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Abstract 

The discovery of two-dimensional (2D) ferromagnets and antiferromagnets with 

topologically nontrivial electronic band structures makes the study of the Nernst effect 

in 2D materials of great importance and interest. To measure the Nernst coefficient of 

2D materials, the detection of the temperature gradient is crucial. Although the micro-

fabricated metal wires provide a simple but accurate way for temperature detection, a 

linear-response assumption that the temperature gradient is a constant is still 

necessary and has been widely used to evaluate the temperature gradient. However, 

with the existence of substrates, this assumption cannot be precise. In this study, we 

clearly show that the temperature gradient strongly depends on the distance from the 

heater by both thermoelectric transport and thermoreflectance measurements. 

Fortunately, both measurements show that the temperature gradient can be well 

described by a linear function of the distance from the heater. This linearity is further 

confirmed by comparing the measured Nernst coefficient to the value calculated from 

the generalized Mott's formula. Our results demonstrate a precise way to measure the 

Nernst coefficient of 2D materials and would be helpful for future studies. 

Keywords: Nernst coefficient, two-dimensional materials, thermoelectric transport, 

thermoreflectance 

 

1. Introduction 

Thermally driven electron transport in ferromagnet can generate a transverse voltage 

drop, called anomalous Nernst effect (ANE). Similar to anomalous Hall effect, ANE is 

closely related to the topology of the electronic band structure [1–3]. Recently, large 

ANE has been observed in ferromagnetic semimetals and chiral antiferromagnets [4–

9]. These observations not only deepen the understanding of the topological origin of 

ANE, but also trigger renewed interest in potential applications [9–11]. The transverse 

nature of the Nernst effect can decouple the electrical-thermal correlation and avoid 

the contact-resistance problem, providing a potential pathway to surpass the 

conventional thermoelectrics. While the integration of Berry curvature of occupied 

bands determines the AHE, ANE is closely related to the Berry curvature at . The 

gate tunability of  in two-dimensional (2D) materials thus provides excellent 

opportunities [12–15]. Together with the discovery of 2D ferromagnets and 

antiferromagnets with topologically nontrivial electronic band structures, the study of 

Nernst effect in 2D materials is of great importance and interest [16, 17]. 

To measure the Nernst coefficient of 2D materials, it is crucial to determine the 

temperature gradient accurately. In bulk materials, the setup sketched in figure 1(a) is 

commonly implemented [18, 19]. With the thermometers measuring the temperatures 

on the two ends of the material, Nernst measurements can be simultaneously done 

with Seebeck measurements, taking the fact that the thermal transport is one-
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dimensional that the temperature gradient is uniform along the material. The 

temperature gradient can be deduced by , where  and  are the 

temperature difference and distance between the hot and cold ends, respectively. In 

2D materials, due to the microsize of the flakes, conventional thermometers are no 

longer applicable. A standard device geometry shown in figure 1(b) was proposed and 

has been widely used [15, 20–26]. With the four-probe metal wires (TM1 and TM2 in 

figure 1(b)) prepared by microfabrication, local temperatures on the two ends of the 

flake can be accurately measured. In previous Nernst measurements, a linear-repsonse 

approximation that the thermal transport is one-dimensional and the temperature 

gradient is a constant has been conventionally adopted to evaluate the temperature 

gradient. Under this approximation, the average temperature gradient is . 

However, due to the existence of the substrate, the thermal transport can no longer be 

taken as one-dimensional as in the bulk case. Although suspending flakes can solve 

this issue, the need for highly sophisticated bridge structures greatly hampers wide 

applications.  

 
  

Figure 1. Typical measurement setup for macroscopic and microscopic devices. (a) For 

macroscopic devices, the sample is placed in vacuum with the two ends attached to 

the heating stage ( ) and cold sink (TL ), respectively. The longitudinal and transverse 

electrodes can measure the Seebeck and Nernst voltages simultaneously. (b) A 

standard geometry is widely used for thermoelectric measurements on microscopic 

devices. The thick gold wires on one end of the device serve as the heater. TM1 and 

TM2 are two thin wires which can monitor the local temperature by four-probe 

measurements. 

 

In this work, we systematically investigate the evaluation of temperature gradient in 

Nernst coefficient measurements in 2D materials. With thermoelectric transport and 

thermoreflectance measurements, the distribution of temperature gradient is clearly 

shown to be non-uniform on the substrate. The temperature gradient on the end of the 

channel close to the heater can be twice as large as the value on the far end. Fortunately, 
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both measurements demonstrate that the temperature gradient along the channel can 

be well described by a linear function of the distance from the heater. This linearity is 

further confirmed by comparing the measured Nernst coefficient to the value 

calculated from the generalized Mott's formula. Our results show that, although the 

temperature gradient is not uniform and is difficult to be probed locally, the Nernst 

coefficient can still be measured with the standard geometry by taking the linear 

dependence into the temperature gradient calculation. Our study would be helpful for 

future studies of the Nernst effect in 2D materials. 

2. Methods 

The thermoelectric measurements were performed in a Physical Properties 

Measurement System (Quantum Design, Dynacool) with the chamber pressure 

maintained below  mbar. The temperature of the device can be well controlled. 

To measure the Nernst voltage, standard lock-in technique was implemented. A 

heating current with a frequency of  was applied to the heater while the 

Nernst voltage was detected under . When heating current was applied across the 

heater, the temperature of the device on the heater side would be increased. Two 

thermometers, TM1 and TM2, were connected to the device on the two ends. The four-

probe resistance of the thermometer is very sensitive to the local temperature and 

could be used to indicate the temperature change after calibration. 

The thermoreflectance technique utilizes the fact that the refractive index and 

therefore the reflectivity  of a material depends on its temperature . A so-called 

thermoreflectance coefficient, , is defined to describe this relation: , 

where R0 is the initial reflectivity without thermal excitation. The material surface, the 

incident light wavelength, and the ambient temperature all contribute to . 

When  is known, an absolute temperature map of the sample can be obtained 

based on how the reflectivity changes. During a typical transient measurement with 

our thermoreflectance imaging system from Microsanj LLC, a voltage pulse with a 5 

V bias of duration of 5 ms and 30% duty cycle was applied to turn on the heater. It was 

synchronized with the light pulse so that the changes in the reflected light intensity 

when the device is on and off are captured by a charge-coupled (CCD) camera for 

temperature mapping at a certain delay time. The heating on the sample surface 

should have reached a steady-state by the end of the voltage pulse and a temperature 

map at this instant was acquired by averaging over hundreds of thermal excitation 

cycles. The resolution is diffraction-limited and is about 440 nm under 

the  objective and the 530 nm green light.  of is used for the Au 

electrodes to accurately extract . 

In current study, we have prepared three graphite devices (GN1–GN3), two 

WTe2 devices (WTN1, WTN2), and two bare substrates with gold wires/film (EN1, 

EN2). We have performed thermoelectric measurements in GN1, GN3, WTN1, and 

WTN2. Thermoreflectance measurements have been done in GN2, EN1, and EN2. 



3. Results and discussion 

We first present the thermoelectric transport results from graphite flakes which have 

large Nernst coefficient. The thickness of the graphite flakes is chosen to be around 10 

nm, ensuring the homogeneity of the channel. The devices are designed similar to the 

standard geometry with a heater on one end of the flake. Multiple pairs of transverse 

electrodes are prepared along the channels. Figure 2(a) is the optical image of a typical 

device, GN1. The results presented below are from this device measured at 300 K. 

Several devices have been prepared and measured. They all show similar results. We 

have also done measurements at different temperatures and got consistent results (see 

supplementary material). 

 

 

Figure 2. Thermoelectric transport results. (a) Optical image of device GN1. The device 

has multiple transverse electrodes, E1–E5 counted from the heater, to detect the Nernst 

voltage at different locations. (b) Magnetic field dependence of Nernst voltages 

measured by different pairs of transverse electrodes. (c) The position dependence of 

the coefficient . (d) The coefficient  shows a very good linear dependence on the 

heating power of the heater. 

 

 

The Nernst voltage can be expressed as , where  is the Nernst 

coefficient,  the channel width,  the external magnetic field, and  the local 

temperature gradient where the Nernst voltage is measured. In our devices, the 
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channel has been designed and fabricated to have the same width along the channel. 

In addition, considering that the graphite flake is 10 nm thick, the Nernst coefficient is 

uniform along the channel. Therefore, the measured Nernst voltage linearly depends 

on the magnetic field, , with the coefficient  proportional to 

the local temperature gradient. As a result, the coefficient  provides a tool to monitor 

the local temperature gradient. 

Figure 2(b) presents the magnetic field dependence of the Nernst voltage measured 

from different pairs of transverse electrodes. All the Nernst voltages increase linearly 

with increasing magnetic field, confirming that we are in a weak magnetic field regime 

( ). It is clearly seen that the Nernst voltage measured from the transverse 

electrodes closer to the heater has a stronger field dependence, indicating a larger 

temperature gradient. We then plot the coefficient  as a function of the distance from 

the heater  in figure 2(c). As expected, the local temperature gradient is not constant 

but quite sensitive to the distance from the heater. It increases more than 50% when 

the distance is reduced from 26.5  to 13 . As a result, the calculated Nernst 

coefficient will strongly depend on the position of the measuring electrodes if the 

conventional linear-response approximation is utilized that the temperature gradient 

is constant along the channel. We have also done the measurements under different 

heating currents. Figure 2(d) shows the coefficient  as a function of the heating 

power, i.e. the square of the heating current. The dependence shows perfect linearity, 

confirming that the voltage comes from the Joule heating of the heater. 

Since the micro-fabricated thermometers can only sense the local temperature, it seems 

that the failure of the linear-response approximation would make the estimation of the 

temperature gradient impossible. However, it is interesting to note that the 

temperature gradient shows quite good linear dependence on the distance from the 

heater (the deviation close to the heater will be discussed later). This linearity has also 

been observed in many other devices (see supplementary material). With this linear 

dependence, we can still extract the temperature gradient with enough accuracy from 

the temperature measurements with the micro-fabricated thermometers. 

To confirm this linear dependence of the temperature gradient on the distance, we 

utilize the thermoreflectance measurements to map the temperature distribution with 

a better special resolution [27–30]. Thermoreflectance imaging technique can provide 

accurate temperature readings of the Au electrodes on the sample surface. We have 

done the thermoreflectance measurements in three devices, GN2, EN1, and EN2. GN2 

is similar to GN1. Figure 3(a) shows the optical images of EN1 and EN2. EN1 has 

multiple pairs of transverse electrodes in parallel to the heater on a SiO2 substrate, 

while EN2 has a square gold film in stead. Figure 3(b) shows a typical 

thermoreflectance mapping measured in EN1 (see supplementary material). The 

temperature change  extracted from the variation of the thermoreflectance of the 

gold electrodes in GN2 and EN1 is presented in figure 3(c). Note that 

the  measured in GN2 is different from the one in EN1, due to the different heating 
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powers. In EN2,  is extracted from the variation of the thermoreflectance of the 

gold film along the middle line, shown in figure 3(d).  

 

 Zoom In Zoom Out Reset image size 

Figure 3. Thermoreflectance results. (a) Optical images of EN1 and EN2. (b) 

Thermoreflectance mapping of temperature in device EN1 with a current passing 

through the heater. From the thermoreflectance, temperature change can be 

determined. The colorbar shows the temperature difference with blue as zero and red 

as 45 °C. (c) Position dependence of the temperature change of the gold electrodes 

measured in GN2 and EN1. The electrodes in these two devices are separated lines. 

(d) Position dependence of the temperature change of the gold film in EN2. The solid 

lines in (c) and (d) show the parabolicly fittings. 

 

 

It is clearly seen that the dependence of  on the distance from the heater is not a 

linear function. Consequently, the temperature gradient cannot be a constant but is 

position-dependent. We then fit the data to a parabolic function, 

, where , , and  are the fitting parameters. The parabolic fittings well match the 

data. The local temperature gradient is the derivative of , thus a linear function of 

the distance from the heater. Hence, the thermoreflectance measurements confirm that 

the temperature gradient linearily depends on the distance from the heater. 

The linear dependence of the temperature gradient can be well captured by a simple 

model which treat the heat transport as 2D. A heater is located at the center of a square 

area. The temperature at the edge of the square is set to be a constant, e.g. 300 K. Since 

the heater is made of gold, the temperature of the heater is assumed to be uniform. 
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The heater dimension is set to be 1  in width and 100  in length, similar to the 

heater in real devices. The heat dissipation through air and radiation is neglected since 

the measurements are performed in a high vacuum. Moreover, the gold electrodes and 

sample flakes on the surface are also neglected. The reason is that according to the 

similar thermoreflectance results from EN1 and EN2, the thermal transport is 

dominated by the substrate. Figure 4(a) presents the temperature distribution in the 

device. The isotherms are not equally spaced. Along the perpendicular bisector of the 

heater, figure 4(b) plots the temperature against the distance away from the heater 

denoted by  (see supplementary material). It is easy to find its similarity to the 

thermoreflectance results. The temperature change drops fast as the distance from the 

heater increases. We then plot the magnitude of the temperature gradient, , in 

figure 4(c). It is obvious that the temperature gradient is not a constant but shows a 

linear dependence on the distance from the heater in a quite large range, roughly from 

10  to 40 . 

 

 

Figure 4. Simulations and comparing with Mott's formula. (a) Temperature 

distribution in the device. A zoom-in view with the range 

from  to  (b) and (c) plot the temperature and temperature gradient 

as a function of the distance from the heater along the dash line in (a), respectively. 

The dash line in (c) is a guide line to the linear range of the temperature gradient. (d) 

Nernst coefficients measured in a single-layer graphene device. The square dots 
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represent the Nernst coefficient calculated with the corrected temperature 

gradient, . The circular dots represent the Nernst coefficient calculated with the 

average temperature gradient , . The solid line shows the Nernst coefficient 

deduced from the generalized Mott's formula, . Obviously, the corrected Nernst 

coefficient agrees much better with the value from the Mott's formula. It should be 

noted that the Mott's formula is not applicable in the vicinity of the Dirac point, 

denoted by the colored area in (d). The reason is that, due to the charge impurities 

from the substrate, there are always electron–hole puddles in real device. 

Consequently, two charge-carrier bands contribute to the electrical and thermoelectric 

transport when the chemical potential is tuned to the vicinity of the Dirac point. 

However, the Mott's formula considers only one band which has zero density of state 

at the Dirac point. Therefore, it is only applicable when the chemical potential is tuned 

away from this electron–hole-puddle regime. 

We should mention that the linearity of the temperature gradient is accurate in a 

certain range. According to our results, the linearity of the temperature gradient 

maintains well in the range between 10  and 40 , a typical length scale for 2D 

devices. This range is actually proportional to the length of the heater. In our presented 

devices, the length of the heater is 100 . Thus, the range of linearity is roughly 10%–

40% of the heater length. If the size of the sample is larger than the above value, the 

length of the heater needs to be extended to make sure that the sample fits in the range. 

In figure 4(c), it is also interesting to note that the temperature gradient shows 

saturation when the distance from the heater is small, as observed in figure 2(c). This 

behavior can be understood that, when the distance from the heater is much smaller 

than the length of the heater, the heater can be approximated to be infinite long that 

the thermal transport goes back to one-dimensional. 

Therefore, our systematic study provides several solutions to evaluate local 

temperature gradient within the standard geometry, although it cannot be directly 

detected. First, with knowing the length of the channel and the location of the 

electrodes, the local temperature gradient at the position where the Nernst voltage is 

measured can be calculated based on the linear dependence. Then, the Nernst 

coefficient can be deduced from this corrected temperature gradient. We followed this 

procedure to determine the Nernst coefficient of a single-layer graphene sample, the 

one shown in figure 1(b), and compare it to the value deduced from the generalized 

Mott relation. The generalized Mott formula relates the thermoelectric coefficient to 

the conductivity tensor, , where  is the 

conductivity tensor,  the Fermi energy, and ,  represent the x and  components 

[23]. From the definition, the transverse thermoelectric coefficient is . 

Figure 4(d) shows the final results. The Nernst voltage is measured from the pair of 

transverse electrode cloest to the heater. We evaluate the Nernst coefficient with the 
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average temperature gradient  as conventional, denoted as . We also calculate 

the corrected one, , with the local temperature gradient calculated based on the 

linear dependence. It is obvious that  has a much better agreement with the value 

deduced from the generalized Mott relation. Second, as a special case, the temperature 

gradient in the middle of the channel equals the average temperature gradient . 

Hence, one can measure the Nernst voltage in the middle of the channel and directly 

calculate the Nernst coefficient with the average temperature gradient. Last, as 

aforementioned, the temperature gradient saturates towards the heater. Therefore, 

linear-reponse approximation is still applicable as long as the channel locates in the 

saturation range which is roughly within 10% of the heater length. In practice, 

however, it requires a long heater and a short channel, which might raise difficulties 

to the device fabrications. 

4. Conclusion 

In summary, we systematically study evaluating the temperature gradient in the 

Nernst measurements of 2D materials. With thermoelectric transport and 

thermoreflectance measurements, the temperature gradient on a substrate is shown to 

be position-dependent, suggesting that the long-adopted linear-reponse assumption 

is not accurate. Fortunately, the temperature gradient distribution can be well 

described by a linear function. The experimental results are well captured by 

simulations based on a simple 2D heat transport model. According to our results, 

although the local temperature gradient is not a constant, the measurement of the 

Nernst coefficient within the the standard geometry is still possible, as long as the 

temperature gradient is corrected considering the linear dependence. Our study 

provides solutions for accurate measurement of the Nernst coefficient and would be 

helpful for further studies of the Nernst effect of the 2D materials. 
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Figures 

 

Figure 1. Thermoelectric measurement setup for macro- and microscopic devices. (a) For 

macroscopic devices, the sample is placed in a vacuum with the ends attached to the heating 

stage (𝑇𝐻  ) and cold sink (𝑇𝐿  ), respectively. The longitudinal and transverse electrodes can 

measure the Seebeck and Nernst voltages simultaneously. (b) The standard geometry is widely 

used for thermoelectric measurements on microscopic devices. Thick gold wires serve as the 

heater. TM1 and TM2 are two thin wires which can monitor the local temperature by four-

probe measurements. 
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Figure 2. Thermoelectric measurements on multilayer graphene. (a) Optical image of the device 

GN1. The device has multiple transverse electrodes to detect the Nernst voltage at different 

locations. (b) Magnetic field dependence of Nernst voltages measured by different pairs of 

transverse electrodes. (c) The position dependence of the coefficient 𝑘. (d) The coefficient 𝑘 

shows a very good linear dependence on the heating power in the heater. 
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Figure 3. Thermoreflectance measurements on multiple devices. (a) Optical images of EN1 and 

EN2. (b) Thermoreflectance mapping of device EN1 with a current passing through the heater. 

From the thermoreflectance, temperature change can be determined. The colorbar shows the 

temperature with blue as zero and red as 45 °C temperature difference. (c) Position dependence 

of the temperature change of the gold electrodes measured in GN2 and EN1. The electrodes in 

these two devices are separated lines. (d) Position dependence of the temperature change of 

the gold film in EN2. The solid lines in (c) and (d) show the results of the parabolic fitting. 
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Figure 4. Simulated temperature distribution and Nernst coefficient comparing to Mott’s 

relation. (a) and (b) plot the temperature and temperature gradient distributions, respectively, 

calculated from a simple model. The dash line in (b) is a guide line to the linear range of the 

temperature gradient. (c) Nernst coefficients measured in a single-layer graphene device. The 

square dots represent the Nernst coefficient calculated with the corrected temperature gradient, 

𝑁  
𝑐𝑜𝑟. The circular dots represent the Nernst coefficient calculated with the average temperature 

gradient 
∆𝑇

𝐿
, 𝑁  

𝑡𝑟𝑎. The solid line shows the Nernst coefficient deduced from the generalized 

Mott’s formula, 𝑁  
𝑀𝑜𝑡𝑡. Obviously, the corrected Nernst coefficient agrees much better with the 

value from the Mott’s formula. It should be noted that the Mott’s formula is not applicable in 

the vicinity of the Dirac point, denoted by the colored area in (c). The reason is that, due to the 

charge impurities, there are always electron-hole puddles in real device. Consequently, two 

charge-carrier bands contribute to the electrical and thermoelectric transport when the 

chemical potential is tuned to the vicinity of the Dirac point. However, the Mott’s formula 

considers only one band which has zero density of state at the Dirac point. Therefore, it is only 

applicable when the chemical potential is tuned away from this electron-hole-puddle regime. 
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