1)T0

+(ā23 + b̄24)η
2A2

2e2iηT0

+(b̄23 − ā12 + b̄12η
2)Ā1A2ei(η−1)T0

− (ā21 + b̄21)A1Ā1

− (ā23 + b̄24)η
2A2Ā2 +

1
2

g f̄2eiΩT0 + cc.

(9b)

In the following, using the two metrics detailed above, we
analyze the performance of the system when it is excited with a
frequency near the primary frequencies. While the mechanical
model is solved using the method of multiple scales, the voltage
equation is solved numerically by means of the Dormand-Prince
method (Matlab ode45).

3.1 Excitation near the primary resonance: Ω ≈ 1
In the first case, we introduce the following transformation

Ω = 1+ εσ0, η = 2+ εσ1, (10a)
with Ω ≈ 1 and η ≈ 2. (10b)

where σ0 and σ1 are the detuning parameters between the first
modal frequency and, respectively, the excitation frequency and
the second modal frequency. Substituting the above equations,
eliminating secular terms in the fast time scale T0, introducing
the polar transformation A1 = a1 exp iβ1 and A2 = a2 exp iβ2 and

separating real and imaginary parts, the following slow ampli-
tude equations are found

a1β
′
1 +a1a2

Γ1

4
cos(γ1)+

1
2

f1gcos(γ0) = 0,

a′1 +ζ1a1 −a1a2
Γ1

4
sin(γ1)−

1
2

f1gsin(γ0) = 0,
(11)

and

ηa2β
′
2 +

Γ2

4
cos(γ1) = 0,

ηa′2 +η
2a2 −

Γ2

4
a2

1 sin(γ1) = 0,
(12)

where ai are the amplitudes while βi are the phases and where the
prime (′) represents derivative w.r.t the nondimensional time. For
a detailed explanation of the coefficients, the reader is addressed
to [22].

3.2 Excitation near the secondary resonance: Ω ≈ η

Likewise, to investigate the performance of the resonator
when the system is excited near the secondary modal frequency
(Ω ≈ η) and when the second modal frequency is nearly twice
the first modal frequency (η ≈ 2), we introduce the following

η = 2+ εσ1 Ω = 2+ εσ2, (13)

here σ1 and σ2 are the parameters describing the detuning be-
tween the first and second modal frequency, the second modal
frequency and, respectively, the excitation frequency. This yields
the following amplitude equation

−2i(D1 +ζ1)A1 +Γ1Ā1A2eiσ1T1 = 0, (14)

−2i(ηD1 +η
2
ζ2)A2 +Γ2A2

1e−iσ1T1 +
1
2

g f2eiσ2T1 = 0, (15)

Again, applying the polar transformation and separating real and
imaginary parts yields the following

a′1 +ζ1a1 −
Γ1

4
a1a2 sinγ1 = 0, (16a)

β
′
1a1 +

Γ1

4
a1a2 cosγ1 = 0, (16b)

ηβ
′
2a2 +

Γ2

4
a2

1 cosγ1 +
1
2

f2gcosγ2 = 0, (16c)

ηa′2 +η
2a2 +

Γ2

4
a2

1 sinγ1 −
1
2

f2gsinγ2 = 0. (16d)
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where the constants γ1 and γ2 can be expressed as

γ1 = σ1T1 −2β1 +β2, and γ2 = σ2T2 −β2. (17)

the low amplitude solution [3] that excited the second vibration
mode can be written as

a1 =0, γ1 = indeterminate,and

a2 =
g f2

2η

√
σ2

2 +η2ζ 2
2

, and tanγ2 =
−ηζ2

σ2
, (18)

The second solution can be instead written as

a2
1 =

8η(σ2(σ1 +σ2)−2ηζ1ζ2)

Γ2
1Γ2

2

±2
√

g2Γ2
1 f 2

2 −16η2(2σ2ζ1 +η(σ1 +σ2)ζ2)2,

(19a)

a2 =
2
√
(σ1 +σ2)2 +4ζ 2

1

Γ1
, (19b)

tanγ1 =
−2ζ1

σ1 +σ2
, and (19c)

tanγ2 =
2Γ2a2

1 +Γ1η2a2ζ2

Γ2(σ1 +σ2)a2
1 −2Γ1ησ2a2

2
. (19d)

The stability of each equilibrium solution is determined by
finding the eigenvalues of the Jacobian matrix of the modulation
equations and is not discussed here.

4 Results and Discussion
In analyzing the V-shaped resonator, the excitation will have

sufficient energy to activate the nonlinear response of the VEH.
Based on our prior investigation of the mechanical model [22],
base excitations as low as ẅb = 0.1g are sufficient to trigger the
nonlinear response. We speculated that the effect of the piezo-
electric patch has a negligible effect on the elastic response of the
system. For simplicity, the excitation level will be held constant
and equal to ẅb = 1g independently of the configuration of the
resonator considered.

In the following, we will compare the response of three
classes of resonators, respectively ĥ = 0.5, ĥ = 1, and ĥ = 2
at various angle of orientations. At any given nondimensional
thickness ĥ, we will compare solutions with the following dis-
crete set of folding angle ϕ = 80,90,120,135,160 degrees, pro-
vided that solutions exist. Indeed, as noted in [19], when the
nondimensional thickness ĥ increases, the domain of existence
of solutions that exhibit commensurate frequencies in a ratio

two-to-one is limited to a narrow region in the second quadrant
(π/2 < ϕ < π). For simplicity we will use the same compact
notation adopted in [22], i.e. ĥ V O where O indicated that the
solutions considered are those of the outer envelope l̂ > 1. As
already shown by Danzi et al. [22], those solutions are advanta-
geous in terms of bandwidth at which high amplitude vibrations
are sustained. This is mainly due to the fact that the second beam
is longer than the first member and therefore the system is more
flexible.

We consider that all the resonators are made of Aluminum
(E = 68.9 GPa, and ν = 0.3); moreover, we assume that all the
beam members have the same width b = 12 mm. The piezoelec-
tric patch has the following dimensional parameters: length LP =
50 mm, piezoelectric strain constant d31 = 30 pC/N, relative di-
electric constant ε33/ε0 = 12, density ρ = 1700 kg/m3, thickness
tp = 0.5 mm. For simplicity, we assume that the resistance is
equal for all the resonators and in particular R = 15.6 MΩ.

Analyzing the results reported in Figure 3, the following
trends are noteworthy;

1. larger level of vibrations and peak Voltage can be attained
when the system is excited near the second resonance (η =
2). We speculate that this is due to the modal energy ex-
change (energy pumping) discussed in [3] and observed also
for the V-shaped resonator in [22];

2. when the excitation is near the second resonance, the band-
width at which large amplitude vibration are sustained is
larger w.r.t. the case in which the system is excited near
the first resonance.

3. when the system is excited near the second resonance, the
maximum bandwidth corresponds to solutions whose fold-
ing angle is in the region between 120 and 140 degrees;

4. to maximize the peak voltage, it is advantageous to consider
solution as close as possible to the lower bound of the pos-
sible folding angle.

5 Conclusions
This manuscript considers the nonlinear behavior of a V

shaped vibration-based energy harvester. The harvester has com-
mensurate frequencies yielding an internally resonant structure.
The modal behavior of the resonator was determined using a non-
linear reduced order model. The nonlinear equations of motion
were solved employing the method of multiple time scales for the
mechanical part while, the solutions to the voltage equation were
calculated using a Runge-kutta method (Matlab ode45). While
only discrete values of the folding angles were considered, it was
found that a combination of excitation frequency, length ratio and
folding angle affected both the peak power and bandwidth of the
harvester.
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FIGURE 3: Voltage frequency responses for various resonators of the outer envelope under 1g base excitation. The system is excited at
the first (a,c,e) and second resonance (b,d,f) respectively.
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