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Abstract

The discovery of two-dimensional (2D) ferromagnets and antiferromagnets with
topologically nontrivial electronic band structures makes the study of the Nernst effect
in 2D materials of great importance and interest. To measure the Nernst coefficient of
2D materials, the detection of the temperature gradient is crucial. Although the micro-
fabricated metal wires provide a simple but accurate way for temperature detection, a
linear-response assumption that the temperature gradient is a constant is still
necessary and has been widely used to evaluate the temperature gradient. However,
with the existence of substrates, this assumption cannot be precise. In this study, we
clearly show that the temperature gradient strongly depends on the distance from the
heater by both thermoelectric transport and thermoreflectance measurements.
Fortunately, both measurements show that the temperature gradient can be well
described by a linear function of the distance from the heater. This linearity is further
confirmed by comparing the measured Nernst coefficient to the value calculated from
the generalized Mott's formula. Our results demonstrate a precise way to measure the
Nernst coefficient of 2D materials and would be helpful for future studies.

Keywords: Nernst coefficient, two-dimensional materials, thermoelectric transport,

thermoreflectance

1. Introduction

Thermally driven electron transport in ferromagnet can generate a transverse voltage
drop, called anomalous Nernst effect (ANE). Similar to anomalous Hall effect, ANE is
closely related to the topology of the electronic band structure [1-3]. Recently, large
ANE has been observed in ferromagnetic semimetals and chiral antiferromagnets [4—
9]. These observations not only deepen the understanding of the topological origin of
ANE, but also trigger renewed interest in potential applications [9-11]. The transverse
nature of the Nernst effect can decouple the electrical-thermal correlation and avoid
the contact-resistance problem, providing a potential pathway to surpass the
conventional thermoelectrics. While the integration of Berry curvature of occupied
bands determines the AHE, ANE is closely related to the Berry curvature at EF. The
gate tunability of £F in two-dimensional (2D) materials thus provides excellent
opportunities [12-15]. Together with the discovery of 2D ferromagnets and
antiferromagnets with topologically nontrivial electronic band structures, the study of
Nernst effect in 2D materials is of great importance and interest [16, 17].

To measure the Nernst coefficient of 2D materials, it is crucial to determine the
temperature gradient accurately. In bulk materials, the setup sketched in figure 1(a) is
commonly implemented [18, 19]. With the thermometers measuring the temperatures
on the two ends of the material, Nernst measurements can be simultaneously done
with Seebeck measurements, taking the fact that the thermal transport is one-
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dimensional that the temperature gradient is uniform along the material. The
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VT= =~

temperature gradient can be deduced by , where AT and L are the

temperature difference and distance between the hot and cold ends, respectively. In
2D materials, due to the microsize of the flakes, conventional thermometers are no
longer applicable. A standard device geometry shown in figure 1(b) was proposed and
has been widely used [15, 20-26]. With the four-probe metal wires (TM1 and TM2 in
figure 1(b)) prepared by microfabrication, local temperatures on the two ends of the
flake can be accurately measured. In previous Nernst measurements, a linear-repsonse
approximation that the thermal transport is one-dimensional and the temperature
gradient is a constant has been conventionally adopted to evaluate the temperature
gradient. Under this approximation, the average temperature gradient is %ﬂ .
However, due to the existence of the substrate, the thermal transport can no longer be
taken as one-dimensional as in the bulk case. Although suspending flakes can solve
this issue, the need for highly sophisticated bridge structures greatly hampers wide
applications.
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Figure 1. Typical measurement setup for macroscopic and microscopic devices. (a) For
macroscopic devices, the sample is placed in vacuum with the two ends attached to
the heating stage (T#) and cold sink (T. ), respectively. The longitudinal and transverse
electrodes can measure the Seebeck and Nernst voltages simultaneously. (b) A
standard geometry is widely used for thermoelectric measurements on microscopic
devices. The thick gold wires on one end of the device serve as the heater. TM1 and
TM2 are two thin wires which can monitor the local temperature by four-probe
measurements.

In this work, we systematically investigate the evaluation of temperature gradient in
Nernst coefficient measurements in 2D materials. With thermoelectric transport and
thermoreflectance measurements, the distribution of temperature gradient is clearly
shown to be non-uniform on the substrate. The temperature gradient on the end of the
channel close to the heater can be twice as large as the value on the far end. Fortunately,
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both measurements demonstrate that the temperature gradient along the channel can
be well described by a linear function of the distance from the heater. This linearity is
further confirmed by comparing the measured Nernst coefficient to the value
calculated from the generalized Mott's formula. Our results show that, although the
temperature gradient is not uniform and is difficult to be probed locally, the Nernst
coefficient can still be measured with the standard geometry by taking the linear
dependence into the temperature gradient calculation. Our study would be helpful for
future studies of the Nernst effect in 2D materials.

2. Methods

The thermoelectric measurements were performed in a Physical Properties
Measurement System (Quantum Design, Dynacool) with the chamber pressure
maintained below 10 mbar. The temperature of the device can be well controlled.
To measure the Nernst voltage, standard lock-in technique was implemented. A
heating current with a frequency of Jf=1LTTTHZ a5 applied to the heater while the
Nernst voltage was detected under 2f . When heating current was applied across the
heater, the temperature of the device on the heater side would be increased. Two
thermometers, TM1 and TM2, were connected to the device on the two ends. The four-
probe resistance of the thermometer is very sensitive to the local temperature and
could be used to indicate the temperature change after calibration.

The thermoreflectance technique utilizes the fact that the refractive index and
therefore the reflectivity R of a material depends on its temperature T'. A so-called
thermoreflectance coefficient, CTR, is defined to describe this relation: Cre = RLU %,
where Ro is the initial reflectivity without thermal excitation. The material surface, the
incident light wavelength, and the ambient temperature all contribute to CTr .
When Ctr is known, an absolute temperature map of the sample can be obtained
based on how the reflectivity changes. During a typical transient measurement with
our thermoreflectance imaging system from Microsanj LLC, a voltage pulse with a 5
V bias of duration of 5 ms and 30% duty cycle was applied to turn on the heater. It was
synchronized with the light pulse so that the changes in the reflected light intensity
when the device is on and off are captured by a charge-coupled (CCD) camera for
temperature mapping at a certain delay time. The heating on the sample surface
should have reached a steady-state by the end of the voltage pulse and a temperature
map at this instant was acquired by averaging over hundreds of thermal excitation
cycles. The resolution is diffraction-limited and is about 440 nm under
the 100 objective and the 530 nm green light. Ctr of —=2.5 x 10 *is used for the Au
electrodes to accurately extract AT,

In current study, we have prepared three graphite devices (GN1-GN3), two
WTe: devices (WTN1, WTN2), and two bare substrates with gold wires/film (EN1,
EN2). We have performed thermoelectric measurements in GN1, GN3, WIN1, and
WTN2. Thermoreflectance measurements have been done in GN2, EN1, and EN2.



3. Results and discussion

We first present the thermoelectric transport results from graphite flakes which have
large Nernst coefficient. The thickness of the graphite flakes is chosen to be around 10
nm, ensuring the homogeneity of the channel. The devices are designed similar to the
standard geometry with a heater on one end of the flake. Multiple pairs of transverse
electrodes are prepared along the channels. Figure 2(a) is the optical image of a typical
device, GN1. The results presented below are from this device measured at 300 K.
Several devices have been prepared and measured. They all show similar results. We
have also done measurements at different temperatures and got consistent results (see

supplementary material).
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Figure 2. Thermoelectric transport results. (a) Optical image of device GN1. The device
has multiple transverse electrodes, E1-E5 counted from the heater, to detect the Nernst
voltage at different locations. (b) Magnetic field dependence of Nernst voltages
measured by different pairs of transverse electrodes. (c) The position dependence of
the coefficient k. (d) The coefficient & shows a very good linear dependence on the
heating power of the heater.

V, =N,,wB-V,T N

The Nernst voltage can be expressed as , where “"* is the Nernst

coefficient, W the channel width, B the external magnetic field, and VT the local
temperature gradient where the Nernst voltage is measured. In our devices, the
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channel has been designed and fabricated to have the same width along the channel.
In addition, considering that the graphite flake is 10 nm thick, the Nernst coefficient is
uniform along the channel. Therefore, the measured Nernst voltage linearly depends

V,=k-B k=Nyw-V,T

on the magnetic field, , with the coefficient proportional to

the local temperature gradient. As a result, the coefficient k provides a tool to monitor
the local temperature gradient.

Figure 2(b) presents the magnetic field dependence of the Nernst voltage measured
from different pairs of transverse electrodes. All the Nernst voltages increase linearly
with increasing magnetic field, confirming that we are in a weak magnetic field regime
(JHB < l). It is clearly seen that the Nernst voltage measured from the transverse
electrodes closer to the heater has a stronger field dependence, indicating a larger
temperature gradient. We then plot the coefficient k as a function of the distance from
the heater d in figure 2(c). As expected, the local temperature gradient is not constant
but quite sensitive to the distance from the heater. It increases more than 50% when
the distance is reduced from 26.5 HITl o 13 HM  Ag a result, the calculated Nernst
coefficient will strongly depend on the position of the measuring electrodes if the
conventional linear-response approximation is utilized that the temperature gradient
is constant along the channel. We have also done the measurements under different
heating currents. Figure 2(d) shows the coefficient k as a function of the heating
power, i.e. the square of the heating current. The dependence shows perfect linearity,
confirming that the voltage comes from the Joule heating of the heater.

Since the micro-fabricated thermometers can only sense the local temperature, it seems
that the failure of the linear-response approximation would make the estimation of the
temperature gradient impossible. However, it is interesting to note that the
temperature gradient shows quite good linear dependence on the distance from the
heater (the deviation close to the heater will be discussed later). This linearity has also
been observed in many other devices (see supplementary material). With this linear
dependence, we can still extract the temperature gradient with enough accuracy from
the temperature measurements with the micro-fabricated thermometers.

To confirm this linear dependence of the temperature gradient on the distance, we
utilize the thermoreflectance measurements to map the temperature distribution with
a better special resolution [27-30]. Thermoreflectance imaging technique can provide
accurate temperature readings of the Au electrodes on the sample surface. We have
done the thermoreflectance measurements in three devices, GN2, EN1, and EN2. GN2
is similar to GN1. Figure 3(a) shows the optical images of EN1 and EN2. EN1 has
multiple pairs of transverse electrodes in parallel to the heater on a SiO: substrate,
while EN2 has a square gold film in stead. Figure 3(b) shows a typical
thermoreflectance mapping measured in EN1 (see supplementary material). The
temperature change AT extracted from the variation of the thermoreflectance of the
gold electrodes in GN2 and EN1 is presented in figure 3(c). Note that
the AT measured in GN2 is different from the one in EN1, due to the different heating
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powers. In EN2, AT is extracted from the variation of the thermoreflectance of the
gold film along the middle line, shown in figure 3(d).
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Figure 3. Thermoreflectance results. (a) Optical images of EN1 and EN2. (b)
Thermoreflectance mapping of temperature in device EN1 with a current passing
through the heater. From the thermoreflectance, temperature change can be
determined. The colorbar shows the temperature difference with blue as zero and red
as 45 °C. (c) Position dependence of the temperature change of the gold electrodes
measured in GN2 and EN1. The electrodes in these two devices are separated lines.
(d) Position dependence of the temperature change of the gold film in EN2. The solid
lines in (c) and (d) show the parabolicly fittings.

It is clearly seen that the dependence of AT on the distance from the heater is not a
linear function. Consequently, the temperature gradient cannot be a constant but is

AT=A(d— B +C

position-dependent. We then fit the data to a parabolic function,

, where A, B, and C are the fitting parameters. The parabolic fittings well match the
data. The local temperature gradient is the derivative of AT, thus a linear function of
the distance from the heater. Hence, the thermoreflectance measurements confirm that
the temperature gradient linearily depends on the distance from the heater.

The linear dependence of the temperature gradient can be well captured by a simple
model which treat the heat transport as 2D. A heater is located at the center of a square
area. The temperature at the edge of the square is set to be a constant, e.g. 300 K. Since
the heater is made of gold, the temperature of the heater is assumed to be uniform.
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The heater dimension is set to be 1 #M in width and 100 #M in length, similar to the
heater in real devices. The heat dissipation through air and radiation is neglected since
the measurements are performed in a high vacuum. Moreover, the gold electrodes and
sample flakes on the surface are also neglected. The reason is that according to the
similar thermoreflectance results from EN1 and EN2, the thermal transport is
dominated by the substrate. Figure 4(a) presents the temperature distribution in the
device. The isotherms are not equally spaced. Along the perpendicular bisector of the
heater, figure 4(b) plots the temperature against the distance away from the heater
denoted by d (see supplementary material). It is easy to find its similarity to the
thermoreflectance results. The temperature change drops fast as the distance from the

dr
heater increases. We then plot the magnitude of the temperature gradient, dx, in

figure 4(c). It is obvious that the temperature gradient is not a constant but shows a
linear dependence on the distance from the heater in a quite large range, roughly from
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Figure 4.Simulations and comparing with Mott's formula. (a) Temperature
distribution in  the device. A zoom-in view with the range
from — 100 pm 4 100 1m 1) and (c) plot the temperature and temperature gradient
as a function of the distance from the heater along the dash line in (a), respectively.
The dash line in (c) is a guide line to the linear range of the temperature gradient. (d)
Nernst coefficients measured in a single-layer graphene device. The square dots
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represent the Nernst coefficient calculated with the corrected temperature

T
gradient, Ny . The circular dots represent the Nernst coefficient calculated with the

AT RV
average temperature gradient £, " . The solid line shows the Nernst coefficient

deduced from the generalized Mott's formula, Nﬁm. Obviously, the corrected Nernst
coefficient agrees much better with the value from the Mott's formula. It should be
noted that the Mott's formula is not applicable in the vicinity of the Dirac point,
denoted by the colored area in (d). The reason is that, due to the charge impurities
from the substrate, there are always electron-hole puddles in real device.
Consequently, two charge-carrier bands contribute to the electrical and thermoelectric
transport when the chemical potential is tuned to the vicinity of the Dirac point.
However, the Mott's formula considers only one band which has zero density of state
at the Dirac point. Therefore, it is only applicable when the chemical potential is tuned
away from this electron-hole-puddle regime.

We should mention that the linearity of the temperature gradient is accurate in a
certain range. According to our results, the linearity of the temperature gradient
maintains well in the range between 10 #M and 40 #M a3 typical length scale for 2D
devices. This range is actually proportional to the length of the heater. In our presented
devices, the length of the heater is 100 #™. Thus, the range of linearity is roughly 10%-
40% of the heater length. If the size of the sample is larger than the above value, the
length of the heater needs to be extended to make sure that the sample fits in the range.
In figure 4(c), it is also interesting to note that the temperature gradient shows
saturation when the distance from the heater is small, as observed in figure 2(c). This
behavior can be understood that, when the distance from the heater is much smaller
than the length of the heater, the heater can be approximated to be infinite long that
the thermal transport goes back to one-dimensional.

Therefore, our systematic study provides several solutions to evaluate local
temperature gradient within the standard geometry, although it cannot be directly
detected. First, with knowing the length of the channel and the location of the
electrodes, the local temperature gradient at the position where the Nernst voltage is
measured can be calculated based on the linear dependence. Then, the Nernst
coefficient can be deduced from this corrected temperature gradient. We followed this
procedure to determine the Nernst coefficient of a single-layer graphene sample, the
one shown in figure 1(b), and compare it to the value deduced from the generalized
Mott relation. The generalized Mott formula relates the thermoelectric coefficient to

ST :
Sij = _T;e Ek: (o I):'k(r'j;)ﬂ

the conductivity tensor, , where 7i is the
conductivity tensor, £F the Fermi energy, and i, / represent the x and ¥ components
Sy =NyuB_

[23]. From the definition, the transverse thermoelectric coefficient is

Figure 4(d) shows the final results. The Nernst voltage is measured from the pair of
transverse electrode cloest to the heater. We evaluate the Nernst coefficient with the
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AT SO
average temperature gradient L~ as conventional, denoted as = "** . We also calculate

ANT
the corrected one, Nﬁ‘ , with the local temperature gradient calculated based on the

ANT
linear dependence. It is obvious that Ny has a much better agreement with the value
deduced from the generalized Mott relation. Second, as a special case, the temperature
AT
gradient in the middle of the channel equals the average temperature gradient L .
Hence, one can measure the Nernst voltage in the middle of the channel and directly
calculate the Nernst coefficient with the average temperature gradient. Last, as
aforementioned, the temperature gradient saturates towards the heater. Therefore,
linear-reponse approximation is still applicable as long as the channel locates in the
saturation range which is roughly within 10% of the heater length. In practice,
however, it requires a long heater and a short channel, which might raise difficulties
to the device fabrications.

4. Conclusion

In summary, we systematically study evaluating the temperature gradient in the
Nernst measurements of 2D materials. With thermoelectric transport and
thermoreflectance measurements, the temperature gradient on a substrate is shown to
be position-dependent, suggesting that the long-adopted linear-reponse assumption
is not accurate. Fortunately, the temperature gradient distribution can be well
described by a linear function. The experimental results are well captured by
simulations based on a simple 2D heat transport model. According to our results,
although the local temperature gradient is not a constant, the measurement of the
Nernst coefficient within the the standard geometry is still possible, as long as the
temperature gradient is corrected considering the linear dependence. Our study
provides solutions for accurate measurement of the Nernst coefficient and would be
helpful for further studies of the Nernst effect of the 2D materials.
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Figures

Figure 1. Thermoelectric measurement setup for macro- and microscopic devices. (a) For
macroscopic devices, the sample is placed in a vacuum with the ends attached to the heating
stage (Ty) and cold sink (T}), respectively. The longitudinal and transverse electrodes can
measure the Seebeck and Nernst voltages simultaneously. (b) The standard geometry is widely
used for thermoelectric measurements on microscopic devices. Thick gold wires serve as the
heater. TM1 and TM2 are two thin wires which can monitor the local temperature by four-

probe measurements.
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Figure 2. Thermoelectric measurements on multilayer graphene. (a) Optical image of the device
GNI1. The device has multiple transverse electrodes to detect the Nernst voltage at different
locations. (b) Magnetic field dependence of Nernst voltages measured by different pairs of
transverse electrodes. (c) The position dependence of the coefficient k. (d) The coefficient k

shows a very good linear dependence on the heating power in the heater.
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Figure 3. Thermoreflectance measurements on multiple devices. (a) Optical images of EN1 and
EN2. (b) Thermoreflectance mapping of device EN1 with a current passing through the heater.
From the thermoreflectance, temperature change can be determined. The colorbar shows the
temperature with blue as zero and red as 45 °C temperature difference. (c) Position dependence
of the temperature change of the gold electrodes measured in GN2 and EN1. The electrodes in
these two devices are separated lines. (d) Position dependence of the temperature change of

the gold film in EN2. The solid lines in (c) and (d) show the results of the parabolic fitting.
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Figure 4. Simulated temperature distribution and Nernst coefficient comparing to Mott's
relation. (a) and (b) plot the temperature and temperature gradient distributions, respectively,
calculated from a simple model. The dash line in (b) is a guide line to the linear range of the
temperature gradient. (c) Nernst coefficients measured in a single-layer graphene device. The
square dots represent the Nernst coefficient calculated with the corrected temperature gradient,

Ny2". The circular dots represent the Nernst coefficient calculated with the average temperature
gradient ATT, N3, The solid line shows the Nernst coefficient deduced from the generalized

Mott’s formula, Ny,°**. Obviously, the corrected Nernst coefficient agrees much better with the
value from the Mott’s formula. It should be noted that the Mott’s formula is not applicable in
the vicinity of the Dirac point, denoted by the colored area in (c). The reason is that, due to the
charge impurities, there are always electron-hole puddles in real device. Consequently, two
charge-carrier bands contribute to the electrical and thermoelectric transport when the
chemical potential is tuned to the vicinity of the Dirac point. However, the Mott’s formula
considers only one band which has zero density of state at the Dirac point. Therefore, it is only

applicable when the chemical potential is tuned away from this electron-hole-puddle regime.



