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Abstract

New graduate students in biology programs may lack the quantitative skills necessary for their research and professional careers. The
acquisition of these skills may be impeded by teaching and mentoring experiences that decrease rather than increase students’ beliefs
in their ability to learn and apply quantitative approaches. In this opinion piece, we argue that revising instructional experiences to
ensure that both student confidence and quantitative skills are enhanced may improve both educational outcomes and professional
success. A few studies suggest that explicitly addressing productive failure in an instructional setting and ensuring effective mentoring
may be the most effective routes to simultaneously increasing both quantitative self-efficacy and quantitative skills. However, there is
little work that specifically addresses graduate student needs, and more research is required to reach evidence-backed conclusions.
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Quantitative skills, defined as tools and reasoning from mathemat-
ics, statistics, and computing, are increasingly critical for biolog-
ical research, but they may not be developed during graduate
studies in biology programs (Barraquand et al. 2014, Touchon and
McCoy 2016, Juavinett 2022). Although there is little documenta-
tion in the literature, the reasons for this gap may include a com-
bination of factors, such as a lack of quantitative training opportu-
nities (Touchon and McCoy 2016, LaTourrette et al. 2021, Juavinett
2022), the failure of mentors to direct students to seek training,
insufficient graduate student background to develop skills inde-
pendently, or barriers to students fully engaging with available
resources. In this opinion piece, we discuss how a lack of self-
confidence is one such barrier for biology graduate students learn-
ing quantitative skills.

We suggest that a lack of confidence in using quantitative tech-
niques may cause an avoidance of both learning and applying
these methods in research. We will argue that we need to build
confidence in parallel with quantitative skills through enhanced
teaching and mentoring techniques and further argue that

research on the efficacy of quantitative training of biology grad-
uate students on both of these axes is needed. This change in
approach to include a focus on confidence in using quantitative
tools when evaluating both pedagogy and mentoring may be es-
sential to training biologists who can both use mathematical, sta-
tistical, and computational methods effectively and collaborate
easily with their more quantitatively trained colleagues.

The importance of quantitative education
for biology graduate students

Dramatic developments in biology over the past 20 years increas-
ingly require researchers to use advanced quantitative skills. Al-
though the progress of biology and our ability to formulate theo-
ries that explain the natural world have always depended on such
methods (Cohen 2004), the need for researchers able to use quan-
titative approaches is becoming more urgent. Researchers are
now awash in enormous data streams generated by genetic anal-
ysis and automated environmental sensors (Hack and Kendall
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2005, Farley et al. 2018). As the anthropogenic footprint weighs
more heavily, biologists are also being asked to predict future
conditions and to assess the risks relating to epidemics (Lloyd-
Smith et al. 2015), contaminants (Murphy et al. 2018), managed
species (Walters and Martell 2005), biodiversity (Rossberg et al.
2019), and ecosystem function (Schmitz and Leroux 2020). Al-
though we are unaware of any comprehensive reviews, there is
evidence that the demand for quantitative skills to address these
research needs is growing, as is reflected in the competencies re-
quested for entry level positions in some biology disciplines. For
example, Feng and colleagues (2020) analyzed how often program-
ming skills were listed as prerequisites for entry positions in ecol-
ogy, on the basis of approximately 56,000 job descriptions for post-
doctoral fellows and PhD students on the ECOLOG-L listserv be-
tween 2006 and 2018. They found that, in 2018, more than 36% of
the postdoc positions required programming skills and that the
demand for these skills had more than tripled over those 12 years.

At the same time, self-assessment studies suggest that re-
searchers in biology are not receiving needed training in quanti-
tative skills (e.g., Attwood et al. 2019). A study of 704 National Sci-
ence Foundation principal investigators in the Biological Sciences
Directorate indicated that 90% of those surveyed were going to use
big data in their research but saw their quantitative training as the
most important limiting factor to best use this data (Barone et al.
2017). Similarly, in a survey of early career ecologists, Barraquand
and colleagues (2014) found that 75% were unsatisfied with their
understanding of mathematics and statistics, and 95% thought
more statistics courses should be available.

The need for relevant training of biologists in quantitative skills
at the undergraduate level has been noted repeatedly over the
past 20 years (e.g., National Research Council 2003), and there
is general consensus about this need (Marshall and Durdn 2018).
However, although most biology undergraduates are required to
take an introductory class in calculus, statistics, or computational
literacy, the relationship between these quantitative techniques
and biological concepts may not be obvious (Eaton and High-
lander 2017). In spite of recommendations (National Research
Council 2003), biology courses usually have little integrated quan-
titative material (with exceptions, e.g., Speth et al. 2010), and in
many cases, the institutions or departments lack faculty exper-
tise in the relevant areas (Williams et al. 2019).

The rapidly increasing quantitative sophistication of biologi-
cal research, coupled with slow-moving undergraduate educa-
tion reform, means that graduate students may enter their pro-
grams without an adequate understanding of the quantitative
skills necessary for their chosen research area. Certainly, the need
and current lack of quantitative training at a graduate level has
been acknowledged in a wide range of biology subdisciplines, such
as biomedical sciences (National Research Council 2011), neu-
rosciences (Akil et al. 2016, Goldman and Fee 2017), plant biol-
ogy (Friesner et al. 2017), ecosystem sciences (Farrell et al. 2021),
and the environmental sciences more generally (Theobold and
Hancock 2019 and the references within it). For example, Goldman
and Fee (2017) conducted an informal poll of a range of leaders in
computational neuroscience education and found that both the-
oretical and experimental neuroscientists thought that students
from the life sciences lacked training in quantitative approaches.
In this open-ended questionnaire, some of the survey respondents
emphasized the need for quantitative courses at both the un-
dergraduate and graduate levels. However, such training is still
not widely available or required. In ecology, Touchon and Mc-
Coy (2016) reviewed course listings for 154 US doctoral programs
and found that only one-quarter required their students to take
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a biostatistics course, while one-third did not even list a statis-
tics course in their catalog. Similarly, Juavinett (2022) noted that
only 15% of neuroscience PhD programs require a programming
course, and only 55% even include programming as an elective.

Why self-confidence?

Itis widely believed that undergraduate and graduate biology stu-
dents may have an aversion to mathematics and statistics (e.g.,
Pan and Tang 2005) although evidence on this point is ambigu-
ous (cf., Andrews and Aikens 2018). However, even low-level re-
luctance, when coupled with the time demands of their research,
the lack of program requirements, the fear of failure (Henry et al.
2019), and poor mentoring (e.g., Martin and Dowson 2009, Olson
et al. 2020), could lead to little investment in further studies on
quantitative topics. We suspect that such reluctance does exist,
on average, and that it is related to a lack of confidence in using
quantitative techniques.

Self-confidence differs from basic skills and self-image. We will
use the term generalized self-confidence to refer to a person’s belief
in their ability to influence outcomes in their life (for a review of
various literature uses of self-confidence, see Oney and Oksuzoglu-
Guven 2015). In the psychology literature, such generalized be-
liefs are distinguished from more a specific mindset of self-efficacy,
which refers to a belief in one’s ability to perform a specific task
in a given setting to attain a goal (Bandura 1997), such as creat-
ing a simulation model in order to complete thesis research in a
biology subdiscipline. Beliefs of both types can influence learn-
ing outcomes. For example, Pajares and Miller (1994) found that
math self-efficacy had a stronger positive impact on mathematics
problem solving than prior experience. However, individuals that
underestimate their ability to perform quantitative tasks may
develop learning aversion or anxiety (Onwuegbuzie and Wilson
2003). Ideally, graduate education and mentoring would develop
the opposite tendency, which we will call quantitative self-efficacy.
We define this phrase as an individual’s belief that they can learn
and use a variety of quantitative skills to achieve goals related to
scientific research.

The acquisition of new quantitative skills is largely a matter of
practice, so greater quantitative self-efficacy could lead to a pos-
itive feedback loop between a willingness to exercise those skills,
greater mastery, and application (figure 1). We know that quan-
titatively confident students experience less anxiety when using
quantitative methods (Onwuegbuzie and Wilson 2003). Moreover,
there is some evidence thatinitially anxious graduate students re-
quired to take a quantitative course have less anxiety and more in-
terest in these methods after completion and are even more likely
to have plans to obtain more quantitative training after exposure
(for an example with social science graduate students and an in-
troductory statistics class, see Huang 2018). We might therefore
expect that greater quantitative self-efficacy associated with ex-
posure and practice can help biology graduate students become
more ambitious and adventurous in both their acquisition of more
quantitative skills and the use of these skills in research (figure 1).

On the other hand, the relationship between increasing quan-
titative self-efficacy and learning quantitative methods is not
linear. Pushing the boundaries of one’s skills can trigger feel-
ings of imposter syndrome that can erode both generalized self-
confidence (Tao and Gloria 2019) and quantitative self-efficacy.
Students will require appropriate supports and pedagogical in-
terventions to overcome such barriers (figure 2). Those with high
quantitative self-efficacy may overestimate their abilities and
fail to exert sufficient effort or use external resources, leading
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Figure 1. Positive feedback loops among practice, mastery, application, and development of new quantitative skills. A lack of quantitative self-efficacy
can serve as a barrier among the stages (cross-hatching), particularly the step between achieving greater mastery and application. If the students
receive supports to overcome these barriers, they are more likely to begin the process of learning and applying new quantitative skills again (see the
loop between the application of quantitative skills and learning new quantitative skills). This iteration could improve both generalized self-confidence

and quantitative self-efficacy.
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Figure 2. Program requirements, mentor quality and quantitative self-efficacy are important factors that affect which graduate students have low
(blue), medium (purple), or high (red) levels of preexisting support with respect to quantitative training (a). These support levels in turn affect which
students participate in training programs (b) and how students benefit from mentoring in the application and practical use of quantitative skills (c;
the solid balls). Training and quantitative self-efficacy interact to affect which students are likely to actively use quantitative skills in their own
research (d; the solid balls). In comparison, the students lacking quantitative self-efficacy because of previous experiences, a lack of effective
pedagogy, or poor mentoring may be lost to training opportunities or the active use of quantitative skills in their own research (the patterned balls).

to poorer performance (Jensen and Moore 2008). Interventions,
such as freshman orientation courses, have been shown to cal-
ibrate these beliefs, leading to better outcomes later because of
higher resource allocation to academic work in undergraduates
(Wheeler and Wischusen 2014). Accurately calibrated quantita-

tive self-efficacy may therefore be a key element in quantitative
skills acquisition of biology graduate students.

It seems likely that there is a connection between quantitative
self-efficacy and generalized self-confidence. One study showed
that self-efficacy related to scientific skills makes undergraduate
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students more likely to engage in science roles, which reinforces
their identity as scientists (Brenner et al. 2018) and enables them
to envision themselves as leaders (Sobieraj and Krdmer 2019).
There is evidence that generalized self-confidence and persis-
tence are important for graduate students (Carlson 1999) as they
transition from mostly coursework to mostly research (Geraniou
2010). We expect self-confident graduate students to bounce back
more easily from research setbacks, unfavorable manuscript re-
views, and grant application rejections. Graduate students with
quantitative skills may even be more likely to be at the forefront
of scientific advances. On the other hand, a lack of self-confidence
can undermine attempts to address inequalities in STEM train-
ing (Chemers et al. 2011, Sobieraj and Krdmer 2019), and a fail-
ure to address this problem in graduate programs may have neg-
ative consequences in other areas, such as timely degree com-
pletion (Bostwick and Weinberg 2018). The reciprocal relation-
ships among generalized self-confidence, quantitative skill devel-
opment, and role identity suggest that training which develops
quantitative self-efficacy has far more to offer biology graduates
than might be expected (Aikens and Dolan 2014).

Generalized self-confidence, quantitative

self-efficacy, and historically excluded
groups

The need for both generalized self-confidence and quantitative
self-efficacy is particularly important for women, PEER (persons
historically excluded because of ethnicity or race; see Asai 2020),
LGBTQ+, those with disabilities, and others whose identity is not
well represented in STEM, across all academic levels, from un-
dergraduates to those who have received a PhD (Chemers et al.
2011). Gaps between PEERs and White or Asian students in oppor-
tunities to learn quantitative skills exist across educational levels
(Berry et al. 2014). In particular, quantitative skills are often tied to
stereotypes related to gender and race, and this can create a diffi-
cult barrier even for otherwise confident students (Flanagan and
Einarson 2017). Other factors that can threaten the confidence of
students from historically excluded groups then arise, such as low
expectations from faculty, a lack of mentorship, and a lack of rep-
resentation (Gonzalez 2006).

When addressing these issues, it is important not to fall into
a deficit mindset (Milner 2012), in which we focus on the per-
ceived shortcomings of students, rather than remembering that
a student’s quantitative self-efficacy is mediated by a complex
classroom environment. The quantitative self-efficacy of African-
American PhDs in computing and mathematics was strongly af-
fected by interactions with peers, verbal encouragement, and a so-
cial community (Charleston and Leon 2016). These findings were
echoed in a separate study on the experience of female PEER grad-
uate students (Guy and Boards 2019). Therefore, identifying and
interrupting the institutional structures and faculty biases that
undermine quantitative self-efficacy in students from historically
excluded groups is critical, not only for fostering a diverse work-
force but for preserving the civil rights of the students (Henderson
2014).

Moreover, recent research has shown that generalized self-
confidence tends to be particularly unstable for students from
historically excluded groups, highlighting the need for our edu-
cational systems to increase support for such students (Litson
et al. 2021). Although representation correlates with increased
generalized self-confidence in graduate students (Tao and Gloria
2019), underrepresentation negatively correlates with confidence
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and ultimate career success (e.g., McAllister et al. 2019, Tao and
Gloria 2019). More generally, retention and achievement are ele-
vated in students with a sense of agency (Berry et al. 2014) and be-
longing (Curry and DeBoer 2020). For example, women in graduate
departments with mostly male faculty report more of a negative
academic self-concept, lower confidence in their abilities, lower
on-time doctoral completion rates (Bostwick and Weinberg 2018),
and a weaker commitment to completing their PhD and pursuing
a career in their field of study than do male students and women
in departments with more gender-balanced faculty (Ulku-Steiner
et al. 2000). Similarly, imposter syndrome, although it is common
in many, disproportionately affects students from historically ex-
cluded groups and can reduce retention (Peteet et al. 2015).

Diversifying biology requires intentional, directed work that
goes well beyond what we discuss in the present article, but we
emphasize that efforts to build self-confidence in all students
may contribute to agency, growth, and a sense of belonging in
students from historically excluded groups specifically (Theobald
et al. 2020). Indeed, the fact that biology graduate students vary
widely in their quantitative preparation requires the development
of pedagogical systems that accommodate disparities in prior ed-
ucational opportunities and access (Lee and Clinedinst 2020). For
example, in subdisciplines such as ecology that historically em-
phasize fieldwork, stronger support for quantitative training may
serve to broaden participation by students with physical disabili-
ties. In this way, quantitative training of biology graduate students
presents a natural opportunity to fix the system (in part; again, we
recognize that this is but one piece of a complex problem) rather
than endeavoring to diversify by “fixing the student.”

Educational research on building
quantitative self-efficacy

Research on self-efficacy in various quantitative skills has largely
been focused on undergraduate, secondary, and elementary
school students. In addition, in light of big data accessibility, there
has been an emphasis on the need for computing skills in biol-
ogy education. We found very few studies that address graduate
student needs specifically, and rather too many that discuss com-
puting. As a result, we cite the few available studies on the topic
of quantitative education of graduate students, but we also in-
clude relevant studies from other academic stages. In addition,
the preponderance of examples focused on computing should not
be taken as evidence of the importance of this area over skills
in mathematics and statistics. We note that the lack of research
at the graduate level proscribes our ability to draw firm conclu-
sions. Our interpretations of the existing research should be read
as opinions and opportunities for research rather than a compre-
hensive review.

Some classroom engagement strategies have been found to
work well at both the undergraduate and the graduate level, such
as inquiry-based learning (Beck and Blumer 2012). A small study
of graduate students learning quantitative skills for the first time
showed that taking an inquiry-based course led to gains in confi-
dence (Dale et al. 2020). Other engagement techniques, such as
interactive think-pair-share activities and team-based learning
techniques, have greater positive effects on undergraduate stu-
dents’ self-confidence and problem-solving skills than traditional
lectures and should translate well to a graduate setting. Simi-
larly, research at the undergraduate level suggests that mathe-
matical modeling to build quantitative self-efficacy (Czocher et al.
2020) must emphasize the relationship between modeling and the

€202 AeIN €0 UO Josn sauieiqrT Aisioniun a1els ueBiyoin Aq |81 /1L 2/ 1LOPEIG/OSOIG/EB0 L 0 L/10P/a[oIE-80UBADE/20USIDSOIG/WO0" dNO-olWapede//:SdRy WOy papeojumoq



368 | BioScience, 2023, Vol. 73, No. 5

Time frame
Short (days — weeks) Long (semester or more)
= Bootcamps; Taking or TA'ing a
E online workshops quantitative course
(=]
Ll 0.0 0.0 0.0 0.0 0.0
oy o o O @) o
£l Falf=lk
£
E = Hackathons; Mentored collaboration on
E project-based activities quantitative project
o
E 0.0
= 0 Q
o ~

Figure 3. Common methods for training graduate students in
quantitative skills, showing the time commitments and level of
formality (whether organized top-down in a formalized program or
bottom-up and led by the student). Each approach also differs in its
social context (depicted by the number of people). The approaches, in
addition, vary in their effectiveness, with quality mentoring being
perhaps the best for improvement on both axes of skill acquisition and
quantitative self-efficacy.

real-world system it represents, and it seems likely that this may
be true for graduate students in biology.

Some methods that are successful at the undergraduate level
may have different effects on some graduate students. In particu-
lar, graduate programs may trigger mental states that have impli-
cations for pedagogy. For example, some graduate student survey
respondents suffering from imposter syndrome felt anxious at the
prospect of “flipped classroom” activities often used in an under-
graduate setting (Chakraverty 2020). Similarly, graduate students
in education scored higher on a harm avoidance scale than un-
dergraduates (Illovsky 2010), suggesting they may be less comfort-
able with teaching methods that involve risk and potential failure.
Given such possible obstacles in transferring undergraduate level
pedagogy to graduate level education and the lack of studies ad-
dressing graduate student needs, we suggest that techniques for
teaching quantitative self-efficacy be explicitly tested and studied
at the graduate level. Moreover, graduate education can include a
range of learning activities, each of which possess a range of pos-
sibilities and obstacles for building quantitative skills and confi-
dence (figure 3).

Outside the classroom, collaborative opportunities for graduate
students can increase confidence (Tao and Gloria 2019). In addi-
tion, there is abundant evidence that good mentoring is important
for graduate student success and generalized self-confidence.
Effective mentoring can promote graduate students’ academic
achievement, engagement (Martin and Dowson 2009), and quan-
titative self-efficacy (Olson et al. 2020), and may have positive
influences on timely completion of graduate studies (Green and
Bowden 2012, Ndayambaje 2018). Regular performance-based
assessments, such as individual development plans, improved
generalized self-confidence of graduate students, and reduced
feelings of imposter syndrome, particularly for students from his-
torically excluded groups (Sowell et al. 2015, Chakraverty 2020).
Good mentoring relationships can build women’s generalized
self-confidence (Paglis et al. 2006), whereas inadequate men-
toring is an important factor in students’ from historically ex-
cluded groups decisions to not pursue graduate studies in STEM
(Stachl and Baranger 2020). Mentor qualities such as representa-
tion (Charleston and Leon 2016, Tao and Gloria 2019), approacha-
bility, and posing challenging problems (Carlson 1999) had strong
positive impacts on student success. We suggest that mentor-
ing relationships are particularly important in programs with
minimal course requirements for quantitative topics for which

the mentor or supervisor becomes the main source of guidance.
Collaboration and mentoring are generally already in place in
graduate programs; therefore, we recommend an expansion of
emphasis on these relationships with respect to quantitative self-
efficacy, as well as additional training for mentors to improve stu-
dent outcomes.

Productive failure, quantitative self-efficacy,
and skill acquisition

The role of failure in acquiring quantitative skills may need spe-
cial attention. Many graduate students may enter graduate school
with very little experience in academic failure (Ward-Penny et al.
2011). The model they may have internalized for being a “good
student” places a high value on working a problem quickly and
comfortably to get to the right answer. Research indicates that this
model is both unrealistic and counterproductive. Johnston-Wilder
and Lee (2010) described mathematical resilience as a skill set that
involves persistence and an ability to continue learning despite
challenges and setbacks. Kooken and colleagues (2016) included
struggle as one of three correlated factors in their measurement
of mathematical resilience (along with value and growth). Strug-
glerefers to a respondent’s belief that experiencing challenges and
difficulties is a normal part of learning mathematics and includes
multiple components, such as the ideas that making mistakes is
necessary to get good at math, that struggle is a normal part of
working on math, and people who work in math-related fields
sometimes find math challenging. New biology graduate students
who have been exposed to far more memorization than problem-
solving in undergraduate courses may be unfamiliar with con-
cepts such as these, which emphasize the importance of challenge
and failure in learning.

Learning quantitative methods at the undergraduate level is
best addressed using active approaches (Freeman et al. 2014,
Farmus et al. 2020, Ng et al. 2020), especially those in which stu-
dents engage with problems and fail to solve them at first. In
particular, the role of productive failure, in which the instruction
is designed to produce short-term failure but long-term success,
is recognized as an important learning tool (e.g., Schwartz and
Martin 2004, Kapur 2010, Chowrira et al. 2019). As students be-
gan the process of familiarizing themselves with, practicing, and
applying quantitative skills, it is essential that early failures do
not undermine their confidence so much that efforts to learn are
abandoned.

At the graduate-level, well-designed instructional activities can
help students develop a resilience to failure that builds on the
recognition thatitis a normal part of acquiring new skills. Lessons
in which the instructors write code live in class, with the inevitable
resulting mistakes, can help to normalize failure (Johnston et al.
2019). Commentary from both instructors and peers about statis-
tics or mathematics anxiety and failure also have been identified
as helpful in increasing quantitative self-efficacy (e.g., McGrath
et al. 2015), and we suggest that anecdotes from mentors could
also be helpful in introducing the idea of productive failure, or
failure that prepares one for better learning or research outcomes.
Normalizing failure is also an important part of inclusivity and re-
tention, because students from historically excluded groups may
opt to leave STEM if the real or perceived expectations placed on
them are unrealistically high (Noel et al. 2022).

Science is particularly prone to obscuring lessons about pro-
ductive failure because much of the review process takes place
before publication. Students reading published papers may not
realize that several quantitative analyses were implemented
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improperly and redone or failed to answer the research ques-
tion and were abandoned (also see Rickly and Cook 2017). Even
the most sophisticated quantitative methods by the most distin-
guished researchers might fail on a student’s problem, and stu-
dents need the quantitative self-efficacy to recognize when the
method or its implementation is at fault rather than engaging
in self-criticism when a particular approach doesn’t work. More
broadly, for students who enter graduate school with little expe-
rience in failure, it is important for faculty members to normal-
ize the struggle associated with research. Feedback from faculty
that helps a student reframe challenging situations as opportuni-
ties for learning can have a long-lasting influence on the student
(Posselt 2018). An essay by Schwartz (2008) titled “The importance
of stupidity in scientific research” suggests that PhD programs
need to do better at two things: helping students understand that
doingresearch is difficult and teaching students to be comfortable
with productive failure.

Failure can also be used to motivate students to acquire new
quantitative skills in coursework. In this model, students experi-
ence the need for knowledge in some areas after failing to solve
a problem, and consequently, there is a better learning outcome.
Meta-analysis of studies from junior to undergraduate educa-
tional levels suggests that learning from failure as an instruc-
tional strategy has moderate success (Darabi et al. 2018). Similarly,
although learning challenges among students at the secondary
level have been associated with insufficient scaffolding (Kirschner
et al. 2006, Hmelo-Silver et al. 2007), ill-posed problems and insuf-
ficient scaffolding may also lead to greater benefits (Sinha et al.
2020) as students develop reasoning processes and perceive the
need to seek out new skills.

Productive failure could be introduced very naturally in course-
based research. In this course design, whole classes of students
address a research question that is of interest to other scientists
or community members (Auchincloss et al. 2014). These courses
were developed at an undergraduate level to allow scaling of the
usual mentor-based research experiences to the large enrolments
typical in some STEM programs such as biology. Dolan (2016) de-
scribed several potential advantages of this course structure, in-
cluding increased self-efficacy in scientific work, increased moti-
vation because of the involvement with a real research problem,
and the aspect of iteration in which students learn by trying, fail-
ing, and trying again. However, this design is primarily used at an
undergraduate level, and assessments of its merit are still emerg-
ing (Dolan 2016). Although it does seem likely that a variety of ex-
periences like these, where students realize they do not currently
have needed skills, can lead to acceptance of the view that initially
failing to solve a problem is part of the learning and research pro-
cess rather than a commentary on self-identity.

Evaluating techniques for the quantitative
education of biology graduate students

We have argued that we must carefully consider the role of quan-
titative self-efficacy in the classroom and nonclassroom activi-
ties in order to build quantitative skills and that the most im-
portant component of any training exercise in quantitative skills
may be teaching biology graduate students to deal with failure
productively. However, all learning opportunities include a social
context that affects both generalized self-confidence and quan-
titative self-efficacy that must be managed for maximum ben-
efit. Types of training or experiences in quantitative skills vary
along several dimensions: the time frame over which the expe-
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rience takes place, the formality of the organization or oversight
of the experience, the number of students that each experience
can scale to reach, the student to professor or mentor ratio, and
the overall effectiveness of each kind of experience. We can di-
vide the many types of quantitative training opportunities into
four general categories (figure 3): short-term formally organized
events such as bootcamps and workshops, short-term informal
collaborations with particular objectives such as coding clubs or
hackathons, long-term formal coursework, and long-term collab-
orations such as mentoring relationships. Most research on the
efficacy of these methods is focused on skill-building rather than
on the positive effects on quantitative self-efficacy; however, pre-
vious research on that topic can be used to inform these activi-
ties. Strategies that maximize the acquisition of quantitative skills
by increasing quantitative self-efficacy can be considered when
structuring a course, group projects, or mentoring activities.

Short-term formally organized events

Organized short-format retreats, workshops, online courses, or
bootcamps are used to train graduate students in critical quan-
titative skills. Bootcamps are intensive learning events, often
scheduled just prior to the start of the student’s first semester
of graduate school. However, evidence of the efficacy of bootcamp
training is mixed. Some research has shown that short format in-
struction experiences can increase the statistics knowledge and
quantitative self-efficacy scores of graduate students compared
with those of their peers who did not experience the bootcamp
(Leventhal et al. 2018). Undergraduate orientation courses can
perform the useful function of calibrating beliefs about quanti-
tative skills (Wheeler and Wischusen 2014), and similar functions
could be performed at the graduate level. However, other research
has shown that graduate-level bootcamps do not appreciably in-
crease long-term student skill development, scholarly productiv-
ity, or socialization into the academic community (Feldon et al.
2017).

The short time frame of these experiences is likely to be a fac-
tor in their effectiveness: Multiple studies have demonstrated that
longer time frames promote improved uptake and retention of
complex new quantitative skills (Budé et al. 2011, Rohrer 2015).
Short-term learning opportunities may not be the tool of choice
for acquiring quantitative skills or self-efficacy, but in the absence
of other opportunities, well designed experiences may be quite
beneficial (Word et al. 2017). Of course, short-term learning op-
portunities can serve different purposes as well. Bridging events,
such as intensive review courses that occur immediately prior
to longer-term courses can have beneficial impacts at the grad-
uate level (Leventhal et al. 2018). An ideal introductory bootcamp
would emphasize inclusion and bring together a diverse set of stu-
dents in order to expose them to the need for quantitative train-
ing in biological research, provide early success in using quan-
titative skills in well scaffolded exercises, calibrate quantitative
self-efficacy, increase a sense of identity through peer interaction,
and introduce potential mentors in quantitative fields. However,
poorly designed bootcamps can establish a pattern of inappropri-
ate responses to failure, create a sense of inadequacy in less pre-
pared students, or reinforce divisions among students with differ-
ent backgrounds.

Short-term informal collaborations

In short-term, informal, and goal-oriented collaborations (e.g.,
coding hackathons), small groups of students work together
on a specific problem. Other forms of short-term collaborative
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learning can include coding clubs (Hagan et al. 2020), informal
study groups, online discussion groups, student-run workshops
(LaTourrette et al. 2021), and project-based activities (Killion et al.
2018). These types of activities can present low risk and fun av-
enues for students to build and apply their quantitative skills. For
example, in 2020, one of the authors (ERW) led a research derby
event focused on quantitative skills for 12 graduate students at
the University of Vermont. Over 2 days, three teams moved from
projectidea to data cleaning, modeling, and write-up. One project
has now been accepted in a peer-reviewed journal. The team
members were from different disciplines and the collaboration
would not have happened without the initial short-term informal
meeting. The collaboration across disciplines allowed nonquan-
titative biologists to learn from those with a more quantitative
background in a low stakes setting. In addition, the compressed
nature of the collaboration allowed the students to see a project
from start to finish, potentially increasing their quantitative self-
efficacy.

Short-term collaborations can increase student quantitative
self-efficacy by providing opportunities to engage in quantita-
tive work related to research and can result in tangible success
through publications or presentations (Tao and Gloria 2019). Pro-
viding students with the opportunity to work in peer groups be-
fore working alone can ease the transfer challenges students face
when applying quantitative skills to a new problem. However, stu-
dents may have widely differing levels of quantitative skills that
can lead to a lack of engagement with the quantitative aspects of
goal-oriented exercises or even reinforcement of beliefs about low
self-efficacy in these areas. For example, in a professional level bi-
ology hackathon, observers noted that the learning curve in using
GitHub prevented many participants from using it to share code
(Trainer et al. 2016). More generally, low self-confidence and un-
welcoming environments can lead to low rates of self-selection for
activities such as hackathons or coding clubs in women and other
members of historically excluded groups (Hardin 2021). Similarly,
peer-to-peer relationships established on such a short time frame
may not necessarily provide an environment in which students
are comfortable working or asking for help when their skill lev-
els are quite different from those of others (Trainer et al. 2016).
Preparatory information regarding quantitative materials, as well
as opportunities to build pre-event relationships, may ease the dif-
ficulties associated with uneven skill levels and poor peer-to-peer
dynamics.

Long-term quantitative course work

In traditional graduate courses, good lesson planning can ac-
commodate diverse student interests, increasing student moti-
vation, which, in turn, promotes quantitative self-efficacy (see
the “Educational research on building quantitative self-efficacy”
section). However, there is evidence that poorly designed under-
graduate courses can decrease self-confidence in quantitative
skills (Everingham et al. 2013). At an undergraduate level, appli-
cation approaches that build on previous lessons in biology and
math can improve students’ quantitative self-efficacy (Dale et al.
2020). Too often, quantitative education is focused solely on tech-
niques, decontextualized from disciplinary usage (Fennell et al.
2020), which can decrease motivation (e.g., Everingham et al. 2013,
McGrath et al. 2015). In particular, too early an emphasis on rigor
or details of computation in an abstract approach may decrease
engagement (Everingham et al. 2013). In-class coding exercises
that fit dynamical models to data, for instance, provide a concrete
starting point for students’ future independent research in biol-

ogy. Application exercises such as this also have the advantage
of illustrating the trial and error process of applying quantitative
methods in a supportive environment (see the “Productive fail-
ure, quantitative self-efficacy, and skill acquisition” section). Ap-
proaches for emphasizing the benefits to overcoming the barriers
posed by mathematical notation and unfamiliar computing envi-
ronments include showing how math brings clarity to biological
problems, and emphasizing how reproducible code facilitates al-
ternate applications (Johnston et al. 2019).

Given the role of self-efficacy in learning quantitative skills,
close attention must be paid to classroom culture. During in-
struction, the use of humor in undergraduate level courses can
reduce student’s negative attitudes toward quantitative topics
(Neumann et al. 2009). An inclusive and welcoming environment
is also vital, because a lack of quantitative self-efficacy is related
to stereotype threat and pressure to conform (Dowker et al. 2016).
Similarly, successful group work will require attention to the con-
fidence levels of the group members. Brief code of conduct discus-
sions can be used to avoid self-selection away from quantitative
tasks, particularly when the class contains both biology graduate
students and those from disciplines such as mathematics, statis-
tics, or computing. Finally, graduate students in biology can also,
themselves, serve as mentors for quantitative skills: for example,
toundergraduate students and peers with less trainingin these ar-
eas. TAing an undergraduate course in quantitative methods can
give graduate students the opportunity to use these newly devel-
oped skills and to build confidence as they help others who are
even newer to those skills.

Some graduate programs that accept students from both
quantitative and life science backgrounds intentionally scaffold
coursework in both biology and math (e.g., Noble et al. 2016)
to allow for cross-disciplinary communication and collaboration
among students with positive outcomes. Few, however, describe
the development of educational materials specifically designed
for cross-disciplinary education (Noble et al. 2016, Dale et al. 2020).
If a goal is to incorporate quantitative skills training into grad-
uate biology education in general, collating existing educational
material is needed. With appropriate investments (e.g., funding
and preparation time), these could be archived in an online repos-
itory similar to that of the Quantitative Undergraduate Biology
Education and Synthesis, which is focused at the undergraduate
level. However, we contend that in addition to standard pedagogi-
cal tools, material focused on addressing quantitative self-efficacy
is needed. The curation and management of these materials by a
professional society, such as the Ecological Society of America or
the Society for Mathematical Biology, would ensure quality and
longevity of the resource.

Long-term mentored collaboration

Mentoring and collaboration lie at the heart of graduate education
and will often be one of the primary methods by which biology
graduate students are introduced to new quantitative methods.
An important aspect of mentorship is its psychological support
function, in which a graduate student not only develops an iden-
tity as scientist but also grows the confidence to apply advanced
techniques to their research. Mentorship problems can therefore
have a highly detrimental effect (see the “Educational research on
building quantitative self-efficacy” section). A recent report from
the National Academies presents nine sets of recommendations
to encourage a shift away from a culture of ad hoc mentorship
to a more intentional approach (National Academies of Sciences,
Engineering, and Medicine 2020). Intentional rather than ad hoc
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mentoring structures may also be necessary to avoid gaps in the
effective mentorship of PEERs (Zambrana et al. 2017). Ideally, long-
term mentoring (either as mentor or mentee) increases general-
ized student confidence by providing opportunities to engage in
meaningful research, builds relationships with other researchers,
and provides tangible evidence of success through publication
(Tao and Gloria 2019).

Quantitative self-efficacy might be best enhanced through a
cognitive apprenticeship framework (Maher et al. 2013) that fol-
lows the use-modify—create process (Lee et al. 2011), with more
hands-on involvement of the mentor early in the collaboration
and students gaining independence during the process. In a mod-
eling and fading approach (Schoenfeld 1985), mentors explicitly
guide early quantitative efforts and fade out as students gain
skills and confidence. Early instruction efforts should include
events in which, in the process of analyzing, coding, or solving
problems on the board, the mentor models appropriate learning
responses to their own errors or failures. Similarly, as a mentor
to undergraduate students in classroom and laboratory settings,
a graduate student can use the quantitative skills they are devel-
oping to help others who are even newer to those skills, thereby
reinforcing the graduate student’s training and increasing quan-
titative self-efficacy.

Bridging across training types

To recruit, train, and build quantitatively self-confident biologists,
multiple points of contact and types of training may be required. A
balance of classroom and cocurricular learning experiences will
ensure that students are explicitly made aware of expert prac-
tices, heuristics, and modes of thinking associated with quantita-
tive methods in their discipline and related areas. Repeat exposure
to quantitative techniques increased confidence in math graduate
students (Carlson 1999), and similarly, we expect multiple train-
ing events will have the greatest payoff for biology graduate stu-
dents. By incorporating multiple types of training into a graduate
program, students will gain desensitizing exposure to quantita-
tive methods and will experience a natural scaffolding for skills
development.

Evaluation of quantitative self-efficacy, skill
acquisition, and directions for future
research

Whatis not measured cannot be measurably improved. Therefore,
educational reform for quantitative training of graduate students
requires meaningful evaluation tools. Standard practice for eval-
uation usually involves survey instruments with self-reporting of
understanding and skill acquisition for participants (e.g., Stefan
et al. 2015), but this approach may not be accurate. For exam-
ple, bootcamps are generally well rated by participants for these
metrics, but a longitudinal study on graduate student bootcamps
suggests that they have nolong-term impact on statistical or com-
putational skills (Feldon et al. 2017). It may be that students are
conflating their engagement with the bootcamp experience and
its actual effectiveness. As a result, we suggest that evaluation in-
struments should not solely rely on self-reported metrics of learn-
ing outcomes. Furthermore, our goal is to train biologists who
have the ability to use and understand quantitative skills in their
research; therefore, longer-term evaluations with objective met-
rics, such as how quantitative material is used in published papers
by the training’s participants, as was pioneered by Feldon and col-
leagues (2017), seem particularly valuable.
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As we argue in the present article, even if quantitative skills
acquisition is achieved, it may be that future learning or research
use is inhibited by practices that erode student quantitative self-
efficacy. By evaluating both skills and self-efficacy beliefs in both
the short and long term following learning events, we can begin
to understand how these factors are related and how we might
modify our approaches to achieve better outcomes. As was noted
by Aikens and Dolan (2014), most available instruments for eval-
uating attitudes toward quantitative work are for general audi-
ences rather than biologists specifically. There have been some
efforts to develop discipline-specific evaluation tools to track atti-
tudes and self-evaluation for undergraduates (e.g., Andrews et al.
2017), and similar efforts are needed for graduate students. Aikens
and Dolan (2014) suggested that evaluation instruments could
measure more positive attitudes toward quantitative work, such
as reduced anxiety, greater self-efficacy, increased interest, and
a better sense of the relevance and importance of mathemat-
ics, statistics, and computation to biological research. In addition,
instruments could also document desired side effects, such as
the sense of belonging to the cadre of researchers in a subdisci-
pline (e.g., Perceived Cohesion Scale or Sense of Belonging Scale)
(Bollen and Hoyle 1990) and the Academic and Intellectual Devel-
opment Subscale (Weidman and Stein 2003). Finally, an additional
perspective on the impacts of learning events could be obtained
through the analysis of individual development plans of quanti-
tative learning participants (Hobin et al. 2012) that considers how
a plan incorporates quantitative skills and how they connect to
the values assessment parts of such a plan.

The effective reform of quantitative education for graduate bi-
ology students therefore requires evaluation tools that will allow
us to document our success or failure with the implemented inter-
ventions in terms of skills, attitudes and, of course, professional
outcomes. The topics to be investigated include the transferability
of self-efficacy beliefs from one context to another in graduate ed-
ucation and the efficacy of quantitative skills acquisition in differ-
ent educational contexts (traditional programs, bootcamps, etc.).
As these evaluation tools are applied, careful attention must be
paid to differential success based on students’ racial, ethic, and
gender identity, sexual orientation, and disability status, so that
biases in the approaches taken can be identified and addressed.
In this way, we will develop a suite of evidence-based practices
that will help graduate students to improve both their quantita-
tive skills and their confidence in using and further developing
these skills.

Conclusions

Educational research supports the view that a lack of confidence
in one’s abilities is a barrier for learning and applying quantita-
tive skills. Because undergraduate programs in biology may not
provide much exposure to mathematics, statistics, and comput-
ing, new graduate students may be unaware of the need for these
skills in research and of fruitful approaches for acquiring them. In
particular, biology graduate students may be unfamiliar and un-
comfortable with the process of repeatedly failing while practic-
ing quantitative methods and may, therefore, incorrectly attribute
these failures to personal inadequacies.

A variety of instructional approaches can be used to increase
both quantitative skills and confidence regarding these skills dur-
ing training opportunities, whereas some approaches should be
avoided (e.g., an excessive emphasis on rigor) or carefully man-
aged (e.g., group work). Perhaps the most important of approaches
is where mentors demonstrate both the use of quantitative
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methods and the productive failure of this use in a specific dis-
ciplinary context. Furthermore, given the role of generalized self-
confidence in learning these skills, attention must be paid to
the social environment of training experiences and mitigation
must be applied when poor outcomes seem likely for those from
historically excluded groups. Whatever methods are used, their
evaluation should include not only metrics for new knowledge of
quantitative methods but also effects on quantitative self-efficacy,
diversity, and inclusion, as well as longer-term outcomes, such as
application in research.

Although we offer suggestions in the present article based on
previously published research, we note that quantitative graduate
education is comparatively understudied. A move toward more
evidence-based design of training opportunities in quantitative
skills for biologists may have much larger benefits on graduate
student retention, professional identity, and research contribu-
tions, given the important role of self-efficacy in this area, and
therefore, more research is merited.
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