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A Vibrating-String Model
for Closed-Loop Wave
Transmission and Reflection
Between the Aorta and Periphery
A tube-load model is used to reconstruct aortic pressure waveform from peripheral
pressure waveform. Yet, the reconstructed aortic pressure waveform is greatly affected by
load impedance used. In this work, a vibrating-string model for closed-loop wave
transmission and reflection between the aorta and periphery is developed to examine the
roles of all the parameters involved in aortic pressure waveform. The arterial pulsatile
wave theory gives rise to the standard one-dimensional wave equation for a vibrating
string. A vibrating-string model based on radial displacement of the arterial wall is
developed to relate aortic pressure waveform to peripheral pressure waveform, relate
load impedance to input impedance, and derive theoretical expressions for associated
clinical indices. The vibrating-string model is extended to incorporate blood velocity and
is further connected to the left ventricle (LV) to study the role of the LV in aortic pressure
waveform. The difference between the vibrating-string model and the tube-load model is
also examined. Load impedance is identified as an indispensable independent parameter
for reconstruction of aortic pressure waveform with accuracy, and its physiologically
realistic harmonic dependence can only be obtained from the measured input impedance.
The derived expressions for clinical indices interpret some clinical findings and
underscore the role of harmonics in clinical indices. Some misconceptions in the tube-
load model are revealed, including load impedance and characteristic impedance. This
work clarifies the role of harmonics-dependence of load impedance and harmonics of
aortic pressure waveform in determining clinical indices. [DOI: 10.1115/1.4062078]

Keywords: wave transmission and reflection, vibrating string, load impedance, input
impedance, harmonics-dependence, aortic pressure waveform, arterial geometries, and
properties

1 Introduction

As compared with peripheral pressure waveform, aortic pres-
sure waveform is more relevant to the left ventricle (LV) function
but is difficult and costly to measure [1,2]. Therefore, one-
dimensional (1D) models for pulsatile wave propagation in the
arterial tree have been developed to reconstruct aortic pressure
waveform from measured peripheral pressure waveform [1–7].
Generally speaking, there are two types of 1D models: distributed
1D model and tube-load model [2]. The distributed 1D model
includes the arterial tree network (e.g., a large number of arterial
segments and bifurcations), and thus involves great computational
complexity and has not been extensively used to reconstruct aortic
pressure waveform [2]. Built upon a transmission-line analogy,
the tube-load model offers great computational simplicity and has
been extensively employed in reconstructing aortic pressure wave-
form [3–7]. In the simplest tube-load model, a uniform, lossless
tube represents the arterial section between the aorta and periphery
(i.e., the measured artery site), and a load at periphery represents
the impedance from the rest arteries and termination [2].
Aortic pressure waveform is characterized by three clinical

indices: return time, reflection magnitude, and augmentation index
(AI) [2]. As compared with arterial stiffness (i.e., pulse wave
velocity (PWV)), these clinical indices have shown their inde-

pendent values, although they are all thought to be indicative of
arterial stiffness [2,5]. In essence, AI is a composite indicator of
return time and reflection magnitude. Reconstruction of aortic
pressure waveform with accuracy is important for accurate
estimates of these clinical indices. To improve accuracy in
reconstructed aortic pressure waveform, various complexities
(e.g., tapered arterial geometry, transmission loss, and different
load impedance) have been incorporated into the tube-load model
[2–7]. To date, the majority of the studies on the tube-load model
have focused on exploring different load impedance to improve
accuracy of reconstructed aortic pressure waveform, because load
impedance has significant influence on the shape of reconstructed
aortic pressure waveform [1–3,5]. In contrast, input impedance at
the aorta has been neglected in the studies on the tube-load model
[2–7]. While load impedance separates the forward waves from
the reflected waves in peripheral pressure waveform, input
impedance separates the forward waves from the reflected waves
in aortic pressure waveform. As such, there might be some
relationship between the two. It is worth noting that there are
measured data for input impedance in the literature [8], but no
studies have reported on the measured data for load impedance, to
the best knowledge of the author.
Westerhof et al. [1] examined the influence of load type in the

tube-load model on input impedance. When a pure resistor is used
as the load, the tube-load model fails to interpret the measured
relation of return time to PWV in clinical studies and matches the
measured input impedance in clinical studies. When a three-
element Windkessel model is used as the load, the tube-load
model can interpret the measured relation of the return time to
PWV and provide reasonable input impedance. However, a
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theoretical relation of load impedance to input impedance in the
tube-load model was not provided. Neither a pure resistor nor a
three-element Windkessel model as the load is capable of
reconstructing aortic pressure waveform with accuracy [4,5].
Moreover, both the distributed 1D model [1] and the tube-load
model [2–7] fall short of clarifying physical implications under-
lying the influence of the load type on input impedance and aortic
pressure waveform.
Aortic pressure waveform is a collection of harmonics (nx,

with n and x as the n-th harmonic and the fundamental frequency,
respectively,) of the heartbeat and the sum of the forward and
reflected pressure waves [1,5]. Lower-level harmonics are suffi-
cient to capture aortic pressure amplitude but are insufficient to
accurately capture aortic pressure waveform [9]. Using machine-
learning algorithms, a recent study has found that two sets of
values for the three-element Windkessel model as the load for
lower-level harmonics and higher-level harmonics, respectively,
improve accuracy in reconstructed aortic pressure waveform [5].
This manifests harmonic-dependence of load impedance and
insufficiency of one three-element windkessel model for repre-
senting this harmonic-dependence. Yet, physical implications of
harmonic-dependence of load impedance is unclear, and physio-
logically realistic harmonic-dependence of load impedance is still
unfathomable.
To reconstruct aortic pressure waveform with accuracy, it is

essential to clarify physical implications of load type and
harmonic-dependence of load impedance and examine the relation
of load impedance to input impedance. In this work, built upon the
standard 1D wave equation [10], a vibrating-string model based
on radial displacement of the arterial wall is developed to clarify
the entangled relations of the three parameters: load impedance
(ZL), input impedance (Z0), and harmonics (nx), in closed-loop
wave transmission and reflection between the aorta and periphery,
in which input impedance at the aorta is related to load impedance
at periphery. Clarification of the entangled relations reveals the
role of the three parameters in aortic pressure waveform and its
clinical indices. This vibrating-string model is further extended to
incorporate blood velocity. Given the identified role of harmonics
of aortic pressure waveform in its clinical indices, the vibrating-
string model is connected to the LV to study the LV-artery
interaction for exploring the relation of aortic pressure waveform
to the driving force on the LV and possible affecting factors of
harmonics of aortic pressure waveform. A comparison of the
vibrating-string model with the tube-load model is also conducted
to identify some misconceptions in the tube-load model for
reconstruction of aortic pressure waveform.
The rest of the paper is organized as follows: In Sec. 2, the

vibrating-string analogy for arterial pulsatile wave propagation is
presented to derive equivalent linear density and equivalent
tension from arterial properties and geometries. In Sec. 3, a
vibrating-string model based on radial wall displacement is
developed to relate aortic pressure waveform to peripheral
pressure waveform and relate load impedance to aortic input
impedance. Afterwards, return time and reflection magnitude at
the aorta is related to both input impedance and load impedance.
By relating the theoretical input impedance to the measured input
impedance in clinical studies, physiologically realistic harmonic-
dependence of load impedance is revealed. The vibrating-string
model is extended to incorporate blood velocity. By connecting
the vibrating-string model to the LV, a lumped-element mechan-
ical model for the LV-artery interaction is created to relate the
driving force on the LV to aortic pressure waveform and explore
possible affecting factors of harmonics of aortic pressure wave-
form. In Sec. 4, the difference between the tube-load model and
the vibrating-string model is examined. In Sec. 5, independent
parameters and dependent parameters are identified in closed-loop
wave transmission and reflection between the aorta and periphery,
revealing that load impedance is an indispensable independent
parameter for reconstruction of aortic pressure waveform with
accuracy, and its physiologically realistic harmonic-dependence

can only be obtained from the measured input impedance; and
input impedance is a dependent parameter and is determined by
load impedance and arterial properties and geometries. The
derived expressions for clinical indices and their calculated values,
based on the measured harmonics of aortic pressure and blood
flow waveforms in the literature [8], interpret some clinical
findings and underscore the role of harmonics of aortic pressure
waveform in determining its clinical indices. With the vibrating-
string model, physical implications of load type and harmonic-
dependence of load impedance are made evident. Some
misconceptions in the tube-load model become conspicuous.
Section 6 summarizes key insights on reconstruction of aortic
pressure waveform and its associated physical implications.

2 Vibrating-String Analogy for Pulsatile Wave

Propagation in an Artery

In this section, the theory of pulsatile wave propagation in an
artery is briefly presented to obtain the standard 1D wave equation
for pulsatile parameters in an artery [10]. By comparing this
equation with the wave equation for a vibrating string, equivalent
tension and equivalent linear density for an artery are related to
arterial properties and geometries.

2.1 Pulsatile Wave Propagation in an Artery. As shown in
Fig. 1, the arterial wall is assumed to be a thin-walled tube and has
two geometrical parameters: thickness h and radius a at diastolic
blood pressure (DBP). The arterial wall undergoes radial displace-
ment g(x, t) during a pulse cycle. Blood is assumed to be
incompressible, Newtonian fluid, and undergo laminar flow. There
are three pulsatile parameters in blood flow: radial blood velocity
w(r, x, t) and axial blood velocity u(r, x, t), and pulsatile pressure
Dp(x, t). Each pulsatile parameter is a collection of harmonics
(nx) of the heartbeat. When the wavelength of pulsatile pressure
is well below the arterial radius [11], pulsatile pressure does not
vary in the radial direction.
The governing equations of blood flow in an artery include the

continuity equation and the Navier–Stokes equations in the radial
(r-axis) and axial (x-axis) directions [11]
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where qb and l denote the blood density and viscosity, respec-
tively. The solution to Eq. (1) is the wave expressions for the nth
harmonic of w, u, and Dp [11]

Fig. 1 Schematic of the arterial wall and blood flow in it and
the associated geometries and pulsatile parameters

041001-2 / Vol. 6, NOVEMBER 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

edicaldiagnostics/article-pdf/6/4/041001/6997022/jesm
dt_006_04_041001.pdf by O

ld D
om

inion U
niversity user on 12 M

ay 2023



w ¼ �Dp0
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Dp ¼ Dp0 � eiðnxt�knxÞ (2c)

where a20 ¼ i3a2 with a ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qbnx=l

p
being the Womersley

number and b0 ¼ ianx=c ¼ ib [11]; kn¼ nx/cn is the nth wave
number; and cn is the nth wave velocity. Note that Dp0 and B are
two constant unknowns.
The governing equations for the arterial wall include its

equilibrium equation in the circumferential direction and two no-
slip conditions at the blood-wall interface, which involve the three
pulsatile parameters in blood flow [10]

0 ¼ Dp� Eh
g
a2

(3a)

wr¼a ¼ @g
@t

(3b)

ur¼a ¼ 0 (3c)

where E denotes the circumferential elasticity of the arterial wall.
Note that axial wall displacement is neglected since it has no
effect on pulsatile pressure, blood velocity, and radial wall
displacement [10]. The wave expression for the nth harmonic of
g(x,t) can be written as

g ¼ g0 � eiðnxt�knxÞ (4)

Substituting Eqs. (2) and (4) into Eq. (3) gives rise to the
following 3� 3 matrix equation with a vector of the three constant
unknowns of Dp0, B, and g0
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(5)

where F10 is a fluid-loading term, is harmonics-dependent, and
takes complex values

F10 ¼
2J1 a0ð Þ
a0J0 a0ð Þ harmonics-dependent, complexð Þ (6)

Based on Eq. (5), the nth wave velocity of the four pulsatile
parameters is

cn ¼ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F10ð Þ

p
with c0 ¼ PWV ¼

ffiffiffiffiffiffiffiffiffiffi
Eh

2qba

s
(7)

Note that c0 is the same as PWV in clinical studies and is
independent of harmonics. Given the harmonics-dependence of
F10, the wave velocity varies with harmonics.
Excited by the LV, pulsatile pressure Dp(x, t) propagates from

the aorta to periphery and experiences wave reflection

Dpðx, tÞ ¼
X
n

ðAne
�iknx þ Bne

iknxÞeinxt (8a)

where An and Bn denote the nth forward and reflected pressure
waves, respectively. Pulsatile pressure gives rise to radial wall

displacement g(x,t), blood flow rate Q(x,t), and wall shear stress
sw(x,t) [10]
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where u(x,t) is the blood velocity averaged across the lumen.
While wave reflection augments pulsatile pressure and radial wall
displacement, it reduces blood velocity and wall shear stress.

2.2 Standard One-Dimensional Wave Equation for Pulsa-
tile Wave Propagation in an Artery. For simplicity, the
subscript n for harmonics is omitted here. Comparison of the
second-order derivatives of g(x,t) with respect to t and x,
respectively, provides the following equation

@2g
@t2

¼ c2
@2g
@x2

(9)

The above equation can be further rewritten as

qbpa
2 @

2g
@t2

¼ Ehpa
2

1� F10ð Þ @
2g

@x2
(10a)

The governing equation for a vibrating string with linear density
qL and tension T is given as [12]

qL
@2g
@t2

¼ T
@2g
@x2

with c ¼
ffiffiffiffiffiffiffiffiffiffiffi
T=qL

p
wave velocityð Þ (10b)

Comparison of Eqs. (10a) and (10b) indicates that pulsatile wave
propagation in an artery is equivalent to wave propagation in a
vibrating string with cross section area pa2, density qb, and
tension T

qL ¼ qbpa
2 and T ¼ pEh

2
a 1� F10ð Þ (11)

While T is harmonics-dependent, qL is harmonics-independent.
Note that 1�F10 is harmonics-dependent at small arteries, such as
the carotid artery and the radial artery, and 1�F10 ffi1 is
harmonics-independent at the aorta, due to its large size.

3 A Vibrating-String Model for Closed-Loop Wave

Transmission and Reflection Between the Aorta and

Periphery

According to Eqs. (3a) and (8), radial wall displacement
waveform is identical to pressure waveform. Given that radial
wall displacement carries evident physical implication to wave
transmission and reflection in the context of the 1D wave
propagation, radial wall displacement is analyzed here, instead of
pulsatile pressure. By modeling the aorta-periphery section as a
uniform vibrating-string, aortic radial wall displacement wave-
form is related to peripheral radial wall displacement waveform,
and input impedance is related to load impedance. Additionally,
return time and reflection magnitude at the aorta is related to both
input impedance and load impedance. The role of harmonics of
radial wall displacement on return time and reflection magnitude
is identified. By relating the theoretical input impedance to the
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measured input impedance in clinical studies, physiological
realistic harmonics-dependence of load impedance is revealed.
The analysis on radial wall displacement is extended to blood
velocity as equivalent transverse displacement, and the input
power at the aorta for radial wall displacement and blood velocity
is derived. By connecting the vibrating-string model to the LV,
the LV-artery interaction is analyzed to relate driving force on the
LV to aortic pressure waveform.

3.1 Relation of Aortic Radial Wall Displacement Waveform
to Peripheral Radial Wall Displacement Waveform. Figure 2
shows the vibrating-string model for the aorta-periphery section,
which is connected to the rest arteries and termination. The arterial
section between x�(0, L) is treated as a uniform vibrating-string
with equivalent linear density qL and equivalent tension T. The
radial wall displacements at the aorta and at periphery are g(0, t)
and g(L, t), respectively. Part of g(L, t) further propagates into the
rest arteries and ends at termination (with unknown boundary
conditions). The nth wave velocity is complex with real part c0Re
(�1-F10) and imaginary part c0Im(�1-F10). Then, the nth wave
transmits in the positive x-axis involves wave transmission kn and
transmission loss cn

e�iknxe�cnx with kn¼ nx

c0Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�F10

p� � and cn¼
nx

c0 Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�F10

p� �
(12)

Except arterial geometries and properties (i.e., a, h, L, E, l, and
qb) and c0, g(x, t) and other parameters (i.e., load impedance, input
impedance, reflection coefficient, wave velocity, and F10)
involved in this section are all harmonics-dependent.
We derive the mathematical expression for the nth aortic radial

wall displacement gan(t)¼gn(0,t) in terms of the nth peripheral
radial wall displacement gpn(t)¼gn(L,t). The nth radial wall
displacement gn(x,t) at x-position is expressed as

gnðx, tÞ ¼ ðAne
�iknxe�cnx þ Bne

iknxecnxÞeinxt (13a)

where An and Bn denote the amplitudes of the nth forward and
reflected waves at the aorta, respectively. The nth driving force
Fn(x,t) is written as

Fnðx, tÞ ¼ �T@gn=@x ¼ qLcninxðAne
�iknxe�cnx � Bne

iknxecnxÞeinxt
(13b)

The nth mechanical impedance Zn is defined as [12]

Zn xð Þ ¼ Fn

@gn=@t
¼ qLcn

Ane
�iknxe�cnx � Bne

iknxecnxð Þ
Ane�iknxe�cnx þ Bneiknxecnxð Þ (14)

Based on Eq. (14), the nth characteristic impedance Zcn is given
as [12]

Zcn ¼ qbcnpa
2 ¼ qbc0pa

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� F10Þ

p
(15)

According to Eq. (13a), the nth peripheral radial wall displace-
ment gpn(t) becomes

gpnðtÞ ¼ gnðL, tÞ ¼ ðAne
�iknLe�cnL þ Bne

iknLecnLÞeinxt

¼ ðgpfn þ gpbnÞeinxt (16a)

where gpfn and gpbn denote the amplitudes of the nth forward and
reflected waves at periphery, respectively, and their ratio repre-
sents the nth reflection coefficient Cn at x¼ L

gpbn
gpfn

¼ Cn ¼ Xn � eihn hn < 0ð Þ (16b)

where Xn is a real number, and hn< 0, because gpfn is ahead of
gpbn. The nth load impedance ZLn is related to Cn by

ZLn ¼ Zcn
1� Cn

1þ Cn
or Cn ¼ Xne

ihn ¼ Zcn � ZLn
Zcn þ ZLn

(17)

The nth radial wall displacement at x-position can be expressed
in terms of gpfn and Cn

gnðx, tÞ ¼ gpfnðeiðknL�xÞecnðL�xÞ þ Xne
ihn e�iknðL�xÞe�cnðL�xÞÞeinxt

(18)

According to Eqs. (16b) and (18), gan(t) at the aorta can be derived
from gpn(t)

gan tð Þ ¼ gafn þ gabnð Þeinxt ¼ eiknLecnL þ Cne
�iknLe�cnL

1þ Cnð Þ gpn tð Þ (19)

Note that Eq. (19) is identical to the one in the tube-load
model [4].

3.2 Relation of Input Impedance to Load Impedance.
According to Eq. (14), the nth input impedance Z0n is related to Cn

and ZLn by

Z0n ¼ Zcn
An � Bn

An þ Bn

¼ Zcn
Zcn e2iknLe2cnL � 1ð Þ þ ZLn e2iknLe2cnL þ 1ð Þ
Zcn e2iknLe2cnL þ 1ð Þ þ ZLn e2iknLe2cnL � 1ð Þ

¼ Zcn
e2iknLe2cnL � Cn

e2iknLe2cnL þ Cn

¼ Zcn
e2cnL � Xn

2e�2cnL þ 2Xn sin 2knL� hnð Þ� 	
i

e2cnL þ Xn
2e�2cnL þ 2Xn cos 2knL� hnð Þ� 	

(20)

Equation (20) indicates dependence of wave reflection at the aorta
on wave reflection at periphery and closes the loop on wave
transmission and reflection between the aorta and periphery. In
order to relate Z0n to the corresponding measured input impedance
in clinical studies later on, the above nth theoretical input
impedance is further written as

Fig. 2 An equivalent vibrating-string model for pulsatile wave propagation in the arterial tree
(Note: dependence of some parameters on harmonics (or n) is omitted for simplicity)

041001-4 / Vol. 6, NOVEMBER 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

edicaldiagnostics/article-pdf/6/4/041001/6997022/jesm
dt_006_04_041001.pdf by O

ld D
om

inion U
niversity user on 12 M

ay 2023



Z0n ¼ Zcn
An � Bn

An þ Bn
¼ ZcnGn

�1e�i/n with

Z0n
Zcn

¼ An � Bn

An þ Bn
¼ Gn

�1e�i/n

(21)

where Gn
�1e�i/n is defined as the nth normalized input imped-

ance. The phase between the driving force and the radial wall
velocity for the nth harmonic becomes

phasen ¼ a tan
2Xn sin 2knL� hnð Þ� 	
e2cnL � Xn

2e�2cnL
¼ �/n (22)

As will be seen later on, since /n< 0 for the first three harmonics
(n¼ 1, 2, 3), the driving force is ahead of the radial wall velocity
for these harmonics.
Based on Eq. (20), the nth reflection coefficient and load

impedance are related to the nth normalized input impedance by

Cn ¼ Xn � eihn ¼ e2iknLe2cnL
Gne

i/n � 1

Gnei/n þ 1
(23a)

ZLn ¼ Zcn
Gn

�1e�i/n e2iknLe2cnL þ 1ð Þ þ 1� e2iknLe2cnLð Þ
Gn

�1e�i/n 1� e2iknLe2cnLð Þ þ e2iknLe2cnL þ 1ð Þ (23b)

Accordingly, the nth reflection coefficient can be obtained from
the nth normalized input impedance and wave velocity (i.e., kn
and cn), while the nth load impedance can be obtained from the
nth normalized input impedance and wave velocity, as well as the
nth characteristic impedance.

3.3 Return Time and Reflection Magnitude and Recon-
struction of Aortic Radial Wall Displacement Waveform.
Based on Eq. (18), the nth radial wall displacement at the aorta is

ganðtÞ ¼ gpfne
iknLecnLð1þ Xne

ihn e�2iknLe�2cnLÞeinxt (24)

By combining Eqs. (20), (23), and (24), the nth reflection
coefficient C0n at the aorta is

C0n ¼ X0ne
iun ¼ gabn

gafn
¼ Xne

ihn e�2iknLe�2cnL ¼ Gne
i/n � 1

Gnei/n þ 1

¼ Gn
2 � 1þ 2Gn sin/ni

Gn
2 þ 2Gn cos/n þ 1

(25)

The reflection magnitude X0n and return time Dtn of the nth
reflected wave at the aorta are

X0n ¼ Gne
i/n � 1

Gnei/n þ 1

����
���� (26a)

Dtn ¼ 2L

c0Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F10

p� �� hn
nx

¼
�a tan

2Gn sin/n

Gn
2 � 1

nx

qn < 0 and fn < 0ð Þ
(26b)

Accordingly, return time varies with harmonics and is affected by
the phase of reflection coefficient at periphery, and can be
obtained from the input impedance.
Based on Eq. (25), Z0n provides reflection magnitude and phase

delay for the nth forward and reflected waves, but it does not
contain the harmonics (i.e., amplitude and phases of the first ten
harmonics) of the forward waves. In this regard, aortic radial wall
displacement waveform carries more physiological information
than the input impedance, as illustrated in the expression for aortic
radial wall displacement waveform

ga tð Þ ¼ gaf tð Þ þ gab tð Þ ¼
X
n

2Gne
i/n

Gnei/n þ 1
gafne

inxt

¼
X
n

1þ Xne
ihn e�2iknLe�2cnL

� �
gpfne

iknLecnLeinxt (27)

As such, the input impedance and the harmonics of the forward
wave need to be treated as two independent parameters for
determining aortic radial wall displacement waveform. Alterna-
tively, the normalized input impedance and aortic radial wall
displacement waveform can be treated as two independent
parameters to determine the harmonics of the forward waves.
Based on Eq. (25), reflection amplitude Xwhole for the whole

aortic radial wall displacement waveform is

Xwhole ¼ gab tð Þ
gaf tð Þ ¼

X
n

Gne
i/n � 1

Gnei/n þ 1
gafne

inxt

X
n

gafne
inxt

¼

X
n

Xne
ihn e�cnLe�iknLgpfne

inxt

X
n

gpfne
iknLecnLeinxt

(28)

Evidently, harmonics of the forward waveform affects reflection
amplitude for the whole waveform and AI, which is defined as the
ratio of augmented pressure to pulsatile pressure (see Fig. 7).
Based on Eq. (19), aortic radial wall displacement waveform

can be reconstructed from peripheral radial wall displacement
waveform, without knowing harmonics of the forward waveform

ga tð Þ ¼
X
n

eiknLecnL þ Cne
�iknLe�cnL

1þ Cnð Þ gpn tð Þ

¼
X
n

2Gne
i/n eiknLecnL

Gnei/n þ 1þ e2iknLe2cnL Gnei/n � 1ð Þ gpn tð Þ (29)

The known values of kn and cn and L are insufficient to reconstruct
aortic radial wall displacement waveform from its peripheral
counterpart. Either normalized input impedance or reflection
coefficient at periphery is needed. Harmonics-dependence of
normalized input impedance (or harmonics-dependence of reflec-
tion coefficient at periphery) translates to 20 unknown values in
Eq. (29) if only the first ten harmonics are used.

3.4 Relation of the Theoretical Input Impedance to the
Measured Input Impedance in Clinical Studies. In clinical
studies, the nth characteristic impedance is defined as [8]

Zcn meas ¼ Dpn
Qn

¼ qbc0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F10

p
pa2

(30)

The subscript meas is used for all the parameters used in clinical
studies. The nth measured input impedance is expressed as

Z0n�meas ¼Dpn
Qn

¼ Zcn�a�meas

An þBn

An �Bn
¼ qbc0

pa2

� �
aorta

Gne
i/n

with
AnþBn

An�Bn
¼Gne

i/n (31)

Based on Eqs. (3a) and (8), Gn and /n in Eq. (31) are identical to
those in Eq. (21). Comparison of Eq. (20) and Eq. (31) leads to the
following expression

Z0n ¼ Zcn

qbcn
pa2

� �
aorta

Z0n�meas

(32)
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3.5 Blood Velocity and Input Power at the Aorta. As
shown in Eq. (8), the same pulsatile pressure causes radial wall
displacement and blood velocity simultaneously, with both trans-
mitting power from the aorta to periphery. Here, the above-
detailed vibrating-string model is extended to incorporate blood
velocity. In fact, g(x, t) in Eq. (9) can be replaced by Dp(x, t) and u
(x, t)

@2Dp
@t2

¼ c2
@2Dp
@x2

and
@2u

@t2
¼ c2

@2u

@x2
(33)

Accordingly, pulsatile pressure, radial wall displacement, and
blood velocity are all analogous to transverse displacement in a
vibrating string and propagate along the axial direction with the
same wave velocity and characteristic impedance. While radial
wall displacement is associated with elastic energy transmission
through the arterial wall, blood velocity is associated with kinetic
energy transmission and mass transport through blood flow.
Based on Eq. (33), blood velocity is equivalent to transverse

displacement in the vibrating-string model. Then, blood acceler-
ation @u/@t is the velocity and the driving force is �T@u/@x. The
blood velocity and its driving force for the nth harmonic are
written in terms of the nth radial wall displacement in Eq. (13a)

un x, tð Þ ¼ 2cn
a

Ane
�iknxe�cnx þ Bne

iknxecnx
� �

einxt (34a)

Fn�u x, tð Þ ¼ �T@un=@x

¼ qLcninx
2cn
a

Ane
�iknxe�cnx � Bne

iknxecnx
� �

einxt (34b)

As transverse displacement, blood velocity is the sum of the
forward waves and the reflected waves in Eq. (34a). The
mechanical impedance and input impedance for blood velocity are
the same as those for radial wall displacement, as expressed in
Eqs. (14) and (32). Comparison of Eqs. (13b) and (34b) shows
that the driving force for blood velocity is 2cn/a times larger than
that for radial wall displacement.
Based on the vibrating-string models for radial wall displace-

ment and blood velocity, the nth input power Pn-g at the aorta for
the arterial wall and the nth input power Pn-u at the aorta for blood
flow are given by

Pn�g ¼ 1

2

@gn
@t

� �2

Z0n ¼ 1

2

2nxgafn
Gnei/n þ 1


 �2
qbcnpa

2Gne
i/n (35a)

Pn�u ¼ 1

2

@un
@t

� �2

Z0n ¼ 1

2

2nxgafn
Gnei/n þ 1


 �2
4pqbc

3
nGne

i/n ¼ 4c2n
a2

Pn�g

(35b)

The total nth input power at the aorta is the sum of Pn-g and Pn-u.
Given Pn-u �Pn-g, blood flow is the dominant carrier of power
transmission. Although the amplitudes of the harmonics at the
aorta drop greatly with higher n-level [1,8,10], harmonics-
dependent input power might indicate that the contribution of
higher n-level harmonics to the input power is non-negligible.
Table 1 summarizes the vibrating-string models for radial wall
displacement and blood velocity and their comparison with the
tube-load model, as described later on.

3.6 Left Ventricle-Artery Interaction for Relating Driving
Force on the Left Ventricle to Aortic Pressure Waveform. The
LV excites pulsatile waves in the arterial tree and is expected to
play a role in harmonics of aortic pressure waveform. As shown in
Fig. 3, the LV is modeled as a second-order dynamic system and
is connected to the aortic end of the arterial tree. The arterial tree
interferes with the response of the LV to its driving force. As to
the LV, the arterial tree and termination are condensed to the input
impedance, and become a spring and a damper in parallel, with Im
(Z0n) and Re(Z0n) as the spring stiffness and the damping
coefficient for the nth harmonic, respectively [12]. While Im(Z0n)
leads to no energy loss to the LV and is a spring, Re(Z0n) causes
energy absorption by the arterial tree and is a damper. In the
lumped-element model for the LV-artery interaction, the input is
the driving force on the LV, and the output is radial wall
displacement and blood velocity. The driving forces Fg(t) and
Fu(t) on the LV for radial wall displacement and blood velocity,
respectively, can be calculated from radial wall displacement

Fg tð Þ¼
X
n

inx Dþ i Mnx� K

nx

� �
þRe Z0nð Þþ iIm Z0nð Þ

� 

gan tð Þ

(36a)

Fu tð Þ ¼
X
n

inx Dþ i Mnx� K

nx

� �
þ Re Z0nð Þ þ i Im Z0nð Þ

� 


2c0
a

gan tð Þ
(36b)

Table 1 Comparison of the vibrating-string models for radial wall displacement and blood velocity and the tube-load model

Vibrating-string model Tube-load model

Arterial wall Blood flow Arterial wallþ blood flow

Governing equation @2g
@t2

¼ c2
@2g
@x2

@2u

@t2
¼ c2

@2u

@x2
� @Q

@x
¼ 2pa3

Eh

@Dp
@t

� @Dp
@x

¼ qb
pa2

@Q

@t
þ 8l
pa4

Q

Transverse displacement g u
ð
Q � dt

Velocity @g/@t @u/@t Q ¼ u � pa2
Driving force �T@g/@x �T@u/@x Dp

characteristic impedance qbcnpa
2 qbcnpa

2 qbc0
pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F10

p

Input impedance qbcnpa
2G�1

n e�i/n qbcnpa
2G�1

n e�i/n qbc0
pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F10

p Gne
i/n

Input power 1

2

2nxgafn
Gnei/n þ 1


 �2
qbcnpa

2Gne
i/n

1

2

2nxgafn
Gnei/n þ 1


 �2
4pqbc

3
nGne

i/n
1

2

2gafn
Gnei/n þ 1


 �2
4pqbc

3
n

1� F10

Gne
i/n
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where

gan tð Þ ¼ gafne
ixt þ gabne

ixt Z0n ¼
qbc0ð Þ2aorta
Z0n�meas

(37)

The input impedance Z0n can be obtained from the measured input
impedance. Note that radial wall displacement waveform is
identical to pulsatile pressure waveform, and Fg(t) and Fu(t) carry
the same waveform, with Fu(t) �Fg(t).

4 Comparison of the Tube-Load Model With the

Vibrating-String Model

The difference between the uniform tube-load model and the
uniform vibrating-string model is examined here.

4.1 Difference in Governing Equations. For simplicity, the
subscript n for harmonics is omitted here. The uniform tube-load
model is based on two simplified governing equations for blood
flow in an artery: the continuity equation and the axial blood flow
equation [2]

� @Q

@x
¼ @A

@t
¼ C

@Dp
@t

(38a)

� @Dp
@x

¼ L
@Q

@t
þ 2sw

a
(38b)

where Q is blood flow rate; A¼ p(aþg)2 is cross section area of
the lumen; C and L denote arterial compliance and arterial
inductance, respectively [6]

C ¼ 2pa3

Eh
, L ¼ qb

pa2
(39a)

Note that Eq. (3a) is used in the derivation of C. By assuming
g(x, t)¼ 0, wall shear stress is a function of Q [6]

sw ¼ aR

2
� Q with R ¼ 8l

pa4
(39b)

Then, substituting Eq. (39b) into Eq. (38b) leads to

� @Dp
@x

¼ L
@Q

@t
þ RQ (40)

Combination of Eqs. (38a) and (40) gives rise to

@2Dp
@t2

þ R

L

@Dp
@t

¼ c2tube
@2Dp
@x2

with ctube ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= LCð Þ

q
¼ c0

(41)

According to Eq. (40), pulsatile wave propagation in an artery is
analogous to a transmission line: Q and Dp are equivalent to
current and voltage, respectively. Due to the assumption on
g(x, t)¼ 0, wave velocity c0 does not vary with harmonics, and
damping coefficient R/L is a constant.
Here, we derive the governing equation Eq. (10) for the

vibrating-string model from Eq. (38b). By substituting Eqs. (8c)
and (8d) into Eq. (38b), we can obtain

@2Dp
@t2

þ inxF10

1� F10ð Þ
@Dp
@t

¼ c2tube
@2Dp
@x2

(42a)

@2Dp
@t2

¼ Eh 1� F10ð Þ
2qba

@2Dp
@x2

(42b)

When g(x, t) 6¼ 0, wall shear stress is harmonics-dependent and is
not linearly proportional to Q. Therefore, damping coefficient is
not a constant in Eq. (42a). As shown in Eq. (42b), the
contribution of wall shear stress to the wave propagation can be
included into the x-derivative of pulsatile pressure, leading to a
complex, harmonics-dependent wave velocity.

4.2 Difference in Characteristic Impedance, Load Imped-
ance, and Input Impedance. In the tube-load model, the
characteristic impedance is defined as [2,3]

Zc�tube ¼ Dp
Q

¼
ffiffiffiffi
L

C

r
¼ qb � c0

pa2
(43)

This definition is the same as characteristic impedance, Eq. (30),
in clinical studies, except that F10 is omitted. This characteristic
impedance is harmonics-independent. Two types of load imped-
ance used in the tube-load model are a pure resistor and a three-
element Windkessel model [3,4]

ZL�tube ¼ RL ðpure resistorÞ (44a)

ZLn�tube¼Zc�tubeþ RL

1þnxCRLi
three-elementWindkesselmodelð Þ

(44b)

While a pure resistor gives rise to harmonics-independent load
impedance, a three-element Windkessel model stipulates
harmonics-dependence of load impedance. Consequently, reflec-
tion coefficient at x¼ L is written as

Ctube ¼ RL � Zc�tube

RL þ Zc�tube

(45a)

Fig. 3 A lumped-element mechanical model for the LV-artery interaction: the LV is
modeled as a second-order dynamic system with mass M, spring stiffness K, and
damping coefficient D; and the arterial tree and termination is modeled as a spring
(spring stiffness: Im(Z0n)) and a damper (damping coefficient: Re(Z0n)) in parallel
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Cn�tube ¼ RL

2Zc�tube þ RL þ 2Zc�tubenxCRLi
¼ Xn�tubee

ihn�tube

(45b)

As to a pure resistor, there is no phase shift between the forward
and reflected waves at x¼ L. In contrast, a three-element Wind-
kessel model gives rise to the phase shift of the nth reflected wave
relative to the nth forward wave

hn�tube ¼ �a tan
2Zc�tubenxRLC

2Zc�tube þ RL
qn�tube < 0ð Þ (46)

Input impedance is written as

Z0n�tube ¼ Zc�tube

An þ Bn

An � Bn
¼ Zc�tube

e2iknLe2cnL þ Cn�tube

e2iknLe2cnL � Cn�tube

¼ Zc�tubeGne
i/n with

An þ Bn

An � Bn
¼ Gne

i/n

(47)

Thus, a pure resistor and a three-element Windkessel model
cannot be equal to the nth normalized input impedance

e2iknLe2cnL þ Cn�tube

e2iknLe2cnL � Cn�tube

6¼ Gne
i/n (48)

Table 2 summarizes the difference between the tube-load model
with a three-element Windkessel model as the load and the
vibrating-string model. Since a pure resistor load is totally
physiologically unrealistic (see Sec. 5), it is not included in the
table.

4.3 Difference in Input Power at the Aorta and Driving
Force on the Left Ventricle. Based on the tube-load model, the
input power at the aorta is calculated as

Pn�tube ¼ 1

2
DpnQn ¼ 1

2

2gafn
Gnei/n þ 1


 �2
4pqbc

3
n

1� F10

Gne
i/n (49)

Note that the measured input impedance and harmonics-
dependent wall shear stress are incorporated in this equation.
Equation (49) does not distinguish the input power between the

arterial wall and blood flow and is not related to (nx)2, as shown
in Eq. (35b). This input power from the tube-load model is
included in Table 1 for comparison. Based on the tube-load
model, the driving force Ftube(t) on the LV for blood velocity
becomes [12]

Ftube tð Þ ¼
X
n

Dþ i Mnx� K

nx

� �
þ Re Z0n�measð Þ pa2ð Þ2

�

þ i Im Z0n�measð Þ pa2ð Þ2
o 2c0

a
gafne

inxt � gabne
inxt

� �
(50)

5 Discussion

In the tube-load model [2–7], the distributed 1D model [1], and
related clinical studies on the CV system [1], Eq. (38) is the
theoretical basis for defining the parameters that relate wave
transmission and reflection to arterial properties and geometries.
Pulsatile pressure and blood flow rate are defined as driving force
and velocity, respectively, as shown in Table 2. Then, the ratio of
pulsatile pressure versus blood flow rate (without wave reflection)
becomes characteristic impedance. Yet, since Eq. (38) does not
comply with the standard 1D wave equation, these definitions are
not consistent with their counterparts in the context of 1D wave
propagation, and their physical implications to wave transmission
and reflection are then obscured. Built on the standard 1D wave
equation, the vibrating-string model for the arterial tree allows
defining of all the parameters consistent with their well-
established physical implications in the acoustical field [12],
which can be directly adopted for studying wave transmission and
reflection in the aorta-periphery section.
Other than the difference in definitions of the parameters and

their physical implications between the tube-load model and the
vibrating-string model, the vibrating-string model is further
utilized to derive theoretical relation of load impedance to input
impedance, which reveals that 1) input impedance is a dependent
parameter and is determined by load impedance and arterial
properties and geometries and 2) the use of a three-element
Windkessel model as the load stipulates harmonics-dependence of
load impedance, which is inconsistent with the measured input

Table 2 Comparison between the uniform vibrating-string model for radial wall displacement and the uniform tube-load model
with a three-element Windkessel model as the load

Tube-load model Vibrating-string model

Driving force Dpn Fn ¼ �Tn@gn=@x

Velocity Qn @gn=@t

Arterial compliance
C ¼ 2pa3

Eh 1=Tn ¼ pEh
2

að1� F10Þ

 ��1

Arterial inductance L ¼ qb
pa2

cn ¼ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� F10Þ

p
Wave velocity ctube ¼ c0 cn ¼ c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� F10Þ

p
Damping coefficient 8l

qba2
inxF10

ð1� F10Þ
Characteristic impedance Zc�tube ¼ qb � c0

pa2
Zcn ¼ qbc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� F10Þ

p
pa2

Load impedance
ZLn�tube ¼ Zc�tube þ RL

1þ jnxC ZLn ¼ Zcn
Gn

�1e�i/n ðe2iknLe2cnL þ 1Þ þ ð1� e2iknLe2cnLÞ
Gn

�1e�i/n ð1� e2iknLe2cnLÞ þ ðe2iknLe2cnL þ 1Þ
Reflection coefficient

Cn�tube ¼ RL

2Zc�tube þ RL þ 2Zc�tubenxRLCi
Cn ¼ e2iknLe2cnL

Gne
i/n � 1

Gnei/n þ 1

Input impedance
Z0n�tube ¼ Zc�tube

An þ Bn

An � Bn

¼ Zc�tube

e2iknLe2cnL þ Ctube

e2iknLe2cnL � Ctube

6¼ Zca�tubeGne
i/n

Z0n ¼ Zcn
An � Bn

An þ Bn

¼ Zcn
e2iknLe2cnL � Cn

e2iknLe2cnL þ Cn
¼ ZcnGn

�1e�i/n
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impedance. Moreover, theoretical expressions for return time and
reflection magnitude at each harmonic are derived in terms of
input impedance and can be calculated based on the measured
input impedance.

5.1 Who Are Independent Parameters and Dependent
Parameters in Closed-Loop Wave Transmission and Reflec-
tion Between the Aorta to Periphery? Since the aorta is at the
start of the arterial tree, it is commonly assumed that aortic
pressure waveform is the input and peripheral pressure waveform
is the output in the tube-load and distributed 1D models [1–7]. As
shown in Eq. (25), since aortic reflected pressure waveform is
affected by all the downstream parameters, it should not be
included in the input. As shown in Fig. 4, by following the wave
transmission path, the input and the output and the role of all the
parameters become clear. The input is aortic forward waveform
gf(0,t,nx), which is not affected by the downstream parameters
(Note that the LV is excluded here.), and is a collection of
harmonics (nx) of the heartbeat. This forward waveform transmits
toward periphery, with transmission characteristics (i.e., Zc, c, and
L) determined by arterial properties and geometries. At periphery,
the forward waveform gf(L,t,nx) is reflected with load impedance
ZL. The reflected waveform gb(L,t,nx) transmits toward the aorta
with the same transmission characteristics, and becomes the
reflected waveform at the aorta gb(0,t,nx), which is the output.
Given its influence on small arteries, the fluid-loading term F10

should not be neglected in the aorta-periphery section, and thus
harmonics-dependence of wave velocity and characteristic imped-
ance needs to be included in reconstruction of aortic pressure
waveform.
Although input impedance Z0 can be calculated from pulsatile

parameters at the aorta using Eq. (31), it is determined by
transmission characteristics and load impedance, as expressed in
Eq. (20). Thus, Z0 is not an independent parameter. Then, four
parameters: Zc, c, L, and ZL, are needed to reconstruct aortic
pressure waveform from peripheral pressure waveform with
accurate representation of the harmonics of aortic pressure wave-
form. In clinical studies, aortic pressure waveform and blood flow
waveform are measured to separate aortic forward waveform from
aortic reflected waveform and also calculate Z0. Certainly,
measurement at the aorta involves high cost and great technical
complexity. In contrast, measurement of peripheral pressure
waveform can be easily achieved using a tactile sensor or a
photoplethysmographic (PPG) sensor [2–7]. However, measure-
ment of blood flow waveform at peripheral arteries becomes
challenging, due to their small size. As such, it is difficult, if not
impossible, to measure ZL. As analyzed here, the measured Z0 can
be utilized to obtain ZL.
Following the wave transmission path leads to closed-loop

wave transmission and reflection between the aorta and periphery:

wave transmission starts and ends at the aorta, and wave reflection
at the aorta is a combination of round-trip wave transmission and
wave reflection at periphery. This closed-loop wave transmission
and reflection reveals that the input and the output are both at the
aorta and why input impedance is not an independent parameter
but depends on load impedance and transmission characteristics.
This is important, in the sense that the reflected waveform at the
aorta is not an independent parameter, but depends on the forward
waveform and load impedance, and transmission characteristics.
Then, three clinical indices at the aorta are indicative of load
impedance and transmission characteristics, as well as harmonics
of the forward waveform. As compared with following the whole
waveform along the arterial tree, closed-loop wave transmission
and reflection serves better for revealing the entangled relations of
input impedance, load impedance, and harmonics in the aorta-
periphery section. As seen in Sec. 3, relating input impedance to
load impedance allows the calculation of return time and reflection
magnitude at the aorta using input impedance, since the latter
manifests round-trip wave transmission and wave reflection at
periphery.

5.2 Characteristic Impedance and Load Impedance Ver-
sus Tapered Arterial Geometry. In the context of 1D wave
propagation, characteristic impedance has defined the ratio of
driving force versus velocity [12]. In this regard, the definition of
characteristic impedance in clinical studies and in the tube-load
model is not correct, in the sense that pulsatile pressure is not
driving force, and blood flow rate is not velocity. The arterial tree
contains multiple arterial segments with a relatively sudden radius
change at segment connects [1,2,9]. Furthermore, an arterial
segment contains a tapered geometry (slowly reduced radius from
the entrance to the exit) [1,2,7,9]. Here, the effect of the arterial
geometrical change on wave reflection is examined via character-
istic impedance and load impedance.
It is well established that any change in characteristic imped-

ance (or impedance mismatch) along the wave transmission path
causes wave reflection [12]. If one arterial segment with artery
radius a1 and wave velocity c1 is followed by another arterial
segment with a2 and c2. The change in characteristic impedance
causes wave reflection to happen at the segment connect, with the
following reflection coefficient [12]

C ¼ Zc1 � Zc2
Zc1 þ Zc2

¼
1� c2pa22

c1pa21

1þ c2pa22
c1pa21

(51)

As far as there is a reduction in arterial radius at a location, there
exists impedance mismatch and then wave reflection occurs [12].

Fig. 4 The vibrating-string model for closed-loop wave transmission and reflection in the arterial section between the
aorta and periphery: the forward waveform gf(0,t,nx) at the aorta as the input transmits to periphery, is reflected at
periphery, and transmits back as the reflected waveform gb(0,t,nx) at the aorta as the output, with independent
parameters in bold font and dependent parameters in unbold font
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This equation explains wave reflection taking place everywhere
along the length of a tapered arterial segment, which is observed
in the tapered tube-load and the distributed 1D models [1]. Thus,
the forward and reflected waves measured at an artery site need to
be treated as the compound forward and reflected waves, which
result from wave reflection at multiple sites in the arterial tree [1].
Load impedance at periphery ZL results from 1) impedance

mismatch between the aorta-periphery section and rest arteries
and 2) boundary conditions at termination [13]. Neither a pure
resistor nor a three-element Windkessel model is capable of
capturing these two factors. In the context of the 1D wave
propagation, Re(ZL) presents the part of energy transmitted to rest
arteries and Im(ZL) represents the part of energy reflected back to
the aorta-periphery section [12]. A pure resistor as ZL indicates no
wave reflection at periphery, which is physiologically unrealistic.
Furthermore, this pure resistor gives rise to harmonic-
independence of ZL. Combination of Eqs. (44a) and (48) explains
the oscillation of input impedance with harmonics, which is
observed in the tube-load model with a pure resistor as the load
[1]. The Windkessel model as ZL allows wave reflection and
harmonics-dependence. However, the dependence of ZL on
harmonics is stipulated by the values of the three elements, as
shown in Eq. (44b). It is well known in the acoustical field that a
tapered geometry causes the dependence of boundary conditions
on harmonics [12]. Owing to mathematical complexity, an explicit
expression on harmonics-dependence of boundary conditions for a
tapered geometry is unavailable. Anatomical complexity in the
arterial tree exacerbates difficulty in attaining harmonic-
dependence of boundary conditions at termination. However, As
shown in Fig. 4, harmonics-dependence of ZL can be obtained
from the measured Z0 in clinical studies.

5.3 Measured Input Impedance, Return Time, Reflection
Magnitude, and Augmentation Index Versus Harmonics.
Based on Fig. 4, input impedance is determined by load
impedance and arterial properties and geometries in the aorta-
periphery section. Although harmonics-dependence of wave
velocity and characteristic impedance in the aorta-periphery
section is clear, harmonics-dependence of load impedance is
unknown, as explained in Sec. 5.2. Thus, how the input impedance
varies with harmonics can only be obtained from the measured
values. As an example, the measured harmonics of pulsatile
pressure and blood flow waveform at the aorta in the literature [8],
as shown in Figs. 5(a) and 5(b), are used to calculate the measured
input impedance based on Eq. (31). The variation of the measured
input impedance with harmonics is plotted in Fig. 5(c).
Harmonics-dependence of load impedance can then be estimated
from Eq. (23b).

It is found in clinical studies that the measured return time of
the reflected waveform gab(t) is longer than 2L/c0 [1]. As shown
in Eq. (26b), the complex value of ZL leads to a phase delay and
thus extra time delay. Since it is found that return time depends
little on c0 in clinical studies [1], it might indicate that high
arterial stiffness leads to a higher hn at periphery. Because ZL and
round-trip wave transmission are embedded in Z0, input imped-
ance Z0 is allowed to estimate reflection magnitude and return
time. As shown in Fig. 6(a), reflection magnitude varies with
harmonics, and reflection magnitude for the whole waveform is
not the average of the ten harmonics. As expressed in Eq. (28),
reflection magnitude of the whole waveform is determined by not
only ZL (or Z0) but also harmonics of the forward waveform. As
shown in Fig. 6(b), due to harmonics-dependence of phase delay
at periphery and wave velocity, the reflected waves of different
harmonics arrive at the aorta at different return times. As shown in
Fig. 7, harmonics-dependence of return time makes it elusive to
identify the foot of the reflected waveform [1,14]. Defined as the
ratio of augmented pressure to pulsatile pressure, AP/PP [1,14],
AI varies greatly with the location of this foot. As a composite
indicator of return time and reflection magnitude, AI also
manifests harmonics of aortic pressure waveform. Since return

time, reflection magnitude, and AI are all affected by harmonics
of aortic pressure waveform, the reconstructed aortic pressure
waveform needs to capture accurate harmonics information for
accurate estimates of these clinical indices. Given the dependence
of return time and reflection magnitude on arterial stiffness (i.e.,
c0), arterial radius, as well as harmonics, it is no surprise that AI
carries independent clinical values, as compared with arterial
stiffness [2,5]. Taken together, the definitions of return time for
the whole waveform and AI are inconsistent with harmonics-
dependence of return time, and reflection magnitude for the whole
waveform and AI carry harmonics information of aortic pressure
waveform. Given the dominance of the 1st harmonic in aortic
pressure waveform, reflection magnitude and return time of the
1st harmonic might serve better as clinical indices for arterial
properties and geometries and wave reflection at periphery, and
harmonics of the whole waveform might serve as a clinical index
indicative of the LV function, instead of AI.

5.4 The Left Ventricle-Artery Interaction for Driving
Force on the Left Ventricle and Harmonics of Aortic Pressure
Waveform. To calculate the driving force on the LV based on the
lumped-element model, input impedance defined in the vibrating-
string model is calculated from the measured input impedance, as
shown in Fig. 8. Based on the harmonics of aortic pressure
waveform in Fig. 5(a), the two driving forces on the LV is

Fig. 5 Harmonics of: (a) pulsatile pressure, (b) blood velocity
at the aorta, and (c) measured input impedance varies with
harmonics in Ref. [8]
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calculated from Eq. (36a) and Eq. (36b) and are plotted in Figs. 9(a)
and 9(b). The value of M for the LV is chosen to be 0.3 kg (close to
the mass of the heart), and the value of K is chosen such that the
LV operates at resonance at the heartbeat. It is assumed that the
LV operates with high efficiency so that the value of D is very
small. Figure 10(a) compares the phases of blood velocity, radial
wall displacement (or pulsatile pressure), and Fu(t). It is interest-
ing to note that Fu(t) is similar to the waveform of an ECG signal
to some extent [15] and is also ahead of blood velocity, similar to
an ECG signal. Figure 9(c) shows the calculated driving force
based on Eq. (50), which is completely different from the
waveform of an ECG signal. As shown in Fig. 10(b), this driving

force is in phase with blood velocity. As such, the tube-load model
might not be suitable for studying the LV-artery interaction for
relating aortic pressure waveform to the LV function.
As shown in Fig. 3, the LV and the arterial tree and its

termination all play a role in determining harmonics of ga(t). It is
well established in the musical instruments field [16] that the
excitation source (e.g., a soft hammer versus a rigid hammer), Zc
in the vibrating string, and ZL at the other end of the string will
affect the interaction between the excitation source and the
vibrating string, and consequently the generated harmonic ampli-
tude percentages of ga(t) at different n-levels. With the excitation
source at one end, the generated harmonics of ga(t) usually contain
a decreasing trend of amplitude percentages with higher n-levels
[16], as shown in Fig. 5(a). Given the role of the LV in
determining harmonics of aortic pressure waveform and the role
of harmonics in AI, it is no surprise that AI is found to manifest
not only arterial properties and geometries but also the LV
function [17].
The model for the LV-artery interaction in Fig. 3 is a rather

simplified model to relate the LV to the arterial tree. Similar to
hammer-string interaction in a piano [16], it is exceedingly
intricate to capture the LV-artery interaction for predicting
harmonics of aortic pressure waveform. Generally speaking, low
Zc increases the amplitudes of higher harmonics, while high Zc
increases the amplitudes of lower harmonics [18]. Higher
harmonics lead to higher amplitudes of wall shear stress, as
compared with lower harmonics [10]. This may explain the
importance of accurate representation of higher harmonics in
reconstructed aortic pressure waveform, which dictates the peak
wall stress in the LV, with the latter being a fundamental
biophysical driver of myocardial hypertrophy [5].

5.5 Machine-Learning Techniques for Reconstruction of
Aortic Pressure Waveform. In the studies of the tube-load
model, machine learning techniques have focused on optimizing
the values of load impedance to improve accuracy in reconstructed
aortic pressure waveform from its peripheral counterpart, to the
neglect of physical implications of load impedance and without
examining the input impedance [2–7]. This explains why a pure
resistor is used as the load [4] and a generic pole–zero model for
the load [3] is considered to carry no physiological meaning. Since
a pure resistor is inconsistent with wave reflection, it is impossible
to extract physiological meaning from the obtained results based
on it [1,4]. This work shows that the essence of these machining-
learning techniques is about chasing physiologically realistic
harmonic-dependence of load impedance [3,5]. Yet, given that at
least 20 unknown values (if only the first ten harmonics are
utilized.) are needed for accurate representation of harmonic-
dependence of load impedance, there are a great many combina-
tions of the 20 values to match the reconstructed one with the
measured one. Taken together, the results derived from

Fig. 6 Harmonics-dependence of: (a) return time and (b)
reflection magnitude, based on the measured input impedance
in Fig. 5(c)

Fig. 7 Definition of AI and difficulty in identifying the foot of the
backward waveform, due to harmonics-dependence of return
time (P: pulsatile pressure waveform (Ref. [8]), Pf: forward
pressure waveform, and Pb: reflected pressure waveform)

Fig. 8 Input impedance in the vibrating-string model based on
the measured input impedance in Fig. 5(c)
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application of machine-learning techniques to reconstruction of
aortic pressure waveform do not carry much physiological mean-
ing unless the application is consistent with the associated theories
and physical implications.

5.6 Study Limitations. In this work, the aorta-periphery
section is treated as a uniform vibrating string with the same
arterial geometries and properties. This treatment neglects the
following three factors: 1) tapered arterial geometry and nonuni-
form arterial properties in an arterial segment, 2) different
geometries and properties among multiple arterial segments, and 3)

bifurcations. These neglected factors are identical to those for the
uniform tube-load model and those for the calculation of PWV in
clinical studies [1–3]. However, as compared with the tube-load
model and PWV in clinical studies, harmonics-dependent wall
shear stress is included in this work, given that it causes non-
negligible dependence of wave transmission and reflection on
harmonics and thus greatly affects aortic pressure waveform.
By neglecting the tapered arterial geometry and nonuniform

arterial properties in an arterial segment, repeated wave reflection
and continuously-changing wave velocity along the length of an
arterial segment are omitted, as discussed in Sec. 5.2. By neglecting
different geometries and properties among multiple arterial seg-
ments, all the arterial segments retain the same wave velocity and
the same characteristic impedance, and no wave reflection occurs at
segment connects. By neglecting bifurcations, their complicate effect
on wave reflection is omitted. It is worth mentioning that bifurcations
have recently been modeled as springs at the ends of an arterial
segment, and spring coefficients are adjusted for matching pulsatile
pressure waveforms in the segment [19]. It is unknown whether the
effect of these neglected factors on wave reflection is harmonics-
dependent. By combining Eqs. (32) and (20), the measured input
impedance is related to load impedance (or reflection coefficient) by

qbcn
pa2

� �
aorta

Z0n meas

¼ Zcn e2iknLe2cnL � 1ð Þ þ ZLn e2iknLe2cnL þ 1ð Þ
Zcn e2iknLe2cnL þ 1ð Þ þ ZLn e2iknLe2cnL � 1ð Þ

¼ e2iknLe2cnL � Cn

e2iknLe2cnL þ Cn
(52)

Fig. 10 Normalized driving force on the LV and normalized
blood velocity and radial wall displacement at the aorta based
on: (a) the lumped-element mechanical model for the LV-artery
interaction and (b) the tube-load model

Fig. 9 Driving force on the LV based on the vibrating-string
models for: (a) radial wall displacement and (b) blood velocity
and based on the tube-load model (Note: M50.3 kg, K5M�x2,
and D5�KM/Q with Q5100 are used for calculation)
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Since the measured input impedance captures the effect of the
neglected factors on wave reflection and load impedance, the
effect of the neglected factors on wave reflection is factored in
load impedance in Eq. (52). In clinical studies, pulsatile pressure
waveform is treated as one forward waveform and one reflected
waveform for extracting clinical measures, without considering
repeated wave reflections at multiple sites. The uniform vibrating-
string model also neglects repeated wave reflection and provides
one forward waveform and one reflected waveform. Finally,
arterial properties and geometries in the vibrating-string model
need to take equivalent values for accounting for their variations
among multiple arterial segments.

6 Conclusion

In light of reconstruction of aortic pressure waveform with
accuracy for its clinical indices, a vibrating-string model is
developed to examine the roles of input impedance, load
impedance, and harmonics in aortic pressure waveform and its
three clinical indices. On the one hand, the revealed role of the
three parameters in the clinical indices identifies the importance of
physiologically realistic load impedance in reconstruction of
aortic pressure waveform with accuracy. On the other hand, this
work reveals physical implications and physiological implications
of the three clinical indices and identifies a lack of consideration
of harmonics-dependence of wave transmission and reflection in
their definitions. Harmonics of aortic pressure waveform is
suggested as a clinical index indicative of the LV function, instead
of AI.
This work provides a theoretical guidance for reconstruction of

aortic pressure waveform and interpretation of aortic pressure
waveform for assessing arterial health and the LV function. The
key insights shed by this work on reconstruction of aortic pressure
waveform and its associated physical implications are summarized
here:

(1) Load impedance must be complex, with the real part
representing energy transmitted and the imaginary part
representing energy reflected back. Complex load imped-
ance translates to non-zero phase angle of reflection
coefficient, which represents the phase delay of the
reflected wave relative to the forward wave at periphery
and affects return time at the aorta.

(2) A three-element Windkessel model in the tube-load model
stipulates harmonic-dependence of load impedance, which
is inconsistent with physiological realities.

(3) Input impedance is a dependent parameter, and is deter-
mined by load impedance and arterial geometries and
properties. Physiologically realistic harmonic-dependence
of load impedance can only be obtained from the measured
input impedance, instead of machine-learning techniques.
Return time at the aorta can be estimated from input
impedance, due to the dependence of input impedance on
load impedance.

(4) To capture the LV-artery interaction for aortic pressure
waveform, the arterial tree and its termination need to be
treated with the real part of input impedance as a damper
and the imaginary part of input impedance as a spring.
Together with arterial properties and geometries, the LV
plays a role in determining harmonics of aortic pressure
waveform.

(5) Fluid loading causes harmonic-dependence of wave veloc-
ity and characteristic impedance. Accordingly, each har-
monic has its own return time and reflection magnitude at
the aorta. Meanwhile, harmonics of the forward pressure
waveform at the aorta are non-uniform. As such, harmonics
of aortic pressure waveform play an important role in
determining the three clinical measures: return time,
reflection magnitude, and AI. AI carries much more

physiological information than arterial stiffness, and is
indicative of the LV function.

Based on this work, it might be more practical to develop a
better understanding of harmonic-dependence of input impedance
and harmonics of the forward pressure waveform at the aorta for
different groups of population, based on the measured blood flow
rate and the measured aortic pressure waveform, prior to
reconstruction of aortic pressure waveform from peripheral
counterpart for estimates of its clinical measures using a 1D
model.
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