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Gradient Approximation and Multivariable
Derivative-Free Optimization Based

on Noncommutative Maps
Jan Feiling , Mohamed-Ali Belabbas , and Christian Ebenbauer , Member, IEEE

Abstract—In this article, multivariable derivative-free op-
timization algorithms for unconstrained optimization prob-
lems are developed. A novel procedure for approximat-
ing the gradient of multivariable objective functions based
on noncommutative maps is introduced. The procedure is
based on the construction of an exploration sequence to
specify where the objective function is evaluated and the
definition of so-called gradient generating functions which
are composed with the objective function, such that the
procedure mimics a gradient descent algorithm. Various
theoretical properties of the proposed class of algorithms
are investigated and numerical examples are presented.

Index Terms—Adaptive control, extremum seeking, non-
holonomic systems, optimization, optimization algorithms,
perturbation methods.

I. INTRODUCTION

AKEY ingredient in the solution of problems arising in
machine learning, real-time decision-making, and control

are sophisticated optimization algorithms. Hence, improving
existing optimization algorithms and developing novel algo-
rithms is of central importance in these areas. The optimization
problems therein are often very challenging, i.e., they are high-
dimensional, nonconvex, nonsmooth, or of stochastic nature. In
addition, in some applications the evaluation of the objective to
be optimized involves noisy measurements or the mathematical
description of the objective is unknown. For this type of prob-
lems, a promising class of algorithms are derivative-free algo-
rithms [1], which typically need only evaluations of the objective
function for optimization. Due to the increasing computational
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power and the generic applicability, derivative-free optimization
algorithms have gained renewed interest in recent years, espe-
cially in the field of machine learning and control [2]–[10].

In this article, we propose a novel class of derivative-free
optimization algorithms based on a concept introduced in [11].
The key idea is to use noncommutative maps to evaluate the
objective function at certain points such that the composition
of the maps approximates a gradient descent step. The class
of proposed algorithms is built upon two main ingredients:
An exploration sequence indicating where the objective is to
be evaluated, and the (gradient) generating functions, which
are composed with the objective function in such a way that
an approximation of a gradient descent step is obtained. The
resulting algorithms have several noteworthy properties. For
example, the algorithms are sometimes able to overcome local
minima and robust against noisy objective function evaluations.
Such properties are also known from so-called extremum seek-
ing algorithms (cf., e.g., [12]–[15]), which are related to our
proposed algorithms [7], [11].

In our preliminary work [11], the algorithms were limited to
optimization problems with one decision (optimization) variable
or to a coordinatewise application of the gradient approximation
scheme. Moreover, only a special case of generating functions
were discussed and no full characterization was given. In an-
other related work [16], the optimization procedure of [11] was
extended to discrete-time extremum seeking problems, but still
limited to one optimization variable.

More broadly related work in terms of gradient approximation
schemes are, for example, finite difference approximations [17],
[18], simultaneous perturbation stochastic approximations [5],
and random directions stochastic approximations [19]; in [20]
those approximation techniques are applied to the aforemen-
tioned extremum seeking problems. These methods are based
on so-called sample averaging of function evaluations, i.e., the
neighborhood of the current candidate solution is explored to
approximate the local gradient of the optimization objective.
In contrast, in the presented work, no numerical differentiation
is performed to extract gradient information, instead a kind of
numerical integration scheme is utilized to approximate first
order-information.

The main contribution of this article is fourfold: 1) A construc-
tive procedure for determining suitable exploration sequences
for multivariable optimization problems is presented, 2) a gen-
eral class of (gradient) generating functions is characterized,
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3) the so-called single and two-point algorithms in [11] and [16]
are extended to the multivariable case, and 4) a toolbox is devel-
oped to easily design and apply the novel class of optimization
algorithms to unconstrained optimization problems.

Notation: The set of real numbers equal or greater than k
is denoted by R≥k = {x ∈ R |x ≥ k}. The class of k-times
continuously differentiable functions is denoted by Ck(Rn;R).
I ∈ Rn×n stands for the n-dimensional unit matrix, 11 ∈ Rn

for the n-dimensional all-one vector, and ei ∈ Rn for the ith
n-dimensional unit vector. The matrix P ∈ Rn×n has the prin-
cipal submatrixP1:r ∈ Rr×r with r < n. The bijective mapping
π : {1, . . . , n}→ {1, . . . , n}withn ∈ N denotes a permutation
function. A sequence w0, . . . , wm−1 of length m is denoted
by {w!}m−1!=0 . The ceiling and floor operator are defined as
&x' := max{k ∈ Z | k ≤ x} and )x* := min{k ∈ Z | k ≥ x},
respectively. A function f(x; ε) : Rn ×R×RRn is said to be
of order O(ε), if for all compact sets V ⊆ Rn there exist an
M ∈ R>0 and ε̄ ∈ R>0, such that for all x ∈ V and ε ∈ [0, ε̄],
|f(x; ε)| ≤Mε. The operator mod takes to integers k and n
and returns an integer k modn, equal to the remainder of the
division of k by n. A compact set with center point x∗ ∈ Rn

radius δ ∈ R≥0 and denoted by Uδ
x∗ ⊆ Rn is defined as {x ∈

Rn : ‖xx∗‖2 ≤ δ}.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

In this article, we develop a class of algorithms to solve
unconstrained minimization problems

min
x∈Rn

J(x) (1)

for which a closed form expression of J : Rn → R may be
lacking, and only zero-order information in terms of function
evaluations are available to find a local minimizer x∗ ∈ Rn of
J . The algorithms we propose are of the form

xk+1 = M
√
h

k (xk, J(xk), k ≥ 0 (2)

where we call M
√
h

k : Rn ×R→ Rn the transition map and
h ∈ R>0 is the step size. The main idea is to design the transition
maps in such a way that for everyk ∈ N, them-fold composition
of these maps, i.e.,

xk+m =
(
M
√
h

k+m−1 ◦ · · · ◦M
√
h

k

)
(xk, J(xk)) (3)

approximates a gradient descent step, i.e.,

xk+m = xk − h∇J(xk) +O(h3/2) (4)

as visualized in Fig. 1.
Hereby, we impose the following structure for the transition

maps

M
√
h

k (xk, J(xk)) = xk +
√
hα1sk (J(xk))

+
√
hα2sk

(
J
(
xk +

√
hsk(J(xk))

))

s!(J(xk)) = f(J(xk))u! + g(J(xk))v! (5)

Fig. 1. Illustration of the presented optimization algorithms based on
noncommutative maps. Effects of noncommutativity are utilized to ap-
proximate the negative gradient of the optimization objective in m steps
(i.e., m = 4 in this illustration).

with parameters α1,α2 ∈ R, where α1 + α2 1= 0. We call s! :
R→ Rn the evaluation map, f, g : R→ R the generating func-
tions, and u!, v! ∈ Rn the m-periodic exploration sequences.
Note that for α2 1= 0, only two evaluations of J per iterations
are necessary. We elaborate on the choice of this structure for
the algorithm in Section III. The main goal of this work is to
characterize and design

1) m-periodic exploration sequences u!, v!; and
2) gradient generating functions f and g,

such that (2) with transition map (5) yields (4).
We will at various points make the use of one or both of the

following assumptions.
A 1) The functions f, g are of class C2(R,R) and the ob-

jective function J is of class C2(Rn,R).
A 2) The objective function J is radially unbounded and

there exists an x∗ ∈ Rn, such that∇J(x)2(x− x∗) >
0 for all x ∈ Rn\{x∗}.

We note that A 2) will not be required for the design of the
algorithms, but only when we analyze their performance. The
implementation of the algorithms, however, is not limited to the
class of objective functions satisfying A 1).

B. Related Results

The structure of the transition map in (5) was introduced by
the authors of the present work in [11] for one-dimensional
problems. Therein, two cases were considered, specified by the
parameter setting [α1 α2] = [1 0], as so-called single-point map

M
√
h

k (xk, J(xk))= E
√
h

k (xk, J(xk)) := xk +
√
hsk(J(xk))

(6)

and by [α1 α2] = [1/2 1/2], as so-called two-point map

M
√
h

k (xk, J(xk))=H
√
h

k (xk, J(xk)) := xk+

√
h

2
[sk (J(xk))
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+sk
(
J(xk +

√
hsk (J(xk))

)]
. (7)

The algorithms relying on transition maps (6) and (7) are called
single and two-point algorithm, respectively, reflecting that the
number of function evaluations of J at each iteration is one and
two. This type of map structure was inspired by the well-known
Euler and Heun (trapezoidal) numerical integration methods,
respectively, (thus the naming of the maps E and H), i.e.,
executing a single integration step with step size

√
h of the

differential equation

ẋ(t) = s (J(x(t))) = f (J(x(t)))u(t) + g (J(x)) v(t) (8)

with piecewise constant m
√
h-periodic inputs u(t), v(t) ∈ Rn

for t ∈ [%
√
h, (%+ 1)

√
h] with % ∈ N, yields (6) and (7), re-

spectively. Note that (8) is well known as an approximate gra-
dient descent flow in the context of extremum seeking control
(cf. [12]). For a detailed explanation of the proposed class of
algorithms and the continuous-time algorithm (8) plus how
noncommutativity comes into play, we refer to [11] and [16].

For the coordinatewise descent case (see [11, Lemma 1 and
Lemma 2]) the choice of exploration sequences

u! = ū!ei, v! = v̄!ei with i = &%/4'mod(n) + 1

ū! =






1 % = 0

0 % = 1

−1 % = 2

0 % = 3

ū!−4 else

, v̄! =






0 % = 0

1 % = 1

0 % = 2

−1 % = 3

v̄!−4 else

(9)

with m = 4n leads to the evolution of xk with [α1 α2] = [1 0],
such that

xk+m = xk + h {([f, g](J(xk))

−1

2

∂(f2 + g2)

∂J
(J(xk))

}
∇J(xk) +O(h3/2) (10)

and with [α1 α2] = [1/2 1/2], such that

xk+m = xk + h {([f, g](J(xk))}∇J(xk) +O(h3/2) (11)

where [f, g] := ∂g
∂J f −

∂f
∂J g is the Lie bracket of f and g. A

simple calculation shows that the term in brackets in (10) and
(11) is identical to−1 for f(J(x)) = sin(J(x)) and g(J(x)) =
cos(J(x)), hence (4) is recovered. The exploration sequence
above is constructed in such a way that components of the gradi-
ent are approximated sequentially for the multidimensional set-
ting, hence, coordinatewise. In Fig. 2, the exploration sequence
and the gradient approximation is visualized for the scalar case
xk ∈ R (n = 1,m = 4). In summary, the existing procedure is
limited and mimics a coordinatewise descent algorithm. Fur-
ther, only a single exploration sequence was presented as well
as a single pair of generating functions. There are, however,
many ways to construct exploration sequences and generating
functions, especially in the multivariable case. Since different
exploration sequences and generating functions lead to different
properties of the algorithm, it is the goal of this article to provide
solutions for a flexible design and constructions of exploration

Fig. 2. (a) Periodic inputs uk ( ) and vk ( ) depicted for one period
m = 4 as specified in (9). (b) Noncommutative maps as in (5) with initial
point x0.

sequences in the multivariable setting and to characterize a large
class of generating functions.

III. MAIN RESULTS

A. Problem Statement Reformulation and Convergence

As described in Section II-A we aim to construct m-periodic
exploration sequences u! and v! and generating functions f and
g, such that (2) with transition map (5) yields (4). Our first result
restates the problem in terms of solving a system of nonlinear
equations. Since the sequences u! and v! are m−periodic, it
suffices to determine the steps k = 0, . . . ,m− 1 in (5), i.e., one
period of the exploration sequences.

Theorem 1: Let 1 hold. Then the mth step of the evolution of
(2) with transition map (5) is given by

xm = x0 +
√
h(α1 + α2)Y (f(J(x0)), g(J(x0)))W1

+ hỸ (f(J(x0)), g(J(x0)))T (W )

× Y (f(J(x0)), g(J(x0)))
2∇J(x0) +O(h3/2). (12)

Here,W = [w0 w1 · · · wm−1] ∈ R2n×m withwi = [u2i v2i ]
2 is

the exploration sequence matrix and T (W ) ∈ R2n×2n is given
by

T (W ) :=
m−1∑

i=0



α2wiw
2
i + (α1 + α2)

2
i−1∑

j=0

wiw
2
j



 . (13)

Furthermore, Y (f(z), g(z)) := [f(z)I g(z)I] ∈ Rn×2n and
Ỹ (f(z), g(z)) := [∂f∂z (z)I

∂g
∂z (z)I] =

∂
∂zY (f(z), g(z)) ∈

Rn×2n.
The proof of Theorem 1 is given in Appendix B1. If there

exist m-periodic exploration sequences {w!}m−1!=0 (equivalently,
an exploration sequence matrix W ), and generating functions f
and g, such that

Ỹ (f(z), g(z))T (W )Y (f(z), g(z))2 = −I ∀z ∈ R (14)

W1 = 0 (15)

are satisfied, then (4) holds. Thus, this system of nonlinear
ordinary differential equations (w.r.t. f(z) or g(z)) with un-
known coefficients is key in designing the algorithm. The idea
to solve this highly underdetermined system of equations is now
to proceed in two steps as follows.
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Step 1: For a class of normal (skew-symmetric) matrices Td,
we construct exploration sequence matricesW , such
that (15) and T (W ) = Td hold.

Step 2: We characterize gradient generating functions f, g
and normal (skew-symmetric) matrices Td, such that
(14) holds.

These two constructions are presented in the following two
subsections. We start with a remark on T (W ) and the conver-
gence result of the proposed algorithms.

Remark 1: To get a sense of (14) and the role of T (W ),
partition T (W ) as

T (W ) =

[
T11(W ) T12(W )

T21(W ) T22(W )

]
(16)

with T11(W ), T12(W ), T21(W ), T22(W ) ∈ Rn×n. Note that
T11(W ) is defined solely by {u!}m−1!=0 , T22(W ) solely by
{v!}m−1!=0 , and T12(W ) and T21(W ) by both {u!}m−1!=0 and
{v!}m−1!=0 . Then (14) with (16) yields

∂f

∂J
fT11 +

∂f

∂J
gT12 +

∂g

∂J
fT21 +

∂g

∂J
gT22 = −I (17)

where the arguments J(x0) of the maps f and g and their
derivatives and W of Tij with i, j ∈ {1, 2} are omitted for the
sake of readability. By plugging {u!}m−1!=0 and {v!}m−1!=0 from
(9), with W1 and W2 for [α1 α2] = [1 0] and [α1 α2] = [1/2 1/2],
respectively, into (13), one obtains

T (W1) =

[
−I −I
I −I

]
, and T (W2) =

[
0 −I
I 0

]
. (18)

Hence, the left hand side of (17) translates into the terms in
the curly brackets in (10) and (11), respectively. A geometric
interpretation of T(W) is discussed in Section IV-B.

Due to property (4), for example, semiglobal practical asymp-
totic convergence to the optimizer x∗ can be established
(see [21]):

Theorem 2: Let 1 and 2 hold. Assume that there exist gen-
erating functions f(J(x)) and g(J(x)) and an exploration se-
quence matrix W , such that (14) and (15) are satisfied. Then,
for all δ1, δ2 ∈ R>0 with δ2 < δ1, there exist an h∗ ∈ R>0

and N(h) ∈ N, such that for all h ∈ {h̄ | 0 < h̄ < h∗} and
x0 ∈ Uδ1

x∗ , it holds xk ∈ Uδ2
x∗ for all k ≥ N(h).

The proof of Theorem 2 follows along the lines of the proof
of [11, Th. 2] by utilizing Theorem 3 in Appendix A and
Theorem 1.

Remark 2: Theorem 2 is based on a constant step size h. Ap-
plying a variable decreasing step size hk, but constant over a pe-
riod of length m, i.e., h0 = h1 = · · · = hm−1, hm = hm+1 =
· · · = h2m−1, . . . , with

∞∑

p=0

hpm =∞,
∞∑

p=0

h2
pm <∞ (19)

e.g., hk = 1/(&k/m'+1) (cf. [5, Prop. 1]) lead to a semiglobal
asymptotic convergence result and a potential numerical perfor-
mance improvement. Note that the requirement of periodically
m constant steps preserves the O(

√
h)-order terms in (12) (cf.

proof of Theorem 3).

B. Exploration Sequences

In this part we characterize the conditions under which there
exists an exploration sequence matrix W for a given Td, such
that T (W ) = Td together with W1 = 0 are satisfied, hence,
addressing Step 1 as stated above. The next lemma represents
T (W ), i.e., (13), in combination with (15) in a more compact
form.

Lemma 1: Consider (13) and suppose the exploration se-
quence matrix W ∈ R2n×m satisfies (15). Then T (W ) can be
expressed as

T (W ) = W P W2 (20)

with P ∈ Rm×m defined as

P =





c1 c2 · · · c2 0

α2
. . .

. . .
...

...
...

. . .
. . . c2

...
α2 · · · α2 c1 0

0 · · · · · · 0 0





(21)

where c1 = 2α2 − (α1 + α2)2, c2 = α2 − (α1 + α2)2, and
α1,α2 defined in (5).

The proof of Theorem 1 is given in Appendix B2. Conse-
quently, when proceeding according to Steps 1 and 2 described
in the section above, the key equations for the design of the
exploration sequences are

WPW2 = Td

W11 = 0.
(22)

The following theorem, which provides a constructive design
of the exploration sequence matrix W , is of central importance.
It also provides structural insight in terms of obtaining lower
bounds on the length (period) of the exploration sequence m,
suitable choices of the parameters α1 and α2 and admissible
structures for the desired target matrices Td.

Theorem 3: Given α1,α2 and Td ∈ R2n×2n. Suppose that
either Td is normal, (2α2 − (α1 + α2)2)(Td + T2d ) positive
definite, and Conjecture 1 (see below) is satisfied or that Td is
skew-symmetric with 2α2 − (α1 + α2)2 = 0. Then there exists
an m ≥ rk(Td) + 1, such that W ∈ R2n×m satisfies the system
of equations (22).

The role of Conjecture 1 in Theorem 3 is discussed in
Remark 3.

Conjecture 1: Let the skew-symmetric matrix C(m) ∈
Rm×m be defined as

C(m) := A(m) + ε(m+ 1)B(m) (23)

A(m) :=





0 1 · · · 1

−1
. . .

. . .
...

...
. . .

. . . 1

−1 · · · −1 0




∈ Rm×m (24)
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B(m) := 11[0 2 4 . . . 2(m− 1)]

− (11[0 2 4 . . . 2(m− 1)])T ∈ Rm×m
(25)

with ε(m) = (m− 1)−1(1−m−1/2). Then for any m ≥ 2,
C(m) and C(m+ 1) satisfy the eigenvalue interlacing property
(cf. Theorem 4 in Appendix A).

ωm+1
k > ωm

k > ωm+1
k+1 ≥ 0 (26)

for k = 1, . . . , &m/2', where ±ωm
k i are the eigenvalues of

C(m), with {ωm
k }k=1...m sorted in nondecreasing order in k

for m fixed.
Remark 3: We verified numerically that Conjecture 1 is

always true (we verified it up to dimension m = 10000, see
Theorem A), but a proof is still lacking. Further notice, that
C(m) is part of the following equation:

P̃ (m) =
(
P − ε(m)(112P + P112)

+ε2(m)112P112
)
1:m−1

=

(
1

2
(α1 + α2)

2 − α2

)
I

+
1

2
(α1 + α2)

2C(m− 1) (27)

with P in (21) and ε(m) defined in Conjecture 1. Note that
the interlacing property (26) holds also for P̃ (m), since it is
arranged by a scaled unit matrix and the skew-symmetric matrix
C(m− 1) (cf. [22]). The interlacing property of P̃ (m) is utilized
in the proof of Theorem 3.

The proof of Theorem 3 is constructive and presented in
Appendix B3, where in particular in (76), Conjecture 1 enters.
A step-by-step construction of W for a given Td including a
MATLAB toolbox is provided in [23]. Moreover we obtain as a
corollary (which follows by the proof of Theorem 3).

Corollary 1: If 2α2 − (α1 + α2)2 = 0 and Td skew-
symmetric, then there always exists an W ∈ R2n×m with m =
rk(Td) + 1.

Remark 4: It is worthwhile to point out an interesting connec-
tion between the equations in (22) and nonlinear control theory,
i.e., the controllability of the so-called nonholonomic integrator.
Suppose {w!}m−1!=0 is a solution of (22), then it can be verified
by direct calculations (see also proof of Theorem 1 in Appendix
B2) that it is also a solution of the two point boundary value
problem

y0 = 0, Z0 = 0, ym = 0, Zm = Td

yk+1 = yk + wk

Zk+1 = Zk + (α1 + α2)
2wky

2
k + α2wkw

2
k (28)

with k = 0, . . . ,m− 1, states yk ∈ R2n, Zk ∈ R2n×2n, input
wk ∈ R2n, and vice versa. In particular with W11 = 0, i.e.,

wm−1 = −
∑m−2

i=0 wi, (28) translates into

y0 = 0, Z0 = 0, Zm−1 = Td

yk+1 = yk + wk

Zk+1 = Zk + α2wky
2
k + (α2 − (α1 + α2)

2)ykw
2
k

+ (2α2 − (α1 + α2)
2)wkw

2
k . (29)

Considering now the case [α1 α2] = [1/2 1/2] shows that
(29) is the state-transition of the generalized discrete-time non-
holonomic integrator [24] with given initial and final states.
Problem (28) with [α1 α2] = [1 0] has a similar structure. Hence,
Theorem 3 provides an explicit solution to this state transition
problem. Moreover, this viewpoint underlines the relationship
to noncommutative maps and flows as indicated in Section II-B
(Fig. 2). Another, more geometric, interpretation of (22) is also
provided in Section IV-B.

C. Gradient Generating Functions

This part addresses Step 2, i.e., solving the (functional) (14)
for f, g, and Td ∈ R2n×2n with T (W ) = Td. First, solutions
(Td, f, g) for the parameter setting 2α2 − (α1 + α2)2 = 0 are
presented.

Theorem 4: Let 2α2 − (α1 + α2)2 = 0 and Td skew-
symmetric, then (14) is satisfied by the following triples
(Td, f, g), where a, b ∈ R>0 and c,φ ∈ R:

Td =

[
0 −I
I 0

]

g(z) = −f(z)
∫

f(z)−2dz, f : R→ R (30)

Td =

[
aQ −I
I bQ

]
, Q = −Q2

f(z) = a−
1/2 sin

(√
abz + φ

)

g(z) = b−
1/2 cos

(√
abz + φ

)
(31)

Td =

[
aQ −I
I −bQ

]
, Q = −Q2

f(z) = ±a−
1/2 cosh

(√
abz + φ

)

g(z) = ∓b−1/2 sinh
(√

abz + φ
)

(32)

Td =

[
Q −I
I 0

]
, Q = −Q2

f(z) = ±
√
a, g(z) = ∓ z√

a
(33)

Td =

[
0 −I
I Q

]
, Q = −Q2
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f(z) = ± z√
a
, g(z) = ±

√
a (34)

Td =

[
0 −I −Q

I −Q 0

]
, Q = −Q2

f(z) = ± 1√
a
e−

a
2 z, g(z) = ∓ 1√

a
e

a
2 z (35)

Td =

[
aQ −I − cQ

I − cQ bQ

]
, Q = −Q2

f(z) =

√
b

ab− c2
sin
(√

ab− c2z + φ
)

g(z) = b−
1/2 cos

(√
ab− c2z + φ

)
(36)

In addition, for each Td in (30)–(36) there exists an W , such that
T (W ) = Td in (13). In (36), we require that a, b > c.

Remark 5: Every pair f, g in (31)–(36) satisfy (30), hence,
these generating functions are valid for the given Td in (30),
too. The advantage of the specified Td’s are discussed in
Section IV-B.

Remark 6: Consider the indefinite integral in (30). Let F :
Rn → R be an antiderivative of f(z)−2. Then so isF + c̄ for any
c̄ ∈ R. Set g(z) = −f(z)(F (z) + c̄). The constant c̄ is chosen,
such that g′(z)f(z)− f ′(z)g(z) = −1.

The proof of Theorem 4 is given in Appendix B4. Solutions
(Td, f, g) of (14) for the parameter setting 2α2 − (α1 + α2)2 1=
0 are presented next.

Theorem 5: Let Td ∈ R2n×2n be normal and (2α2 − (α1 +
α2)2)(Td + T2d ) be positive definite, then (14) is satisfied by the
following triples (Td, f, g), where r : R→ R>0, a ∈ R\{0},
b ∈ R>0, and φ ∈ R:

Td =

[
aI −I
I aI

]
, a(2α2 − (α1 + α2)

2) > 0

f(z) =
√
r(z) sin(ϕ(z)), g(z)=

√
r(z) cos(ϕ(z))

ϕ(z) =
a

2
ln(r(z)) +

∫
1

r(z)
dz + φ

Td =

[
Q −I
I Q

]

(2α2 − (α1 + α2)
2)(Q+Q2) (37)

pos. def. and normal

f(z) = b−
1/2 sin (bz + φ)

g(z) = b−
1/2 cos (bz + φ) . (38)

In addition for every Td in (37)–(38) there exists an W , such
that T (W ) = Td in (13).

The proof of Theorem 5 is given in Appendix B5.
Remark 7: The list of triples (Td, f, g) in Theorem 4 is

essentially exhaustive, save for some scaled version of the
presented cases. A case-by-case study is presented in the proof of

Algorithm 1: Derivative-Free Optimization Algorithm With
Noncommutative Maps.

1: Input: x0, h, α1,α2, f(J(·)), g(J(·)), Td,
σi (i = 1, . . . , rk(Td)), stop criterion

2: Calculate W and m as described in Appendix C in [23]
3: k = 0
4: while stop criterion is not fulfilled do
5: % = k mod (m) + 1
6: e! = [0!, 1, 0n−1−!]2

7: Y (J(xk)) = [f(J(xk))I g(J(xk))I]
8: x̂k = xk +

√
hY (J(xk))We!

9: Y (J(x̂k)) = [f(J(x̂k))I g(J(x̂k))I]
10: xk+1 =

xk +
√
h(α1Y (J(xk)) + α2Y (J(x̂k)))We!

11: k ← k + 1
12: end while
13: return [x0, x1, . . .]

Theorem 4 in Appendix B4. Whereas the list of triples (Td, f, g)
in Theorem 5 is not exhaustive (cf. Appendix B5).

Theorem 4 and Theorem 5 together with Theorem 3 solve
(14) and (15), and thus, ensure the existence of a exploration
sequence W . Hence, a gradient descent step is approximated by
the proposed algorithm (2) with transition maps (5).

IV. ALGORITHM, PARAMETERS, AND NUMERICAL RESULTS

In this section we present some numerical studies of the
proposed class of algorithms. We carry out simulations and
discuss how various choices of Td, of the singular values of W ,
of the sequence length (period) m, or of the parameters α1,α2

influence the qualitative behavior of the algorithm. Further, a
numerical approach to construct the exploration sequences using
nonlinear programming is presented.

We start by summarizing the proposed optimization algorithm
and the involved parameters.

A. Algorithm and Parameters

The design parameters and functions involved in the proposed
algorithm are as follows.

1) Map parameters α1,α2 ∈ R with α1 + α2 1= 0.
2) Gradient generating functions f, g : R→ R.
3) Matrix Td and exploration sequence matrix W , in partic-

ular singular values σi, i = 1, . . . , rk(Td) of W .
4) Step size h > 0.

Hence, algorithm (2) with (5) is defined in terms of W as
follows.

Notice that Y (J(xk)) is a n× 2n matrix. Moreover, if
α2 = 0, then line 8 and 9 in Algorithm 1 can be skipped.

In the following we discuss the influence of the design pa-
rameters on the algorithm’s behavior. Additionally, a set of
parameters working well in generic situations, which can then
be used as a starting point to obtain optimized parameters for a
particular application, is provided.
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1) Map Parametersα1, α2: The parameters weighY (J(xk)
and Y (J(x̂k) in Algorithm 1, respectively. In particular,
they can be utilized to choose between a single-point
(α2 = 0) or a two-point algorithm. They are to be nor-
malized according to α1 + α2 = 1 and to tune according
to the ratio of α1,α2, while utilizing the step size h
to tune the convergence speed. Moreover, the choice of
α1,α2 restricts the choice of Td to be skew-symmetric
for 2α2−(α1 + α2)2 = 0 and otherwise normal (cf. The-
orem 4 and Theorem 5). In practice, the parameter sets
we found providing the best performance were [α1 α2] =
[1 0] for the single-point and [α1 α2] = [1/2 1/2] for the
two-point gradient-approximation scheme.

2) Generating Functions f, g: The generating functions
comprise a scaling of the objective evaluated at xk and x̂k

as stated in Algorithm 1. Various choices are presented in
Theorem 4 and Theorem 5; depending on α1,α2. Often
we have chosen f, g as sinusoidal functions, since the
algorithm showed a very stable behavior for that cases.
Note that high function values of f, g or if f, g scale
arbitrarily large with J(xk), the algorithm performs large
steps which may cause instabilities. In the case of bounded
functions, such as sinusoidal functions, (arbitrarily) large
steps sizes are avoided. Further, if J, f, g vanish at a
minimum x∗, asymptotic convergence to x∗ (instead of
practical convergence) has been observed in our studies.

3) Exploration Sequence Matrix W and Td: The explo-
ration sequence matrix W depends on the choice of Td,
specifically on the eigenvalues of Td. A step-by-step
construction of W based on the algorithm parameters
is presented in [23]. As explained in this construction,
the singular values of W can be chosen (see Theorem 2
below), hence this degree of freedom can be used in the
algorithm tuning. As shown in numerical examples below,
smaller singular values lead to smoother trajectories, but
more steps (larger m) are needed to perform one gradient
approximation step. There exists a set of optimal singular
values in the sense of minimal number of stepsm, which is
m = rk(Td) + 1. Therewith, the choice of Td influences
the lower bound on m (see Theorem 3 below). Note that
minimal sequence length m does not always lead to the
fastest convergence behavior.

4) Step Size h: The approximated gradient is scaled with
the step size h, and hence, h influences the speed of
convergence, as well as the area of exploration around xk.
As stated in Theorem 2 there exists an upper bound on h,
such that semiglobal practical asymptotic convergence [if
(A1) and (A2) holds] is ensured. In our numerical studies,
h is often chosen as 0.001 ≤ h ≤ 0.5.

Corollary 2: In the case 2α2 − (α1 + α2)2 = 0, the singular
values σ2!−1,σ2!, % = 1, . . . , )rk(Td)/2*, of W can be chosen
arbitrarily. Otherwise, the singular values of W have to satisfy
σ2!−1 = σ2! and

Td =

[
diag([γ1 · · · γn]) −I

I diag([γ1 · · · γn])

]
(39)

with

γ! =

(
α2 −

1

2
(α1 + α2)

2

)
σ2
2!−1. (40)

Proof: Following directly from the proof of Theorem 3 in
Appendix B3. Specifically, Td in (39) satisfies (38) and (40)
corresponds to (73). !

Corollary 3: The minimal number of steps to approximate a
gradient according to (2)–(5) and using the Td’s in Theorem 4
and Theorem 5 is m = n+ 1.

Proof: Since the first n rows of each Td in Theorem 4 and
Theorem 5 are linearly independent, we know min{rk(Td)} ≥
n. This implies with Theorem 3 that m ≥ n+ 1.

Remark 8: A gradient step is a approximated in m = n+ 1
steps for Td as specified in (31) and Q with elements {qij}2ni,j=1,
such that

qij =






1 if i+ j = 2n+ 1, i > j

−1 if i+ j = 2n+ 1, i < j

0 else

(41)

holds, while the singular values σ2!−1,σ2! of W satisfy (75) for
% = 1, . . . , )n/2*.

B. Numerical Results

In the following, various simulation results are presented to
illustrate the influence of the algorithm parameters, i.e., matrix
Td, singular values σk, k = 1, . . . , r, of W and map parameters
α1,α2. For the sake of visualization, we focus on examples with
n = 2.

An extensive benchmarking study, including the best choice
of parameters for certain classes of the objective, is beyond the
scope of this article and carried out in ongoing and future work.
Hence, we keep f, g, (sinusoidal) and h fixed and provide only
a limited number of simulation examples to get some qualitative
insight in the degrees of freedom and how they influence the al-
gorithms behavior. In the figures below, we show trajectories and
the exploration sequences. In addition, we provide a geometric
interpretation and a visualization of the matrix T (W ) which is
of interest by its own and which is explained next.

The values of the components of T (W ) in (13) for [α1 α2] =
[1/2 1/2], i.e.,

T (W )pq =
m−1∑

i=0

i−1∑

j=0

1

2
e2pwiw

2
i eq + e2pwiw

2
j eq (42)

with p, q = 1, . . . , 2n, where the index pq specifies the element
of T (W ) in the pth row and qth column, can be interpreted
as the projected areas spanned by the exploration sequences
{e2pw!}m−1!=0 , {e2q w!}m−1!=0 . The net area Apq of an n-sided
polygon with corner points (xp,i, yq,i) ∈ R2, i = 0. . .n− 1 and
p, q = 1, . . . , 2n, known as Shoelace or Gauss area formula [25]
is obtained as a special case of Green’s theorem and is given by

Apq =
1

2

n−1∑

i=0

(xp,i+1yq,i − xp,iyq,i+1) (43)
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Fig. 3. Generated areas of the exploration sequence {wk}m−1k=0 in (9)
for T (W ) ∈ R2n×2n as given in (42) for n = 2. Hence, T (W )1,3 =
T (W )2,4 = −1, T (W )3,1 = T (W )4,2 = 1, and the rest 0. The filled
green areas ( ) have an area surface value of 1, the striped orange
area ( ) of −1, and the rest of 0. The coordinates of each subplot are
given by xp,i and yq,i defined in (44) for p, q = 1, . . . , 2n.

with xp,0 = xp,n = 0 and yq,0 = yq,n = 0. In Theorem 6 (Ap-
pendix A) we show that (43) is equivalent to (42) for

xp,i =
i−1∑

k=0

e2pwk, yq,i =
i−1∑

k=0

e2q wk. (44)

This geometric interpretation is not surprising in the light of
Remark 4 and the area generating rule appearing in the study
of nonholonomic systems [26]. In particular, (43) represents a
(double) iterated summation over the exploration sequence. In
the continuous-time setting, this would correspond to double
iterated integrals (or in general k-fold iterated integrals, which
are called the signature of a path) and which play a fundamental
role in nonholonomic control systems. Note that for [α1 α2] 1=
[1/2 1/2], (43) with (44) does not hold. However, we believe it is
related to some kind of weighted area.

To illustrate this geometric interpretation, the exploration
sequence in (9) with [α1 α2] = [1/2 1/2] generates T (W ) as
depicted in Fig. 3, where the singular values of W are σ1 =
σ2 = σ3 = σ4 =

√
2. Obviously and as presented in the sequel,

the singular values of W influence the shape of the areas and
give rise to various interpretations of the algorithms behavior.

Simulation 1: In the first simulation setup we consider
the objective J(x) = ‖x− [1 2]2‖22 and setting f(J(x)) =
sin(J(x)), g(J(x)) = cos(J(x)), [α1 α2] = [1/2 1/2], Td as in
(30), h = 0.05, and x0 = [0 1]2. The simulation results for two
different choices of singular value pairs are depicted in Fig. 4. On
the one hand σ1 = σ2 = σ3 = σ4 = 1 yields m = 8 and on the
other handσ1 = σ3 = 1.5, σ2 = σ4 = 0.2 results inm = 21. In
the latter case the areas with net area value±1 have an elongated
elliptical shape, which yield a small amplitude of {vk}m−1k=0 and
therefore a small steady-state amplitude since sin(J(x∗)) = 0
and cos(J(x∗)) = 1 [cf. (5)]. Concluding, the amplitude of
{e2i w!}m−1!=0 is proportional to σi with i = 1, . . . , 2n for this
choice of Td.

Simulation 2.: In the second simulation study, we consider
the same setup as in Simulation 1, but choose Td as in (31) with
Q as specified in the proof of Theorem 3. The simulation results

for two different choices of singular values pairs are depicted in
Fig. 5. On one hand σ1 = σ2 = 2 results in m = 4 and on the
other hand σ1 = σ2 = 0.2 in m = 154. The singular values can
be interpreted as a kind of energy measurement of the exploration
sequence, and therefore in the latter case, m is much larger,
but reveals a smoother behavior. Moreover, σi influences the
amplitude of {e22i−1w!}m−1!=0 and {e22iw!}m−1!=0 for i = 1, . . . , n
for the given choice of Td, compared to the previous simulation
example. However, due to space limitations we omit the plots
for σ1 1= σ2.

Interestingly, as observed in Figs. 4 and 5(d) and (h),
the areas of T (W )ij for (i, j) ∈ {(1, 2), (2, 1)} and (i, j) ∈
{(3, 4), (4, 3)} have the same shape as the last m steps of xk.

Simulation 3.: Consider the same setup as in Simulation 1,
but choosing [α1 α2] = [1 0] and Td as described in (39). Choos-
ing σ1 = σ2 = σ3 = σ4 = 1 results in the behavior depicted in
Fig. 6(a)–(c), which is similar to the behavior from Fig. 4(a)–(d),
wherem = 8, too. On the one hand, the number of evaluations of
the objective J is reduced by half when compared to Simulation
1. On the other hand, in this parameter setup, the choice of
singular values is restricted to σ1 = σ2 and σ3 = σ4, hence,
a behavior as in Fig. 4(e)–(h) cannot be achieved. However,
reducing σ3 = σ4 to 0.4 yields a scaling in the coordinate
directions as illustrated in Fig. 6(d)–(f).

Simulation 4.: In this simulation scenario we consider
the cost function J(x) = ‖x− [1 2]2 + 0.5 sin(10πx)‖2, i.e.,
an objective with many local minima. We define f(J(x)) =
sin(J(x)), g(J(x)) = cos(J(x)), [α1 α2] = [1/2 1/2], h =
0.05, and x0 = [1 2]2. The simulation results with Td as in Sim-
ulation 2 and σ1 = σ2 = 1 are depicted in Fig. 7. As motivated
in the introduction, the proposed algorithm is able to overcome
local minima and converges into a neighborhood of the global
minimum. Due to the definition of the mapsM

√
h

k , the gradient of
J is gained by a procedure similar to numerical integration. It has
been observed in simulations that this procedure is numerically
more stable than numerical differentiation (finite differences).
In summary, this integrating behavior has the effect to even and
flatten out local minima and noise, respectively, (cf. [7]).

Simulation 5.: One of the key advantages of derivative-free
optimization is demonstrated, namely, to deal with nonsmooth
objectives. To this end, in its ability to a simulation exper-
iment, the cost function is set to J(x) = ‖x‖. We use the
same algorithm parameters as in Simulation 2, i.e., f(J(x)) =
sin(J(x)), g(J(x)) = cos(J(x)), [α1 α2] = [1/2 1/2], h =
0.05, and x0 = [1 2]2 with Td as in (31), Q specified in The-
orem 3, and singular values σ1 = σ2 = 0.4. The algorithm’s
behavior is depicted in Fig. 8. Since no first-order information
(derivatives) needs to be competed, the algorithm is, as expected,
converging to the local minima.

Remark 9: It is worth to mention that a very promising
generating function class is

f(z) =
√
z sin(ln(z)µ), g(z) =

√
z cos(ln(z)µ) (45)

with µ ∈ R>0, which belong to the setting of (30) and (37)
(with some adaptions). Specifically, the Lie bracket between
the generating functions results in [f, g](z) = −µ, i.e., it holds
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Fig. 4. Illustration of the algorithm’s behavior (setup as in Simulation 1) with Td as in (30) and singular values [σ1 σ2 σ3 σ4] = [1 1 1 1] (top) and
[σ1 σ2 σ3 σ4] = [1.5 0.2 1.5 0.2] (bottom) of the exploration matrix W . In (a) and (e) the trajectories xk ( ), the first and last m steps ( ), the exact
gradient descent algorithm ( ), initial state x0 ( ), and optimizer x∗ ( ) are depicted. The plots (b) and (f) and (c) and (g) show the exploration
sequence {uk}m−1k=0 and {vk}m−1k=0 , respectively, where ( ) is the first and ( ) the second component. In (d) and (h) T (W ) in form of the areas
generated by {wk}m−1k=0 is visualized, where the filled green areas ( ) have an area surface value of 1, the striped orange areas ( ) of −1, and the
rest of 0.

Fig. 5. Illustration of the algorithm’s behavior (setup as in Simulation 2) with Td as in (31) and singular values [σ1 σ2] = [2 2] (top) and [σ1 σ2] =
[0.2 0.2] (bottom) of the exploration matrix W . In (a) and (e) the trajectories xk ( ), the first and last m steps ( ), the exact gradient descent
algorithm ( ), initial state x0 ( ), and optimizer x∗ ( ) are depicted. The plots (b) and (f) and (c) and (g) show the exploration sequence {uk}m−1k=0

and {vk}m−1k=0 , respectively, where ( ) is the first and ( ) the second component. In (d) and (h) T (W ) in form of the areas generated by {wk}m−1k=0 is
visualized, where filled green area ( ) have an area surface value of 1, the striped orange area ( ) of −1, and the rest of 0.
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Fig. 6. Illustration of the algorithm’s behavior (setup as in Simulation 3) with Td as in (39) with singular values [σ1 σ2 σ3 σ4] = [1 1 1 1] (top) and
[σ1 σ2 σ3 σ4] = [1 1 0.4 0.4] (bottom) of the exploration matrix W . In (a) and (d), the trajectories xk ( ), the first and last m steps ( ), the exact
gradient descent algorithm ( ), initial state x0 ( ), and optimizer x∗ ( ) are depicted. The plots (b) and (e) and (c) and (f) show the exploration
sequence {uk}m−1k=0 and {vk}m−1k=0 , respectively, where ( ) is the first and ( ) the second component.

Fig. 7. Illustration of the algorithms behavior (setup as in Simulation 4)
for Td as in (31) and singular values [σ1 σ2] = [1 1] of exploration matrix
W . The trajectories xk ( ), the first and last m steps ( ), the initial
state x0 ( ), and the optimizer x∗ ( ) are depicted.

xm+k = xk − hµ∇J(xk) +O(h3/2). In this view, µ can be
chosen large and h small, hence, a large enough gradient step is
executed while the oscillations can be kept small.

Detailed implementations and a MATLAB toolbox can be
found in [23].

C. Exploration Sequences Via Nonlinear Programming

Besides the construction of the exploration sequence as de-
scribed in the proof of Theorem 3 in Appendix B3 and the

Fig. 8. Illustration of the algorithm’s behavior (setup as in Simulation
5) for Td as in (31) and singular values [σ1 σ2] = [2 2] of exploration
matrix W . The trajectories xk ( ), the first and last m steps ( ), the
initial state x0 ( ), and the optimizer x∗ ( ) are depicted.

step-by-step construction of W in [23] one can compute a se-
quence with nonlinear programming by solving the constrained
optimization problem

min ‖vec(W )‖2p
s.t. T (W ) = Td

W1 = 0. (46)

Instead of the p−norm of W ∈ R2n×m, one can in principle
choose any other objective function, for example a weighted
norm, etc. In contrast to our constructive approach, the sequence
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length m with m ≥ rk(Td) + 1 has to be specified in (46). An
approximation of the lower bound of m can be computed by
following Step 4 of the step-by-step construction procedure for
the exploration sequence matrix (see [23]) and choosing the
singular values, such that m is minimal.

V. CONCLUSION

In this article, we proposed a novel class of derivative-free
optimization algorithms. The idea was to approximate the gradi-
ent of the objective function by an m-fold composition of maps.
These maps are defined by exploration sequences and generating
functions. We provided a general framework for the construction
of those ingredients. In particular, the construction of exploration
sequences is related to nonholonomic state-transition prob-
lems and is based on solving a system of quadratic equations,
which we encountered by a singular value decomposition (see
Theorem 3). The characterization of the generating functions
was carried out by solving the functional (14) (see Theorem 4
and Theorem 5). Numerical simulations and a qualitative study
of the dynamics of the algorithm were presented and the role of
the algorithm parameters on the behavior of the algorithm was
discussed. It turned out that the singular values of the exploration
sequence matrix play a crucial role. Due to space limitations,
we leave an extensive benchmarking study and comparisons
with other derivative-free optimization algorithms for follow up
work. The tuning of the algorithm parameters—which entails
a choice of exploration sequences and generating functions,
and balancing exploration and exploitation by proper step size
rules or line search methods—requires systematic and inten-
sive testing for suitable classes of objective functions, which
is beyond the scope of this article. Eventually, the tuning of
the parameters can be approached, for example, by learning
exploration sequences based on a training set of relevant objec-
tive functions using an hyperparameter optimization approach.
Another future research direction is the extension of the pro-
posed algorithm to extremum seeking problems (cf. [16]) for the
two-point algorithmic scheme. Finally, designing exploration
sequences plays a key role in our algorithms. This corresponds
to the problem of finding sequences, such that the first and
second iterated summations, i.e., the one- and two-dimensional
projected areas, have the values specified on the right hand sides
of (22). To the best of our knowledge, a general and algorithmic
characterization of solutions to this inverse problem (i.e., given
signature values and find corresponding paths) is not known and
in our opinion it is an interesting mathematical research question
by its own [27].

APPENDIX A
PRELIMINARY LEMMAS

Lemma 2: Let a ∈ C2(Rn;R), b ∈ C0(Rp;Rn), and h ∈
R≥0. Then for any compact convex setZ ⊆ Rn and any compact
set Y ⊆ Rp there exist an R ∈ C0(Rn ×Rp ×R≥0;R) and an
M ∈ R>0, such that for all z, z + hb(y) ∈ Z and y ∈ Y we
have

a(z + hb(y)) = a(z) + h
∂a

∂z
(z)2b(y)

+R(z, y;h2) (47)

with |R(z, y;h2)| ≤Mh2, i.e., limh→0 R(z, y;h2) = 0.
For the proof of Theorem 2 we refer to [23].
Lemma 3: Let Assumption 1 hold true. Moreover, let X ⊆

Rn, J ⊆ R be compact convex sets and m ∈ N≥1. Then there
exist a function Rm−1 : Rn ×R×R≥0 → Rn and a constant
Mm−1 ∈ R>0, such that for any iterates x0, . . . , xm of the
algorithm (2) with maps in (5), xk, xk +

√
hsk(J(xk)) ∈ X ,

and J(xk), J(xk +
√
hsk(J(xk))) ∈ J we have

xm = x0 +
√
h(α1 + α2)

m−1∑

i=0

si(J(x0))

+ hα2

m−1∑

i=0

∂si
∂J

(J(x0))si(J(x0))
2∇J(x0)

+ h(α1 + α2)
2
m−1∑

i=0

i−1∑

j=0

∂si
∂J

(J(x0))sj(J(x0))
2∇J(x0)

+Rm−1(x0, J(x0);h
3/2) (48)

with ‖Rm−1(x0, J(x0);h3/2)‖2 ≤Mm−1h3/2, i.e.,
Rm−1(x0, J(x0);h3/2) = O(h3/2).

For the proof of Theorem 3 we refer to [23].
The following two lemmas state the sufficient part of Cauchy’s

interlacing inequalities [28] for real skew-symmetric matrices.
Hence, the imaginary part of the eigenvalues of the principal
submatrix can be chosen w.r.t. certain inequalities depending on
the eigenvalues of the given skew-symmetric matrix.

Lemma 4: Let C ∈ Rp×p be a skew-symmetric matrix with
eigenvalues ±ηki, ηk ∈ R≥0, k = 1, . . . , )p/2* and let ω! ∈
R≥0, % = 1, . . . , )p/2* − 1, such that the inequality

η1 ≥ ω1 ≥ η2 ≥ ω2 · · · ≥ η)p/2*−1

≥ ω)p/2*−1 ≥ η)p/2* ≥ 0 (49)

is satisfied. Then there exists an unitary matrix Θ ∈ Rp×p, such
that Q ∈ R(p−1)×(p−1) is a principal submatrix of Θ2CΘ with
eigenvalues ±ω!i.

For a proof, we refer to [29].
Lemma 5: Let C ∈ Rp×p be a skew-symmetric matrix with

eigenvalues ±η!i, η! ∈ R≥0, % = 1, . . . , p, arranged according
to

η1 ≥ η2 ≥ . . . ≥ η)p/2* ≥ 0. (50)

Then for ω1 ≥ ω2 ≥ . . . ≥ ωr with ωk ∈ R≥0, such that

ηk ≥ ωk ≥ η)p/2*−r+k (51)

there exists an unitary matrix Θ ∈ Rp×p, such that Q ∈
R(2r)×(2r) is a principal submatrix of Θ2CΘ with eigenvalues
±ω!i, % = 1, . . . , r.

Proof: Applying Theorem 4 )p/2* − r times, yields the re-
sult, similar to the proof of [30, Th. 1]. !

Appendix A Numerical validation of Conjecture 1: Due
to the dependency ofC(m) onm in (23), the interlacing lemmas,
see Theorem 4 and Theorem 5, are not applicable, since the
entries ofC(m) change with dimension due to ε(m). We verified
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Fig. A1. Illustration of the absolute value of the complex conjugated
eigenvalues ±ωki ( ) of P̃ in (27) w.r.t. m for k = 1, . . . , )m/2*. The
interlacing property (26) is apparent and visualized by the arrows, map-
ping the eigenvalues to the next lower dimension.

numerically that the interlacing property (26) holds for all m ≤
10000. The corresponding Matlab code is available.1 Moreover,
in Fig. A1 the interlacing property for 4 ≤ m ≤ 10 is visualized.

Note that m acts as the exploration sequences’ lengths as
introduced in (3) and (5), where in the worst case m = 4n
[cf. (9)]. This implies the property holds for sure for n ≤ 2500
dimensional problems, which is a very high-dimensional prob-
lem for derivative-free algorithms.

Lemma 6: Let W , such that W1 = 0 be given and set T (W )
be as in (12) with [α1 α2] = [1/2 1/2] . Then the value in the
pth row and qth column of T (W ) is equivalent to the net area
(cf. Gauss area formula in [25]) of the n-sided polygon in the
ep − eq plane with corner points

xp,i =
i−1∑

k=0

e2pwk, yq,i =
i−1∑

k=0

e2q wk (52)

for i = 0, . . . ,m− 1 and p, q = 1, . . . , 2n, where xp,0 = 0 and
yq,0 = 0.

For the proof of Theorem 6 we refer to [23].

APPENDIX B
PROOFS

A. Proof Theorem 1

The proof utilizes the result of Theorem 3. Consider the mth
step of the evolution of (2) represented by (48) with transition
map (5). Let w! = [u2! v2! ]

2 for % = 0, . . . ,m− 1 and

Y (f(z), g(z)) =
[
f(z)I g(z)I

]
(53)

Ỹ (f(z), g(z)) =
[
∂f
∂z (z)I

∂g
∂z (z)I

]
. (54)

Then plugging {w!}m−1!=0 , Y (f(J(x0)), g(J(x0))) and
Ỹ (f(J(x0)), g(J(x0))) into (48) yields

xm = x0 +
√
h(α1 + α2)Y (f(J(x0)), g(J(x0)))

m−1∑

i=0

wi

1[Online]. Available: https://arxiv.org/src/2006.00801v1/anc

+ hỸ (f(J(x0)), g(J(x0)))

{
m−1∑

i=0

(
α2wiw

2
i

+ (α1 + α2)
2

i−1∑

j=0

wiw
2
j

)}
Y (f(J(x0)), g(J(x0)))

2∇J(x0)

+O(h3/2). (55)

The term in the curly brackets in (55) yields T (W ) in (13) and
therefore (12) is recovered. "

B. Proof Theorem 1

Condition (15) implies

wm−1 = −
m−2∑

i=0

wi. (56)

Plugging (56) into (13) yields

T (W ) =
m−2∑

i=0



α2wiw
2
i + (α1 + α2)

2
i−1∑

j=0

wiw
2
j





+ α2wm−1w
2
m−1 + (α1 + α2)

2
m−2∑

i=0

wm−1w
2
i

= α2

m−2∑

i=0



wiw
2
i +

m−2∑

j=0

wiw
2
j





+ (α1 + α2)
2
m−2∑

i=0




i−1∑

j=0

wiw
2
j −

m−2∑

j=0

wiw
2
j





(57)

= α2

m−2∑

i=0



wiw
2
i +

m−2∑

j=0

wiw
2
j





− (α1 + α2)
2
m−2∑

i=0

m−2∑

j=i

wiw
2
j

= (α2 − (α1 + α2)
2)

m−2∑

i=0

m−2∑

j=i

wiw
2
j

+ α2

m−2∑

i=0

i∑

j=0

wiw
2
j . (58)

Hence, P in (21) is recovered. "

C. Proof Theorem 3

Consider (22) and the singular value decomposition of the
exploration sequence matrix

W = UΣV 2 (59)

with

U = [a1 b1 · · · an bn] (60)
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Σ =

[
Σ0 0

0 0

]
, Σ0 = diag([σ1 · · ·σr]) (61)

V =

[
Θ− ε112Θ m−1/21

−12Θ+ ε(m− 1)12Θ m−1/2

]
with

ε = (m− 1)−1(1−m−1/2) and some

Θ ∈ R(m−1)×(m−1) s.t. Θ2Θ = ΘΘ2 = I. (62)

Hereby, a! ± b!i with a!, b! ∈ R2n for % = 1, . . . , n are the
eigenvectors of Td. Since U , as defined in (60), is constructed
by the real and imaginary parts of the eigenvectors of the matrix
Td, U is orthogonal [22]. Moreover

X := U2TdU = diag([C1 · · · Cn])

with C! =

[
γ! −δ!
δ! γ!

]
, % = 1, . . . , n

(63)

where γ! ± δ!i are the eigenvalues of Td with (2α2 − (α1 +
α2)2)γ! ∈ R≥0 and δ! ∈ R≥0. Note that γ! = 0 and δ! = 0 for
% > rk(Td).

The orthogonality of V , given in (62), is shown by direct
evaluation

V 2V =

[
V̂11 0

0 1

]
with (64)

V̂11 = I + (1− 2εm+ ε2m(m− 1))Θ211112Θ

V V 2 =

[
Ṽ11 Ṽ12

Ṽ 212 Ṽ22

]
with

Ṽ11 = I + (ε2(m− 1) +m−1 − 2ε)11112

Ṽ12 = −(ε2(m− 1)2 − 2ε(m− 1)−m−1 + 1)11

Ṽ22 = ε2(m− 1)3 − 2ε(m− 1)2 +m−1 +m− 1 (65)

where we used the fact that Θ in (62) is orthogonal. By plugging
ε = (m− 1)−1(1−m−1/2) into (64) and (65), the orthogonal-
ity of V , i.e., V V 2 = V 2V = I is recovered. Now plugging
(59) into (22) associated with (63) reveals

[
Σ0 0

0 0

]
V 2PV

[
Σ0 0

0 0

]
= X (66)

where

Q := V 2PV =

[
Q̃ ∗
∗

]
with Q̃ = Θ2P̃Θ and (67)

P̃ =
(
P − ε(112P + P112) + ε2112P112

)
1:m−1 (68)

with P̃ ∈ R(m−1)×(m−1), which can be written as

P̃ =

(
α2 −

1

2
(α1 + α2)

2

)

×



I + (m(m− 1)ε2 − 2mε+ 1︸ ︷︷ ︸
=0

)112





+
1

2
(α1 + α2)

2





0 d1 d2 . . . dm−2

−d1
. . .

. . .
. . .

...

−d2
. . .

. . .
. . . d2

...
. . .

. . .
. . . d1

−dm−2 · · · −d2 −d1 0





(69)

with di = 2iε− 1 for i = 1, . . . ,m− 2 and ε defined in (62),
where P̃ P̃2 − P̃2P̃ = 0, hence P̃ normal. More precise,
P̃ has complex conjugated eigenvalues µ! ± ω!i with % =
1, . . . , )(m− 1)/2*, where µ! = µ = α2 − 1/2(α1 + α2)2 and
the skew-symmetric part is a Toeplitz matrix [third line of (69)].

Eventually, (66) imposes the conditions

X1:r = Σ0Q̃1:rΣ0 (70)

Xr+1:n = 0. (71)

with r = rk(Td). Then, (71) holds, since there exist n− r − 1
eigenvalues identical to zero and U can be ordered, accordingly.
Additionally, let Θ in (62) be of the form, such that

Q̃1:r = diag([D1 · · · D)r/2*])

with D! =

[
µ −ω̂!

ω̂! µ

]
, % = 1, . . . , )r/2* (72)

holds, where the imaginary part of the eigenvalues of the prin-
cipal submatrix Q̃1:r of Q̃ in (67) is denoted by ±ω̂ki for
k = 1, . . . , )r/2*.

Then (70) implies for k = 1, . . . , )r/2*

µσ2
2 k−1 = µσ2

2 k = γk and (73)

σ2k−1σ2 kω̂k = δk. (74)

In the case of 2α2 − (α1 + α2)2 = 0, Td and P̃ are skew-
symmetric due to the assumption in Theorem 3 and (69), re-
spectively. Hence, γ! = 0 for % = 1, . . . , n, and µ = 0, which
implies that (73) is satisfied. Equation (74) is satisfied for
k = 1, . . . , )r/2* with

σ2 k = δkω
−1
k σ−12k−1 and σ2 k−1 ∈ R>0 (75)

wherem = r + 1 and therefore ω̂k = ωk. ThenΘ is constructed
as orthogonal transformation similar to U .

In the case 2α2 − (α1 + α2)2 1= 0, (73) and (74) together
yield

σ2
2k−1 = σ2

2 k =
δk
ω̂k

=
γk
µ

(76)

for k = 1, . . . , )r/2*, hence

ω̂k =
δk
γk

µ (77)

has to be satisfied. Note that δk, γk, andµ are specified byTd and
α1,α2 and µ/γk ≥ 0 due to the positive definiteness condition
in Theorem 3. Applying Theorem 5 to P̃ in (67) implies that
there exists a Θ, such that (72) and the interlacing property

ωk ≥ ω̂k ≥ ω)(m−1)/2*−)r/2*+k, k = 1, . . . , )r/2* (78)
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holds, where ω̂k can be chosen in the given intervals. Note that
Theorem 5 can be applied to the normal matrix P̃ , due to the
decomposition of a scaled unit and skew-symmetric matrix [22].
W.l.o.g., δk/γk and ω̂k are in decreasing order. Then by applying
Conjecture 1 (cf. Remark 3) to P̃ in (68) successively, there
exists a m ≥ r + 1, such that (78) hold with (77) for all k =
1, . . . , )r/2*. "

D. Proof Theorem 4

Let 2α2 − (α1 + α2)2 = 0 and T (W ) = Td is partitioned as
in (16). SinceTd has to be skew-symmetric (see also Theorem 3),
the eigenvalues of Td are purely imaginary. Then condition (14)
with T12 = −T221 = −R ∈ Rn×n, where R is arbitrary, reads

−I = g′(z)f(z)R2 − f ′(z)g(z)R

+ f ′(z)f(z)T11 + g′(z)g(z)T22. (79)

Since, T11 = −T211, T22 = −T222, w.l.o.g. we can express R as
R = I + R̃, where diag(R̃) = 0. Hence, it has to hold

g′(z)f(z)− f ′(z)g(z) = −1 (80)

which is satisfied by the generating functions [31, Th. 1]

g(z) = −f(z)
∫

1

f2(z)
dz. (81)

Assume that generating functions f and g as in (81) satisfy (80),
then condition (79) translates into

f ′(z)f(z)T11+g′(z)g(z)T22 = (f ′(z)g(z) + g′(z)f(z))R̃
(82)

implying that R̃ = −R̃2 holds. Next we consider three cases.
Case 1: R̃ = 0. Hence

f ′(z)f(z)T11 + g′(z)g(z)T22 = 0. (83)

Clearly, (83) is satisfied byT11 = T22 = 0with f arbitrary while
satisfying g in (81), i.e., (30) results.

For the subcase a−1T11 = b−1T22 =: Q arbitrary skew-
symmetric with a, b ∈ R>0, f and g have to satisfy
af ′(z)f(z) + bg′(z)g(z) = 0, i.e., w.l.o.g. af2(z) + bg2(z) =
1. Accordingly, with (81) and y′(z) = f−2(z) it yields

y′(z) = a+ by2(z). (84)

The unique solution of (84) with φ ∈ R is

y(z) =

√
a

b
tan

(√
abz + φ

)
(85)

and therefore with the definition of y(z) and (81) one reveals
(31).

Repeating the above calculations for a−1T11 = −b−1T22 =:
Q arbitrary skew-symmetric yields

y(z) =

√
a

b
tanh

(√
abz + φ

)
(86)

and therefore with the definition of y(z) and (81) one reveals
(32).

The remaining subcase T11 1= ±aT22, implies that

f ′(z)f(z)T11 = 0 and g′(z)g(z)T22 = 0 (87)

since f ′(z)f(z)T11 + g′(z)g(z)T22 = 0 must hold. If
f ′(z)f(z) = 0 and T11 = Q arbitrary skew-symmetric, i.e.,
f2(z) = a with a ∈ R>0, it implies that f(z) =

√
a. Hence,

with (81), g′(z)g(z) 1= 0 for all z ∈ R yields T22 = 0, i.e., (33)
results.

The same argumentation holds for g′(z)g(z) = 0 with arbi-
trary skew-symmetric T22, such that (34) is recovered.

The circumstance that T11 1= T22 with T11 1= 0 and T22 1= 0
is not valid due to (81) and (87). Specifically, f ′(z)f(z) = 0 and
g′(z)g(z) = 0 has to hold; obviously, based on the above cases,
f(z) =

√
a and g(z) =

√
a are in conflict with (80).

Case 2: f ′(z)g(z) + g′(z)f(z) = 0 for all z ∈ R. Hence

f ′(z)f(z)T11+g′(z)g(z)T22 = 0 and (88)

f ′(z)g(z) + g′(z)f(z) = 0 (89)

has to be satisfied. Clearly, (88) is satisfied by T11 = T22 = 0,
where (89) implies −af(z)g(z) = 1 with a ∈ R>0. Accord-
ingly, with (81) and y′(z) = f−2(z) it yields

y′(z) = ay(z). (90)

The unique solution of (90) with c ∈ R is

y(z) = eaz + c (91)

and therefore with the definition of y(z) and (81) one gets (35).
The subcases, where a−1T11 = b−1T22 =: Q arbitrary skew-

symmetric orT11 1= ±aT22 as discussed for Case 1 are not valid.
With the same approach as above, i.e., y′(z) = f−2 it yields to
y′(z) = 0 and therefore no solution for f(z) (and g(z)) can be
found or (88) and (89) are not satisfied as discussed in the last
paragraph of Case 1, respectively.

Case 3: R̃ = −R̃2 1= 0. Hence

f ′(z)f(z)T11+g′(z)g(z)T22

= (f ′(z)g(z) + g′(z)f(z))R̃. (92)

Clearly, T11 = T22 = 0 is not valid, since (f ′(z)g(z) +
g′(z)f(z))R̃ 1= 0 in this last case.

For the subcase a−1T11 = b−1T22 =: Q = −Q2 1= 0 with
a, b ∈ R>0, it has to hold that af ′(z)f(z) + bg′(z)g(z) =
c(f ′(z)g(z) + g′(z)f(z)) and R̃ = cQ with c ∈ R\{0}, i.e.,
w.l.o.g. a/2f2(z) + b/2g2(z)− cf(z)g(z) = 1. Accordingly,
with (81) and y′(z) = f−2(z) it yields

y′(z) =
a

2
+ cy(z) +

b

2
y2(z). (93)

The unique solution of (93) with φ ∈ R is

y(z) =

√
ab− c2

b
tan

(√
ab− c2z + φ

)
(94)

and therefore with the definition of y(z) and (81) one reveals
(36).

The remaining subcase T11 1= aT22, implies that

f ′(z)f(z)T11 − (f ′(z)g(z) + g′(z)f(z))R̃ = 0 and
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g′(z)g(z)T22 = 0, or (95)

g′(z)g(z)T22 − (f ′(z)g(z) + g′(z)f(z))R̃ = 0 and

f ′(z)f(z)T11 = 0 (96)

since (92) must hold. However, we show in the sequel that (95)
and (96) lead to no new solution or is not valid, respectively.

For (95), a−1T11 = c−1R̃ =: Q = −Q2 1= 0 with a ∈ R>0

and c ∈ R\{0}, it has to hold that af ′(z)f(z) = c(f ′(z)g(z) +
g′(z)f(z)), i.e., w.l.o.g.

a

2
f2(z)− cf(z)g(z) = 1. (97)

Accordingly, with (81) and y′(z) = f−2(z) it yields

y′(z) =
a

2
+ cy(z). (98)

The unique solution of (96) with d ∈ R is

y(z) = decz − a

2c
(99)

and therefore with the definition of y(z) and (81) one gets
f(z) = (cd)−1/2exp(−c/2 z) and g(z) = −(d/c)−1/2exp(c/2 z),
such that T22 = 0. However, f, g satisfying (97) for all z ∈ R
only for a = 0, hence T11 = 0, i.e, the same result as (35).

For (96), b−1T11 = c−1R̃ =: Q = −Q2 1= 0 with a ∈ R>0

and c ∈ R\{0}, it has to hold that bg′(z)g(z) = c(f ′(z)g(z) +
g′(z)f(z)), i.e., w.l.o.g.

b

2
g2(z)− cf(z)g(z) = 1. (100)

Following the procedure above yields f(z) = (2)−1/2c−1

(bexp(c/2 z + d/2)− exp(−c/2 z − d/2)) and g(z) =
21/2b−1exp(−c/2z − d/2) with d ∈ R. However, (100) is
only satisfied for d = −cz − ln(b) which leads to f(z) = 0 and
therefore no valid solution.

Notice that every feasible structure of the skew-symmetric
matrix Td is discussed above case by case, and the differential
equations arising in the analysis are solved uniquely. Hence,
we believe that the list of triples (Td, f, g) in Theorem 4 for
2α2 − (α1 + α2)2 = 0 and Td skew-symmetric is essentially
exhaustive, save for some scaled version of the presented cases.
"

E. Proof Theorem 5

Let Td be normal and (2α2 − (α1 + α2)2)(Td + T2d ) be pos-
itive definite and let T (W ) = Td be partitioned as in (16). Then
(14) reads

−I = f ′(z)f(z)T11 + f ′(z)g(z)T12

+ g′(z)f(z)T21 + g′(z)g(z)T22. (101)

Choosing Td (T (W ) = Td) as in (37), it holds that (2α2 −
(α1 + α2)2)(Td + T2d ) is positive definite, yielding

−1 = a (f ′(z)f(z) + g(z)′g(z))

+ g′(z)f(z)− f ′(z)g(z). (102)

This equation has been considered in [16]. We refer to the proof
of [16, Th. 1] for the derivation of f and g as specified in (37).

Case (38) is analogous to (31). First, note that (2α2 − (α1 +
α2))(Td + T2d ) is positive definite and normal with the given
Td in (38) and (2α2 − (α1 + α2))(Q+Q2) is positive definite
and normal, since

TdT
2
d − T2d Td =

[
QQ2 −Q2Q 0

0 QQ2 −Q2Q

]
(103)

and

Td + T2d =

[
Q+Q2 0

0 Q+Q2

]
(104)

such that the real part of the eigenvalues of Q is identical to
that of Td and therefore the definiteness property is conserved.
Hence, the derivation of the generating functions f and g in this
case goes along the lines of arguments as used in the proof of
Theorem 4 in Appendix B–D, specifically for the case (31), i.e.,
(84) and (85). "

The structure of normal matrices Td brings more degrees of
freedom compared to Td skew-symmetric as in Theorem 4, and
thus, the two cases listed in Theorem 5 are not exhaustive.
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from 1922 to 2010,” in Proc. 29th Chin. Control Conf., 2010, pp. 14–26.

[16] J. Feiling, C. Labar, V. Grushkovskaya, E. Garone, M. Kinnaert, and C.
Ebenbauer, “Extremum seeking algorithms based on non-commutative
maps,” in Proc. 11th Nonlinear Control Syst., 2019, pp. 688–693.

Authorized licensed use limited to: University of Illinois. Downloaded on May 23,2023 at 18:31:10 UTC from IEEE Xplore.  Restrictions apply. 



6396 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 12, DECEMBER 2022

[17] J. R. Blum, “Multidimensional stochastic approximation methods,” Ann.
Math. Statist., vol. 25, pp. 737–744, 1954.

[18] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a
regression function,” Ann. Math. Statist., vol. 23, no. 3, pp. 462–466, 1952.

[19] H. J. Kushner and D. S. Clark, Stochastic Approximation Methods for Con-
strained and Unconstrained Systems. Berlin, Germany: Springer, 2012.

[20] S. Z. Khong, Y. Tan, C. Manzie, and D. Nešić, “Extremum seeking of
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