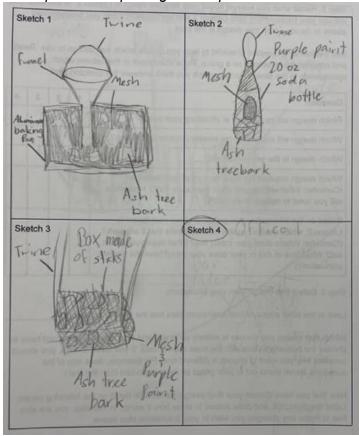


Why Engineering Design?

Science in society and schools must be for all citizens. Reasons include the desire to prepare citizens with the tools and knowledge to address local and global problems. With funding from the U.S. National Science Foundation, we foster sustained learning of Science, Technology, Engineering, and Mathematics (STEM) for students from primary school through university.


Engineering design systematically identifies needs, wants, and problems and then devises solutions to address them (NASEM, 2020). A central component of our work is guiding students in the engineered design of solutions to local environmental problems. Our program follows a seven-step process: **Define, Research, Design, Build, Feedback, Place,** and **Educate.**

Using STEM to Design Solutions

We designed a six-week curricular unit for youth ages 11-13 that extends environmental science learning through the seven stages of our engineering design process. In our program, students **Define** the problem as a local invasive insect disrupting a local ecosystem. An invasive species is an organism that is not native to the local environment and can harm the economy, environment, or human health. In teams, students conduct **Research** on one invasive insect, including food, habitat needs, and predators (if any). Next, they brainstorm at least three **Designs** for a trap that can collect their invasive insect. Student trap designs take into account the phase of the life cycle of the invasive insect, pheromones or lures to attract their insect, trap placement, and the construction of a cost-effective trap that can be maintained over time. **Feedback** includes sharing designs with other student teams and local environmentalists. **Place** includes locating the time of year and location for the most effective capture. Finally, **Educate** includes synthesizing key ideas from their designs to inform local stakeholders about possible implementation in their area.

Three possible trap designs to capture Emerald Ash Borer invasive insects

Great STEM Learning Is Appropriately Challenging and Relevant

Why is it necessary to design pre-university programs that foster the engineered design of solutions? Research indicates that programs must support students' engagement and motivation to be effective, as motivation drives the ability to use science, technology, engineering, and mathematics in critical decision-making processes (NASEM, 2018). A recent policy document from the National Academies of Science, Engineering, and Mathematics (NASEM, 2018, p. 67) suggests four design features that promote interest and motivation in STEM learning environments:

- (1) providing choice or autonomy in learning
- (2) promoting personal relevance
- (3) presenting appropriately challenging material, and
- (4) situating the investigations in socially and culturally appropriate contexts.

Our program emphasizes each of these four design features. The table illustrates what students and teachers said about elements of the curricular program associated with each design feature.

Engineering design programs such as this one exemplify our vision for K-16 STEM education because they provide learners with experiences that foster motivation, sustained engagement, and an appreciation for STEM. They also help learners find meaning and value when their STEM learning is used to solve local problems.

	Students	Teacher
Providing	"Wait, are we not making an open	"This table overspent, so they have to dial back.
Choice or	top?"	Another table only spent \$3 and is calling it
Autonomy	"The string only needs to be a	good. It's interesting which tables are going the
-	couple of inches long."	extravagant route and which are going simple."
Promoting	"It [our insect] is in the part of [the	I think they're more excited with this because it
Personal	state] we live in!"	was something they could actually do, and they
Relevance	"We plan to place our trap near	could kind of visualize doing it in our
	some box elder trees on the [local]	schoolyardThey're like, 'This is real. This is
	trail."	tangible,' so I felt like they were quite excited.
Presenting	"I don't think a Boxelder Bug can	"They were so excited once we actually built
Appropriately	fit through that hole [in the mesh	[the traps]. Some of them were like, 'But if I
Challenging	on the trap top]."	would have done this again, I would have used
Material	"Oh, let's cut a bigger hole in the	these materials' So it was cool that they were
	middle."	able to see kind of a process of fail and
		succeed."
Situating the	Students were very excited when	"I feel like they're more engaged in ecosystems
Investigations	'Jeff,' a Brown Marmorated Stink	because they understand it, they get it. They
Socially and	Bug, crawled up the ramp in a test	see life everywhere they see."
Culturally	of design and attractants. "Our	"Like every resource [for building traps] that was
	trap is working!" "Now we have	there was something that most of them have in
	evidence that our trap works!"	their houses."

References

National Academies of Sciences, Engineering, and Medicine. 2018. Science and Engineering for Grades 6-12: Investigation and Design at the Center. Washington, DC: The National Academies Press. doi: https://doi.org/10.17226/25216.

National Academies of Sciences, Engineering, and Medicine. 2020. Building Capacity for Teaching Engineering in K–12 Education. Washington, DC: The National Academies Press. https://doi.org/10.17226/25612.