
Article

A GPU-Accelerated Particle Advection Methodology for 3D
Lagrangian Coherent Structures in High-Speed Turbulent
Boundary Layers
Christian Lagares 1,† and Guillermo Araya 2,†*

1 Doctoral Candidate and Research Assistant
2 Wayne and Julie Fagan Endowed Associate Professor, Mechanical Engineering
* Correspondence: araya@mailaps.org
† HPC and Visualization Lab, Dept. of Mechanical Eng., University of Puerto Rico at Mayaguez, PR 00681, USA.
‡ Computational Turbulence and Visualization Lab, Klesse College of Engineering and Integrated Design,

University of Texas at San Antonio, USA

Abstract: In this work, we introduce a scalable and efficient GPU-accelerated methodology for
volumetric particle advection and finite-time Lyapunov exponent (FTLE) calculation, focusing on the
analysis of Lagrangian Coherent Structures (LCS) in large-scale Direct Numerical Simulation (DNS)
datasets across incompressible, supersonic, and hypersonic flow regimes. LCS play a significant role
in turbulent boundary layer analysis, and our proposed methodology offers valuable insights into
their behavior in various flow conditions. Our novel owning-cell locator method enables efficient,
constant-time cell search, and the algorithm draws inspiration from classical search algorithms and
modern multi-level approaches in numerical linear algebra. The proposed method is implemented
for both multi-core CPUs and Nvidia GPUs, demonstrating strong scaling up to 32,768 CPU cores
and up to 62 Nvidia V100 GPUs. By decoupling particle advection from other problems, we achieve
modularity and extensibility, resulting in consistent parallel efficiency across different architectures.
Our methodology was applied to calculate and visualize the FTLE on four turbulent boundary layers
at different Reynolds and Mach numbers, revealing that coherent structures grow more isotropic
proportional to the Mach number, and their inclination angle varies along the streamwise direction.
We also observed increased anisotropy and FTLE organization at lower Reynolds numbers, with
structures retaining coherency along both spanwise and streamwise directions. Additionally, we
demonstrated the impact of lower temporal frequency sampling by upscaling with an efficient linear
upsampler, preserving general trends with only 10% of the required storage. In summary, we present
a particle search scheme for particle advection workloads in the context of visualizing LCS via FTLE
that exhibits strong scaling performance and efficiency at scale. Our proposed algorithm is applicable
across various domains requiring efficient search algorithms in large structured domains. While this
manuscript focuses on the methodology and its application to LCS, an in-depth study of the physics
and compressibility effects in LCS candidates will be explored in a future publication.

Keywords: LCS, GPU Accelerated, Particle Advection, Distributed Memory Algorithms, High Speed
Turbulent Boundary Layers, DNS

1. Introduction

The study of coherency in seemingly random velocity fields of fluid flow has long 1

been of applied and theoretical interest to a broad community. This statement is essentially 2

what the study of turbulence seeks to unravel. High-speed turbulence, relevant in both 3

civilian and military domains, presents a set of unique challenges for both experimental and 4

computational approaches. That being said, the advent of ever-more-powerful computers 5

has made high-fidelity numerical simulations on non-trivial domains feasible. However, 6

once high-quality data is available, efficient tooling must be leveraged to gather knowledge 7

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

2 of 35

from the vast volumes of data usually generated by numerical simulations. This volume of 8

data is highly dependent on the type of simulation chosen for the computational analysis of 9

fluid flow. Broadly speaking, computational fluid dynamics (CFD) can often be divided into 10

three categories: Reynolds-averaged Navier-Stokes (RANS), Large-Eddy Simulations (LES) 11

and Direct Numerical Simulation (DNS), in order of increasing fidelity and computational 12

cost. Of the three, DNS does not invoke any turbulence models; however, other models 13

can be applied such as type of fluid being used (Newtonian or Non-Newtonian) or the 14

molecular viscosity model used in compressible flows, for instance. Once DNS data is 15

available, the study of coherent structures within the computational flow fields can be 16

approached from either an Eulerian or Lagrangian perspective. Both provide different, yet 17

valuable, insights. The Eulerian methods study a control volume with particles entering 18

and exiting the volume. Lagrangian methods follow the individual particles across a given 19

domain. This seemingly innocuous change of reference has rippling implications on the 20

objectivity and nature of the achievable results. Eulerian methodologies are often employed 21

in CFD post-processing due to the ease of implementation, high-performance achievable 22

and intuitive results. Eulerian approaches to coherent structure detection and visualization 23

include methods such as Q-criterion ([1]), λ2 ([2]), two-point correlations ([3,4]), among 24

others. However, one notable limitation of Eulerian methods is their lack of objectivity. The 25

concept of Lagrangian coherent structures was first introduced by [5] and [6] as an alternate 26

path to both detect and describe structures in turbulent flows. More recently, [7] describes 27

LCS as manifolds formed by mass-less particle trajectories organizing the flow into different 28

regions. Given the formulation by [5], LCS provides a mathematical framework that is: 29

frame independent, theoretically insensitive to mesh resolution (with practical caveats) 30

and enables the Lagrangian domain to exceed the baseline resolution by increasing particle 31

counts. The formulation is based on the finite-time, Lyapunov exponent (FTLE) which will 32

be introduced in more detail later in the manuscript. [8] extended the theoretical concept of 33

material diffusion barriers to compressible flows but limited the applications to flow fields 34

with density variations at relatively low speeds. Many applications for LCS have been put 35

forth by [7], [9] and [10]. The work presented herein is extensible to the myriad of fields 36

where both LCS and particle advection are applicable. For instance, the LCS framework 37

has been used in biological domains by [11], [12], [13]; in geophysical domains by [14], [15]; 38

and ecological flows by [16], [17], among others. 39

Computationally speaking, Eulerian approaches lend themselves to highly efficient im- 40

plementations due to regular memory access patterns and predictability. This regularity 41

enables shared performance portability frontends capable of targeting different backends 42

with similar performance characteristics, as pointed out by [18] and [19]. However, La- 43

grangian approaches require one to reason about lower level characteristics for particular 44

hardware sets to achieve reasonable performance levels. Furthermore, extensive re-use of 45

memory buffers is critical to avoiding incurring allocation bottlenecks. What’s more, avoid- 46

ing codebase divergence while exploiting algorithmic advantages is also critical. Given 47

the relevance of LCS to many fields, multiple implementations have been put forth in the 48

literature. Many implementations are focused on planar LCS (i.e., 2D LCS). For instance, 49

[10] presented a tool based on the popular Matlab environment and aptly named “LCS 50

Tool". LCS Tool has been used in the literature as an off-the-shelf, accessible package (see 51

[9] for a relevant example). LCS Tool is written in Matlab and is limited to a single node 52

using shared memory parallelism within the limited number of Matlab’s internally parallel 53

functions with large memory requirements. At the time, other implementations based on 54

the finite-element method were also proposed such as the work by [20] where the Finite- 55

Time Lyapunov Exponent was calculated using a discontinous Galerkin formulation. Finite 56

Element Method (FEM) formulations can benefit from high-quality, adaptive mesh refine- 57

ment which led [21] to propose an approach for efficient refinement of complex meshes for 58

LCS calculations. [22] proposed a GPU-based LCS calculation scheme for smooth-particle 59

hydrodynamics (SPH) data. Their approach, although efficient, was limited to a single 60

node and lacked an efficient CPU-based counterpart. They reported speedups ranging 61

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

3 of 35

from 33× to 67× for the GPU implementation. Moreover, due to the hardware described in 62

[22], an efficient CPU implementation should have closed that gap to between 14× (for a 63

typical memory bound code such as a particle advection workload) and 51× (for a purely 64

compute-bound code), a 1.31× to 2.35× smaller gap. Typically, many scientific codes are 65

mostly memory bound which suggest that a large gap still exists for an implementation 66

which is efficient and scalable across both CPUs and GPUs. 67

In this work, we present a scalable, efficient volumetric particle advection1 and FTLE 68

calculation code capable of calculating dynamic 3D FTLEs for large-scale DNS datasets. We 69

will highlight implementation details for both the CPU and GPU backends of our code, 70

where both backends share common ground and where the implementations diverged 71

for performance reasons. As part of the implementation, we present a novel owning-cell 72

locator method capable of efficient, constant-time cell search. We also study four DNS 73

cases performed over flat plates at the incompressible, supersonic and hypersonic regimes 74

by [23–25] to infer compressibility effects and Reynolds number dependencies on LCS. 75

Although an in-depth discussion of the physics in the presented results is beyond the 76

scope of the present work, we present a brief discussion of the results to highlight the 77

practical applications of our work. A more in-depth discussion of the flow physics behind 78

Lagrangian coherent structures in turbulent boundary layers will be explored in a future 79

publication elsewhere. 80

2. Problem Overview and Algorithmic Details 81

2.1. Finite-Time Time Lyapunov Exponent 82

2.1.1. Overview - FTLE 83

The manifolds formed by the particle trajectories in a fluid flow are commonly referred 84

to as Lagrangian Coherent Structure (LCS). Candidate manifolds for these LCS can be 85

approximated discretely by various methodologies including leveraging the finite-time 86

Lyapunov exponent (FTLE) or it’s counterpart, the finite-size Lyapunov exponent (FSLE). 87

Both methodologies evaluate the deformation of a particle field but differ in their approach. 88

The FSLE quantifies the amount of time it takes a pair of particles to reach a given finite 89

distance between them. On the other hand, the FTLE integrates over a fixed, finite time 90

regardless of the distance between neighboring particles. [26] made an assesment of 91

both methods and pointed out advantages that FTLE has over FSLE. Nonetheless, [27] 92

highlighted in their comparison that, with proper calibration, FTLE and FSLE can lead to 93

similar results. In this work, we extend prior work on 2D FTLE ([9]) to a generalized, 3D 94

representation. [7] pointed out that full, 3D LCS based on particle advection and finite- 95

differences can be computationally challenging. This, however, assumes non-favorable 96

scaling for both particle advection and subsequent calculations. The movement of a particle 97

that is released at a specific time t0 and location x0 over a certain period can be described 98

using the flow map, given the velocity field. The finite-time Lyapunov exponent (FTLE) is 99

defined as: 100

FTLEτ(x, t) =
1
|τ| log

(√
λmax

(
Ct

t0
(x)
))

(1)

where λmax denotes the maximum eigenvalue and Ct
t0
(x) is the right Cauchy-Green (CG)

strain tensor at a given spatial coordinate x. The right Cauchy-Green strain tensor is a
mathematical quantity used to describe the deformation of a continuous body. It is defined
as the product of the deformation gradient tensor and its transpose. The right CG tensor
left-multiplies the transpose whereas the left CG tensor does the opposite. Furthermore,
the right CG tensor is symmetric. It can be expressed as,

Ci,j =
∂xt

k

∂xt0
i

∂xt
k

∂xt0
j

, (2)

1 For the purpose of this work, we refer to mass-less particles simply as particles.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

4 of 35

where derivatives are taken as the change in the particle’s position (i.e., deformation) with 101

respect to it’s original position at time t0. Physically, the right Cauchy-Green strain tensor 102

describes the way in which a body has been distorted or strained. It is a measure of the 103

change in length of material lines or fibers within the body due to deformation. Specifically, 104

the eigenvalues of the right Cauchy-Green strain tensor represent the squared stretches 105

along the principal material directions, while the eigenvectors represent the directions of 106

those stretches. It is demonstrable that the right Cauchy-Green strain tensor is a symmetric 107

positive definite tensor implying real and positive eigenvalues. 108

High FTLE values highlight candidates for either attracting or repelling manifolds. If the 109

particle’s trajectory is integrated forward in time, the structure is a repelling manifold. 110

Conversely, backwards-in-time integration yields attracting barriers. Readers are referred 111

to [6] for more details. 112

2.1.2. Algorithmic Details - Particle Advection 113

The efficient numerical treatment of particle advection is a relatively complex one as 114

the critical path varies depending on many factors. We can simplify the problem and divide 115

it into 5 major components: 116

• Data Input/Output (Reading flow fields and writing particle coordinates to disk). 117

• Flow field interpolation (interpolate between simulation flow fields to “improve" 118

temporal resolution for the integration scheme). 119

• Cell Locator (finding where a particle is w.r.t. the original computational domain). 120

• Flow field velocity interpolation (calculating particle velocity based on its location 121

within a cell). 122

• Particle movements (advancing particles forward, or backward, in time). 123

Each component stresses a different segment of a computational platform. For instance, I/O 124

is very network-sensitive (in the case of a parallel-file system) whereas velocity interpolation 125

is very sensitive to both memory bandwidth and computational throughput (the precise 126

balance is very dependent on the dataset due to cache effects). The cell locator portion 127

is very interesting since it has been a major limiter in the past for many codes. Many 128

authors have offloaded the cell locator to the CPU with a KD-Tree. Initially, we followed 129

this approach, but it proved a major limiting factor for scalability. Moreover, porting a 130

KD-Tree to the GPU was not the optimal choice. [28] implemented a hardware accelerated 131

solution leveraging Nvidia’s custom Bounding Volume Heirarchy structure in RTX GPUs. 132

This solution, although efficient, is not vendor nor hardware independent. For our solution, 133

we drew inspiration from multi-grid methods in numerical linear algebra and efficient, 134

tree-traversal schemes. We apply a queue-less, multi-Level, Best-First Search (QL-MLBFS). 135

Let’s expand on each term, the multi-level nature of our approach draws inspiration from 136

multi-grid methods by introducing multiple coarser meshes. These coarser meshes are used 137

to narrow down the location of a particle by “refining" only in the vicinity of a particle’s 138

location. The coarsening factor is defined as blog2(N/2)c which enables efficient power- 139

of-two mesh coarsening. However, GPUs have scarce memory pools and lack device-side 140

global memory allocations. Therefore, we provide the illusion of mesh coarsening through 141

strided memory views. On the device, each thread has a “view" of the global mesh focused 142

on the current coarsening level and local neighborhood. To highlight the benefits of this 143

multi-level approach, a mesh with dimensions 990× 250× 210 (52M nodes) will have a 144

coarsening factor of 64 which leads to a top-level mesh of 14× 2× 2 (56 nodes). This is 145

a factor of 928, 125×. The best-first search is directly inspired from the traditional BFS 146

methodology as illustrated by [29]. However, we exploit the structured spatial structure to 147

remove the typical priority queue in the original BFS method. Coupling the two approaches 148

and leveraging knowledge of the underlying structured mesh enables highly efficient cell 149

locators. For a 52M node mesh, only 440 node evaluations are required, a factor of 118, 125× 150

less than brute-force search. A naïve octree would require ∼512 comparisons in the worst 151

case (∼64 in the best case). We achieve comparable efficiency for a relatively large domain 152

with improved efficiency for smaller meshes. One very notable improvement is the lack of 153

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

5 of 35

auxiliary data structures to hold the multiple levels. We highlight the pseudocode for our 154

approach in Algorithm 1. 155

We can describe the scaling behavior of the proposed algorithm using the big-Oh notation. 156

Big-Oh is a mathematical notation used to describe the asymptotic behavior of a function. 157

It is often used in computer science and mathematics to describe the performance of 158

algorithms and the complexity of problems. In general, big-Oh notation provides a way 159

to compare the growth rates of different functions and to determine which functions 160

grow faster than others as the input size increases. The scalable search algorithm for 161

identifying the owning cell improves from the naïve O(NpN3
c) 3D search algorithm to a 162

O(Np log8(Nc)). Given that Np (particle count) and Nc (cell count) are uncoupled, we can 163

theoretically approach the limit for Np >> log8(Nc) which suggests a linear scaling in the 164

number of particles. This is highly favorable considering that the naïve algorithm is O(N4) 165

for O(Np) ≈ O(Nc). 166

Algorithm 1 Multi-Level, Best-First Search (ML-BFS)

xp, yp, zp ← Particle Coordinates
Nx, Ny, Nz ← Logical Dimensions
N ← min

(
Nx, Ny, Nz

)
G ← blog2(N/2)c

∆c, ∆b ← Very Large Float (for example, 1038)
i, ib, j, jb, k, kb ← G

while i < Nx − G do
while j < Ny − G do

while k < Nz − G do

∆c ←
√(

xi,j,k − xp

)2
+
(

yi,j,k − yp

)2
+
(

zi,j,k − zp

)2

if ∆c < ∆b then
∆b, ib, jb, kb ← ∆c, i, j, k

end if
k← k + G/2

end while
j← j + G/2

end while
i← i + G/2

end while

while G > 1 do
i, j, k← ib − G, jb − G, kb − G
while ib − G ≤ i < ib + G do

while jb − G ≤ j < jb + G do
while kb − G ≤ k < kb + G do

∆c ←
√(

xi,j,k − xp

)2
+
(

yi,j,k − yp

)2
+
(

zi,j,k − zp

)2

if ∆c < ∆b then
∆b, ib, jb, kb ← ∆c, i, j, k

end if
k← k + G/2

end while
j← j + G/2

end while
i← i + G/2

end while
G ← bG/2c

end while

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

6 of 35

Once the owning cell is identified, the particle’s velocity at an arbitrary natural coordinate
n inside the owning cell is approximated using a trilinear interpolation scheme as follows:

Un = c0 + c1∆x + c2∆y + c3∆z + c4∆x∆y + c5∆y∆z + c6∆x∆z + c7∆x∆y∆z, (3)

where the equation coefficients can be expressed in terms of the natural coordinates of
the owning cell where each dimension varies from [0, 1] (denoted by the subscripts, xyz,
below). Hence, the coefficients are succinctly expressed as:

c0 = U000

c1 = U100 −U000

c2 = U010 −U000

c3 = U001 −U000

c4 = U110 −U010 −U100 + U000

c5 = U011 −U001 −U010 + U000

c6 = U101 −U001 −U100 + U000

c7 = U111 −U011 −U101 −U110 + U100 + U001 + U010 −U000

This is essentially a vector-matrix product followed by a vector dot product; roughly 44 167

floating point operations on 3-14 data elements depending on cell coordinate/velocity 168

re-use and counting the normalization of the cell coordinate. Arithmetic intensity is defined 169

as a measure of floating-point operations (FLOPs) performed with respect to the amount of 170

memory accesses (Bytes) needed to support those operations. The calculated variability of 171

arithmetic intensity (i.e., 0.78-3.67 FLOPs per Bytes) highlights the significant uncertainty 172

possible depending on the flow fields’ characteristic since many clustered particles could 173

lead to a very high degree of data reuse whereas a sparse placing of particles leads to 174

low data reuse. For clustered particles, efficient memory access can lead to a mostly 175

compute-bound interpolation kernel whereas divergent particle trajectories can lead to a 176

memory-bound kernel. This shows the vast complexities found in scientific computing 177

workloads that are rarely described by simplistic categories and labels. On the contrary, the 178

owning cell search algorithm is almost exclusively a memory bound kernel. As such, the 179

end to end kernel can morph from being memory bandwidth starved to being compute 180

bound and vice versa. 181

To avoid excessive floating point rounding errors when performing the interpolation step on 182

small cells, we project all cells to a natural coordinate system regardless of their orientation 183

or their volume. This ensures all interpolation is performed in the [0, 1] range (note the 184

subindex for each term highlighting their natural coordinate within the unit cube) where 185

floating point precision is greatest and limits excessive errors that would be introduced 186

on small cells with the multiple calculations involved in the trilinear interpolation step 187

({∆x, ∆y, ∆z | ∆x ∈ [0, 1] & ∆y ∈ [0, 1] & ∆z ∈ [0, 1]}). To ensure stability when a particle is 188

near (or at) the border of a skewed cell, Un is clipped to within the minimum and maximum 189

velocities in the owning cell. 190

With the purpose of reducing memory requirements, we opted for an explicit Euler integra- 191

tion scheme. Further, to reduce storage requirements, we provide the ability to interpolate 192

between available flow fields. The interpolation scheme uses just two flow fields. We 193

tested higher order interpolators which yielded minimal quality enhancements over a 194

first order interpolation scheme. This is very likely due to multiple factors. Firstly, the 195

time step is sufficiently small so as to minimize the errors introduced by a first order 196

approximation. We typically apply a time step roughly 4− 50× smaller than the DNS time 197

step depending on the computational cost and the desired quality. Secondly, the benefits 198

of interpolation are mainly found in the temporal upsampling potential of reducing the 199

data loading requirements. If a low resolution input is used, a higher order scheme can 200

introduce unphysical behavior between time steps. Further, one cannot simply guarantee 201

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

7 of 35

that a generic high-order temporal interpolation scheme is bounded and conservative. 202

Using a small enough time step and a linear scheme alleviates many of the concerns usually 203

associated to these and also provides computational advantages due to reductions in data 204

movements and higher arithmetic intensity relative to data transfers to/from the device. 205

The interpolation scheme invokes the following formulation: 206

u(t) =
u1 − u0

t1 − t0

(
t− t1 + t0

2

)
+

u1 + u0

2
. (4)

The interpolation scheme assumes a linear variation between two time steps. A second 207

order approach implementation mostly generated similar results. By assuming linearity, 208

we guarantee the results are bounded even when strong variations occur in a highly 209

unsteady fluid flow. These strong variations are ubiquitous in high-speed, wall-bounded 210

flow. Although more sophisticated interpolation and integration schemes exist, a simple 211

yet highly efficient implementation has thus far yielded excellent results with strong 212

computational scaling potential. 213

2.1.3. Algorithmic Details - Right Cauchy-Green Tensor & Eigenvalue Problem 214

One can quickly realize that the right Cauchy-Green (CG) strain tensor would require 215

9× more memory than the displacement field if the underlying software solution were 216

to store each entry for every particle. This would quickly grow infeasible as the scaling 217

would be linear in the number of particles with a large proportionality constant. Ideally, 218

we would want the proportionality constant to be as close to unity as possible to ensure 219

large-scale execution on limited memory platforms such as the Nvidia Tesla P100 GPU 220

which is limited to 16 GBs. Furthermore, beyond merely an enabling quality, it is also a 221

scalability requirement allowing more particles on a single compute element. Our approach 222

was to fuse the calculation of the right CG tensor and the eigenvalue calculation phase of 223

the FTLE calculation. This requires only 36 to 72 bytes (depending on single or double 224

precision requirements) of private memory per thread of execution, which often exceeds 225

100,000 threads of execution on a GPU and it is just exceeding 50 to 60 on modern CPUs. For 226

context, a V100 at maximum occupancy would require just 5.625-11.25 MiBs independent of 227

the number of particles (2.3 to 4.6 KB on a 64 core CPU). This is in stark contrast to the 15-30 228

GBs that one of the large datasets presented herein (at large Reynolds numbers) would 229

require (2538× higher memory requirements). Once the right CG tensor is calculated on 230

an execution thread, the execution path proceeds to calculating the maximum eigenvalue 231

for the given strain tensor. It is at this point where our CPU and GPU implementations 232

diverge, library function calls are much more complicated on GPUs which motivated our 233

custom implementation of a relatively simple power iteration method [30]. The power 234

iteration method is an iterative algorithm for finding the dominant eigenvalue and the 235

corresponding eigenvector of a symmetric positive definite matrix of real numbers. The 236

steps can be summarized as: 237

1. Choose an initial guess for the eigenvector x0 (preferably with unit length). 238

2. Compute the product of the matrix A and the initial guess vector x0 to get a new 239

vector x1. 240

3. Normalize the new vector x1 to obtain a new approximation for the eigenvector with 241

unit length. 242

4. Compute the ratio of the norm of the new approximation of the eigenvector and the 243

norm of the previous approximation. If the ratio is less than a specified tolerance, then 244

terminate the iteration and return the current approximation of the eigenvector as the 245

dominant eigenvector. Otherwise, continue to the next step. 246

5. Set the current approximation of the eigenvector to be the new approximation, and 247

repeat steps 2-4 until the desired accuracy is achieved. 248

The power iteration method works well for symmetric positive definite matrices because 249

these matrices have real and positive eigenvalues, and the eigenvectors corresponding to 250

the dominant eigenvalues converge to a single eigenvector regardless of the initial guess. 251

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

8 of 35

The rate of convergence of the power iteration method depends on the ratio of the largest 252

eigenvalue to the second-largest eigenvalue, and can be slow if the ratio is close to one. The 253

power iteration is currently sufficient for our needs and computational budget; however, 254

we are aware of more intricate methodologies that could be implemented if required, such 255

as the QR algorithm. 256

2.2. Direct Numerical Simulation: The Testbed Cases 257

This section describes the principal aspects of the testbed cases used for validation 258

and assessment of the proposed particle advection methodology. [23–25] provide founda- 259

tional background of presently employed DNS databased in terms of governing equations, 260

boundary conditions, initialization, mesh suitability, resolution check and validation. We 261

are resolving spatially-developing turbulent boundary layers (SDTBL) over flat plates (or 262

zero-pressure gradient flow) and different flow regimes (incompressible, supersonic and 263

hypersonic). Particularly for incompressible SDTBLs, two very different Reynolds numbers 264

are considered, being the high-Reynolds case about four times larger than its low-Reynolds 265

case counterpart. The purpose is to examine the LCS code’s performance under distinct 266

numbers of mesh points, while somehow assessing Reynolds dependency on Lagrangian 267

coherent structures. The employed DNS database in the present article were obtained via 268

the inlet generation methodology proposed by [31]. The Dynamic Multiscale Approach 269

(DMA) was recently extended to compressible SDTBL in [25] and [24] for DNS and LES 270

approaches, respectively. It is a modified version of the rescaling-recycling technique by 271

[32]. Extensions to compressible boundary layers have also been proposed by [33], [34] and 272

[35]. However, the present inflow generation technique does not use empirical correlations 273

to connect the inlet friction velocity to the recycle friction velocity, as later described. A 274

schematic of the supersonic computational domain is shown in fig. 1 where iso-contours 275

of instantaneous static normalized temperature can be observed. The core idea of the 276

rescaling-recycling method is to extract “on the fly” the flow solution (mean and fluctuat- 277

ing components of the velocity, temperature and pressure fields for compressible flows) 278

from a downstream plane (called “recycle"), to apply scaling laws (transformation), and 279

to re-inject the transformed profiles at the inlet plane, as seen in figure 1. The purpose of 280

implementing scaling laws to the flow solution is to reduce the streamwise in-homogeneity 281

of the flow. The Reynolds decomposition is implemented for instantaneous parameters, i.e. 282

a time-averaged plus a fluctuating component: 283

ui(x, t) = Ui(x, y) + u′i(x, t) (5)

t(x, t) = T(x, y) + t′(x, t) (6)

p(x, t) = P(x, y) + p′(x, t) (7)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

9 of 35

Figure 1. Boundary layer schematic for the supersonic case. Contours of instantaneous temperature.

The re-scaling process of the flow parameters in the inner region ([31]) involves the 284

knowledge of the ratio of the inlet friction velocity to the recycle friction velocity (i.e., 285

λ = uτ,inl/uτ,rec). Here, the friction velocity is defined as uτ =
√

τw/ρ, where τw is the wall 286

shear stress and ρ is the fluid density. Since the inlet boundary layer thickness, δ, must be 287

imposed according to the requested inlet Reynolds number, prescribing also the inlet fric- 288

tion velocity would be redundant. [32], [33] and [34] solved this issue by making use of the 289

well-known one-eighth power law that connects the friction velocity to the measured mo- 290

mentum thickness in zero-pressure gradient flows; thus, uτ,inl/uτ,rec = (δ2,inl/δ2,rec)
−1/8. 291

Since this empirical power (-1/8) was originally proposed for incompressible flat plates 292

at high Reynolds numbers ([36]), it could be strongly affected by some compressibility 293

effects and low to moderate Reynolds numbers, as the cases considered here. Therefore, we 294

calculated “on the fly” this power exponent, γδ2, by relating the mean flow solution from a 295

new plane (so-called the “Test" plane, as seen in figure 1) to the solution from the recycle 296

plane as follows: 297

γδ2 =
ln(uτ,test/uτ,rec)

ln(δ2,test/δ2,rec)
. (8)

Table 1 exhibits the characteristics of the evaluated four DNS databases of flat plates in 298

the present LCS study: two incompressible cases (at low and high Reynolds numbers), 299

a supersonic case (M∞ = 2.86), and a hypersonic case (M∞ = 5). Numerical details are 300

reproduced here for readers’ convenience. The Mach number, normalized wall to freestram 301

temperature ratio, Reynolds number range, computational domain dimensions in terms of 302

the inlet boundary layer thickness δinl (where Lx, Ly and Lz represent the streamwise, wall- 303

normal and spanwise domain length, respectively) and mesh resolution in wall units (∆x+, 304

∆y+min/∆y+max, ∆z+) can be seen in Table 1. The momentum thickness Reynolds number is 305

defined as Reδ2 = ρ∞U∞δ2/µw, and it was based on the compressible momentum integral 306

thickness (δ2), fluid density (ρ∞), freestream velocity (U∞) and wall dynamic fluid viscosity 307

(µw). On the other hand, the friction Reynolds number is denoted as δ+ = ρwuτδ/µw. Here, 308

uτ =
√

τw/ρw is the friction velocity, and τw is the wall shear stress. Subscripts ∞ and 309

w denote quantities at the freestream and at the wall, respectively. Notice that the high 310

Reynolds number case is approximately four times larger than that of the low Reynolds 311

number case for incompressible flow. 312

For the low Reynolds number case (i.e., Incomp. low), the number of mesh points in the 313

streamwise, wall-normal and spanwise direction is 440 × 60 × 80 (roughly a 2.1-million 314

point mesh). Whereas, the larger Reynolds number cases are composed by 990 × 250 × 315

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

10 of 35

210 grid point (roughly a 52-million point mesh). The small and large cases were run in 316

96 and 1200 processors, respectively, in the Cray XC40/50-Onyx supercomputer (ERDC, 317

DoD), HPE SGI 8600-Gaffney and HPE Cray EX-Narwhal machines (NAVY, DoD).

Table 1. DNS Cases.

Case M∞ Tw/T∞ Reδ2 δ+ Lx × Ly × Lz ∆x+,∆y+min/∆y+max, ∆z+

Incomp. low 0 Isothermal 306-578 146-262 45δinl × 3.5δinl × 4.3δinl 14.7, 0.2/13, 8
Incomp. high 0 Isothermal 2000-2400 752-928 16δinl × 3δinl × 3δinl 11.5, 0.4/10, 10

Supersonic 2.86 2.74 3454-4032 840-994 14.9δinl × 3δinl × 3δinl 12.7, 0.4/11, 12
Hypersonic 5 5.45 4107-4732 848-969 15.2δinl × 3δinl ×3δinl 12, 0.4/12, 11

318

The present DNS databases were obtained by using a highly accurate, very efficient, and 319

highly scalable CFD solver called PHASTA. The flow solver PHASTA is an open-source, 320

parallel, hierarchic (2nd to 5th order accurate), adaptive, stabilized (finite-element) transient 321

analysis tool for the solution of compressible [37] or incompressible flows [38]. PHASTA has 322

been extensively validated in a suite of DNS under different external conditions ([24,39,40]). 323

In terms of boundary conditions, the classical no-slip condition is imposed at the wall for 324

all velocity components. Adiabatic wall conditions were prescribed for both compress- 325

ible cases. For the supersonic flow case at Mach 2.86, the ratio Tw/T∞ is 2.74 (in fact, 326

quasi-adiabatic), where Tw is the wall temperature and T∞ is the freestream temperature. 327

While the Tw/T∞ ratio is 5.45 for M∞ equals to 5. In the incompressible case, temperature 328

is regarded as a passive scalar with isothermal wall condition. In all cases the molecu- 329

lar Prandtl number is 0.72. The lateral boundary conditions are handled via periodicity; 330

whereas, freestream values are prescribed on the top surface. Figure 2 shows the stream- 331

wise development of the skin friction coefficient [C f = 2(uτ/U∞)2ρw/ρ∞] of present DNS 332

compressible flow data at Mach 2.86 and 5. It is worth highlighting the good agreement of 333

present Mach-2.86 DNS data with experiments at similar wall thermal conditions, Reynolds 334

and Mach numbers from [41], exhibiting a similar slope trend in C f as a function of Reδ2. 335

It can be seen an inlet “non-physical” developing section in the C f profile, which extends 336

for barely 2.5-3δinl’s, indicating the good performance of the turbulent inflow generation 337

method employed. Moreover, the inflow quality assessment performed in [23] via the 338

analysis of spanwise energy spectra of streamwise velocity fluctuation profiles (i.e., Euu) 339

at multiple inlet streamwise locations and at y+ = 1, 15 and 150 indicated a minimal 340

development region of 1δinl based on Euu. In addition, skin friction coefficient experimental 341

data by [42] and [43] as well as DNS value from [44] at Mach numbers of 4.5 and 4.9 over 342

adiabatic flat plates were also included. It is observed a high level of agreement with 343

present hypersonic DNS results, and maximum discrepancies were computed to be within 344

5%. Furthermore, DNS data from [45] are also added at Mach numbers of 3 and 4; but at 345

much lower Reynolds numbers. 346

Figures 3 shows the pre-multiplied energy spectra along the (a) streamwise (kxEuu) and 347

(b) spanwise (kzEuu) directions in inner units at a Mach number of 2.86 at δ+ = 909. The 348

supplied information by pre-multiplied energy spectra can be used to determine the 349

streamwise and spanwise wavelengths of the most energetic coherent structures at different 350

boundary layer regions. In both directions, primary energy peaks are evident in the buffer 351

region around 12 < y+ < 15 (see white crosses encircled by blue dashed lines) which 352

are associated with spanwise wavelengths of the order of 100 wall units (or 0.1δ) and 353

streamwise wavelengths of the order of 700 wall units. This inner peak at λ+
x ≈ 700 (or 0.7δ) 354

is the energetic “footprint” due to the viscous-scaled near-wall structure of elongated high- 355

and low-speed regions, according to [46]. As expected, the turbulent structures associated 356

with streamwise velocity fluctuations are significantly longer in the streamwise direction, 357

showing an oblong shape with an aspect ratio of roughly 7. Furthermore, it is possible 358

to observe weak but still noticeable secondary peaks with spanwise wavelengths of the 359

order of λ+
z ≈ 600 (or λz ≈ 0.7δ) and streamwise wavelengths with λ+

x ≈ 3000 (or 3δ’s). 360

These outer peaks of energy are much less pronounced than the inner peaks due to the 361

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

11 of 35

Figure 2. Validation of the skin friction coefficient for supersonic and hypersonic cases.

absence of streamwise pressure gradient (zero-pressure gradient flow) and the moderate 362

Reynolds numbers modeled. Present spanwise pre-multiplied power spectra, kzEuu, as 363

seen in fig. 3 (b), shows a high similarity with pre-multiplied spanwise energy spectra 364

of streamwise velocity fluctuations from [47] in their fig. 2b at Reτ = 1116 (also known 365

as δ+). They also performed DNS of a spatially-developing turbulent boundary layer at 366

the supersonic regime (Mach 2). It was also reported in [47] a secondary peak associated 367

with spanwise wavelengths of λz ≈ 0.8δ. According to [47], the outer secondary peaks 368

are the manifestation of the large scale motions in the logarithmic region of the boundary 369

layer, whose signature on the inner region is noticeable under the form of low wavenumber 370

energy “drainage” towards the wall. 371

Figure 4 depicts the mean streamwise velocity by means of the Van Driest transformation 372

(U+
VD) and the streamwise component of the Reynolds normal stresses (u′u′)+ in wall 373

units. Additionally, three different logarithmic laws of U+
VD have been included. For this 374

high values of δ+, the log region extends significantly (about 380 wall units in length). It 375

seems our predicted values of U+
VD slightly better overlap with the logarithmic function 376

1/0.41ln(y+) + 5 as proposed by [48] by the end of the log region (and beginning of the 377

wake region). On the other hand, the log law as proposed by [49] (with a κ value of 378

0.38 and an integration constant, C, of 4.1) exhibits an excellent match with our DNS 379

results in the buffer region (i.e., around y+ ≈ 20-30). The inner peak of (u′u′)+ occurs at 380

approximately y+ = 15 and an outer “hump” can be detected for the supersonic case at 381

roughly y+ = 200− 300, consistent with the presence of the outer peak of the pre-multiplied 382

spanwise energy spectra of streamwise velocity fluctuations. 383

2.3. Computing Resources 384

We leveraged a wide range of computational architectures and networks to test the 385

performance portability and scalability of our proposed solution. The computational 386

resources included: Onyx, Narwhal, Anvil and Chameleon. 387

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

12 of 35

Figure 3. Pre-multiplied power spectra of streamwise velocity fluctuations, u’, for Mach-2.86 ZPG
flow: (a) streamwise (kxEuu) and (b) spanwise (kzEuu) direction.

Figure 4. Mean streamwise velocity (Van Driest transformation) and streamwise component of the
Reynolds normal stresses in wall units.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

13 of 35

2.3.1. Cray XC40/50 - Onyx 388

Onyx utilizes a Dragonfly topology on Cray Aries and is powered by Intel E5-2699v4 389

Broadwell CPUs, Intel 7230 Knights Landing CPUs, and Nvidia P100 GPUs. The compute 390

nodes are designed with dual sockets, each containing 22 cores, and are enabled with 391

simultaneous multithreading2. This allows the hardware threads to switch contexts at the 392

hardware level by sharing pipeline resources and duplicating register files on both the front 393

end and back end. The compute nodes are equipped with 128 GB of RAM, with 121 GB 394

being accessible. 395

2.3.2. HPE Cray EX (formerly Cray Shasta) - Narwhal 396

Narwhal is a supercomputer capable of processing up to 12.8 petaflops. Each compute 397

node on Narwhal contains two AMD EPYC 7H12 liquid-cooled CPUs based on the Zen 398

2 core architecture, with 128 cores and 256 threads, as well as 256 GB of DDR4 memory. 399

There are a total of 2150 regular compute nodes on Narwhal, and the maximum allocation 400

size is limited to 256 nodes. Additionally, there are 32 nodes with a single V100 GPU, and 401

32 nodes with dual V100 GPUs. The compute nodes are connected to each other using an 402

HPE Slingshot 200 Gbit/s network, which directly links the parallel file systems (PFS). 403

2.3.3. Anvil 404

We also conducted a smaller scale study using the CPU partition of the Anvil system at 405

Purdue University. Built in collaboration with Dell EMC and Intel, it is designed to support 406

a wide range of scientific and engineering research applications. The supercomputer is 407

based on the Dell EMC PowerEdge C6420 server platform and is powered by the second- 408

generation Intel Xeon Scalable processors. Anvil has a total of 1,008 compute nodes, each 409

containing 48 cores and 192 GB of memory. The nodes are interconnected with a high-speed 410

Intel Omni-Path network that provides a maximum bandwidth of 100 Gbps. Anvil is 411

also equipped with 56 Nvidia V100 GPUs for accelerating scientific simulations and deep 412

learning workloads. Details on the Anvil system were well summarized by [50]. 413

2.3.4. Chameleon A100 Node 414

We also tested scaling on more modern A100 GPUs provided by the Chameleon 415

infrastructure, [51]. The A100 node used features 2 Intel Xeon Platinum 8380 totaling 80 416

cores (160 threads) and 4 A100 GPUs with 80 GBs of HBM 2e memory. The node also has 417

512 GBs of DDR4 memory and 1.92 TBs of local NVMe storage. 418

2.3.5. Fair CPU and GPU Comparisons 419

Comparing CPUs and GPUs can quite easily become a misguided venture if not 420

carefully guided by factual evidence and architectural distinctions. Although an in-depth 421

comparison of CPU and GPU hardware is far beyond the scope of this work, we will sum- 422

marize key distinctions between a general CPU architecture and a general GPU architecture. 423

We will also establish the common ground between CPU and GPU architecture elements to 424

be used in our comparisons. 425

CPU architectures have historically pursued low latency of an individual operation thread 426

as their main goal. On the other hand, GPU devices favor high-throughput by sacrificing 427

the latency of an individual execution thread to enable processing a larger number of work 428

items. GPU vendors tend to market ALU count (or SIMD FP32 vector lanes) as the “core 429

count" for a device; however, this is misleading as the actual architecture unit resembling a 430

“core" in a CPU device would be what Nvidia notes as a Streaming Multiprocessor (SM)3. 431

To sustain a larger number of work items in flight, a GPU features a larger global memory 432

bus width and typically has higher bandwidth requirements. Comparing the “per core" 433

2 Branded as Intel Hyperthreading
3 AMD tends to refer to this unit as a Workgroup Processor (WGP) or a Compute Unit (CU) whereas Intel refers

to it as a Xe-core or a slice/subslice in older integrated GPU generations.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

14 of 35

memory bandwidth shown in table 2, one could erroneously assume large advantage of 434

modern GPUs over contemporaneous CPUs. Notwithstanding, upon closer examination 435

and accounting for vector widths in each device, a smaller gap is seen with the V100 436

actually having the lowest memory bandwidth per vector lane. Further complicating 437

matters, shared cache bandwidth is a complex topic since it is often tied to core and 438

fabric clockspeeds. These and other aspects are studied in further detail by [52] and [53]. 439

Once again, this is not the whole picture. Accounting for register file sizes, one can note 440

that modern GPUs boast zero-overhead context switching between multiple threads of 441

execution whereas modern x86 CPUs have at most two sets of hardware registers allowing 442

for zero-overhead context switching between two threads of executions. This factor allows 443

a large number of threads in flights in modern GPUs which explains their resilience to 444

high latency memory operations regardless of their roughly equal memory bandwidth per 445

vector lane. This architectural advantage is often the differentiating factor at scale for a 446

throughput oriented device as a GPU. Furthermore, the programming models supported 447

by GPUs expose the parallelism supported by the device transparently whereas historical 448

high-level languages used in CPU programming are challenging when it comes to fully 449

utilizing multi-core CPUs, their SIMD units and available instruction-level parallelism. 450

All of these factors typically compound and yield simpler, yet faster, code on GPUs even 451

when devices are comparable on many fronts. A high-level overview of the computational 452

devices used in this work is presented in table 2. 453

Table 2. Computational Device Descriptions

Device Name P100 GPU
(16 GB PCIe)

V100 GPU
(32 GB PCIe)

A100 GPU
(80 GB PCIe)

Intel Xeon
E5-2699v4

AMD EPYC
7H12

AMD EPYC
7763

Core (SM) Count 56 80 108 22 64 64
FP32

Vector Lanes (VL) 3584 5120 6912 352 1024 1024

Global Mem.
Bandwidth [GB/s] 732.2 897.0 1935 76.8 204.8 204.8

Mem. Bandwidth
per Core [GB/s] 13.075 11.2125 17.917 3.49 3.2 3.2

Mem. Bandwidth
per VL [MB/s] 204 175 280 218 200 200

Shared Cache
[KB] 4096 6144 40960 55000 256000 256000

Shared Cache
Bandwidth [GB/s] 1624 2155 4956 [52] [53] N.P.

Base Frequency
[GHz] 1.190 1.230 0.765 2.2 2.6 2.45

Boost Frequency
[GHz] 1.329 1.380 1.410 3.6 (SC)

2.8 (AC)
3.3 (SC)

All-core N.P.
3.5 (SC)

All-core N.P.
Est. TFLOPs/s
Range [Min, Max]

8.529
9.526

12.595
14.131

9.473
17.461

1.548
Variable

5.324
Variable

5.017
Variable

2.3.6. Software 454

We implemented the proposed approach using Python as a high-level implementation 455

language. However, achieving high-performance and targeting multi-core CPUs and 456

GPUs using plain Python is not possible at the moment. To achieve high-performance on 457

numerical codes, many libraries have been published targeting the scientific programming 458

community. Perhaps the most popular numerical library for Python, NumPy by [54] 459

provides a multi-dimensional array and additional functionality that enables near-native 460

performance by targeting pre-compiled loops at the array level. Another relatively recent 461

innovation in the Python ecosystem is the Numba JIT compiler by [55]. Numba enables 462

compiling Python to machine code and achieve speeds typically only attainable by lower- 463

level, compiled languages such as C, C++ or FORTRAN. Numba has been used across many 464

scientific domains as both a tool to accelerate codebases and as a platform for computational 465

research as puth forth by authors such as: [56–70]. Numba is essentially a front-end to 466

LLVM which was originally proposed as a high-performance compiler infrastructure by 467

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

15 of 35

[71]. Numba offers both CPU and GPU programming capabilities which facilitates sharing 468

components not tied to specific programming model details. 469

Numba’s parallel CPU backend also provides a higher level of abstraction over multiple 470

threading backends. In particular, it allows for fine grain selection between OpenMP, 471

[72], and TBB, [73]. Given the lack of uniformity in Lagrangian workloads after multiple 472

timesteps, TBB’s ability to dynamically balance workloads while accounting for locality 473

and affinity offers higher performance for our particular use case. That being said, the 474

implementation can be changed by setting a command line argument at program launch. 475

Also, with more exotic architectures featuring hybrid core designs or where certain execu- 476

tion resources can boost higher than others, TBB removes two issues with many parallel 477

systems limiting scaling in heterogeneous systems, unbalanced workload or large core 478

counts: 1) it does not have a central queue thus removing that bottleneck, and 2) it enables 479

workers to steal work from the back of other workers’ queue. 480

3. Results and Discussion 481

In this section, we will drill in on the scaling behavior for the presented algorithm 482

and implementation for particle advection. We will compare the performance across both 483

CPUs and GPUs. We will also explore different normalization schemes to provide a fair 484

comparison between these architectures. We also explore the impact of a network-accessed, 485

parallel filesystem contrasted against a local, high-performance NVMe device. 486

3.1. Performance Scaling Analysis 487

To begin our high-level exploration, we present multiple scaling plots in figure 5. To 488

efficiently utilize HPC resources, it is critical to scale out efficiently (i.e., to minimize serial 489

bottlenecks). Figures 5a-b showcase the strong scaling performance of the approach put 490

forth in this work. We scaled out to 32768 CPU cores and up to 62 Nvidia V100 GPUs (4960 491

GPU SM cores or an equivalent 317440 CUDA cores); consequently, the total number of 492

CPU threads tested were roughly 32K whereas the peak number of GPU threads reached 493

roughly 10M (GPU) threads (2048 threads per Volta SM core arranged in blocks of 64 threads 494

for a total of 32 thread blocks per SM), or 310×more threads on a GPU (GPU threads are 495

lightweight threads compared to the heavier OS-managed threads on CPUs). Figure 5a 496

also highlights the extent that inefficiencies in the software stack or hardware resources 497

below the application can end up degrading the performance at scale. This is clearly visible 498

in Onyx were a large number of IO/network requests dominate the startup/termination 499

times of the application, and actual runtime scales almost linearly. Beyond the impact 500

of having a linear strong scaling behavior, scaling to large particle-count is an equally 501

important aspect as larger datasets and more challenging scientific inquiries demand 502

higher resolutions. Figure 5c characterizes the scaling behavior of our implementation 503

on a fixed node-count (i.e., fixed computational resources) from 50M particles out to over 504

8B particles (given enough memory was available) across 16 compute nodes. One other 505

interesting tidbit worth highlighting is the dominance of network latency in large-scale, 506

parallel filesystems (PFS). Figure 5c showcases how a powerful GPU is essentially idle 507

when waiting for data from the PFS (for both the P100 and V100 results). [59] reported a 508

similar behavior for small problem sizes on a parameter estimation workload. Interestingly, 509

they reported this behavior up to a 9M element matrix (3000×3000) whereas we found the 510

onset of this behavior at approximately 13M particles. Consequently, a good rule of thumb 511

is roughly 10M work elements per GPU. This is the incarnation of Amdahl’s Law where 512

the GPU is essentially acting as an infinitely fast processor where the critical path lies on 513

IO, sequential-routines, the network and the PFS. This is further confirmed by the A100 514

results where data resided on a local NVMe drive. Once sufficient work is available, the 515

pre-fetch mechanism first introduced in [18] and [19] is capable of hiding the latency to 516

great effect. In general, our proposed approach is very scalable in both particle count and 517

strong scaling via problem decomposition. As processors continue to improve, multi-level 518

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

16 of 35

approaches and latency-hiding mechanisms will continue growing in relevance to fully 519

utilize the available computational resources. 520

Recall that we outlined in section 2.1.2 the computational complexity scaling for the particle 521

tracking algorithm in terms of cell-count and particle-count. For a large number of particles 522

Np and cells Nc, the term Np log8(Nc) can be approximately modeled as linear scaling in 523

Np. This is because, as Nc increases, the growth rate of log8(Nc) is much slower compared 524

to the linear growth of Np. As a result, the overall function appears to scale linearly with 525

Np, even though there is a logarithmic dependence on Nc. This favorable scaling will 526

prove very powerful as larger datasets are tackled and to enable higher resolution LCS 527

visualizations in smaller datasets. What’s more by using Np >> Nc the overall particle 528

advection scheme is mostly dominated by velocity interpolation and temporal integration 529

(source of the Np term) rather than by volumetric particle search (source of the log8(Nc) 530

term). Also, for any given domain, increasing the particle count results in a linear increase 531

in the number of particles due to the decoupled scaling characteristics of the algorithm on 532

the size of the domain and particle count. This conclusion is clearly seen in figure 5c where 533

once fixed latency costs are hidden by the pre-fetcher, a linear scaling is indeed seen. As 534

will be discussed later in the manuscript, we tested our implementation against a 24.6× 535

smaller DNS dataset to validate the favorable scaling in the number of cells. Although the 536

High Re dataset used in this work is almost 25x larger than the lower Re counterpart, the 537

overall runtime is only 41% higher when accounting for particle count differences and flow 538

field count differences to achieve similar integration t+ and particle count. That is a mere 539

15% difference of what is predicted from the big-Oh analysis. That 15% is attributable to 540

inefficiencies reading 45% more flow fields4 and other factors unaccounted in our big-Oh 541

approximations. 542

We will discuss in more detail the architectural advantages in relation to the results below, 543

but an initial overview of the remaining scaling results in figure 5 highlight the virtues 544

of an architecture built fundamentally for throughput and explicit parallelism. Each 545

GPU SM offers higher per-clock throughput which translates to a palpable advantage on 546

embarrassingly parallel workloads. On the other hand, CPUs can also take advantage of 547

parallel workloads. As such explicitly developing parallel algorithms enables improved 548

performance rather than porting an implicitly parallel workload to an explicitly parallel 549

device. However, figure 5d also highlights the dangers of naïvely comparing CPUs and 550

GPUs without accounting for their architectural similarities and differences. Figure 5d 551

shows the same results presented in fig. 5b but scales the horizontal axis to account for 552

SIMD vector lanes in both CPUs and GPUs. After this linear transformation, the overall 553

performance advantage of GPUs (still present) is not as abysmal as in figures 5a and 5b. 554

This smaller gap accentuates the convergence of CPUs and GPUs towards ever more similar 555

design elements. SIMD units in CPUs are akin to CUDA cores in Nvidia GPUs albeit with 556

slightly different limitations and programming models. Nonetheless, they serve the same 557

purpose, applying the same instructions (more or less) to multiple data streams. As such, 558

formulating algorithms to reduce synchronization or serialization points enables a more 559

transparent scaling potential as more parallelism becomes available in future hardware. 560

Figure 5e shows the particle throughput per timestep over 16 nodes. As was alluded to 561

in the discussion, once sufficient work is available, the throughput stabilizes to a plateau. 562

Of the devices used to study the particle throughput and the performance scaling, the 563

GPU accelerators achieve the highest throughput as compared to available CPU devices. A 564

single V100 GPU achieves a throughput of 105M particles per second (1.7B particles per 565

second over 16 V100 GPUs; 1.3M particles per GPU SM). Comparatively, 32 EPYC 7H12 566

CPUs (2048 cores) achieve a total throughput a 426M particles per second (13M particles 567

per second per 7H12 socket; 203K particles per second per Zen 2 core). Without accounting 568

for clockspeeds, the overall throughput of a Volta SM core is 6.4× than a Zen 2 core. Upon 569

4 We accounted for this in calculating the comparison, but given the network is involved, differences are to be
expected in addition to many other factors.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

17 of 35

(a) Strong Scaling - Time (b) Strong Scaling (Nodes) - Throughput

(c) Particle Scaling (at 16 Nodes) (d) Strong Scaling (ALUs) - Throughput

(e) Particle Throughput Scaling (at 16 Nodes) (f) Core Clock Cycles per Particle (at 16 Nodes)

Figure 5. Performance scaling for our proposed particle advection approach on the high Re case.
Note: A100 results are for a single node with 4 A100 GPUs.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

18 of 35

accounting for clockspeeds (as seen in figure 5f), the clock for clock performance of a GPU 570

SM is still greater than that of a CPU core. Interestingly, the improvements across both CPU 571

and GPU generations are much more incremental than revolutionary accounting for SM 572

count and clockspeeds in figure 5f. However, given the magnitudes of modern processor 573

clockspeeds, a single V100 GPU can process a particle in roughly 9.8 ns (in parallel to 574

many other particles); however, analyzing a single SM yields roughly 900 ns. We could 575

continue to modify the results to analyze the per SIMD partition performance yielding 576

“worst" results. Consequently, application developers ought to be careful when presenting 577

scaling data and avoid implicit biases against a (or in favor of) given vendor. 578

Thus far, we have focused our discussion on a single, relatively large DNS simulation. 579

However, smaller scale simulations deserve special attention due to peculiarities pertaining 580

to their latency-sensitive nature during post-processing. To investigate this issue, we ran the 581

same particle advection workload across a series of lower Re DNS flow fields on 16 Nvidia 582

V100 GPUs. The sensitivity to network IO was isolated by introducing two underlying 583

DNS sampling frequencies. The high frequency (HF) samples were stored at the DNS 584

timestep resolution and internally interpolated to achieve a time step 50× smaller than 585

the DNS timestep. Conversely, the lower frequency (LF) sample was sampled at a tenth of 586

the DNS resolution with a 500× upsample via interpolation applied to achieve an equal 587

integration timestep. The physical implications of these two approaches will be discussed 588

in section 3.2.3. Due to the lower amount of work at low particle counts, performance is 589

actually worst at very low particle counts than for subsequent increases due to high data 590

transfer overheads and synchronization penalties. By reducing the underlying number 591

of actual flow fields and producing approximations inside the GPU via interpolation, we 592

essentially cut data movements to just 10% significantly improving the performance as seen 593

in figure 6a. Analogous to what we discussed for fig. 5e, figure 6b exhibits a similar plateau 594

at just over 1.5 billion particles processed per second on each time step. The data transfer 595

overhead is still seen in both figures by the small difference in the asymptotic limit of both 596

cases. The peak throughput for the LF case settles at 9% over the HF peak throughput 597

owing to data transfer overhead. That being said, saturating the device and hiding transfer 598

overheads can be achieved at a lower particle count than when a larger underlying flow 599

field is being used. This can be justified noting the particle search approach being used 600

where more data is being re-used and cached in the multi-level scheme than for the higher 601

Re case. A single low Re flow field occupies 25 MBs whereas an equivalent field for the 602

higher Re case occupies 623 MBs (note that the L1+L2 cache capacity of a V100 comes in at 603

approximately 16 MBs). The peak throughput for the low Re case is achieved at roughly 604

16M-32M particles whereas the High Re case requires 500M-2,000M particles (15-125× 605

more than the lower Re case). In general, achieving peak throughput requires at least an 606

order of magnitude more particles than number of vertices in the underlying flow fields 607

to allow the pre-fetcher enough slack to hide the network latency penalty when reading 608

from the parallel filesystem. It ends up being a “free" resolution improvement as noted in 609

figures 5e & 6a with a fixed runtime until the device is properly utilized. 610

Evaluating the particle advection approach and its performance portability requires testing 611

across a wide variety of architectures. Historically, certain algorithms have been better 612

suited for GPUs whereas others are more efficient on CPUs. However, in recent times, CPUs 613

and GPUs have continued to evolve into highly parallel architectures with many elements 614

in common. Take, for instance, a relatively modern Nvidia GPU, the V100. The V100 has 80 615

SM cores (the architectural unit closest to a CPU core) with each core having 4 partitions 616

with 3×512-bit SIMT units (one single precision floating point, one double precision floating 617

point and one integer SIMT unit per partition). A modern AMD server CPU like 7H12 or 618

7763 both have 64 cores with 2×256-bit SIMD units which equals the total length of the 619

floating point pipeline on a single SM partition in the aforementioned V100 GPU (although 620

4 scalar integer ALUs are present in Zen 2/3 which, to be fair with our GPU comparison, 621

leads to a 128-bit lane-width assuming 32-bit integer operations). Clock for clock, a GPU 622

SM is capable approximately 4-9.6x the computational throughput ranging from raw FP32 623

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

19 of 35

(a) Particle Scaling - Time (b) Particle Scaling - Throughput
Figure 6. Performance scaling across 16 V100 GPUs for our proposed particle advection approach on
the Low Re case.

throughput to a perfectly balanced (FP32 and FP64 float/integer) and scalable workload. 624

That being said, a GPU SM has a far larger register file enabling zero-overhead context- 625

switching. This makes the GPU far more latency-tolerant. These factors enable a highly 626

scalable programming model on GPUs whereas achieving scalable throughput on CPUs 627

requires much more fine-tuning. Accounting for clockspeeds and core counts, we should 628

expect to see a speed-up of approximately 4.25x of a single Tesla V100 over an EPYC 629

7H12. We measured an empirical speed-up based on the strong scaling workload at 3.9x 630

average (3.3x minimum and 5x maximum) or 92% of our theoretical estimate based on raw 631

throughput as seen in figures 5e-f. It is worth noting that the simpler analysis of bandwidth 632

and compute throughput suggested a less aggressive 2.3x to 2.7x performance improvement 633

which leaves another 57% improvement in algorithmic performance on the table without 634

considering the combined integer/floating point throughput of modern architectures. This 635

analysis would suggest the improvements of an A100 GPU are roughly 38%-60% over a 636

V100 GPU (from throughput to bandwidth improvements). Analyzing A100’s performance 637

for our particle advection implementation showcases a 79% improvement when comparing 638

a single V100 vs a single A100 GPU (see fig. 5c). Out of this 79%, the additional SM’s 639

and higher clockspeeds yield a 38% improvement whereas architectural enhancements 640

contribute a 30% improvement. Clock for clock, we found the A100 to be 28% faster in our 641

testing. These results are inline with the 60% “per-SM" memory bandwidth improvement 642

and 35% increment in SM count. These additional bandwidth improvements are also 643

“reachable" given the vastly improved cache in A100. The per FP32 lane performance is 644

shown in figure 5d where CPU lanes are calculated based on the SIMD pipeline widths 645

and GPU lanes are taken as the CUDA core count (Nvidia’s marketing term for FP32 646

ALU). The performance gap is significantly reduced when comparing against the FP32 647

vector lane count which yields a fairer comparison point normalizing against the baseline 648

throughput unit. However, we assess that algorithmic and implementation improvements 649

could still yield another 20% improvement in achievable performance. A100 offers a vastly 650

larger cache subsystem unlike prior GPU generations which likely necessitates fine-tuning. 651

This highlights the importance of a multi-faceted analysis when evaluating potential 652

performance improvements. Also, our particle advection codebase is highly scalable with 653

additional memory bandwidth and throughput. Given the every improving hardware 654

landscape, our proposed implementation should be performance portable across multiple 655

hardware generations. Hence, we believe that domain experts should consider additional 656

avenues of exploiting the concurrent execution of floating point and integer calculations 657

given the potential doubling in throughput on modern architectures in addition to the more 658

traditional improvements associated with memory bandwidth utilization. 659

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

20 of 35

We leverage the fact that modern CPU architectures in HPC systems continue to converge 660

with GPUs and share a common approach (albeit implemented in different programming 661

models). Algorithm 1 forms the foundation of our particle advection implementation on 662

both CPU and GPU. As seen in figure 5a and 5b, we achieve strong scaling across both 663

CPU and GPU nodes and across various generations. We do observe a degradation in 664

strong scaling performance at higher node counts for the Onyx and Narwhal systems when 665

using CPU-only node configurations. We assess that this breakdown is a limitation of the 666

filesystem rather than a limitation of the actual implementation. This is further reinforced 667

by the results in the Anvil system. Although not shown, the system is capable of targeting 668

both CPUs and GPUs in a hybrid approach through the same LLVM compiler infrastructure. 669

This hybrid approach currently targets a static work scheduler and requires user guided 670

fine tuning to estimate an appropriate work sharing strategy. Looking towards possible 671

optimization avenues, a more automated and dynamics approach would enable a fully 672

automated backend that fully utilizes the available hardware. 673

The right CG tensor and the maximum eigenvalue calculation currently represent a minimal 674

portion of the overall runtime. However, we measure the performance on a single P100 GPU 675

at 204K eigenvalues per second for a 415M particle system representing roughly 33 minutes 676

to calculate the finite-time Lyapunov exponent for each particle from the displacement field 677

(∼3% of the total runtime). A V100 offers a higher throughput for the eigenvalue solver and 678

the integration scheme as seen above. It achieves 711K eigenvalues per second for a 67M 679

particle system (representing roughly the same percentage of the total program runtime). 680

The major limitation is the nature of the eigenvalue problem at hand where we have to 681

solve one small eigenvalue problem per particle. Many high-performance implementations 682

are tuned for large sparse problems. Tuned batched implementations exist but require 683

submitting the batched buffers as a whole. Given our trade-off between available memory 684

footprint requirements and performance, our streaming approach is a sensible solution. 685

3.2. Case Study 686

To prove the applicability and usefulness of the proposed approach, we applied our 687

methodology to three previously obtained DNS datasets ([23]) to assess the compressibility 688

effects on Lagrangian coherent structures over moderately-high Reynolds number turbu- 689

lent boundary layers at three flow regimes, ranging from incompressible, supersonic and 690

hypersonic; already described in Table 1. As discussed in [9], a time convergence analysis 691

was performed at different integration times, i.e. at t+ = 10, 20 and 40, where t+ = u2
τt/ν. It 692

was observed more defined material lines as the integration time was increased. Following 693

[9], the results shown henceforth are based on a backward/forward integration finite time 694

of t+ = ±40. Firstly, we showcase the ability to perform LCS analysis at scale (hundreds 695

of millions to billions of particles). Figures 7-9 shows FTLE contours in incompressible, 696

supersonic, and hypersonic regime, respectively. Furthermore, isometric views are depicted 697

for attracting manifolds (top) and repelling manifolds (bottom) by performing backward 698

or forward integration of particle advection, respectively. The DNS mesh is composed by 699

approximately 52 million grid points, whereas 416 million particles were evaluated in all 700

cases. In fig. 7a, the incompressible attracting FTLEs depict the presence of hairpin vortices, 701

consistent with results by [74] and [75]. Hairpin vortices have been broadly accepted 702

as the building blocks of turbulent boundary layers [76]. Furthermore, one can observe 703

that attracting LCS ridges (blue contours) reproduce inclined streaky structures with the 704

upstream piece stretching towards the near-wall region, almost attached to it, while the 705

downstream part is elongating into the outer region due to viscous mean shearing, [75] and 706

[9]. In other words, these lateral images of attracting FTLE manifolds depict inclined quasi- 707

streamwise vortices (or hairpin legs) and heads of the spanwise vortex tube located in the 708

outer region. In some streamwise locations, hairpin heads can rise up into the log or wake 709

layer (not shown), i.e. 30 < y+ < 700, due to turbulent lift-up effects. In addition, hairpins 710

are rarely found isolated but in groups or packets. [77] identified Lagrangian coherent 711

structures via finite-time Lyapunov exponents in a flat-plate turbulent boundary layer 712

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

21 of 35

from a two-dimensional velocity field obtained by time-resolved 2D PIV measurement. 713

They stated that hairpin packets were formed through regeneration and self-organization 714

mechanisms. Moreover, [78] have reported a high level of correlation between attracting 715

FTLE manifolds and ejection events (or Q2 events) in supersonic turbulent boundary layers. 716

As an hairpin vortex moves downstream, it generates an ejection of low-speed fluid (i.e., 717

Q2 event), which encounters zones of higher speed fluids resulting in shear formation 718

and, consequently, increased drag. It can also be seen “kinks” in some hairpin vortex legs 719

(attracting FTLE’s contours) due to viscous interaction within hairpin vortices. Repelling 720

manifolds via forward temporal integration have been also computed and visualized in 721

figure 7b. Different from attracting material lines, repelling barriers are mostly concentrated 722

in the very near-wall region. Notice the large values of repelling FTLE values (intense red) 723

very close to the wall. However, they are also clearly observed in the buffer/log region 724

with lower intensity, intersecting hairpin legs in regions where ejections are commonly 725

present. 726

727

3.2.1. Compressibility Effects 728

Prior description of features of attracting/repelling manifolds in incompressible turbu- 729

lent boundary layers are fully extensible to supersonic and hypersonic flat-plate turbulent 730

boundary layers. Two main compressibility effects can be highlighted: (i) coherent struc- 731

tures grow more isotropic proportional to the Mach number, (ii) the inclination angle of 732

the structures also varies along the streamwise direction. The increased isotropic charac- 733

ter is perhaps the most interesting of both. The incompressible coherent structures are 734

relatively weak in nature and mostly confined to the near-wall region with the presence 735

of more evident “valley” between “bulges”. This is in stark contrast with the hypersonic 736

coherent structures and shear zones that are apparent farther from the wall. Conversely, 737

the prevalence of the structures farther away from the wall does not convey the complexity 738

of the phenomenon. Although these structures and shear layers are more prevalent farther 739

from the wall, they seem much more isotropic (but less organized) and contained in smaller 740

clusters. This effect has been reported in the past in Eulerian statistics by [3] and Lagrangian 741

statistics by [9]. 742

3.2.2. Reynolds Number Dependency Effects 743

Aside from the relatively moderate compressibility effects on LCS, we did observe a 744

stronger dependency on the Reynolds number, as expected. The structures are far more 745

anisotropic and organized at lower Reynolds numbers, as seen in fig. 10. Structures at lower 746

Reynolds numbers extend significantly along the streamwise direction whereas structures 747

at higher Reynolds numbers tend to be shorter in general with smaller coherency spans. At 748

lower Reynolds numbers, the presence of hairpin vortex packets (or horseshoes) is more 749

evident. These are observable by grouped regions of high coherency in the attracting FTLE 750

ridges. 751

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

22 of 35

(a) Attracting lines.

(b) Repelling lines.
Figure 7. Isometric view of FTLE ridges for the incompressible case at high Reynolds numbers.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

23 of 35

(a) Attracting lines.

(b) Repelling lines.
Figure 8. Isometric view of FTLE ridges for the supersonic case at high Reynolds numbers.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

24 of 35

(a) Attracting lines.

(b) Repelling lines.
Figure 9. Isometric view of FTLE ridges for the hypersonic case at high Reynolds numbers.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

25 of 35

Figure 10. (x − y)-Plane View of FTLE Ridges for incompressible flow at low Reynolds numbers
(Scaled 2:1 along the wall-normal and spanwise directions) including (a) attracting and (b) repelling
FTLE ridges.

The isometric view shown in figure 11 illustrates that the increased coherency in the lower 752

Reynolds case extends significantly in the spanwise direction, as well. This also confirms 753

the increased anisotropy. We hypothesize that the increased fluid organization at lower 754

Reynolds numbers is attributable to an decreased dominance of the inertial forces. The 755

viscous interactions offer a “stabilizing" effect on the coherent structures and elongate their 756

coherency. 757

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

26 of 35

Figure 11. Isometric View of FTLE Ridges for the incompressible low Reynolds-number case (Scaled
2:1 along the wall-normal and spanwise directions) including (a) attracting and (b) repelling FTLE
ridges.

3.2.3. Temporal Interpolation and Particle Density Influence 758

The temporal interpolator presented in equation 4 provides a mechanism to reduce 759

storage requirements. To assess the quality of our interpolation mechanism, we showcase 760

results sampled at different temporal resolutions (an order of magnitude difference) for the 761

incompressible low-Reynolds-number case. The results are shown in figure 12. Note that 762

both particle advection integration tests (and using the proposed interpolation scheme) 763

were executed at a timestep that was 20× smaller than that of the DNS timestep. In 764

general, structures are well preserved with the only features slightly degraded contain high 765

frequencies which inherently depend on high frequency sampling, and the interpolation 766

scheme preserves the stability of the integration process. 767

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

27 of 35

Figure 12. (x− y)-Plane View of FTLE Ridges for the incompressible case at low Reynolds numbers
(Scaled 2:1 along the wall-normal and spanwise directions) with (a) flow fields sampled at the DNS
timestep and (b) sampled every 10 DNS-timesteps.

To validate the higher frequency features, we hypothesize that more “energy" (or intensity) 768

is concentrated into the same volume hence the structures are more well-defined as both 769

particle count grows and as underlying flow fields are sampled at a higher rate. To test 770

our hypothesis, we follow an approach analogous to that of a power (energy) spectra to 771

calculate the density of the FTLE’s intensity. We present a normalized view of this spectral 772

analysis in figure 13. As we had alluded, the FTLE’s intensity grows and is concentrated into 773

smaller regions which yields higher magnitudes in the L2-norm of the spectra as particle 774

count grows and at higher temporal sampling frequencies. Interestingly, both curves follow 775

almost a quadratic tendency. This is slightly more obfuscated but can be visually confirmed 776

by closely inspecting figures 14 & 15. Although higher temporal sampling frequency yields 777

more well-defined results, increasing the number of particles results in similarly high 778

fidelity results at higher particle counts. That being said, some features are inherently tied 779

to the presence of higher temporal frequencies and are difficult, if not impossible, to recover 780

without fully accounting for these in the underlying flow fields. 781

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

28 of 35

Figure 13. L2-Norm of the 3D FTLE Spectra vs. Particle Count at Low and High Temporal Sampling
Frequencies.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

29 of 35

Figure 14. Attracting FTLE visualization as a function of particle count (HF: high temporal sampling
frequency).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

30 of 35

Figure 15. FTLE visualization as a function of particle count (LF: low temporal sampling frequency).

4. Conclusion 782

We have highlighted a notable gap in efficient and scalable algorithms for particle 783

advection workloads. In particular, this manuscript focused on the issue as pertaining 784

to Lagrangian coherent structures which provide an objective framework for studying 785

complex patterns in turbulent flows. Although the end goal is the calculation of the finite- 786

time Lyapunov exponent, we argue that the particle tracking and time integration is the 787

most time-intensive task. Although others have argued for implementations based on the 788

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

31 of 35

FEM, we argued for the simplicity and portability of a well-designed implementation based 789

on traditional particle advection. By decoupling the individual problems, we achieved a 790

high degree of modularity and extensibility. To tackle the particle advection problem, we 791

drew inspiration from multiple fields including classical search algorithms and modern 792

multi-level approaches in numerical linear algebra. The fundamental algorithms lack any 793

domain-specific knowledge but augmentations were introduced to enhance the baseline 794

performance by exploiting the inherent structure in structured CFD meshes. 795

The proposed algorithm was implemented for both traditional multi-core CPUs and Nvidia 796

GPUs using the Numba compiler infrastructure and Python programming language. We 797

demonstrated strong scaling up to 32768 CPU cores and up to 62 Nvidia V100 GPUs 798

(4960 GPU SM cores or an equivalent 317440 CUDA cores). As part of our scaling study, 799

we demonstrated the particular features of both CPU and GPU architectures that benefit 800

particle advection in an unsteady flow field. Particle advection is foundational to many 801

CFD workloads including Lagrangian Coherent Structures. We argued that decoupled 802

scaling in the number of particles vs cells in the simulation’s domain is required to achieve 803

high resolution visualizations. We showcased the linear scaling in the number of particles 804

and a highly favorable scaling in the number cells suggesting our approach can scale 805

to tackle larger problems. Both, the CPU and GPU backends, exhibit excellent parallel 806

efficiency scaling out to thousands of CPU (or GPU) cores. 807

To demonstrate the applicability of our particle advection scheme, we presented a case 808

study calculating and visualizing the finite-time Lyapunov exponent on four turbulent 809

boundary layers at different Reynolds and Mach numbers to assess compressibility effects 810

and Reynolds number dependency on the LCS candidate structures. The main compressibil- 811

ity effects were an increase of the isotropic character of attracting and repelling manifolds 812

as the Mach number increases. Conversely, we saw an increased anisotropy and FTLE 813

organization at lower Reynolds numbers with structures retaining their coherency along 814

both spanwise and streamwise directions. We also observed structures tended to be less 815

contained to the near-wall region at higher Mach numbers. We also highlighted the im- 816

pact of lower temporal frequency sampling in the source flow fields by upscaling with 817

an efficient linear upsampler. The general trends were well preserved with (as expected) 818

high frequency features being absent from the downsampled data. However, the quality is 819

acceptable with just 10% of the required storage. Nonetheless, this manuscript is focused 820

on the methodology, and an in-depth study of the physics and compressibility effects in 821

LCS candidates is beyond the scope of this work. 822

In summary, we presented a highly efficient particle search scheme in the context of particle 823

advection workloads. The motivating application revolves around visualizing Lagrangian 824

coherent structures via the finite-time Lyapunov exponent. We presented a thorough 825

computational complexity analysis of the algorithm and presented empirical evidence 826

highlighting the strong scaling performance and efficiency at scale. Although focused on 827

LCS for the purpose of this manuscript, the proposed particle advection algorithm builds 828

on a search scheme applicable across many domains requiring efficient search algorithms in 829

large structured domains. The proposed search scheme is highly scalable to larger domains 830

due to its coarsening, multi-level methodology and scales linearly in the number of particles 831

once sufficient work is available to saturate the computational element. 832

Acknowledgments 833

This material is based upon work supported by the National Science Foundation 834

under grants #2314303, #1847241, HRD-1906130, DGE-2240397. This material is based on 835

research sponsored by the Air Force Office of Scientific Research (AFOSR), under agreement 836

number FA9550-23-1-0241. This work was supported in part by a grant from the DoD 837

High-Performance Computing Modernization Program (HPCMP). A subset of the results 838

presented in this paper were obtained using the Chameleon testbed supported by the 839

National Science Foundation. 840

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

32 of 35

References 841

1. Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, streams, and convergence zones in turbulent flows. 842

In Proceedings of the Studying Turbulence Using Numerical Simulation Databases, 2, 1988, pp. 843

193–208. 844

2. Jeong, J.; Hussain, F. On the identification of a vortex. Journal of Fluid Mechanics 1995, 285, 69–94. 845

3. Lagares, C.; Araya, G. Compressibility effects on high-Reynolds coherent structures via two- 846

point correlations. AIAA AVIATION 2021 FORUM 2021. https://doi.org/10.2514/6.2021-2869. 847

4. Araya, G.; Lagares, C.; Santiago, J.; Jansen, K. Wall temperature effect on hypersonic turbulent 848

boundary layers via DNS. AIAA SciTech 2021. 849

5. Haller, G.; Yuan, G. Lagrangian coherent structures and mixing in two-dimensional turbulence. 850

Physica D 2000, 147, 352–370. 851

6. Haller, G. Distinguished material surfaces and coherent structures in three-dimensional fluid 852

flows. Physica D: Nonlinear Phenomena 2001, 149, 248–277. https://doi.org/https://doi.org/10 853

.1016/S0167-2789(00)00199-8. 854

7. Haller, G. Lagrangian Coherent Structures. Ann. Rev. Fluid Mechanics 2015, 47, 137–162. 855

8. Haller, G.; Karrasch, D.; Kogelbauer, F. Barriers to the Transport of Diffusive Scalars in 856

Compressible Flows. SIAM Journal on Applied Dynamical Systems 2020, 19, 85–123. https: 857

//doi.org/10.1137/19M1238666. 858

9. Saltar, G.; Lagares, C.; Araya, G. Compressibility and Reynolds number effect on Lagrangian 859

Coherent Structures (LCS). AIAA AVIATION 2022 Forum 2022. https://doi.org/10.2514/6.2022 860

-3627. 861

10. Onu, K.; Huhn, F.; Haller, G. LCS Tool: A computational platform for Lagrangian coherent. 862

Journal of Computational Science 2015, 7, 26–36. 863

11. Töger, J.; Kanski, M.; Carlsson, M.; Kovacs, S.; Söderlind, G.; Arheden, H.; Heiberg, E. Vortex 864

Ring Formation in the Left Ventricle of the Heart: Analysis by 4D Flow MRI and Lagrangian 865

Coherent Structures. Annals of Biomedical Engineering 2012, 40. 866

12. Shadden, S.; Astorino, M.; Gerbeau, J. Computational analysis of an aortic valve jet with 867

Lagrangian coherent structures. Chaos 2010, 20. 868

13. Koh, T.Y.; Legras, B. Hyperbolic lines and the stratospheric polar vortex. Chaos 2002, 12, 382–394. 869

14. Beron-Vera, F.J.; Olascoaga, M.; Goni, G. Oceanic mesoscale eddies as revealed by Lagrangian 870

coherent structures. Geophysical Research Letters 2008, 35. 871

15. Beron-Vera, F.J.; Olascoaga, M.J.; Brown, M.G.; Rypina, I.I. Invariant-tori-like Lagrangian 872

coherent structures in geophysical flows. Chaos 2010, 20. 873

16. Peng, J.; Dabiri, J. Transport of inertial particles by Lagrangian coherent structures: application 874

to predator–prey interaction in jellyfish feeding. Journal of Fluid Mechanics 2009, 623, 75–84. 875

https://doi.org/10.1017/S0022112008005089. 876

17. Tew Kai, E.; Rossi, V.; Sudre, J.; Weimerskirch, H.; Lopez, C.; Hernandez-Garcia, E.; Marsac, 877

F.; Garçon, V. Top marine predators track Lagrangian coherent structures. Proceedings of the 878

National Academy of Sciences 2009, 106, 8245–8250. https://doi.org/10.1073/pnas.0811034106. 879

18. Lagares, C.; Rivera, W.; Araya, G., Aquila: A Distributed and Portable Post-Processing Library 880

for Large-Scale Computational Fluid Dynamics. In AIAA Scitech 2021 Forum; 2021. https: 881

//doi.org/10.2514/6.2021-1598. 882

19. Lagares, C.; Rivera, W.; Araya, G. Scalable Post-Processing of Large-Scale Numerical Simulations 883

of Turbulent Fluid Flows. Symmetry 2022, 14. https://doi.org/10.3390/sym14040823. 884

20. Nelson, D.A.; Jacobs, G.B. DG-FTLE: Lagrangian coherent structures with high-order 885

discontinuous-Galerkin methods. Journal of Computational Physics 2015, 295, 65–86. 886

https://doi.org/https://doi.org/10.1016/j.jcp.2015.03.040. 887

21. Fortin, A.; Briffard, T.; Garon, A. A more efficient anisotropic mesh adaptation for the compu- 888

tation of Lagrangian coherent structures. Journal of Computational Physics 2015, 285, 100–110. 889

https://doi.org/https://doi.org/10.1016/j.jcp.2015.01.010. 890

22. Dauch, T.; Rapp, T.; Chaussonnet, G.; Braun, S.; Keller, M.; Kaden, J.; Koch, R.; Dachsbacher, 891

C.; Bauer, H.J. Highly efficient computation of Finite-Time Lyapunov Exponents (FTLE) on 892

GPUs based on three-dimensional SPH datasets. Computers Fluids 2018, 175, 129–141. https: 893

//doi.org/https://doi.org/10.1016/j.compfluid.2018.07.015. 894

23. Lagares, C.; Araya, G. Power spectrum analysis in supersonic/hypersonic turbulent boundary 895

layers. AIAA SCITECH 2022 Forum 2022. https://doi.org/10.2514/6.2022-0479. 896

24. Araya, G.; Lagares, C. Implicit Subgrid-Scale Modeling of a Mach 2.5 Spatially Developing 897

Turbulent Boundary Layer. Entropy 2022, 24. https://doi.org/10.3390/e24040555. 898

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

33 of 35

25. Araya, G.; Lagares, C.; Jansen, K. Reynolds number dependency in supersonic spatially- 899

developing turbulent boundary layers. 2020 AIAA SciTech Forum (AIAA 3247313) 6 - 10 January, 900

Orlando, FL. 2020. 901

26. Karrasch, D.; Haller, G. Do Finite-Size Lyapunov Exponents detect coherent structures? Chaos 902

2013, 23, 1–11. 903

27. Peikert, R.; Pobitzer, A.; Sadlo, F.; Schindler, B. A comparison of Finite-Time and Finite-Size 904

Lyapunov Exponents. In Topological Methods in Data Analysis and Visualization III; Springer 905

International Publishing Switzerland, 2014. 906

28. Wang, B.; Wald, I.; Morrical, N.; Usher, W.; Mu, L.; Thompson, K.; Hughes, R. An GPU- 907

accelerated particle tracking method for Eulerian–Lagrangian simulations using hardware ray 908

tracing cores. Computer Physics Communications 2022, 271, 108221. https://doi.org/https: 909

//doi.org/10.1016/j.cpc.2021.108221. 910

29. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3 ed.; Prentice Hall, 2010. 911

30. Demmel, J.W. Applied Numerical Linear Algebra; SIAM, 1997. https://doi.org/10.1137/1.978161 912

1971446. 913

31. Araya, G.; Castillo, L.; Meneveau, C.; Jansen, K. A dynamic multi-scale approach for turbulent 914

inflow boundary conditions in spatially evolving flows. Journal of Fluid Mechanics 2011, 670, 518– 915

605. 916

32. Lund, T.; Wu, X.; Squires, K. Generation of turbulent inflow data for spatially-developing 917

boundary layer simulations. Journal of Computational Physics 1998, 140, 233–258. 918

33. Urbin, G.; Knight, D. Large-Eddy Simulation of a supersonic boundary layer using an unstruc- 919

tured grid. AIAA Journal 2001, 39, 1288–1295. 920

34. Stolz, S.; Adams, N. Large-eddy simulation of high-Reynolds-number supersonic boundary 921

layers using the approximate deconvolution model and a rescaling and recycling technique. 922

Physics of Fluids 2003, 15, 2398–2412. 923

35. Xu, S.; Martin, M.P. Assessment of inflow boundary conditions for compressible turbulent 924

boundary layers. Physics of Fluids 2004, 16, 2623–2639. 925

36. Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer Berlin Heidelberg, 2016. 926

37. Whiting, C.H.; Jansen, K.E.; Dey, S. Hierarchical basis in stabilized finite element methods for 927

compressible flows. Comp. Meth. Appl. Mech. Engng. 2003, 192, 5167–5185. 928

38. Jansen, K.E. A stabilized finite element method for computing turbulence. Comp. Meth. Appl. 929

Mech. Engng. 1999, 174, 299–317. 930

39. Araya, G.; Castillo, C.; Hussain, F. The log behaviour of the Reynolds shear stress in accelerating 931

turbulent boundary layers. Journal of Fluid Mechanics 2015, 775, 189–200. 932

40. Doosttalab, A.; Araya, G.; Newman, J.; Adrian, R.; Jansen, K.; Castillo, L. Effect of small 933

roughness elements on thermal statistics of a turbulent boundary layer at moderate Reynolds 934

number. Journal of Fluid Mechanics 2015, 787, 84–115. 935

41. Stalmach, C. Experimental Investigation of the Surface Impact Pressure Probe Method Of 936

Measuring Local Skin Friction at Supersonic Speeds. Bureau of Engineering Research, University 937

of Texas 1958. 938

42. Mabey, D.; Sawyer, W. Experimental Studies of the Boundary Layer on a Flat Plate at Mach 939

Numbers from 2.5 to 4.5. Aerodynamics Department, R.A.E., Bedford. 1976, Reports and Memoranda 940

No. 3784. 941

43. Tichenor, N.R.; Humble, R.A.; Bowersox, R.D.W. Response of a hypersonic turbulent boundary 942

layer to favourable pressure gradients. Journal of Fluid Mechanics 2013, 722, 187–213. 943

44. Nicholson, G.; Huang, J.; Duan, L.; Choudhari, M.M.; Bowersox, R.D. Simulation and Modeling 944

of Hypersonic Turbulent Boundary Layers Subject to Favorable Pressure Gradients due to 945

Streamline Curvature. AIAA Scitech 2021 Forum, 2021. https://doi.org/10.2514/6.2021-1672. 946

45. Bernardini, M.; Pirozzoli, S. Wall pressure fluctuations beneath supersonic turbulent boundary 947

layers. Phys. Fluids 2011, p. 085102. 948

46. Hutchins, N.; Marusic, I. Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. 949

2007, 365, 647–664. 950

47. Bernardini, M.; Pirozzoli, S. Inner/outer layer interactions in turbulent boundary layers: A 951

refined measure for the large-scale amplitude modulation mechanism. Physics of Fluids 2011, 952

23, 061701. https://doi.org/10.1063/1.3589345. 953

48. White, F.M. Viscous Fluid Flow; McGraw-Hill Mechanical Engineering, New York, 2006. 954

49. Osterlund, J.M.; Johansson, A.V.; Nagib, H.M.; Hites, M.H. A note on the overlap region in 955

turbulent boundary layers. Physics of Fluids 2001, 12. 956

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

34 of 35

50. Song, X.C.; Smith, P.; Kalyanam, R.; Zhu, X.; Adams, E.; Colby, K.; Finnegan, P.; Gough, E.; 957

Hillery, E.; Irvine, R.; et al. Anvil - System Architecture and Experiences from Deployment and 958

Early User Operations. In Proceedings of the Practice and Experience in Advanced Research 959

Computing; Association for Computing Machinery: New York, NY, USA, 2022; PEARC ’22. 960

https://doi.org/10.1145/3491418.3530766. 961

51. Keahey, K.; Anderson, J.; Zhen, Z.; Riteau, P.; Ruth, P.; Stanzione, D.; Cevik, M.; Colleran, J.; 962

Gunawi, H.S.; Hammock, C.; et al. Lessons Learned from the Chameleon Testbed. In Proceedings 963

of the 2020 USENIX Annual Technical Conference (USENIX ATC ’20); USENIX Association, 2020. 964

52. Alappat, C.L.; Hofmann, J.; Hager, G.; Fehske, H.; Bishop, A.R.; Wellein, G. Understanding HPC 965

Benchmark Performance on Intel Broadwell And Cascade Lake Processors. In Proceedings of 966

the High Performance Computing: 35th International Conference, ISC High Performance 2020, 967

Frankfurt/Main, Germany, June 22–25, 2020, Proceedings; Springer-Verlag: Berlin, Heidelberg, 968

2020; p. 412–433. https://doi.org/10.1007/978-3-030-50743-5_21. 969

53. Velten, M.; Schöne, R.; Ilsche, T.; Hackenberg, D. Memory Performance of AMD EPYC 970

Rome and Intel Cascade Lake SP Server Processors. In Proceedings of the Proceedings 971

of the 2022 ACM/SPEC on International Conference on Performance Engineering; Associ- 972

ation for Computing Machinery: New York, NY, USA, 2022; ICPE ’22, p. 165–175. https: 973

//doi.org/10.1145/3489525.3511689. 974

54. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; 975

Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 976

585, 357–362. https://doi.org/10.1038/s41586-020-2649-2. 977

55. Lam, S.K.; Pitrou, A.; Seibert, S. Numba: A LLVM-Based Python JIT Compiler. In Proceedings 978

of the Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC; 979

Association for Computing Machinery: New York, NY, USA, 2015; LLVM ’15. https://doi.org/ 980

10.1145/2833157.2833162. 981

56. Oden, L. Lessons learned from comparing C-CUDA and Python-Numba for GPU-Computing. 982

In Proceedings of the 2020 28th Euromicro International Conference on Parallel, Distributed 983

and Network-Based Processing (PDP), 2020, pp. 216–223. https://doi.org/10.1109/PDP50117.2 984

020.00041. 985

57. Crist, J. Dask Numba: Simple libraries for optimizing scientific python code. In Proceedings 986

of the 2016 IEEE International Conference on Big Data (Big Data), 2016, pp. 2342–2343. https: 987

//doi.org/10.1109/BigData.2016.7840867. 988

58. Betcke, T.; Scroggs, M.W. Designing a High-Performance Boundary Element Library With 989

OpenCL and Numba. Computing in Science Engineering 2021, 23, 18–28. https://doi.org/10.110 990

9/MCSE.2021.3085420. 991

59. Siket, M.; Dénes-Fazakas, L.; Kovács, L.; Eigner, G. Numba-accelerated parameter estimation 992

for artificial pancreas applications. In Proceedings of the 2022 IEEE 20th Jubilee International 993

Symposium on Intelligent Systems and Informatics (SISY), 2022, pp. 279–284. https://doi.org/ 994

10.1109/SISY56759.2022.10036259. 995

60. Almgren-Bell, J.; Awar, N.A.; Geethakrishnan, D.S.; Gligoric, M.; Biros, G. A Multi-GPU Python 996

Solver for Low-Temperature Non-Equilibrium Plasmas. In Proceedings of the 2022 IEEE 997

34th International Symposium on Computer Architecture and High Performance Computing 998

(SBAC-PAD), 2022, pp. 140–149. https://doi.org/10.1109/SBAC-PAD55451.2022.00025. 999

61. Silvestri, L.G.; Stanek, L.J.; Choi, Y.; Murillo, M.S.; Dharuman, G. Sarkas: A Fast Pure-Python 1000

Molecular Dynamics Suite for Non-Ideal Plasmas. In Proceedings of the 2021 IEEE International 1001

Conference on Plasma Science (ICOPS), 2021, pp. 1–1. https://doi.org/10.1109/ICOPS36761.2 1002

021.9588359. 1003

62. Dogaru, R.; Dogaru, I. A Low Cost High Performance Computing Platform for Cellular 1004

Nonlinear Networks Using Python for CUDA. In Proceedings of the 2015 20th International 1005

Conference on Control Systems and Computer Science, 2015, pp. 593–598. https://doi.org/10.1 1006

109/CSCS.2015.36. 1007

63. Dogaru, R.; Dogaru, I. Optimization of GPU and CPU acceleration for neural networks layers 1008

implemented in Python. In Proceedings of the 2017 5th International Symposium on Electrical 1009

and Electronics Engineering (ISEEE), 2017, pp. 1–6. https://doi.org/10.1109/ISEEE.2017.81706 1010

80. 1011

64. Di Domenico, D.; Cavalheiro, G.G.H.; Lima, J.V.F. NAS Parallel Benchmark Kernels with Python: 1012

A performance and programming effort analysis focusing on GPUs. In Proceedings of the 1013

2022 30th Euromicro International Conference on Parallel, Distributed and Network-based 1014

Processing (PDP), 2022, pp. 26–33. https://doi.org/10.1109/PDP55904.2022.00013. 1015

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

35 of 35

65. Karnehm, D.; Sorokina, N.; Pohlmann, S.; Mashayekh, A.; Kuder, M.; Gieraths, A. A High 1016

Performance Simulation Framework for Battery Modular Multilevel Management Converter. 1017

In Proceedings of the 2022 International Conference on Smart Energy Systems and Technologies 1018

(SEST), 2022, pp. 1–6. https://doi.org/10.1109/SEST53650.2022.9898406. 1019

66. Yang, F.; Menard, J.E. PyISOLVER—A Fast Python OOP Implementation of LRDFIT Model. 1020

IEEE Transactions on Plasma Science 2020, 48, 1793–1798. https://doi.org/10.1109/TPS.2019.295 1021

8001. 1022

67. Mattson, T.G.; Anderson, T.A.; Georgakoudis, G. PyOMP: Multithreaded Parallel Programming 1023

in Python. Computing in Science Engineering 2021, 23, 77–80. https://doi.org/10.1109/MCSE.20 1024

21.3128806. 1025

68. Zhou, Y.; Cheng, J.; Liu, T.; Wang, Y.; Deng, H.; Xiong, Y. GPU-based SAR Image Lee Filtering. 1026

In Proceedings of the 2019 IEEE 7th International Conference on Computer Science and Network 1027

Technology (ICCSNT), 2019, pp. 17–21. https://doi.org/10.1109/ICCSNT47585.2019.8962486. 1028

69. Dogaru, R.; Dogaru, I. A Python Framework for Fast Modelling and Simulation of Cellular 1029

Nonlinear Networks and other Finite-difference Time-domain Systems. In Proceedings of the 1030

2021 23rd International Conference on Control Systems and Computer Science (CSCS), 2021, pp. 1031

221–226. https://doi.org/10.1109/CSCS52396.2021.00043. 1032

70. Alnaasan, N.; Jain, A.; Shafi, A.; Subramoni, H.; Panda, D.K. OMB-Py: Python Micro- 1033

Benchmarks for Evaluating Performance of MPI Libraries on HPC Systems. In Proceedings 1034

of the 2022 IEEE International Parallel and Distributed Processing Symposium Workshops 1035

(IPDPSW), 2022, pp. 870–879. https://doi.org/10.1109/IPDPSW55747.2022.00143. 1036

71. Lattner, C.; Adve, V. LLVM: a compilation framework for lifelong program analysis transfor- 1037

mation. In Proceedings of the International Symposium on Code Generation and Optimization, 1038

2004. CGO 2004., 2004, pp. 75–86. https://doi.org/10.1109/CGO.2004.1281665. 1039

72. Dagum, L.; Menon, R. OpenMP: an industry standard API for shared-memory programming. 1040

Computational Science & Engineering, IEEE 1998, 5, 46–55. 1041

73. Pheatt, C. Intel® Threading Building Blocks. J. Comput. Sci. Coll. 2008, 23, 298. 1042

74. Green, M.; Rowley, C.; Haller, G. Detection of Lagrangian Coherent Structures in 3D turbulence. 1043

Journal of Fluid Mechanics 2007, 572, 111–120. 1044

75. Pan, C.; Wang, J.J.; Zhang, C. Identification of Lagrangian coherent structures in the turbulent 1045

boundary layer. Sci. China Ser. G-Phys Mech. Astron. 2009, 52, 248–257. 1046

76. Adrian, R. Hairpin vortex organization in wall turbulence. Phys. Fluids 2007, 19, 041301. 1047

77. Pan, C.; Wang, J.; Zhang, P.; Feng, L. Coherent structures in bypass transition induced by a 1048

cylinder wake. Journal of Fluid Mechanics 2008, 603, 367–389. 1049

78. Lagares, C.; Araya, G. High-Resolution 4D Lagrangian Coherent Structures. 75th APS-DFD 1050

November 2022 (Virtual) 2022. https://doi.org/https://doi.org/10.1103/APS.DFD.2022.GFM. 1051

V0025. 1052

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1195.v1

	Introduction
	Problem Overview and Algorithmic Details
	Finite-Time Time Lyapunov Exponent
	Overview - FTLE
	Algorithmic Details - Particle Advection
	Algorithmic Details - Right Cauchy-Green Tensor & Eigenvalue Problem

	Direct Numerical Simulation: The Testbed Cases
	Computing Resources
	Cray XC40/50 - Onyx
	HPE Cray EX (formerly Cray Shasta) - Narwhal
	Anvil
	Chameleon A100 Node
	Fair CPU and GPU Comparisons
	Software

	Results and Discussion
	Performance Scaling Analysis
	Case Study
	Compressibility Effects
	Reynolds Number Dependency Effects
	Temporal Interpolation and Particle Density Influence

	Conclusion
	References

