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Lossy compression techniques are ubiquitous in many fields including imagery and video;
however, the incursion of such lossy compression techniques in the computational fluid dynamics
community has not advanced to the same extent in decades. In this work, the lossy compression
of high-fidelity direct numerical simulation (DNS) is evaluated to assess the impact on various
parameters of engineering interest. A Mach 2.5, spatially developing turbulent boundary layer
(SDTBL) at a moderately high Reynolds number has been selected as the subject of the study
[1]. The ZFP compression scheme was chosen as the core driving algorithm for this study as it
was carefully crafted for scientific, floating point data. The resilience of spectral quantities as
well as two-point correlations is highlighted. Notwithstanding, we also noted that point-wise
values calculated in the physical domain were prone to quantization errors at high compression
ratios. Further, we have also presented the impact on higher order statistics. In summary, we
have demonstrated that high fidelity results are within reach while achieving 1.45x to 9.82x
reductions in required storage over single precision, IEEE 754-compliant data values.

I. Nomenclature

𝑈 = Time-averaged streamwise velocity
𝑉 = Time-averaged wall-normal velocity
𝑊 = Time-averaged spanwise velocity
𝑇 = Time-averaged Temperature
𝑃 = Time-averaged Pressure
𝑀∞ = Freestream Mach Number
𝑅𝑒𝛿2 = Momentum thickness Reynolds Number
𝑢𝜏 = Friction velocity
𝛿 = Velocity boundary layer thickness
𝛿1 = Displacement thickness
𝛿2 = Momentum thickness
𝜌 = Fluid density
𝜏𝑤 = Wall shear stress
(·) ′ = Fluctuation with respect to time-averaged mean
(·)+ = Inner-scaled quantity
(·)∞ = Quantity measured or calculated at freestream conditions
(·)𝑤 = Quantity measured or calculated at the wall surface
GB = Gigabyte

II. Introduction
The renaissance of high-speed aerodynamics, space exploration and military technology advances imposes a strong

weight on the computational fluid dynamics (CFD) community to achieve high fidelity results at higher Reynolds
numbers and evermore complex geometries. Although computational performance has grown exponentially over the
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years, data storage has lagged far behind in terms of raw bandwidth and raw capacity. Storing large CFD simulations
for posterity and future analysis/comparisons presents challenges that have been seen in other fields in the past. For
instance, static imagery is often stored in compressed formats such as JPEG [2] and PNG [3]. The JPEG file format
is an example of a lossy file format where some quality is loss and data is not exactly preserved [2]. The PNG file
format performs lossless compression where the data stored is recovered without loss (assuming no hardware errors)
[3]. However, the JPEG file formats disregards high-frequencies as these may be harder to perceive by the naked eye.
Coming back to the scientific endeavour at hand, one cannot simply disregard high-frequency terms in CFD datasets nor
the fact that the flow is spatially correlated. This presents enormous challenges for data archival since often times only
lossless compression schemes are considered, and turbulence datasets are not usually prone to high compression ratios
due to the complex nature of the data.
As early as in 1998, Wilson argued that turbulence statistics were not well preserved in the presence of lossy compression
schemes available at the time [4]. Fast forward 20 years after that statement, much has changed in landscape. Lossy
compression has slowly gained attention from researchers due to the ever-growing computational and storage demands.
Otero et al. proposed a domain-specific method based on the discrete Legendre transform [5]. The results presented by
Otero and others were extremely favorable and suggested lossy data compression techniques were maturing and were
advancing at a pace that might make them suitable enough for production usage within the broader CFD community.
Notwithstanding, lossy compression of scientific datasets is under active research. Somewhat simpler techniques such
as frequency downsampling, decimal rounding, bit grooming, bit shaving and many others lack an adaptive nature and
were not developed with the floating point nature of scientific datasets in mind. Lindstrom proposed an alternative
approach for scientific compression library that eventually became ZFP [6]. ZFP operates on 4𝑑 blocks of hyper-spatial
data where 𝑑 is the data dimensionality. As such, it can account for spatial dependencies and adapt to local values.
ZFP maps floating point data into a custom format that is often more accurate than the IEEE floating point standard. It
allows for a variable bit-depth and fixed-accuracy (or vice versa), and its design preserves derived physical quantities
including spectral properties with higher accuracy than other methods. ZFP is also extremely efficient at the hardware
level making it an attractive alternative for extremely large scientific datasets. Aside from every benefit ZFP offers, it is
capable of operating over an arbitrary number of dimensions and floating point data types which makes it extremely
versatile regardless of the scientific data at hand.

In this work, we explore the impact of lossy compression on a dataset for a moderately high Reynolds number turbulent
boundary layer at Mach 2.5. We will present the impact on the energy spectra and two-point correlations as an initial
vantage point followed by a convergence analysis for point-wise, first-order results. Lastly, we will highlight the impact
(or lack thereof) of the lossy compression scheme for higher-order statistics. In all, we will explore compression schemes
of variable bit-depths and fixed accuracy ranging from 10−1 to within machine precision (i.e., lossless).

III. Numerical Details

A. Simulation Details
Unsteady numerical predictions of spatially-developing turbulent boundary layers (SDTBL) by using DNS is

non-trivial since high mesh resolution is required in order to resolve the smallest turbulence scales (Kolmogorov and
Batchelor scales for momentum and thermal transport, respectively). Additionally, the computational domain should
be large enough to appropriately resolve the influence of the large scale motions (LSM), as described in Hutchins &
Marusic [7], which are located in the outer region of the boundary layer. The last requirement, but by no means the least
important, dictates that realistic time-dependent inflow turbulent conditions (instantaneous velocity, temperature and
pressure) must be prescribed, Araya et al., [8] [9], and more recently by [10]. As articulated earlier, one of the key
aspects on the simulations of unsteady spatially-developing turbulent boundary layers is the prescription of accurate
and physically sound turbulent inflow information. In this study, we are using the inflow generation method devised
by Araya et al. [8], which is an improved version of the original rescaling-recycling method by Lund et al. [11],
and it has recently been extended to compressible flows in [9] [10]. An infographic of the DMA methodology is
displayed in fig. 1. The fundamental idea of the rescaling-recycling method is to extract the flow solution (mean and
fluctuating components of the velocity, thermal and pressure fields) from a downstream plane (called “Recycle") and
after performing a transformation by means of scaling functions, the transformed profiles are re-injected at the inlet
plane, as seen in figure 2, where iso-surfaces of the instantaneous streamwise velocity (normalized by the freestream
velocity) can be seen. The major objective of implementing scaling laws to the flow solution is to convert the streamwise
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in-homogeneity of the flow into quasi-homogeneous conditions. This inflow generation technique has demonstrated to
produce inlet turbulent conditions with the appropriate power spectra of velocity fluctuations [12]. In fig. 3, contours
of instantaneous density (top) and density gradient magnitude or kind of Schlieren image (bottom). The leftmost
and rightmost planes represent the inflow and outflow conditions. As we can see, flow develops naturally with the
presence of bulges and valleys, which is typical in the turbulence structure of boundary layers. The classical Reynolds
decomposition is implemented for instantaneous flow parameters, i.e. a time-averaged plus a fluctuating component:

𝑢𝑖 (x, 𝑡) = 𝑈𝑖 (𝑥, 𝑦) + 𝑢′𝑖 (x, 𝑡) (1)

𝑡 (x, 𝑡) = 𝑇 (𝑥, 𝑦) + 𝑡 ′(x, 𝑡) (2)

𝑝(x, 𝑡) = 𝑃(𝑥, 𝑦) + 𝑝′(x, 𝑡) (3)

Furthermore, the turbulent boundary layer is divided into inner and outer zones, where different scaling laws are applied
[8]. The projection of flow parameters from the recycle plane to the inlet is performed along constant values of 𝑦+
(inner region) and 𝑦/𝛿 (outer region). During the re-scaling process of the flow parameters in the inflow generation
methodology [8], the ratio of the inlet friction velocity to the recycle friction velocity (i.e., 𝜆 = 𝑢𝜏,𝑖𝑛𝑙/𝑢𝜏,𝑟𝑒𝑐) is required.
The friction velocity is defined as 𝑢𝜏 =

√︁
𝜏𝑤/𝜌, where 𝜏𝑤 is the wall shear stress and 𝜌 is the fluid density. The

inlet boundary layer thickness must be prescribed according to the desired inlet Reynolds number to be simulated,
thus, prescribing also the inlet friction velocity would be redundant. To address this issue, Lund et al. [11], Urbin
& Knight [13] and Stolz & Adams [14] used the well-known 1/8-power law that connects the friction velocity to the
momentum thickness in zero-pressure gradient flows; thus, 𝑢𝜏,𝑖𝑛𝑙/𝑢𝜏,𝑟𝑒𝑐 = (𝛿2,𝑖𝑛𝑙/𝛿2,𝑟𝑒𝑐)−1/8. The empirical power
(-1/8) is strongly affected by the Reynolds number dependency; therefore, we explicitly compute this power, 𝛾𝛿2, “on the
fly" by relating the mean flow solution from a new plane (so-called the “Test" plane, as seen in figure 1) to the solution
from the recycle plane as follows:

𝛾𝛿2 =
𝑙𝑛(𝑢𝜏,𝑡𝑒𝑠𝑡/𝑢𝜏,𝑟𝑒𝑐)
𝑙𝑛(𝛿2,𝑡𝑒𝑠𝑡/𝛿2,𝑟𝑒𝑐)

. (4)

In order to carry out the proposed DNS, a highly accurate, very efficient, and highly scalable CFD solver is re-
quired. The flow solver PHASTA is an open-source, parallel, hierarchic (2𝑛𝑑 to 5𝑡ℎ order accurate), adaptive,
stabilized (finite-element) transient analysis tool for the solution of compressible [15] or incompressible flows (Jansen
[16]). PHASTA has been extensively validated in a suite of DNS under different external conditions [17], [18], [19], [10].

Fig. 1 The DMA rescaling-recycling method.
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Fig. 2 Iso-surfaces of instantaneous streamwise velocity normalized by the freestream velocity.

Fig. 3 Instantaneous density (top) and density gradient magnitude (bottom) in DNS of supersonic zero-pressure
gradient boundary layers (𝑀∞ = 2.5) at a momentum thickness Reynolds number (𝑅𝑒𝛿2) of 3,000 or 𝛿+ ≈ 900
(von Karman number).

Boundary Conditions: At the wall, the classical no-slip condition is imposed for all velocity components. Isothermal
wall (quasi-adiabatic condition) is assumed for the thermal field. The ratio 𝑇𝑤/𝑇∞ is 2.25, where 𝑇𝑤 is the wall
temperature and 𝑇∞ is the freestream temperature. The 𝑇𝑟/𝑇∞ ratio is 2.12 for 𝑀∞ equals to 2.5. 𝑇𝑟 is the recovery or
adiabatic temperature. The lateral boundary conditions are handled via periodicity.

Validation of present DNS can be found in [1, 20]. Readers are referred to [1, 20] for numerical details as well as for
more physics discussion.
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B. Compression Scheme
As presented in [6], the compression scheme is segmented in five steps. We will briefly discuss these steps as the

core mechanics of the compression scheme are not the focus of this work.
The first two steps align the floating point values within a 4𝑑-block to ensure a common exponent is shared. In essence,
this yields a localized, adaptive fixed-point representation. This exponent is limited by the largest (absolute) value
owned by the block. The next step performs a block transform that decorrelates the values within the block. Spatially
correlated values (as is common with physics simulations) makes it much more difficult to efficiently compress data.
This is achieved with per-dimension 1D transformations. ZFP includes a custom, efficient transformation scheme akin
to the discrete cosine transform used by JPEG. The coefficients of the transform are finally aligned according to the
expected magnitude and encoded on a per-bit-plane basis. Once again, we are vague in details because the actual
compression scheme is far beyond the scope of this work. The interested reader is referred to [6] for further details on
each step and the rational behind each one.

C. Post-Processing
The results contained in this work were obtained using a recent version of our in-house post-processing library,

Aquila [21]. Aquila V3 targets TensorFlow [22] as a performance portability backend enabling transparent execution
across CPUs and GPUs from multiple vendors and on multiple operating systems. We leveraged the ZFP [6] library
interface via HDF5 [23].

IV. Results and Discussion
In this section, we will focus on the impact that lossy compression has over quantities of scientific and engineering

interest. We will first tackle the gains in terms of storage footprint followed by the behavior of the compression scheme
in spectral and two-point correlations since many prior methods were based on, derived from or inspired on frequency
downsampling (as are other popular schemes in other fields such as JPEG [2]).

A. Dataset Size Reduction
As previously mentioned, we will first explore the potential gains for allowing a given accuracy loss in the

compression process. We present these in table 1. Note how even an essentially lossless compression within machine
precision at single precision can provide a 45% reduction in the overall data size. Note, for instance, that even allowing
for a peak 10−5 error in the global dataset, can provide a 4x dataset size reduction as compared to a double precision
number. Although not shown, results for the presented quantities are essentially resilient in the face of converting from
double to single precision which yields an automatic 2x improvement in storage requirements and network bandwidth.
On the other extreme, allowing for a fairly large, 10−1, error in the whole domain requires nearly 10 times less bits
than a single precision value. As we shall see, this is at the expense of some loss in accuracy but given the extreme
compression ratios, the achievable results are extremely remarkable.

Table 1 Dataset sizes by allowed compression errors

Compression Accuracy (Max Error) Dataset Size [GB] Average Bits per Number Savings over FP32 Number
10−1 395 3.26 9.82×
10−2 681 5.62 5.69×
10−3 1014 8.37 3.82×
10−4 1536 12.68 2.52×
10−5 1945 16.06 1.99×
10−6 2355 19.45 1.64×
10−7 (within machine precision) 2662 21.99 1.45×
Single Precision 4159 32 1.00×
Double Precision 8318 64 0.50×
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B. Energy Power Spectra and Two-Point Correlations
Figures 4 & 5 highlight the effectiveness of ZFP in preserving spectral characteristics in complex datasets along the

spanwise direction. Across different key regions in the boundary layer as follows: 𝑦+ 4, 15, 250 and 500 (i.e., linear
viscous layer, buffer region, log region and wake), the compression scheme is capable of preserving the one-dimensional
energy power spectra of the streamwise velocity and temperature fluctuations along the spanwise direction, 𝑘+𝑧 , with
minimal introduction of numerical artifacts. In all cases, power spectra of velocity and temperature fluctuations indicate
that the turbulent flow scales have been properly resolved. The supersonic DNS case shows a significant drop off of the
energy spectra, confirming that all turbulence scales were resolved. The energy-containing scale (∼ 𝑘−1𝑧 ) and the typical
-5/3 inertial range (∼ 𝑘

−5/3
𝑧 ) are evidently identified. The spectral peak observed at low wavenumbers is the “footprint"

signature of the outer-layer eddies or large scale motions on the near-wall region, as stated by [24]. Furthermore, it
can be observed the presence of a significant zone with a local slope of ∼ 𝑘−3𝑧 immediately following the -5/3 inertial
range or energy transfer range. According to [25], a second inertial range (i.e., enstrophy transfer range) can be found in
two-dimensional turbulence, and further analysis must be carried out to physically explain this spectrum’s behavior
in our three-dimensional turbulence case. This -3 power-law zone enlarges as one moves farther from the wall. The
next slope corresponds to the dissipation range (-7), which is clearly resolved by DNS, as well. In addition, note the
smooth “tails" of the curves at the largest waivenumbers without any sharp or abrupt end, which means that the smallest
length scales of turbulence are captured (i.e., the Kolmogorov and Obukhov-Corrsin length scales for the velocity and
temperature field, respectively). However, it was observed a tendency of energy spectra for all cases to pile-up in the
small scale range in the very near wall region for 𝑦+ < 3 (not shown). Overall, the evident similarity between 𝐸𝑢𝑢 and
𝐸𝑡𝑡 at different 𝑦+ stations allow us to infer that Reynolds analogy is satisfied in terms of energy spectra of the velocity
and temperature of the fluid flow.

Fig. 4 Streamwise velocity fluctuation energy spectra, 𝐸𝑢𝑢, at (a) 𝑦+ = 4, (b) 𝑦+ = 15, (c) 𝑦+ = 250 and (d)
𝑦+ = 500; Note: Symbols are added to aid visibility and do not represent the actual resolution of the sampled
data points.

6

D
ow

nl
oa

de
d 

by
 G

ui
lle

rm
o 

A
ra

ya
 o

n 
Ja

nu
ar

y 
20

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

23
­1

68
4 



Fig. 5 Temperature fluctuation energy spectra, 𝐸𝑡𝑡 , at (a) 𝑦+ = 4, (b) 𝑦+ = 15, (c) 𝑦+ = 250 and (d) 𝑦+ = 500;
Note: Symbols are added to aid visibility and do not represent the actual resolution of the sampled data points.

The same is true with respect to the two-point correlations shown in figures 6, 7, 8 & 9. The normal velocity
fluctuation-temperature TPC, fig 10, does exhibit a small impact of the compression at very high compression ratios in
the near-wall region. As we shall see in later sections, this is very likely due to a higher sensitivity in the wall-normal
velocity to the compression scheme as this type of effect is somewhat amplified in parameters dependent on the normal
velocity component. In all cases, it was observed that the autocorrelation and cross-correlation coefficients decay toward
zero over a distance of 𝐿𝑧/2 at most (here 𝐿+

𝑧 ≈ 2500), even in the outer region with the presence of wider large scale
motions. This confirms that the computational domain is sufficiently wide along the spanwise direction.
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Fig. 6 Streamwise velocity fluctuation TPC at (a) 𝑦+ = 1, (b) 𝑦+ = 15, (c) 𝑦+ = 60 and (d) 𝑦+ = 150; Note:
Symbols are added to aid visibility and do not represent the actual resolution of the sampled data points.

8

D
ow

nl
oa

de
d 

by
 G

ui
lle

rm
o 

A
ra

ya
 o

n 
Ja

nu
ar

y 
20

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

23
­1

68
4 



Fig. 7 Temperature fluctuation TPC at (a) 𝑦+ = 1, (b) 𝑦+ = 15, (c) 𝑦+ = 60 and (d) 𝑦+ = 150; Note: Symbols are
added to aid visibility and do not represent the actual resolution of the sampled data points.
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Fig. 8 Streamwise and wall-normal velocity fluctuation two-point cross-correlation at (a) 𝑦+ = 1, (b) 𝑦+ = 15, (c)
𝑦+ = 60 and (d) 𝑦+ = 150; Note: Symbols are added to aid visibility and do not represent the actual resolution of
the sampled data points.
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Fig. 9 Streamwise velocity and temperature fluctuation two-point cross-correlation at (a) 𝑦+ = 1, (b) 𝑦+ = 15, (c)
𝑦+ = 60 and (d) 𝑦+ = 150; Note: Symbols are added to aid visibility and do not represent the actual resolution of
the sampled data points.
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Fig. 10 Wall-normal velocity and temperature fluctuation two-point cross-correlation at (a) 𝑦+ = 1, (b) 𝑦+ = 15,
(c) 𝑦+ = 60 and (d) 𝑦+ = 150; Note: Symbols are added to aid visibility and do not represent the actual resolution
of the sampled data points.

C. Error Convergence for First-Order Statistics
Figures 11-15 are perhaps the most enlightening ones with respects to the practical limits of the compression scheme

and its operating mechanism. Recall that in ZFP’s compression scheme local values (groups of 4 per dimension) were
aligned to a common exponent which can be seen as a form of quantization. This is readily observable as the values on
the most extreme compression (10−1) actually resemble step-like levels commonly seen in quantization. However, the
power of the scheme is seen in the preservation of the overall shape and characteristics of the data per point which is
achieved via local alignment rather than fitting a global, general compression transformation. This enables per-level
adaptivity at the granularity of groups of 8 nodes.
We draw a parallel to the concept of convergence in numerical linear algebra to evaluate the empirical convergence

rate of the ZFP error tolerance. Conceptually, one can leverage the 𝐿𝑝 norm family to assess the convergence of the
errors as compared to the baseline (within machine precision). The 𝐿𝑝 norm is defined as,

𝐿𝑝 = | |x| |𝑝 ≡
(∑︁

𝑖

|𝑥𝑖 |𝑝
) (1/𝑝)
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Hence, the particular cases where 𝑝 = 1, 2 &∞ result in

𝐿1 = | |x| |1 ≡
∑︁
𝑖

|𝑥𝑖 |

𝐿2 = | |x| |2 ≡
√︄∑︁

𝑖

|𝑥𝑖 |2

𝐿∞ = | |x| |∞ ≡ lim
𝑝→∞

(∑︁
𝑖

|𝑥𝑖 |𝑝
) (1/𝑝)

= max (𝑥)

where x represents the error of a given flow variable of interest measured against the machine precision value at
10−7. In figs. 11-15, we further normalize the norms and present the inner-scaled norms. It is worth noting that the
𝐿𝑝 norms are representative of the total error. The mean error is roughly two orders of magnitude smaller than those
shown in the figures below. Normalizing the difference with the local value at machine precision (not shown) results in
a similar trend for the norms.
It is important to highlight the norm used in determining a given convergence rate since there are no formal

guarantees connecting rates in one norm to that of a different one. We show graphical results for 𝐿2 and 𝐿∞ norms in
figs. 11-15 and a summarized result for 𝐿1 norm in table 2.

Fig. 11 (Left) Inner-scaled velocity; (center) 𝐿2 Convergence; (right) 𝐿∞ Convergence; Note: Symbols are
added to aid visibility and do not represent the actual resolution of the sampled data points.

Fig. 12 (Left) Inner-scaled 𝑢′𝑢′; (center) 𝐿2 Convergence; (right) 𝐿∞ Convergence; Note: Symbols are added to
aid visibility and do not represent the actual resolution of the sampled data points.
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Fig. 13 (Left) Inner-scaled 𝑢′𝑣′; (center) 𝐿2 Convergence; (right) 𝐿∞ Convergence; Note: Symbols are added to
aid visibility and do not represent the actual resolution of the sampled data points.

Fig. 14 (Left) Inner-scaled 𝑢′𝑇 ′; (center) 𝐿2 Convergence; (right) 𝐿∞ Convergence; Note: Symbols are added to
aid visibility and do not represent the actual resolution of the sampled data points.

Fig. 15 (Left) Inner-scaled turbulent kinetic energy; (center) 𝐿2 Convergence; (right) 𝐿∞ Convergence; Note:
Symbols are added to aid visibility and do not represent the actual resolution of the sampled data points.

The results suggest the practical limit for adimensionalized CFD results to be 10−2 for the Reynolds/Mach number
pairing considered. In general, we observed the error convergence leveled off at 10−5 suggesting this might be a
reasonable trade-off for practical compression of data for long term archival. As discussed in table 1, this threshold
would yield a 4× reduction in storage requirement over traditional double precision floating point data. This would
translate to storing 4 times more flow fields or requiring a quarter of the storage. It is also worth noting that this is
nearing the storage requirements of a half-precision (FP16) floating point number without the shortcomings of such
a standard format due to ZFP’s ability to dynamically compress floats with spatial locality and with an emphasis on
derived quantities such as gradients of compressed datasets.
Although we do not delve into a theoretical analysis of the convergence in different norms, we do present an

empirical study of the error convergence in different norms in table 2. In the 𝐿1, 𝐿2 and 𝐿∞ norms, the method is best
described as a second-order compression scheme with perhaps the only outlier being the inner-scaled velocity. It is
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worth highlighting that the largest errors are seen in the near-wall region where the strongest gradients are observed.
These large gradients likely highlight the limitations in the compression scheme since lossy compression of numbers
with similar magnitudes is a far simpler challenge compared to regions with strong variations. Figures 11-15 clearly
highlights this limitation with the appearance of somewhat piecewise averaging (or stepping) for the highest compression
ratio case. On average, the tendency and magnitudes are preserved allowing for a general picture of the BL behavior
with a dataset almost 20× smaller than a traditional FP64 dataset (storing nearly 3 bits per float on average).

Table 2 Convergence rates on 𝐿1 (not shown in plots), 𝐿2 and 𝐿∞

Variable 𝐿1 Convergence Rate 𝐿2 Convergence Rate 𝐿∞ Convergence Rate
𝑈+ 1.96 1.70 1.34
𝑢′𝑢′ 2.16 2.05 1.88
𝑢′𝑣′ 2.26 2.16 2.12
𝑢′𝑇 ′ 2.02 2.06 2.06
TKE 2.26 2.13 1.83

D. Higher-Order Statistics
Up to this point, we have only considered first and second order data statistics. Higher order statistics provide

additional information on the distribution of the data considered in a statistical manner. To this end, we consider
skewness (third-order) and flatness or kurtosis (fourth-order) as two higher order statistics. We present the results in
figures 16-20. We again see the remarkable performance of ZFP and its resilience in preserving data statistics and
qualities from first to higher-order statistics. For both skewness and kurtosis, the larger compression ratios do exhibit
more notable errors. In particular, the wall-normal velocity, fig 18, exhibits very notable oscillations towards the outer
region of the boundary layer and also drastic discrepancies at the wall.

Fig. 16 (Left) Inner-scaled skewness (left) and flatness (right) for the pressure fluctuation
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Fig. 17 (Left) Inner-scaled skewness (left) and flatness (right) for the streamwise velocity fluctuation

Fig. 18 (Left) Inner-scaled skewness (left) and flatness (right) for the wall-normal velocity fluctuation

Fig. 19 (Left) Inner-scaled skewness (left) and flatness (right) for the spanwise velocity fluctuation
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Fig. 20 (Left) Inner-scaled skewness (left) and flatness (right) for the temperature fluctuation

For these higher-order statistics (figs. 16-20), the qualitative tolerance is higher than that of first-order statistics.
Beyond 10−3, including more precision bits results in diminishing returns. The valuable takeaway lesson is that the
target compression should be very dependent on the precision and quality requirements. General trends are preserved
and a first-order inspection might benefit greatly from high compression ratios such as the ones attained with the 10−2 or
10−3 targets. Looking back at table 1, this represents 7.64x to 11.38x less storage than the accustomed FP64 (double
precision) format often demanded in scientific applications with diminishing returns in many post-processed quantities.
Bare in mind that the 10−3 target is in the realm of roughly one byte per float on average.

V. Conclusion
We have evaluated the performance of a locally adaptive lossy compression scheme for floating point data, ZFP, on

a Mach 2.5, spatially developing turbulent boundary layer at a moderately high Reynolds number. As compression
schemes have evolved, the ability to apply lossy compression to DNS data and achieve high fidelity results is now
within reach and is readily available via plugins to standard computing tools such as HDF5. Interestingly, we found
point-wise parameters calculated in the physical domain were more prone to compression errors. Nonetheless, the
overall trend of the data is preserved tho quantization phenomena are evidently present at very high compression ratios.
Spectral quantities are surprisingly well preserved even at very high compression ratios; something not achievable via
downsampling-based schemes. Two-point correlations are also remarkably resilient in the face of large admissible errors
during compression. We have also highlighted that higher order statistics are also well-preserved. In summary, we have
evaluated a general, floating-point compression scheme on a high-fidelity numerical dataset. The results suggest that
the scientific community could benefit from considering and evaluating ZFP as a potential lossy compression scheme
to include for long term archival or increased network performance at the expense of minimal accuracy loss once the
tolerable accuracy losses are prescribed.
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