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Abstract: In this work, we introduce a scalable and efficient GPU-accelerated methodology for
volumetric particle advection and finite-time Lyapunov exponent (FTLE) calculation, focusing on the
analysis of Lagrangian Coherent Structures (LCS) in large-scale Direct Numerical Simulation (DNS)
datasets across incompressible, supersonic, and hypersonic flow regimes. LCS play a significant role
in turbulent boundary layer analysis, and our proposed methodology offers valuable insights into
their behavior in various flow conditions. Our novel owning-cell locator method enables efficient,
constant-time cell search, and the algorithm draws inspiration from classical search algorithms and
modern multi-level approaches in numerical linear algebra. The proposed method is implemented
for both multi-core CPUs and Nvidia GPUs, demonstrating strong scaling up to 32,768 CPU cores
and up to 62 Nvidia V100 GPUs. By decoupling particle advection from other problems, we achieve
modularity and extensibility, resulting in consistent parallel efficiency across different architectures.
Our methodology was applied to calculate and visualize the FTLE on four turbulent boundary layers
at different Reynolds and Mach numbers, revealing that coherent structures grow more isotropic
proportional to the Mach number, and their inclination angle varies along the streamwise direction.
We also observed increased anisotropy and FTLE organization at lower Reynolds numbers, with
structures retaining coherency along both spanwise and streamwise directions. Additionally, we
demonstrated the impact of lower temporal frequency sampling by upscaling with an efficient linear
upsampler, preserving general trends with only 10% of the required storage. In summary, we present
a particle search scheme for particle advection workloads in the context of visualizing LCS via FTLE
that exhibits strong scaling performance and efficiency at scale. Our proposed algorithm is applicable
across various domains requiring efficient search algorithms in large structured domains. While this
manuscript focuses on the methodology and its application to LCS, an in-depth study of the physics
and compressibility effects in LCS candidates will be explored in a future publication.

Keywords: LCS, GPU Accelerated, Particle Advection, Distributed Memory Algorithms, High Speed
Turbulent Boundary Layers, DNS

1. Introduction

The study of coherency in seemingly random velocity fields of fluid flow has long .
been of applied and theoretical interest to a broad community. This statement is essentially
what the study of turbulence seeks to unravel. High-speed turbulence, relevant in both
civilian and military domains, presents a set of unique challenges for both experimentaland 4
computational approaches. That being said, the advent of ever-more-powerful computers s
has made high-fidelity numerical simulations on non-trivial domains feasible. However,
once high-quality data is available, efficient tooling must be leveraged to gather knowledge -
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from the vast volumes of data usually generated by numerical simulations. This volume of =
data is highly dependent on the type of simulation chosen for the computational analysis of
fluid flow. Broadly speaking, computational fluid dynamics (CFD) can often be divided into 10
three categories: Reynolds-averaged Navier-Stokes (RANS), Large-Eddy Simulations (LES) 11
and Direct Numerical Simulation (DNS), in order of increasing fidelity and computational 12
cost. Of the three, DNS does not invoke any turbulence models; however, other models 1
can be applied such as type of fluid being used (Newtonian or Non-Newtonian) or the s
molecular viscosity model used in compressible flows, for instance. Once DNS data is s
available, the study of coherent structures within the computational flow fields can be 16
approached from either an Eulerian or Lagrangian perspective. Both provide different, yet 17
valuable, insights. The Eulerian methods study a control volume with particles entering  1s
and exiting the volume. Lagrangian methods follow the individual particles across a given 1o
domain. This seemingly innocuous change of reference has rippling implications on the 2o
objectivity and nature of the achievable results. Eulerian methodologies are often employed =
in CFD post-processing due to the ease of implementation, high-performance achievable 22
and intuitive results. Eulerian approaches to coherent structure detection and visualization — =s
include methods such as Q-criterion ([1]), A, ([2]), two-point correlations ([3,4]), among  za
others. However, one notable limitation of Eulerian methods is their lack of objectivity. The =5
concept of Lagrangian coherent structures was first introduced by [5] and [6] as an alternate 26
path to both detect and describe structures in turbulent flows. More recently, [7] describes 2
LCS as manifolds formed by mass-less particle trajectories organizing the flow into different  2s
regions. Given the formulation by [5], LCS provides a mathematical framework that is: 2»
frame independent, theoretically insensitive to mesh resolution (with practical caveats) o
and enables the Lagrangian domain to exceed the baseline resolution by increasing particle a1
counts. The formulation is based on the finite-time, Lyapunov exponent (FTLE) which will s
be introduced in more detail later in the manuscript. [8] extended the theoretical concept of s
material diffusion barriers to compressible flows but limited the applications to flow fields s
with density variations at relatively low speeds. Many applications for LCS have been put s
forth by [7], [9] and [10]. The work presented herein is extensible to the myriad of fields e
where both LCS and particle advection are applicable. For instance, the LCS framework s
has been used in biological domains by [11], [12], [13]; in geophysical domains by [14], [15]; ss
and ecological flows by [16], [17], among others. 30
Computationally speaking, Eulerian approaches lend themselves to highly efficient im- 40
plementations due to regular memory access patterns and predictability. This regularity — a
enables shared performance portability frontends capable of targeting different backends 4=
with similar performance characteristics, as pointed out by [18] and [19]. However, La- s
grangian approaches require one to reason about lower level characteristics for particular 44
hardware sets to achieve reasonable performance levels. Furthermore, extensive re-use of s
memory buffers is critical to avoiding incurring allocation bottlenecks. What’s more, avoid- 4
ing codebase divergence while exploiting algorithmic advantages is also critical. Given 4
the relevance of LCS to many fields, multiple implementations have been put forth in the  4s
literature. Many implementations are focused on planar LCS (i.e., 2D LCS). For instance, 45
[10] presented a tool based on the popular Matlab environment and aptly named “LCS  so
Tool". LCS Tool has been used in the literature as an off-the-shelf, accessible package (see s
[9] for a relevant example). LCS Tool is written in Matlab and is limited to a single node s
using shared memory parallelism within the limited number of Matlab’s internally parallel s
functions with large memory requirements. At the time, other implementations based on  sa
the finite-element method were also proposed such as the work by [20] where the Finite- s
Time Lyapunov Exponent was calculated using a discontinous Galerkin formulation. Finite e
Element Method (FEM) formulations can benefit from high-quality, adaptive mesh refine- 7
ment which led [21] to propose an approach for efficient refinement of complex meshes for  ss
LCS calculations. [22] proposed a GPU-based LCS calculation scheme for smooth-particle  so
hydrodynamics (SPH) data. Their approach, although efficient, was limited to a single o
node and lacked an efficient CPU-based counterpart. They reported speedups ranging e
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from 33 to 67 x for the GPU implementation. Moreover, due to the hardware described in e
[22], an efficient CPU implementation should have closed that gap to between 14 x (fora s
typical memory bound code such as a particle advection workload) and 51x (for a purely s
compute-bound code), a 1.31x to 2.35x smaller gap. Typically, many scientific codes are s
mostly memory bound which suggest that a large gap still exists for an implementation s
which is efficient and scalable across both CPUs and GPUs. o7
In this work, we present a scalable, efficient volumetric particle advection' and FTLE s
calculation code capable of calculating dynamic 3D FTLEs for large-scale DNS datasets. We oo
will highlight implementation details for both the CPU and GPU backends of our code, o
where both backends share common ground and where the implementations diverged =
for performance reasons. As part of the implementation, we present a novel owning-cell 7
locator method capable of efficient, constant-time cell search. We also study four DNS 7
cases performed over flat plates at the incompressible, supersonic and hypersonic regimes 7
by [23-25] to infer compressibility effects and Reynolds number dependencies on LCS.
Although an in-depth discussion of the physics in the presented results is beyond the 7
scope of the present work, we present a brief discussion of the results to highlight the 7~
practical applications of our work. A more in-depth discussion of the flow physics behind 7
Lagrangian coherent structures in turbulent boundary layers will be explored in a future 7

publication elsewhere. a0
2. Problem Overview and Algorithmic Details 81
2.1. Finite-Time Time Lyapunov Exponent 82
2.1.1. Overview - FTLE 83

The manifolds formed by the particle trajectories in a fluid flow are commonly referred  es
to as Lagrangian Coherent Structure (LCS). Candidate manifolds for these LCS can be s
approximated discretely by various methodologies including leveraging the finite-time s
Lyapunov exponent (FTLE) or it’s counterpart, the finite-size Lyapunov exponent (FSLE). &7
Both methodologies evaluate the deformation of a particle field but differ in their approach. s
The FSLE quantifies the amount of time it takes a pair of particles to reach a given finite &
distance between them. On the other hand, the FTLE integrates over a fixed, finite time oo
regardless of the distance between neighboring particles. [26] made an assesment of o
both methods and pointed out advantages that FTLE has over FSLE. Nonetheless, [27] 2
highlighted in their comparison that, with proper calibration, FTLE and FSLE can lead to o3
similar results. In this work, we extend prior work on 2D FTLE ([9]) to a generalized, 3D o
representation. [7] pointed out that full, 3D LCS based on particle advection and finite- s
differences can be computationally challenging. This, however, assumes non-favorable s
scaling for both particle advection and subsequent calculations. The movement of a particle o7
that is released at a specific time ¢y and location xy over a certain period can be described o5
using the flow map, given the velocity field. The finite-time Lyapunov exponent (FTLE) is o
defined as: 100

FTLE(x t) = |1T|log< Anax (G}, (%)) ) (1)
where A,y denotes the maximum eigenvalue and CfO (x) is the right Cauchy-Green (CG)
strain tensor at a given spatial coordinate x. The right Cauchy-Green strain tensor is a
mathematical quantity used to describe the deformation of a continuous body. It is defined
as the product of the deformation gradient tensor and its transpose. The right CG tensor
left-multiplies the transpose whereas the left CG tensor does the opposite. Furthermore,
the right CG tensor is symmetric. It can be expressed as,

byt
o dx; dx;

i = —4 ,
/ axfo 8x§°

@

1 For the purpose of this work, we refer to mass-less particles simply as particles.
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where derivatives are taken as the change in the particle’s position (i.e., deformation) with 101
respect to it’s original position at time ¢y. Physically, the right Cauchy-Green strain tensor 1oz
describes the way in which a body has been distorted or strained. It is a measure of the 103
change in length of material lines or fibers within the body due to deformation. Specifically, 10
the eigenvalues of the right Cauchy-Green strain tensor represent the squared stretches 10s
along the principal material directions, while the eigenvectors represent the directions of 106
those stretches. It is demonstrable that the right Cauchy-Green strain tensor is a symmetric 107
positive definite tensor implying real and positive eigenvalues. 108
High FTLE values highlight candidates for either attracting or repelling manifolds. If the 100
particle’s trajectory is integrated forward in time, the structure is a repelling manifold. 1o
Conversely, backwards-in-time integration yields attracting barriers. Readers are referred 111
to [6] for more details. 112

2.1.2. Algorithmic Details - Particle Advection 113

The efficient numerical treatment of particle advection is a relatively complex one as 114
the critical path varies depending on many factors. We can simplify the problem and divide s

it into 5 major components: 116
*  Data Input/Output (Reading flow fields and writing particle coordinates to disk). 117
¢  Flow field interpolation (interpolate between simulation flow fields to “improve"” s

temporal resolution for the integration scheme). 110
*  Cell Locator (finding where a particle is w.r.t. the original computational domain). 120
¢  Flow field velocity interpolation (calculating particle velocity based on its location 12

within a cell). 122
e  Particle movements (advancing particles forward, or backward, in time). 123

Each component stresses a different segment of a computational platform. For instance, [/O 124
is very network-sensitive (in the case of a parallel-file system) whereas velocity interpolation 125
is very sensitive to both memory bandwidth and computational throughput (the precise 126
balance is very dependent on the dataset due to cache effects). The cell locator portion 127
is very interesting since it has been a major limiter in the past for many codes. Many 12
authors have offloaded the cell locator to the CPU with a KD-Tree. Initially, we followed 120
this approach, but it proved a major limiting factor for scalability. Moreover, porting a 130
KD-Tree to the GPU was not the optimal choice. [28] implemented a hardware accelerated 1s:
solution leveraging Nvidia’s custom Bounding Volume Heirarchy structure in RITX GPUs. 132
This solution, although efficient, is not vendor nor hardware independent. For our solution, 13
we drew inspiration from multi-grid methods in numerical linear algebra and efficient, 134
tree-traversal schemes. We apply a queue-less, multi-Level, Best-First Search (QL-MLBES). 135
Let’s expand on each term, the multi-level nature of our approach draws inspiration from 136
multi-grid methods by introducing multiple coarser meshes. These coarser meshes are used 137
to narrow down the location of a particle by “refining" only in the vicinity of a particle’s 1ss
location. The coarsening factor is defined as |log, (N /2) | which enables efficient power- 13
of-two mesh coarsening. However, GPUs have scarce memory pools and lack device-side 140
global memory allocations. Therefore, we provide the illusion of mesh coarsening through 1
strided memory views. On the device, each thread has a “view" of the global mesh focused 1s2
on the current coarsening level and local neighborhood. To highlight the benefits of this 1as
multi-level approach, a mesh with dimensions 990 x 250 x 210 (52M nodes) will have a  14s
coarsening factor of 64 which leads to a top-level mesh of 14 x 2 x 2 (56 nodes). This is 1
a factor of 928,125x. The best-first search is directly inspired from the traditional BFS 146
methodology as illustrated by [29]. However, we exploit the structured spatial structure to 147
remove the typical priority queue in the original BFS method. Coupling the two approaches 14
and leveraging knowledge of the underlying structured mesh enables highly efficient cell 140
locators. For a 52M node mesh, only 440 node evaluations are required, a factor of 118,125x  1s0
less than brute-force search. A naive octree would require ~512 comparisons in the worst 1s:
case (~64 in the best case). We achieve comparable efficiency for a relatively large domain  1s2
with improved efficiency for smaller meshes. One very notable improvement is the lack of 1ss
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auxiliary data structures to hold the multiple levels. We highlight the pseudocode for our  1ss
approach in Algorithm 1. 155
We can describe the scaling behavior of the proposed algorithm using the big-Oh notation. 1se
Big-Oh is a mathematical notation used to describe the asymptotic behavior of a function. s
It is often used in computer science and mathematics to describe the performance of 1ss
algorithms and the complexity of problems. In general, big-Oh notation provides a way s
to compare the growth rates of different functions and to determine which functions 1e0
grow faster than others as the input size increases. The scalable search algorithm for ie
identifying the owning cell improves from the naive O(N,N?) 3D search algorithmtoa  1e
O(Nplogg(Nc)). Given that Nj, (particle count) and N (cell count) are uncoupled, we can 163
theoretically approach the limit for N, >> logg(N,) which suggests a linear scaling in the  1es
number of particles. This is highly favorable considering that the naive algorithm is O(N*) 165
for O(Np) ~ O(NC) 166

Algorithm 1 Multi-Level, Best-First Search (ML-BFS)

Xp,Yp,zp < Particle Coordinates
Ny, Ny, N; < Logical Dimensions
N < min(Ny, Ny, N;)

G « [log,(N/2)]

A¢, Ay + Very Large Float (for example, 103%)
i/ ib/ j!jbl kl kb +—G

whilei < N, — G do
while j < Ny, — G do
while k < N; — G do

2 2 2
Ac — \/(xi,j,k — xp) + (]/i,]',k - ]/p) + (Zi,j,k — Zp)
if A, < Ay then
Ab/ih/jb/kb — Ac,i,j,k
end if
k—k+G/2
end while
j—j+G/2
end while
i+ i+G/2
end while

while G > 1do
i,]',k<—ib—G,]'b—G,kh—G
whilei, — G <i<i,+ Gdo
whilej, —G <j<j,+Gdo
whilek, — G <k <k, + Gdo

2 2 2
Ac \/(xi,j,k - xp) + (yi,j,k - yp) + (Zi,j,k - Zp)
if A; < Ay then
Abribrjb/kb — A, i,j,k
end if
k+k+G/2
end while
j+—j+G/2
end while
i+ i+G/2
end while
G+ |G/2]
end while
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Once the owning cell is identified, the particle’s velocity at an arbitrary natural coordinate
n inside the owning cell is approximated using a trilinear interpolation scheme as follows:

U, = cp + c1Ax + c2Ay 4 c3Az + ¢y AxAy + c5AyAz + cAxAz + c7AxAyAz, 3)

where the equation coefficients can be expressed in terms of the natural coordinates of
the owning cell where each dimension varies from [0, 1] (denoted by the subscripts, xyz,
below). Hence, the coefficients are succinctly expressed as:

co = Uooo

c1 = Uioo — Uooo

¢z = Uo10 — Uooo

c3 = Uopor — Uooo

¢4 = Uy10 — Uoro — Uioo + Uooo

cs = Uo11 — Uoo1 — Uo1o + Uooo

c6 = Uro — Uoor — U0 + Uooo

c7 = U1 — Uorr — Uyo1 — Unio + Uioo + Uoor + Uoio — Uooo

This is essentially a vector-matrix product followed by a vector dot product; roughly 44 167
floating point operations on 3-14 data elements depending on cell coordinate/velocity 1es
re-use and counting the normalization of the cell coordinate. Arithmetic intensity is defined 1eo
as a measure of floating-point operations (FLOPs) performed with respect to the amount of 17
memory accesses (Bytes) needed to support those operations. The calculated variability of 17
arithmetic intensity (i.e., 0.78-3.67 FLOPs per Bytes) highlights the significant uncertainty 172
possible depending on the flow fields’ characteristic since many clustered particles could 17
lead to a very high degree of data reuse whereas a sparse placing of particles leads to 17
low data reuse. For clustered particles, efficient memory access can lead to a mostly 17s
compute-bound interpolation kernel whereas divergent particle trajectories can lead toa 176
memory-bound kernel. This shows the vast complexities found in scientific computing 177
workloads that are rarely described by simplistic categories and labels. On the contrary, the 1i7s
owning cell search algorithm is almost exclusively a memory bound kernel. As such, the 17
end to end kernel can morph from being memory bandwidth starved to being compute  1s0
bound and vice versa. 181
To avoid excessive floating point rounding errors when performing the interpolation step on 1.2
small cells, we project all cells to a natural coordinate system regardless of their orientation 1es
or their volume. This ensures all interpolation is performed in the [0, 1] range (note the s
subindex for each term highlighting their natural coordinate within the unit cube) where  1ss
floating point precision is greatest and limits excessive errors that would be introduced  1s6
on small cells with the multiple calculations involved in the trilinear interpolation step ez
({Ax, Ay, Az | Ax € [0,1] & Ay € [0,1] & Az € [0,1]}). To ensure stability when a particleis s
near (or at) the border of a skewed cell, U}, is clipped to within the minimum and maximum  1ss
velocities in the owning cell. 100
With the purpose of reducing memory requirements, we opted for an explicit Euler integra- o2
tion scheme. Further, to reduce storage requirements, we provide the ability to interpolate 102
between available flow fields. The interpolation scheme uses just two flow fields. We 10
tested higher order interpolators which yielded minimal quality enhancements over a 1e4
first order interpolation scheme. This is very likely due to multiple factors. Firstly, the 1es
time step is sufficiently small so as to minimize the errors introduced by a first order 106
approximation. We typically apply a time step roughly 4 — 50 x smaller than the DNS time 107
step depending on the computational cost and the desired quality. Secondly, the benefits 108
of interpolation are mainly found in the temporal upsampling potential of reducing the 100
data loading requirements. If a low resolution input is used, a higher order scheme can 200
introduce unphysical behavior between time steps. Further, one cannot simply guarantee zo:
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that a generic high-order temporal interpolation scheme is bounded and conservative. =202
Using a small enough time step and a linear scheme alleviates many of the concerns usually 2o
associated to these and also provides computational advantages due to reductions in data  zos
movements and higher arithmetic intensity relative to data transfers to/from the device. 205

The interpolation scheme invokes the following formulation: 206
U — U f1+to u1 + U
t) = t— . 4
u(t) tl_to( ! )+ ! @

The interpolation scheme assumes a linear variation between two time steps. A second  zo7
order approach implementation mostly generated similar results. By assuming linearity, zos
we guarantee the results are bounded even when strong variations occur in a highly 20
unsteady fluid flow. These strong variations are ubiquitous in high-speed, wall-bounded 210
flow. Although more sophisticated interpolation and integration schemes exist, a simple 211
yet highly efficient implementation has thus far yielded excellent results with strong 21
computational scaling potential. 213

2.1.3. Algorithmic Details - Right Cauchy-Green Tensor & Eigenvalue Problem 214

One can quickly realize that the right Cauchy-Green (CG) strain tensor would require 2is
9x more memory than the displacement field if the underlying software solution were =216
to store each entry for every particle. This would quickly grow infeasible as the scaling 21~
would be linear in the number of particles with a large proportionality constant. Ideally, =:s
we would want the proportionality constant to be as close to unity as possible to ensure 210
large-scale execution on limited memory platforms such as the Nvidia Tesla P100 GPU 220
which is limited to 16 GBs. Furthermore, beyond merely an enabling quality, itis also a 221
scalability requirement allowing more particles on a single compute element. Our approach 222
was to fuse the calculation of the right CG tensor and the eigenvalue calculation phase of 223
the FTLE calculation. This requires only 36 to 72 bytes (depending on single or double 22
precision requirements) of private memory per thread of execution, which often exceeds 22s
100,000 threads of execution on a GPU and it is just exceeding 50 to 60 on modern CPUs. For 226
context, a V100 at maximum occupancy would require just 5.625-11.25 MiBs independent of 227
the number of particles (2.3 to 4.6 KB on a 64 core CPU). This is in stark contrast to the 15-30  zzs
GBs that one of the large datasets presented herein (at large Reynolds numbers) would 2z
require (2538 x higher memory requirements). Once the right CG tensor is calculated on =230
an execution thread, the execution path proceeds to calculating the maximum eigenvalue 23
for the given strain tensor. It is at this point where our CPU and GPU implementations =zs:
diverge, library function calls are much more complicated on GPUs which motivated our =33
custom implementation of a relatively simple power iteration method [30]. The power 23
iteration method is an iterative algorithm for finding the dominant eigenvalue and the =35
corresponding eigenvector of a symmetric positive definite matrix of real numbers. The 236

steps can be summarized as: 237
1. Choose an initial guess for the eigenvector xq (preferably with unit length). 238
2. Compute the product of the matrix A and the initial guess vector xp to get a new 23o
vector x1. 240
3. Normalize the new vector x; to obtain a new approximation for the eigenvector with 24
unit length. 242

4. Compute the ratio of the norm of the new approximation of the eigenvector and the 24
norm of the previous approximation. If the ratio is less than a specified tolerance, then 24a
terminate the iteration and return the current approximation of the eigenvector as the  2as

dominant eigenvector. Otherwise, continue to the next step. 246
5. Set the current approximation of the eigenvector to be the new approximation, and  zs
repeat steps 2-4 until the desired accuracy is achieved. 243

The power iteration method works well for symmetric positive definite matrices because 240
these matrices have real and positive eigenvalues, and the eigenvectors corresponding to  2s
the dominant eigenvalues converge to a single eigenvector regardless of the initial guess. 2s:
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The rate of convergence of the power iteration method depends on the ratio of the largest s
eigenvalue to the second-largest eigenvalue, and can be slow if the ratio is close to one. The  2s:
power iteration is currently sufficient for our needs and computational budget; however, 2ss
we are aware of more intricate methodologies that could be implemented if required, such  2ss
as the QR algorithm. 256

2.2. Direct Numerical Simulation: The Testbed Cases 257

This section describes the principal aspects of the testbed cases used for validation 2se
and assessment of the proposed particle advection methodology. [23-25] provide founda- s
tional background of presently employed DNS databased in terms of governing equations, zs0
boundary conditions, initialization, mesh suitability, resolution check and validation. We 261
are resolving spatially-developing turbulent boundary layers (SDTBL) over flat plates (or ze2
zero-pressure gradient flow) and different flow regimes (incompressible, supersonic and  zes
hypersonic). Particularly for incompressible SDTBLs, two very different Reynolds numbers 24
are considered, being the high-Reynolds case about four times larger than its low-Reynolds  zes
case counterpart. The purpose is to examine the LCS code’s performance under distinct zes
numbers of mesh points, while somehow assessing Reynolds dependency on Lagrangian zer
coherent structures. The employed DNS database in the present article were obtained via  zes
the inlet generation methodology proposed by [31]. The Dynamic Multiscale Approach zee
(DMA) was recently extended to compressible SDTBL in [25] and [24] for DNS and LES 27
approaches, respectively. It is a modified version of the rescaling-recycling technique by  2n
[32]. Extensions to compressible boundary layers have also been proposed by [33], [34] and 272
[35]. However, the present inflow generation technique does not use empirical correlations 27
to connect the inlet friction velocity to the recycle friction velocity, as later described. A 274
schematic of the supersonic computational domain is shown in fig. 1 where iso-contours 27s
of instantaneous static normalized temperature can be observed. The core idea of the =76
rescaling-recycling method is to extract “on the fly” the flow solution (mean and fluctuat- =277
ing components of the velocity, temperature and pressure fields for compressible flows) 275
from a downstream plane (called “recycle"), to apply scaling laws (transformation), and 27
to re-inject the transformed profiles at the inlet plane, as seen in figure 1. The purpose of  2e0
implementing scaling laws to the flow solution is to reduce the streamwise in-homogeneity 2s:
of the flow. The Reynolds decomposition is implemented for instantaneous parameters, i.e. ez

a time-averaged plus a fluctuating component: 283
ui(x t) = Ui(x,y) + ( 1) ©)
tx 1) = T(xy) +£(x1) ©)

p(x 1) = P(x, )+P(X t) )
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ai,mlet (x,¥) = Enean (x)ai,recycle Ce,y)

ra Fluctuating qg,in[et (x,t) = Fﬂuc (x)qg,recycle (% 1)
component A

Recycle
Plane

Figure 1. Boundary layer schematic for the supersonic case. Contours of instantaneous temperature.

The re-scaling process of the flow parameters in the inner region ([31]) involves the 2sa
knowledge of the ratio of the inlet friction velocity to the recycle friction velocity (i.e., 2es
A = Uz iy / Uz rec). Here, the friction velocity is defined as ur = /7, /p, where T, is the wall 286
shear stress and p is the fluid density. Since the inlet boundary layer thickness, , must be  2e7
imposed according to the requested inlet Reynolds number, prescribing also the inlet fric- 2ss
tion velocity would be redundant. [32], [33] and [34] solved this issue by making use of the  zss
well-known one-eighth power law that connects the friction velocity to the measured mo- 200
mentum thickness in zero-pressure gradient flows; thus, ¢/ tr rec = (0pin1/S2rec) /8. 201
Since this empirical power (-1/8) was originally proposed for incompressible flat plates  ze2
at high Reynolds numbers ([36]), it could be strongly affected by some compressibility 2o
effects and low to moderate Reynolds numbers, as the cases considered here. Therefore, we 204
calculated “on the fly” this power exponent, 4, by relating the mean flow solution from a  2es
new plane (so-called the “Test" plane, as seen in figure 1) to the solution from the recycle =zo6
plane as follows: 207

_ ln(ur,test/ur,rec)
ln(52,test/52,rec) )

Table 1 exhibits the characteristics of the evaluated four DNS databases of flat plates in  zoe
the present LCS study: two incompressible cases (at low and high Reynolds numbers), 200
a supersonic case (Mo = 2.86), and a hypersonic case (M = 5). Numerical details are o0
reproduced here for readers’ convenience. The Mach number, normalized wall to freestram o1
temperature ratio, Reynolds number range, computational domain dimensions in terms of o2
the inlet boundary layer thickness &;,; (where Ly, Ly and L, represent the streamwise, wall- 03
normal and spanwise domain length, respectively) and mesh resolution in wall units (Ax™, s0s
ijm.n / AYiax, AzT) can be seen in Table 1. The momentum thickness Reynolds number is  sos
defined as Resp = poolosodz / fw, and it was based on the compressible momentum integral sos
thickness (d), fluid density (o), freestream velocity (Us) and wall dynamic fluid viscosity — sor
(#w). On the other hand, the friction Reynolds number is denoted as 5t = Pwlc0/ He. Here, 3o
Ur = \/Tw/pw is the friction velocity, and 7, is the wall shear stress. Subscripts co and  soe
w denote quantities at the freestream and at the wall, respectively. Notice that the high 310
Reynolds number case is approximately four times larger than that of the low Reynolds 31
number case for incompressible flow. 312
For the low Reynolds number case (i.e., Incomp. low), the number of mesh points in the 1
streamwise, wall-normal and spanwise direction is 440 x 60 x 80 (roughly a 2.1-million 1
point mesh). Whereas, the larger Reynolds number cases are composed by 990 x 250 X a5

Y52 8)
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210 grid point (roughly a 52-million point mesh). The small and large cases were runin s
96 and 1200 processors, respectively, in the Cray XC40/50-Onyx supercomputer (ERDC, 317
DoD), HPE SGI 8600-Gaffney and HPE Cray EX-Narwhal machines (NAVY, DoD).

Table 1. DNS Cases.

Case Mo Tow/Teo Res, ot Ly x Ly X L, AxT Ay} A Dz
Incomp. low 0 Isothermal | 306-578 | 146-262 | 456;,; % 3.50;,; % 4.30;y; 14.7,0.2/13, 8
Incomp. high | 0 | Isothermal | 2000-2400 | 752-928 1601 X 30;1 X 301 11.5,0.4/10, 10

Supersonic | 2.86 2.74 3454-4032 | 840-994 | 14.95;, X 38in1 X 30in1 12.7,0.4/11,12
Hypersonic 5 5.45 4107-4732 | 848-969 | 15.26;,; X 36;, *x3diu 12,04/12,11

The present DNS databases were obtained by using a highly accurate, very efficient, and s
highly scalable CFD solver called PHASTA. The flow solver PHASTA is an open-source, 320
parallel, hierarchic (Z”d to 5t order accurate), adaptive, stabilized (finite-element) transient 21
analysis tool for the solution of compressible [37] or incompressible flows [38]. PHASTA has 22
been extensively validated in a suite of DNS under different external conditions ([24,39,40]). s2s
In terms of boundary conditions, the classical no-slip condition is imposed at the wall for sz
all velocity components. Adiabatic wall conditions were prescribed for both compress- 25
ible cases. For the supersonic flow case at Mach 2.86, the ratio Ty /Teo is 2.74 (in fact, sz
quasi-adiabatic), where Ty, is the wall temperature and T, is the freestream temperature. 27
While the Ty / Teo ratio is 5.45 for Mo, equals to 5. In the incompressible case, temperature sz
is regarded as a passive scalar with isothermal wall condition. In all cases the molecu- 20
lar Prandtl number is 0.72. The lateral boundary conditions are handled via periodicity; sso
whereas, freestream values are prescribed on the top surface. Figure 2 shows the stream- a1
wise development of the skin friction coefficient [C¢ = 2(ur/ U )?0w/ poo] of present DNS 332
compressible flow data at Mach 2.86 and 5. It is worth highlighting the good agreement of ~ ss»
present Mach-2.86 DNS data with experiments at similar wall thermal conditions, Reynolds sz
and Mach numbers from [41], exhibiting a similar slope trend in C fasa function of Resp. 335
It can be seen an inlet “non-physical” developing section in the Cy profile, which extends s
for barely 2.5-36;,;’s, indicating the good performance of the turbulent inflow generation 37
method employed. Moreover, the inflow quality assessment performed in [23] via the 3.
analysis of spanwise energy spectra of streamwise velocity fluctuation profiles (i.e., E;;;) 330
at multiple inlet streamwise locations and at y© = 1,15 and 150 indicated a minimal 340
development region of 15;,; based on E,;,. In addition, skin friction coefficient experimental s
data by [42] and [43] as well as DNS value from [44] at Mach numbers of 4.5 and 4.9 over = ss
adiabatic flat plates were also included. It is observed a high level of agreement with se
present hypersonic DNS results, and maximum discrepancies were computed to be within = sss
5%. Furthermore, DNS data from [45] are also added at Mach numbers of 3 and 4; but at  ss
much lower Reynolds numbers. 346
Figures 3 shows the pre-multiplied energy spectra along the (a) streamwise (kyE,;) and s
(b) spanwise (k;E,,) directions in inner units at a Mach number of 2.86 at 5 = 909. The 4
supplied information by pre-multiplied energy spectra can be used to determine the 34
streamwise and spanwise wavelengths of the most energetic coherent structures at different sso
boundary layer regions. In both directions, primary energy peaks are evident in the buffer ss:
region around 12 < y* < 15 (see white crosses encircled by blue dashed lines) which s
are associated with spanwise wavelengths of the order of 100 wall units (or 0.15) and  sss
streamwise wavelengths of the order of 700 wall units. This inner peak at A} & 700 (or 0.76) s
is the energetic “footprint” due to the viscous-scaled near-wall structure of elongated high- sss
and low-speed regions, according to [46]. As expected, the turbulent structures associated  sse
with streamwise velocity fluctuations are significantly longer in the streamwise direction, ss-
showing an oblong shape with an aspect ratio of roughly 7. Furthermore, it is possible sss
to observe weak but still noticeable secondary peaks with spanwise wavelengths of the s
order of A] ~ 600 (or A, ~ 0.75) and streamwise wavelengths with A; ~ 3000 (or 36’s). se
These outer peaks of energy are much less pronounced than the inner peaks due to the e
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Figure 2. Validation of the skin friction coefficient for supersonic and hypersonic cases.

absence of streamwise pressure gradient (zero-pressure gradient flow) and the moderate e
Reynolds numbers modeled. Present spanwise pre-multiplied power spectra, k;E,;, as  ses
seen in fig. 3 (b), shows a high similarity with pre-multiplied spanwise energy spectra sss
of streamwise velocity fluctuations from [47] in their fig. 2b at Re; = 1116 (also known  ses
as 67). They also performed DNS of a spatially-developing turbulent boundary layer at e
the supersonic regime (Mach 2). It was also reported in [47] a secondary peak associated e
with spanwise wavelengths of A, ~ 0.8J. According to [47], the outer secondary peaks sss
are the manifestation of the large scale motions in the logarithmic region of the boundary e
layer, whose signature on the inner region is noticeable under the form of low wavenumber sz
energy “drainage” towards the wall. a1
Figure 4 depicts the mean streamwise velocity by means of the Van Driest transformation sz
(Uy5p) and the streamwise component of the Reynolds normal stresses (1/1/)" in wall a7
units. Additionally, three different logarithmic laws of U, have been included. For this a7
high values of 5T, the log region extends significantly (about 380 wall units in length). It sz
seems our predicted values of Uy}, slightly better overlap with the logarithmic function a7
1/0.41In(y™) + 5 as proposed by [48] by the end of the log region (and beginning of the 7
wake region). On the other hand, the log law as proposed by [49] (with a x value of 37
0.38 and an integration constant, C, of 4.1) exhibits an excellent match with our DNS 37
results in the buffer region (i.e., around y* = 20-30). The inner peak of (#'u’)" occurs at  s0
approximately y™ = 15 and an outer “hump” can be detected for the supersonic case at ss:
roughly y* = 200 — 300, consistent with the presence of the outer peak of the pre-multiplied s
spanwise energy spectra of streamwise velocity fluctuations. 383

2.3. Computing Resources 384

We leveraged a wide range of computational architectures and networks to test the ses
performance portability and scalability of our proposed solution. The computational sss
resources included: Onyx, Narwhal, Anvil and Chameleon. 387
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2.3.1. Cray XC40/50 - Onyx 388

Onyx utilizes a Dragonfly topology on Cray Aries and is powered by Intel E5-2699v4  seo
Broadwell CPUs, Intel 7230 Knights Landing CPUs, and Nvidia P100 GPUs. The compute  ss0
nodes are designed with dual sockets, each containing 22 cores, and are enabled with e
simultaneous multithreading”. This allows the hardware threads to switch contexts at the 3oz
hardware level by sharing pipeline resources and duplicating register files on both the front  ses
end and back end. The compute nodes are equipped with 128 GB of RAM, with 121 GB  3e.
being accessible. 2905

2.3.2. HPE Cray EX (formerly Cray Shasta) - Narwhal 396

Narwhal is a supercomputer capable of processing up to 12.8 petaflops. Each compute o7
node on Narwhal contains two AMD EPYC 7H12 liquid-cooled CPUs based on the Zen  s¢s
2 core architecture, with 128 cores and 256 threads, as well as 256 GB of DDR4 memory. o0
There are a total of 2150 regular compute nodes on Narwhal, and the maximum allocation  4c0
size is limited to 256 nodes. Additionally, there are 32 nodes with a single V100 GPU, and = 401
32 nodes with dual V100 GPUs. The compute nodes are connected to each other using an 402
HPE Slingshot 200 Gbit/s network, which directly links the parallel file systems (PFS). 403

2.3.3. Anvil 404

We also conducted a smaller scale study using the CPU partition of the Anvil system at 405
Purdue University. Built in collaboration with Dell EMC and Intel, it is designed to support 4os
a wide range of scientific and engineering research applications. The supercomputer is o7
based on the Dell EMC PowerEdge C6420 server platform and is powered by the second- 40s
generation Intel Xeon Scalable processors. Anvil has a total of 1,008 compute nodes, each 400
containing 48 cores and 192 GB of memory. The nodes are interconnected with a high-speed 410
Intel Omni-Path network that provides a maximum bandwidth of 100 Gbps. Anvil is a1
also equipped with 56 Nvidia V100 GPUs for accelerating scientific simulations and deep a2
learning workloads. Details on the Anvil system were well summarized by [50]. a13

2.3.4. Chameleon A100 Node 414

We also tested scaling on more modern A100 GPUs provided by the Chameleon s
infrastructure, [51]. The A100 node used features 2 Intel Xeon Platinum 8380 totaling 80 416
cores (160 threads) and 4 A100 GPUs with 80 GBs of HBM 2e memory. The node also has a7
512 GBs of DDR4 memory and 1.92 TBs of local NVMe storage. a1s

2.3.5. Fair CPU and GPU Comparisons 410

Comparing CPUs and GPUs can quite easily become a misguided venture if not a20
carefully guided by factual evidence and architectural distinctions. Although an in-depth 422
comparison of CPU and GPU hardware is far beyond the scope of this work, we will sum- 422
marize key distinctions between a general CPU architecture and a general GPU architecture. 423
We will also establish the common ground between CPU and GPU architecture elements to  2a
be used in our comparisons. azs
CPU architectures have historically pursued low latency of an individual operation thread sze
as their main goal. On the other hand, GPU devices favor high-throughput by sacrificing  s27
the latency of an individual execution thread to enable processing a larger number of work 42s
items. GPU vendors tend to market ALU count (or SIMD FP32 vector lanes) as the “core  a20
count” for a device; however, this is misleading as the actual architecture unit resembling a 430
“core" in a CPU device would be what Nvidia notes as a Streaming Multiprocessor (SM)?. a5
To sustain a larger number of work items in flight, a GPU features a larger global memory as:
bus width and typically has higher bandwidth requirements. Comparing the “per core" s

Branded as Intel Hyperthreading
AMD tends to refer to this unit as a Workgroup Processor (WGP) or a Compute Unit (CU) whereas Intel refers
to it as a X°-core or a slice/subslice in older integrated GPU generations.

3



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023

doi:10.20944/preprints202305.1195.v1

14 of 35

memory bandwidth shown in table 2, one could erroneously assume large advantage of s
modern GPUs over contemporaneous CPUs. Notwithstanding, upon closer examination a3s
and accounting for vector widths in each device, a smaller gap is seen with the V100 436
actually having the lowest memory bandwidth per vector lane. Further complicating sz
matters, shared cache bandwidth is a complex topic since it is often tied to core and 3=
fabric clockspeeds. These and other aspects are studied in further detail by [52] and [53]. 430
Once again, this is not the whole picture. Accounting for register file sizes, one can note 4o
that modern GPUs boast zero-overhead context switching between multiple threads of 44
execution whereas modern x86 CPUs have at most two sets of hardware registers allowing sa2
for zero-overhead context switching between two threads of executions. This factor allows 4as
a large number of threads in flights in modern GPUs which explains their resilience to ass
high latency memory operations regardless of their roughly equal memory bandwidth per ass
vector lane. This architectural advantage is often the differentiating factor at scale for a a4
throughput oriented device as a GPU. Furthermore, the programming models supported  ss7
by GPUs expose the parallelism supported by the device transparently whereas historical  44s
high-level languages used in CPU programming are challenging when it comes to fully ass
utilizing multi-core CPUs, their SIMD units and available instruction-level parallelism. ass0
All of these factors typically compound and yield simpler, yet faster, code on GPUs even  as:
when devices are comparable on many fronts. A high-level overview of the computational 4s:
devices used in this work is presented in table 2. a53

Table 2. Computational Device Descriptions

Device Nam. P100 GPU V100 GPU A100 GPU Intel Xeon | AMD EPYC | AMD EPYC
evice Name (16 GB PCle) | (32 GB PCle) | (80 GB PCle) | E5-2699v4 | 7H12 7763
Core (SM) Count 56 80 108 22 64 64
FP32
Vector Lanes (VL) 3584 5120 6912 352 1024 1024
Global Mem.
Bandwidth [GB/s] 732.2 897.0 1935 76.8 204.8 204.8
Mem. Bandwidth
per Core [GB/s] 13.075 11.2125 17917 3.49 3.2 3.2
Mem. Bandwidth
per VL [MB/s] 204 175 280 218 200 200
[SII(‘;‘]Ced Cache 4096 6144 40960 55000 256000 256000
Shared Cache
Bandwidth [GB/s] 1624 2155 4956 [52] (53] N.P.
Base Frequency
[GHz] 1.190 1.230 0.765 2.2 2.6 2.45
Boost Frequency 3.6 (SC) 3.3 (SC) 3.5(SC)
[GHz] 1329 1.380 1410 2.8 (AC) | All-core N.P. | All-core N.P.
Est. TFLOPs/s 8.529 12.595 9.473 1.548 5.324 5.017
Range [Min, Max] 9.526 14.131 17.461 Variable Variable Variable

2.3.6. Software

We implemented the proposed approach using Python as a high-level implementation
language. However, achieving high-performance and targeting multi-core CPUs and
GPUs using plain Python is not possible at the moment. To achieve high-performance on
numerical codes, many libraries have been published targeting the scientific programming
community. Perhaps the most popular numerical library for Python, NumPy by [54]
provides a multi-dimensional array and additional functionality that enables near-native
performance by targeting pre-compiled loops at the array level. Another relatively recent
innovation in the Python ecosystem is the Numba JIT compiler by [55]. Numba enables
compiling Python to machine code and achieve speeds typically only attainable by lower-
level, compiled languages such as C, C++ or FORTRAN. Numba has been used across many
scientific domains as both a tool to accelerate codebases and as a platform for computational
research as puth forth by authors such as: [56-70]. Numba is essentially a front-end to
LLVM which was originally proposed as a high-performance compiler infrastructure by
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[71]. Numba offers both CPU and GPU programming capabilities which facilitates sharing  aes
components not tied to specific programming model details. 469
Numba’s parallel CPU backend also provides a higher level of abstraction over multiple 470
threading backends. In particular, it allows for fine grain selection between OpenMP, 47
[72], and TBB, [73]. Given the lack of uniformity in Lagrangian workloads after multiple 472
timesteps, TBB'’s ability to dynamically balance workloads while accounting for locality 47s
and affinity offers higher performance for our particular use case. That being said, the a7
implementation can be changed by setting a command line argument at program launch. azs
Also, with more exotic architectures featuring hybrid core designs or where certain execu- 476
tion resources can boost higher than others, TBB removes two issues with many parallel 477
systems limiting scaling in heterogeneous systems, unbalanced workload or large core a7
counts: 1) it does not have a central queue thus removing that bottleneck, and 2) it enables 47s
workers to steal work from the back of other workers” queue. a80

3. Results and Discussion 481

In this section, we will drill in on the scaling behavior for the presented algorithm e
and implementation for particle advection. We will compare the performance across both  ses
CPUs and GPUs. We will also explore different normalization schemes to provide a fair sz
comparison between these architectures. We also explore the impact of a network-accessed, 4ss
parallel filesystem contrasted against a local, high-performance NVMe device. ase

3.1. Performance Scaling Analysis a87

To begin our high-level exploration, we present multiple scaling plots in figure 5. To  4ss
efficiently utilize HPC resources, it is critical to scale out efficiently (i.e., to minimize serial 4so
bottlenecks). Figures 5a-b showcase the strong scaling performance of the approach put e
forth in this work. We scaled out to 32768 CPU cores and up to 62 Nvidia V100 GPUs (4960 a0
GPU SM cores or an equivalent 317440 CUDA cores); consequently, the total number of 402
CPU threads tested were roughly 32K whereas the peak number of GPU threads reached  4es
roughly 10M (GPU) threads (2048 threads per Volta SM core arranged in blocks of 64 threads  4es
for a total of 32 thread blocks per SM), or 310 x more threads on a GPU (GPU threads are 4es
lightweight threads compared to the heavier OS-managed threads on CPUs). Figure 5a 406
also highlights the extent that inefficiencies in the software stack or hardware resources o7
below the application can end up degrading the performance at scale. This is clearly visible 4ss
in Onyx were a large number of IO/network requests dominate the startup/termination e
times of the application, and actual runtime scales almost linearly. Beyond the impact soo
of having a linear strong scaling behavior, scaling to large particle-count is an equally s
important aspect as larger datasets and more challenging scientific inquiries demand  so2
higher resolutions. Figure 5c characterizes the scaling behavior of our implementation sos
on a fixed node-count (i.e., fixed computational resources) from 50M particles out to over sos
8B particles (given enough memory was available) across 16 compute nodes. One other sos
interesting tidbit worth highlighting is the dominance of network latency in large-scale, sos
parallel filesystems (PFS). Figure 5c showcases how a powerful GPU is essentially idle sor
when waiting for data from the PFS (for both the P100 and V100 results). [59] reported a  sos
similar behavior for small problem sizes on a parameter estimation workload. Interestingly, oo
they reported this behavior up to a 9M element matrix (3000x3000) whereas we found the s
onset of this behavior at approximately 13M particles. Consequently, a good rule of thumb s
is roughly 10M work elements per GPU. This is the incarnation of Amdahl’s Law where s
the GPU is essentially acting as an infinitely fast processor where the critical path lies on s
10, sequential-routines, the network and the PFS. This is further confirmed by the A100 s
results where data resided on a local NVMe drive. Once sufficient work is available, the sis
pre-fetch mechanism first introduced in [18] and [19] is capable of hiding the latency to sis
great effect. In general, our proposed approach is very scalable in both particle count and s~
strong scaling via problem decomposition. As processors continue to improve, multi-level sis
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approaches and latency-hiding mechanisms will continue growing in relevance to fully s
utilize the available computational resources. 520
Recall that we outlined in section 2.1.2 the computational complexity scaling for the particle sz
tracking algorithm in terms of cell-count and particle-count. For a large number of particles sz
N, and cells N, the term N, logg(N,) can be approximately modeled as linear scaling in  s2s
Np. This is because, as N increases, the growth rate of logg(Nc) is much slower compared  szs
to the linear growth of Nj. As a result, the overall function appears to scale linearly with  s2s
Np, even though there is a logarithmic dependence on N.. This favorable scaling will sz
prove very powerful as larger datasets are tackled and to enable higher resolution LCS sz
visualizations in smaller datasets. What’s more by using N, >> N the overall particle sz
advection scheme is mostly dominated by velocity interpolation and temporal integration  sze
(source of the Nj, term) rather than by volumetric particle search (source of the logg(N;) s30
term). Also, for any given domain, increasing the particle count results in a linear increase ss:
in the number of particles due to the decoupled scaling characteristics of the algorithm on  ss2
the size of the domain and particle count. This conclusion is clearly seen in figure 5c where s3s
once fixed latency costs are hidden by the pre-fetcher, a linear scaling is indeed seen. As 3
will be discussed later in the manuscript, we tested our implementation against a 24.6 X  sss
smaller DNS dataset to validate the favorable scaling in the number of cells. Although the 36
High Re dataset used in this work is almost 25x larger than the lower Re counterpart, the sz
overall runtime is only 41% higher when accounting for particle count differences and flow s:s
field count differences to achieve similar integration +* and particle count. That is a mere sz
15% difference of what is predicted from the big-Oh analysis. That 15% is attributable to s
inefficiencies reading 45% more flow fields* and other factors unaccounted in our big-Oh  sa:
approximations. 542
We will discuss in more detail the architectural advantages in relation to the results below, sas
but an initial overview of the remaining scaling results in figure 5 highlight the virtues s
of an architecture built fundamentally for throughput and explicit parallelism. Each sss
GPU SM offers higher per-clock throughput which translates to a palpable advantage on  sss
embarrassingly parallel workloads. On the other hand, CPUs can also take advantage of sar
parallel workloads. As such explicitly developing parallel algorithms enables improved  sas
performance rather than porting an implicitly parallel workload to an explicitly parallel sas
device. However, figure 5d also highlights the dangers of naively comparing CPUs and  sso
GPUs without accounting for their architectural similarities and differences. Figure 5d  ss:
shows the same results presented in fig. 5b but scales the horizontal axis to account for ss2
SIMD vector lanes in both CPUs and GPUs. After this linear transformation, the overall sss
performance advantage of GPUs (still present) is not as abysmal as in figures 5a and 5b. sss
This smaller gap accentuates the convergence of CPUs and GPUs towards ever more similar sss
design elements. SIMD units in CPUs are akin to CUDA cores in Nvidia GPUs albeit with  sse
slightly different limitations and programming models. Nonetheless, they serve the same  ss
purpose, applying the same instructions (more or less) to multiple data streams. As such, sss
formulating algorithms to reduce synchronization or serialization points enables a more sso
transparent scaling potential as more parallelism becomes available in future hardware.  seo
Figure 5e shows the particle throughput per timestep over 16 nodes. As was alluded to  se:
in the discussion, once sufficient work is available, the throughput stabilizes to a plateau. se
Of the devices used to study the particle throughput and the performance scaling, the se:
GPU accelerators achieve the highest throughput as compared to available CPU devices. A  ses
single V100 GPU achieves a throughput of 105M particles per second (1.7B particles per ses
second over 16 V100 GPUs; 1.3M particles per GPU SM). Comparatively, 32 EPYC 7H12  ses
CPUs (2048 cores) achieve a total throughput a 426M particles per second (13M particles  se
per second per 7H12 socket; 203K particles per second per Zen 2 core). Without accounting  ses
for clockspeeds, the overall throughput of a Volta SM core is 6.4 than a Zen 2 core. Upon  ses

4 We accounted for this in calculating the comparison, but given the network is involved, differences are to be
expected in addition to many other factors.
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accounting for clockspeeds (as seen in figure 5f), the clock for clock performance of a GPU sz
SM is still greater than that of a CPU core. Interestingly, the improvements across both CPU sz
and GPU generations are much more incremental than revolutionary accounting for SM sz
count and clockspeeds in figure 5f. However, given the magnitudes of modern processor sz
clockspeeds, a single V100 GPU can process a particle in roughly 9.8 ns (in parallel to sz
many other particles); however, analyzing a single SM yields roughly 900 ns. We could s
continue to modify the results to analyze the per SIMD partition performance yielding sz
“worst" results. Consequently, application developers ought to be careful when presenting s
scaling data and avoid implicit biases against a (or in favor of) given vendor. 578
Thus far, we have focused our discussion on a single, relatively large DNS simulation. sz
However, smaller scale simulations deserve special attention due to peculiarities pertaining  seo
to their latency-sensitive nature during post-processing. To investigate this issue, we ran the  ss:
same particle advection workload across a series of lower Re DNS flow fields on 16 Nvidia se=
V100 GPUs. The sensitivity to network IO was isolated by introducing two underlying ses
DNS sampling frequencies. The high frequency (HF) samples were stored at the DNS  ses
timestep resolution and internally interpolated to achieve a time step 50 x smaller than sss
the DNS timestep. Conversely, the lower frequency (LF) sample was sampled at a tenth of  sss
the DNS resolution with a 500 x upsample via interpolation applied to achieve an equal  ser
integration timestep. The physical implications of these two approaches will be discussed  sss
in section 3.2.3. Due to the lower amount of work at low particle counts, performance is sso
actually worst at very low particle counts than for subsequent increases due to high data  seo
transfer overheads and synchronization penalties. By reducing the underlying number s
of actual flow fields and producing approximations inside the GPU via interpolation, we o2
essentially cut data movements to just 10% significantly improving the performance as seen  sos
in figure 6a. Analogous to what we discussed for fig. 5e, figure 6b exhibits a similar plateau sos
at just over 1.5 billion particles processed per second on each time step. The data transfer ses
overhead is still seen in both figures by the small difference in the asymptotic limit of both  ses
cases. The peak throughput for the LF case settles at 9% over the HF peak throughput ser
owing to data transfer overhead. That being said, saturating the device and hiding transfer ses
overheads can be achieved at a lower particle count than when a larger underlying flow  seo
field is being used. This can be justified noting the particle search approach being used  soo
where more data is being re-used and cached in the multi-level scheme than for the higher o1
Re case. A single low Re flow field occupies 25 MBs whereas an equivalent field for the o2
higher Re case occupies 623 MBs (note that the L1+L2 cache capacity of a V100 comes in at  eos
approximately 16 MBs). The peak throughput for the low Re case is achieved at roughly eos
16M-32M particles whereas the High Re case requires 500M-2,000M particles (15-125x  eos
more than the lower Re case). In general, achieving peak throughput requires at least an 06
order of magnitude more particles than number of vertices in the underlying flow fields eor
to allow the pre-fetcher enough slack to hide the network latency penalty when reading ecs
from the parallel filesystem. It ends up being a “free" resolution improvement as noted in  eoo
figures 5e & 6a with a fixed runtime until the device is properly utilized. 610
Evaluating the particle advection approach and its performance portability requires testing e
across a wide variety of architectures. Historically, certain algorithms have been better 2
suited for GPUs whereas others are more efficient on CPUs. However, in recent times, CPUs 613
and GPUs have continued to evolve into highly parallel architectures with many elements s
in common. Take, for instance, a relatively modern Nvidia GPU, the V100. The V100 has 80 15
SM cores (the architectural unit closest to a CPU core) with each core having 4 partitions e
with 3 x512-bit SIMT units (one single precision floating point, one double precision floating ez
point and one integer SIMT unit per partition). A modern AMD server CPU like 7H12 or = 61s
7763 both have 64 cores with 2 x256-bit SIMD units which equals the total length of the e
floating point pipeline on a single SM partition in the aforementioned V100 GPU (although 20
4 scalar integer ALUs are present in Zen 2/3 which, to be fair with our GPU comparison, ez
leads to a 128-bit lane-width assuming 32-bit integer operations). Clock for clock, a GPU 22
SM is capable approximately 4-9.6x the computational throughput ranging from raw FP32 623
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Figure 6. Performance scaling across 16 V100 GPUs for our proposed particle advection approach on
the Low Re case.

throughput to a perfectly balanced (FP32 and FP64 float/integer) and scalable workload. ezs
That being said, a GPU SM has a far larger register file enabling zero-overhead context- ezs
switching. This makes the GPU far more latency-tolerant. These factors enable a highly e2e
scalable programming model on GPUs whereas achieving scalable throughput on CPUs 27
requires much more fine-tuning. Accounting for clockspeeds and core counts, we should  ezs
expect to see a speed-up of approximately 4.25x of a single Tesla V100 over an EPYC 20
7H12. We measured an empirical speed-up based on the strong scaling workload at 3.9x  e30
average (3.3x minimum and 5x maximum) or 92% of our theoretical estimate based on raw  es:
throughput as seen in figures 5e-f. It is worth noting that the simpler analysis of bandwidth  es2
and compute throughput suggested a less aggressive 2.3x to 2.7x performance improvement  ess
which leaves another 57% improvement in algorithmic performance on the table without ez«
considering the combined integer/floating point throughput of modern architectures. This ess
analysis would suggest the improvements of an A100 GPU are roughly 38%-60% over a e3s
V100 GPU (from throughput to bandwidth improvements). Analyzing A100’s performance s
for our particle advection implementation showcases a 79% improvement when comparing  ess
a single V100 vs a single A100 GPU (see fig. 5c). Out of this 79%, the additional SM’s 39
and higher clockspeeds yield a 38% improvement whereas architectural enhancements s
contribute a 30% improvement. Clock for clock, we found the A100 to be 28% faster in our ea
testing. These results are inline with the 60% “per-SM" memory bandwidth improvement a2
and 35% increment in SM count. These additional bandwidth improvements are also s
“reachable" given the vastly improved cache in A100. The per FP32 lane performance is ess
shown in figure 5d where CPU lanes are calculated based on the SIMD pipeline widths s
and GPU lanes are taken as the CUDA core count (Nvidia’s marketing term for FP32 e
ALU). The performance gap is significantly reduced when comparing against the FP32 car
vector lane count which yields a fairer comparison point normalizing against the baseline  eas
throughput unit. However, we assess that algorithmic and implementation improvements s
could still yield another 20% improvement in achievable performance. A100 offers a vastly eso
larger cache subsystem unlike prior GPU generations which likely necessitates fine-tuning. es:
This highlights the importance of a multi-faceted analysis when evaluating potential es:
performance improvements. Also, our particle advection codebase is highly scalable with ess
additional memory bandwidth and throughput. Given the every improving hardware ess
landscape, our proposed implementation should be performance portable across multiple ess
hardware generations. Hence, we believe that domain experts should consider additional ese
avenues of exploiting the concurrent execution of floating point and integer calculations sz
given the potential doubling in throughput on modern architectures in addition to the more ess
traditional improvements associated with memory bandwidth utilization. 659
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We leverage the fact that modern CPU architectures in HPC systems continue to converge eeo
with GPUs and share a common approach (albeit implemented in different programming  ee:
models). Algorithm 1 forms the foundation of our particle advection implementation on es2
both CPU and GPU. As seen in figure 5a and 5b, we achieve strong scaling across both  es:
CPU and GPU nodes and across various generations. We do observe a degradation in  ess
strong scaling performance at higher node counts for the Onyx and Narwhal systems when  ees
using CPU-only node configurations. We assess that this breakdown is a limitation of the s
filesystem rather than a limitation of the actual implementation. This is further reinforced e
by the results in the Anvil system. Although not shown, the system is capable of targeting ess
both CPUs and GPUs in a hybrid approach through the same LLVM compiler infrastructure. eso
This hybrid approach currently targets a static work scheduler and requires user guided e
fine tuning to estimate an appropriate work sharing strategy. Looking towards possible &7
optimization avenues, a more automated and dynamics approach would enable a fully ez
automated backend that fully utilizes the available hardware. 673
The right CG tensor and the maximum eigenvalue calculation currently represent a minimal o7
portion of the overall runtime. However, we measure the performance on a single P100 GPU  &7s
at 204K eigenvalues per second for a 415M particle system representing roughly 33 minutes ez
to calculate the finite-time Lyapunov exponent for each particle from the displacement field o7~
(~3% of the total runtime). A V100 offers a higher throughput for the eigenvalue solver and e7s
the integration scheme as seen above. It achieves 711K eigenvalues per second for a 67M ez
particle system (representing roughly the same percentage of the total program runtime). eso
The major limitation is the nature of the eigenvalue problem at hand where we have to s
solve one small eigenvalue problem per particle. Many high-performance implementations  ee2
are tuned for large sparse problems. Tuned batched implementations exist but require ess
submitting the batched buffers as a whole. Given our trade-off between available memory ess
footprint requirements and performance, our streaming approach is a sensible solution. s

3.2. Case Study 086

To prove the applicability and usefulness of the proposed approach, we applied our ez
methodology to three previously obtained DNS datasets ([23]) to assess the compressibility ess
effects on Lagrangian coherent structures over moderately-high Reynolds number turbu- ess
lent boundary layers at three flow regimes, ranging from incompressible, supersonic and eso
hypersonic; already described in Table 1. As discussed in [9], a time convergence analysis oo
was performed at different integration times, i.e. at t* = 10,20 and 40, where t* = u2t/v. It oo
was observed more defined material lines as the integration time was increased. Following ees
[9], the results shown henceforth are based on a backward /forward integration finite time eos
of 7 = £40. Firstly, we showcase the ability to perform LCS analysis at scale (hundreds e
of millions to billions of particles). Figures 7-9 shows FTLE contours in incompressible, ses
supersonic, and hypersonic regime, respectively. Furthermore, isometric views are depicted ee7
for attracting manifolds (top) and repelling manifolds (bottom) by performing backward ess
or forward integration of particle advection, respectively. The DNS mesh is composed by  ese
approximately 52 million grid points, whereas 416 million particles were evaluated in all  7o0
cases. In fig. 7a, the incompressible attracting FTLEs depict the presence of hairpin vortices, 7o
consistent with results by [74] and [75]. Hairpin vortices have been broadly accepted 7o
as the building blocks of turbulent boundary layers [76]. Furthermore, one can observe o3
that attracting LCS ridges (blue contours) reproduce inclined streaky structures with the 704
upstream piece stretching towards the near-wall region, almost attached to it, while the 705
downstream part is elongating into the outer region due to viscous mean shearing, [75] and  zos
[9]. In other words, these lateral images of attracting FTLE manifolds depict inclined quasi- 7o
streamwise vortices (or hairpin legs) and heads of the spanwise vortex tube located in the 708
outer region. In some streamwise locations, hairpin heads can rise up into the log or wake 700
layer (not shown), i.e. 30 < y* < 700, due to turbulent lift-up effects. In addition, hairpins 710
are rarely found isolated but in groups or packets. [77] identified Lagrangian coherent 71
structures via finite-time Lyapunov exponents in a flat-plate turbulent boundary layer 7
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from a two-dimensional velocity field obtained by time-resolved 2D PIV measurement. 713
They stated that hairpin packets were formed through regeneration and self-organization 71
mechanisms. Moreover, [78] have reported a high level of correlation between attracting 7
FTLE manifolds and ejection events (or Q2 events) in supersonic turbulent boundary layers. 76
As an hairpin vortex moves downstream, it generates an ejection of low-speed fluid (i.e., 71
Q2 event), which encounters zones of higher speed fluids resulting in shear formation 71
and, consequently, increased drag. It can also be seen “kinks” in some hairpin vortex legs 710
(attracting FTLE’s contours) due to viscous interaction within hairpin vortices. Repelling 720
manifolds via forward temporal integration have been also computed and visualized in 721
figure 7b. Different from attracting material lines, repelling barriers are mostly concentrated 7z
in the very near-wall region. Notice the large values of repelling FTLE values (intense red) 72s
very close to the wall. However, they are also clearly observed in the buffer/log region 72
with lower intensity, intersecting hairpin legs in regions where ejections are commonly 72
present. 726

3.2.1. Compressibility Effects 728

Prior description of features of attracting/repelling manifolds in incompressible turbu- z2¢
lent boundary layers are fully extensible to supersonic and hypersonic flat-plate turbulent 7s0
boundary layers. Two main compressibility effects can be highlighted: (i) coherent struc- 7s:
tures grow more isotropic proportional to the Mach number, (ii) the inclination angle of 732
the structures also varies along the streamwise direction. The increased isotropic charac- 7ss
ter is perhaps the most interesting of both. The incompressible coherent structures are 7sa
relatively weak in nature and mostly confined to the near-wall region with the presence 735
of more evident “valley” between “bulges”. This is in stark contrast with the hypersonic 736
coherent structures and shear zones that are apparent farther from the wall. Conversely, 77
the prevalence of the structures farther away from the wall does not convey the complexity 7ss
of the phenomenon. Although these structures and shear layers are more prevalent farther a0
from the wall, they seem much more isotropic (but less organized) and contained in smaller 740
clusters. This effect has been reported in the past in Eulerian statistics by [3] and Lagrangian  7a
statistics by [9]. 742

3.2.2. Reynolds Number Dependency Effects 743

Aside from the relatively moderate compressibility effects on LCS, we did observe a 74
stronger dependency on the Reynolds number, as expected. The structures are far more 745
anisotropic and organized at lower Reynolds numbers, as seen in fig. 10. Structures at lower zas
Reynolds numbers extend significantly along the streamwise direction whereas structures 7
at higher Reynolds numbers tend to be shorter in general with smaller coherency spans. At 74
lower Reynolds numbers, the presence of hairpin vortex packets (or horseshoes) is more  zas
evident. These are observable by grouped regions of high coherency in the attracting FTLE 750
ridges. 751
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(a) Attracting lines.

(b) Repelling lines.

Figure 7. Isometric view of FTLE ridges for the incompressible case at high Reynolds numbers.
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(a) Attracting lines.

(b) Repelling lines.

Figure 8. Isometric view of FTLE ridges for the supersonic case at high Reynolds numbers.
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(a) Attracting lines.

(b) Repelling lines.

Figure 9. Isometric view of FTLE ridges for the hypersonic case at high Reynolds numbers.
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(a) Attracting Lines (Every Time Step)

(b) Repelling Lines (Every Time Step)

Figure 10. (x — y)-Plane View of FTLE Ridges for incompressible flow at low Reynolds numbers
(Scaled 2:1 along the wall-normal and spanwise directions) including (a) attracting and (b) repelling
FTLE ridges.

The isometric view shown in figure 11 illustrates that the increased coherency in the lower 7s:
Reynolds case extends significantly in the spanwise direction, as well. This also confirms 7ss
the increased anisotropy. We hypothesize that the increased fluid organization at lower s
Reynolds numbers is attributable to an decreased dominance of the inertial forces. The 7ss
viscous interactions offer a “stabilizing" effect on the coherent structures and elongate their 7se
coherency. 757
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(a) Attracting Lines (Every Time Step)

(b) Repelling Lines (Every Time Step)

Figure 11. Isometric View of FTLE Ridges for the incompressible low Reynolds-number case (Scaled
2:1 along the wall-normal and spanwise directions) including (a) attracting and (b) repelling FTLE
ridges.

3.2.3. Temporal Interpolation and Particle Density Influence 758

The temporal interpolator presented in equation 4 provides a mechanism to reduce 7so
storage requirements. To assess the quality of our interpolation mechanism, we showcase e
results sampled at different temporal resolutions (an order of magnitude difference) for the 7o
incompressible low-Reynolds-number case. The results are shown in figure 12. Note that 7
both particle advection integration tests (and using the proposed interpolation scheme)  7es
were executed at a timestep that was 20x smaller than that of the DNS timestep. In 7
general, structures are well preserved with the only features slightly degraded contain high  zes
frequencies which inherently depend on high frequency sampling, and the interpolation zes
scheme preserves the stability of the integration process. 767
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(a) Attracting Lines (Every Time Step)

(b) Attracting Lines (Every 10 Time Step)

Figure 12. (x — y)-Plane View of FTLE Ridges for the incompressible case at low Reynolds numbers
(Scaled 2:1 along the wall-normal and spanwise directions) with (a) flow fields sampled at the DNS
timestep and (b) sampled every 10 DNS-timesteps.

To validate the higher frequency features, we hypothesize that more “energy" (or intensity) 7es
is concentrated into the same volume hence the structures are more well-defined as both  7es
particle count grows and as underlying flow fields are sampled at a higher rate. To test 770
our hypothesis, we follow an approach analogous to that of a power (energy) spectra to 7n
calculate the density of the FTLE's intensity. We present a normalized view of this spectral 772
analysis in figure 13. As we had alluded, the FTLE’s intensity grows and is concentrated into 773
smaller regions which yields higher magnitudes in the Ly-norm of the spectra as particle 77
count grows and at higher temporal sampling frequencies. Interestingly, both curves follow 775
almost a quadratic tendency. This is slightly more obfuscated but can be visually confirmed 776
by closely inspecting figures 14 & 15. Although higher temporal sampling frequency yields 7+
more well-defined results, increasing the number of particles results in similarly high 77
fidelity results at higher particle counts. That being said, some features are inherently tied 779
to the presence of higher temporal frequencies and are difficult, if not impossible, to recover  7so
without fully accounting for these in the underlying flow fields. 781
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Figure 13. L,-Norm of the 3D FTLE Spectra vs. Particle Count at Low and High Temporal Sampling
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Particles: 2.1M

Particles: 4.2M

Particles: 8.5M

Particles: 16.9M

Particles: 33.8M

Particles: 67.5M

Particles: 135.1IM

Particles: 270.3M

Particles: 540.6M

Figure 14. Attracting FTLE visualization as a function of particle count (HF: high temporal sampling

frequency).
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Figure 15. FTLE visualization as a function of particle count (LF: low temporal sampling frequency).

4. Conclusion

We have highlighted a notable gap in efficient and scalable algorithms for particle
advection workloads. In particular, this manuscript focused on the issue as pertaining
to Lagrangian coherent structures which provide an objective framework for studying
complex patterns in turbulent flows. Although the end goal is the calculation of the finite-
time Lyapunov exponent, we argue that the particle tracking and time integration is the
most time-intensive task. Although others have argued for implementations based on the
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FEM, we argued for the simplicity and portability of a well-designed implementation based  zes
on traditional particle advection. By decoupling the individual problems, we achieved a  7e0
high degree of modularity and extensibility. To tackle the particle advection problem, we 7o
drew inspiration from multiple fields including classical search algorithms and modern e
multi-level approaches in numerical linear algebra. The fundamental algorithms lack any  7es
domain-specific knowledge but augmentations were introduced to enhance the baseline 7e4
performance by exploiting the inherent structure in structured CFD meshes. 795
The proposed algorithm was implemented for both traditional multi-core CPUs and Nvidia 7e6
GPUs using the Numba compiler infrastructure and Python programming language. We  7o7
demonstrated strong scaling up to 32768 CPU cores and up to 62 Nvidia V100 GPUs e
(4960 GPU SM cores or an equivalent 317440 CUDA cores). As part of our scaling study, e
we demonstrated the particular features of both CPU and GPU architectures that benefit =00
particle advection in an unsteady flow field. Particle advection is foundational to many so:
CFD workloads including Lagrangian Coherent Structures. We argued that decoupled  so2
scaling in the number of particles vs cells in the simulation’s domain is required to achieve eos
high resolution visualizations. We showcased the linear scaling in the number of particles sos
and a highly favorable scaling in the number cells suggesting our approach can scale sos
to tackle larger problems. Both, the CPU and GPU backends, exhibit excellent parallel o6
efficiency scaling out to thousands of CPU (or GPU) cores. s07
To demonstrate the applicability of our particle advection scheme, we presented a case sos
study calculating and visualizing the finite-time Lyapunov exponent on four turbulent ses
boundary layers at different Reynolds and Mach numbers to assess compressibility effects e10
and Reynolds number dependency on the LCS candidate structures. The main compressibil- e:1
ity effects were an increase of the isotropic character of attracting and repelling manifolds s
as the Mach number increases. Conversely, we saw an increased anisotropy and FTLE e
organization at lower Reynolds numbers with structures retaining their coherency along e
both spanwise and streamwise directions. We also observed structures tended to be less =15
contained to the near-wall region at higher Mach numbers. We also highlighted the im- a6
pact of lower temporal frequency sampling in the source flow fields by upscaling with &7
an efficient linear upsampler. The general trends were well preserved with (as expected) es
high frequency features being absent from the downsampled data. However, the quality is e
acceptable with just 10% of the required storage. Nonetheless, this manuscript is focused e2o
on the methodology, and an in-depth study of the physics and compressibility effects in ez
LCS candidates is beyond the scope of this work. 822
In summary, we presented a highly efficient particle search scheme in the context of particle ezs
advection workloads. The motivating application revolves around visualizing Lagrangian esza
coherent structures via the finite-time Lyapunov exponent. We presented a thorough sz
computational complexity analysis of the algorithm and presented empirical evidence ez
highlighting the strong scaling performance and efficiency at scale. Although focused on  e2r
LCS for the purpose of this manuscript, the proposed particle advection algorithm builds  szs
on a search scheme applicable across many domains requiring efficient search algorithms in  s2e
large structured domains. The proposed search scheme is highly scalable to larger domains 3o
due to its coarsening, multi-level methodology and scales linearly in the number of particles s
once sufficient work is available to saturate the computational element. 832
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