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With the increased availability of sequence data and even of fully sequenced
and assembled genomes, phylogeny estimation of very large trees (even of
hundreds of thousands of sequences) is now a goal for some biologists.
Yet, the construction of these phylogenies is a complex pipeline presenting
analytical and computational challenges, especially when the number of
sequences is very large. In the past few years, new methods have been
developed that aim to enable highly accurate phylogeny estimations on
these large datasets, including divide-and-conquer techniques for multiple
sequence alignment and/or tree estimation, methods that can estimate
species trees from multi-locus datasets while addressing heterogeneity due
to biological processes (e.g. incomplete lineage sorting and gene duplication
and loss), and methods to add sequences into large gene trees or species
trees. Here we present some of these recent advances and discuss
opportunities for future improvements.

This article is part of a discussion meeting issue ‘Genomic population
structures of microbial pathogens’.
1. Introduction
Large-scale phylogeny estimation presents substantial computational and
statistical challenges: the most accurate methods are often likelihood-based
methods (maximum likelihood or Bayesian inference) that can use substantial
time and memory to produce reliable trees. Multiple sequence alignment (a pre-
cursor to phylogeny estimation) is also challenging, especially on large datasets
that have high rates of evolution. Furthermore, species tree estimation presents
additional challenges due to heterogeneity in phylogenetic trees between differ-
ent loci, which can result from processes such as incomplete lineage sorting
(ILS), gene duplication and loss (GDL) and horizontal gene transfer (HGT)
[1]. Yet because dense taxonomic sampling has been seen to improve phyloge-
netic accuracy [2], the interest in statistically rigorous methods for large-scale
phylogeny estimation (whether of gene trees or species trees) has not abated.

The past decade has produced methods for alignment and phylogeny esti-
mation that have excellent accuracy on small- to moderate-sized datasets, but
only a few of these methods can analyse even moderately large datasets
(1000 sequences). Some of the phylogeny estimation methods with the best
scalability are distance-based (e.g. FastME [3]). However, several studies (e.g.
[4]) have shown that maximum-likelihood (ML) methods tend to be more accu-
rate than distance-based approaches on large datasets, especially under high
rates of evolution.

Because ML phylogeny estimation can be computationally intensive (both
for time and memory), substantial effort has been made to improve the running
time through careful implementation of the numerical calculations and use of
parallelism (see recent surveys in [5–7]). Despite the advances in the past
decade, the construction of very large ML phylogenies (e.g. gene phylogenies

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2021.0244&domain=pdf&date_stamp=2022-08-22
http://dx.doi.org/10.1098/rstb/377/1861
http://dx.doi.org/10.1098/rstb/377/1861
mailto:warnow@illinois.edu
http://orcid.org/
http://orcid.org/0000-0003-3550-2636
http://orcid.org/0000-0001-7717-3514
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20210244

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 M

ay
 2

02
3 
of 100 000 or more sequences or 10 000 whole genomes) is
very difficult using standard approaches, except perhaps
when supercomputers are available.

Divide-and-conquer is a natural technique to speed up
computationally intensive analyses: for example, rather than
estimating a tree on a dataset with 100 000 sequences, the
input could be divided into many smaller datasets (perhaps
100 datasets with approximately 1000 sequences each), trees
could be estimated on each subset, and then combined into a
tree on the entire dataset. An obvious divide-and-conquer
technique would use taxonomic information to define the
subsets; however, using taxonomies presents potentially sig-
nificant challenges. For example, when estimating gene trees,
discordance between gene trees and species trees (resulting
from various biological processes) can mean that taxo-
nomically derived decompositions do not form connected
subtrees in the true gene trees. An additional complication
that impacts all estimation problems is that taxonomies can
havemistakes; as a result, techniques that use taxonomic infor-
mation are often combined with opportunities for the user to
correct potential mistakes. Finally, taxonomies may not
include all the sequences in the input. Despite the challenges
in using taxonomies, they can be very useful in constraining
the search space, and so result in reduced running time. PyPH-
LAWD [8] and PhyLoTA [9] are two such techniques, and
strategies like these have been used in phylogenomic analyses
(e.g. [10,11]).

In this paper, we present new divide-and-conquer tech-
niques to scale computationally intensive but highly
accurate methods to large and even ultra-large datasets, with-
out using taxonomic information. We show how divide-and-
conquer can improve many steps in a phylogenomic pipeline,
starting with large-scale multiple sequence alignment (a pre-
cursor to phylogeny estimation) and ending with updating
large trees. However, these are not the only recently devel-
oped divide-and-conquer methods; this issue also has a
paper by Achtman et al. [12] that presents another divide-
and-conquer method and uses it to construct a very large
bacterial tree. Thus, divide-and-conquer is a powerful tech-
nique that can be used in different ways for large-scale
phylogeny and alignment estimation.
2. Recent advances in multiple sequence
alignment

Multiple sequence alignment (MSA) is a precursor to phylo-
geny estimation as well as to other bioinformatics problems,
such as sequence classification and protein function predic-
tion. When the input is a set of sequences for a group of
closely related individuals, then techniques that operate by
inferring pairwise alignments to a single reference sequence
can have good accuracy; however, the estimation of multiple
sequence alignments for more distantly related sequences
requires other techniques. There are many well-established
methods (surveyed in [13]), but only some of these provide
good accuracy on large sequence datasets, especially when
they have evolved under high rates of evolution.

Divide-and-conquer techniques have proved very power-
ful tools in scaling the most accurate alignment methods to
large datasets. These methods (e.g. [14–18]) divide the
input sequence dataset into disjoint subsets, produce align-
ments on each subset using a selected ‘base method’ and
then merge the subset alignments together. When combined
with iteration (so that each iteration uses the previous
iteration’s alignment to compute a new tree and then decom-
poses the dataset using the tree), the methods can produce
highly accurate alignments and trees, typically in just a few
iterations. PASTA [16] is one of the most accurate and
scalable divide-and-conquer methods for co-estimating align-
ments and trees. MAFFT [19] is the default method for subset
alignment for the PASTA pipeline, but other methods can also
be used. For example, Nute & Warnow [20] used BAli-Phy
[21], a Bayesian alignment method, as the subset aligner and
found that this modified PASTA pipeline improved accuracy
compared to default PASTA.

A new and promising divide-and-conquer strategy is used
in MAGUS [17,18], a recently developed MSA method that is
closely related to PASTA. Specifically, whereas PASTA merges
a set of disjoint alignments by merging selected pairs of align-
ments and then using transitivity to complete the merger,
MAGUS achieves the merger by first computing a graph
where the vertices represent the sites in the alignments, and
then clustering the sites together to define the merged align-
ment. This clustering step, performed using the Graph
Clustering Merger (described in [17]), is the key to the improved
accuracy that MAGUS has over PASTA, as all other algorithmic
differences between MAGUS and PASTA are very minor. As
demonstrated in [22], the ’graph clustering merger’ is an effec-
tive strategy for solving the maximum weight trace problem
[23] in the context of merging alignments. Figure 1 provides
a sample of results from Smirnov [18], which show that
MAGUS and its recursive version are more accurate than lead-
ing alignment methods on large biological benchmark datasets
and simulated datasets (up to 1 000 000 sequences).
3. Recent advances in maximum-likelihood tree
estimation

ML gene tree estimation is one of the core problems in
phylogeny estimation. One of the reasons for its popularity
is that ML tree estimation has been proven to be a statisti-
cally consistent estimator of the phylogeny under standard
sequence evolution models, which means that as the
sequence length increases the method will converge to the
true tree with probability increasing to 1 [25]. However, find-
ing the optimal ML tree is NP-hard [26] and so the best
heuristics, such as RAxML [27] and IQ-TREE [28], use
many different strategies to search for the tree optimizing
the likelihood score. FastTree 2 [29] is a very fast heuristic
that does not make a very substantial attempt to optimize
likelihood (and hence does not find very good ML scores).

RAxML has been modified over the years to improve scal-
ability to large datasets, and the current version, RAxML-NG
[30], is able to analyse very large datasets. However, a recent
study [31] showed that RAxML-NG, using 16 CPUs, did not
converge on a 10 000-sequence dataset even after a week. By
contrast, the 2010 paper introducing FastTree 2 [29] showed it
was able to estimate an ML tree with 237 882 distinct
sequences in 22 h, and a recent study [18] demonstrated
that FastTree 2 was able to produce a tree on 1 000 000
sequences in approximately 5 days using 32 CPUs. Thus,
FastTree 2 clearly dominates RAxML for speed.

Interestingly, the accuracy comparison between RAxML
and FastTree 2 has mixed results. A 2011 study showed the
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two had very similar topological accuracy [32], but later studies
have shown that FastTree 2 can be less accurate than RAxML
when the input alignment contains many fragmentary
sequences [31,33] or is otherwise very gappy [34]. In addition,
a recent study showed reduced accuracy for FastTree 2 when
the sequences have evolved under heterotachy [31]. By con-
trast, RAxML and to a somewhat lesser extent also IQ-TREE
2 [35] seem more robust to those conditions [31].

Several strategies have been developed to overcome the
burden of computationally intensive ML analyses. Some of
these (e.g. DACTAL [36]) operate by dividing the input set
into overlapping subsets, constructing trees on the subsets,
and then using supertree methods to merge the subset trees
into a tree on the full dataset. This is a natural approach to
large-scale tree estimation [37], but the choice of decompo-
sition strategy can impact the final accuracy, and random
decompositions in particular can produce poor supertrees
[38]. Furthermore, the requirement to use supertree methods
(which are not yet very fast) constrains the scalability of these
approaches [39].

To overcome these limitations, a new type of divide-and-
conquer approach, disjoint tree merging (DTM), has been
developed. In this approach (figure 2), an initial tree is com-
puted on the input. Then edges are deleted from the tree
until each subset is small enough (below a user-provided
threshold). Then trees are estimated on each subset, and finally
merged into a tree on the full dataset. This four-stage approach
divides the input dataset into disjoint rather than overlapping
sets, and hence requires additional information, such as a dis-
tance matrix or a guide tree, in order to merge the subset trees
into a full tree.

Methods that can merge a set of leaf-disjoint trees into a
single tree are called ‘disjoint tree mergers’ (DTMs), and
pipelines that use DTMs can be used to estimate both gene
trees and species trees. Several DTMs have been developed,
starting with NJMerge [40], TreeMerge [41], Constrained-
INC [42,43] and most recently including the guide tree
merger (GTM) [44]. Of these, the GTM has been shown to be
very fast and generally as accurate as the previously devel-
oped DTMs. When the initial tree and the subset trees are all
estimated using statistically consistent methods, then DTM
pipelines using GTM (as well as the other DTM methods
listed above) are provably statistically consistent.

Figure 3 shows results from [31] comparing a DTM pipe-
line using GTM to two leading ML methods (RAxML-NG
and IQ-TREE 2). For topological error, we report the false
negative error rate, which indicates the proportion of the
non-trivial splits in the true tree that are not produced in
the estimated tree. The GTM pipeline matches or improves
on the topological accuracy of both IQ-TREE 2 and FastTree
2 and is competitive with RAxML-NG, while being much
faster than RAxML-NG. A comparison on the largest dataset
with 50 000 sequences, limited to 168 h (one week) of analy-
sis, shows that only the GTM pipeline and FastTree 2 are
acceptable: RAxML-NG has nearly 100% false negative
error on that model condition while IQ-TREE 2 fails to
return a tree at all due to memory issues.

To understand this performance, we note that [31] used
RAxML-NG in default mode (10 random starting trees and
10 random sequence addition parsimony trees). The poor
tree accuracy is consistent with RAxML-NG completing
only a few rounds of heuristic search and so returning a
tree that is close to the starting tree. It is possible that
RAxML-NG might have been able to produce a good tree
on this dataset using a different starting tree (e.g. using
FastTree 2). Thus, while [31] does show advantages to
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Figure 3. Comparison of standard ML methods (RAxML-NG, IQ-TREE 2 and FastTree 2) to a divide-and-conquer pipeline using the guide tree merger (GTM) on four
simulated datasets with 1000–50 000 sequences. 1000M1-HF datasets each have 1000 sequences that evolved under a GTRGAMMA+indel model and include frag-
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using a GTM-pipeline for large-scale ML compared to both
IQ-TREE 2 and RAxML-NG, future work is needed to
better understand how to use RAxML-NG and IQ-TREE 2
to estimate ultra-large trees without requiring very large
amounts of memory or time.
4. Recent advances in species tree estimation
A traditional approach to multi-locus species tree estimation
concatenates the individual gene sequence alignments into a
‘supermatrix’ and estimates a tree on the supermatrix, often
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using ML. These ‘concatenation analyses’ are appealing but
can be very computationally expensive: the ML analysis of
the 48 bird genomes in [45] took 250 CPU years, and the
ML concatenation pipeline of [46] took approximately
33 000 CPU hours (about 3.8 CPU years) to build a tree on
10 575 genomes. In addition, because different genomic
regions can have different evolutionary histories due to pro-
cesses such as ILS and GDL, the use of concatenation
(which assumes that all the sites evolve down a single tree
topology) has been significantly criticized [47,48]. As a
result, new approaches based on statistical models for gene
evolution within species trees have been developed and are
now increasingly used, and some of these approaches are
very scalable. Here we present recent advances for species
tree estimation that provide high accuracy and scalability.

(a) Species tree estimation in the presence of
incomplete lineage sorting

The problem of species tree estimation in the presence of ILS
is very well studied. Although species trees have traditionally
been estimated using ML and other methods on a concatena-
tion of the individual gene sequence alignments, this
approach has been shown to be statistically inconsistent
when there is gene tree heterogeneity due to ILS [49].

One of the statistically consistent approaches for species
tree estimation when ILS is present operates by estimating
gene trees for each gene and then combining the gene trees.
These ‘summary methods’ are generally faster than concate-
nation (especially on large datasets). Two of the best-known
methods are MP-EST [50] and ASTRAL [51], but ASTRAL
is generally faster on large datasets. ASTRID [52] and DIS-
TIQUE [53] are two other fast and scalable summary
methods that are often comparable in accuracy to ASTRAL
[53], but ASTRAL is more frequently used than ASTRID.
All summary methods are impacted by gene tree estimation
error (a common occurrence when gene sequence alignments
are short or otherwise have low ‘phylogenetic signal’), and
under conditions where all gene trees have low accuracy, con-
catenation analyses can be more accurate than even the best
summary methods [54].

Alternative approaches have been developed that avoid
these problems and that also provide statistical guarantees
in the presence of ILS. One such example is SVDquartets
[55], a method that uses properties of the multi-species
coalescent model to estimate quartet trees and then combines
the quartet trees into a tree on the full set of species.
SVDquartets (and its variants, e.g. SVDquest [56]) can pro-
vide superior accuracy compared to summary methods
under conditions with high gene tree estimation error [54],
but more study is needed to understand the empirical con-
ditions under which they are more reliable than standard
ML concatenation analyses. Finally, co-estimation of gene
trees and species trees is also more robust to conditions
where gene sequence alignments have low phylogenetic
signal, and Bayesian co-estimation methods such as Star-
BEAST2 [57] can provide outstanding accuracy. However,
current Bayesian co-estimation methods are limited to
small numbers of species and loci due to computational
requirements (though see [58]).

For these reasons, summary methods such as ASTRAL
have become a mainstream approach to species tree esti-
mation on datasets with large numbers of species. ASTRAL
constructs an unrooted species tree from a set of unrooted
gene trees by solving the ‘maximum quartet support super-
tree’ problem (i.e. finding a species tree that agrees with as
many quartet trees induced by the input gene trees as poss-
ible). Since this is an NP-hard problem, the default setting
for ASTRAL solves the problem within a constrained search
space that is computed from the input gene trees. Specifically,
ASTRAL only considers those candidate species trees that
draw their bipartitions from a constraint set that contains
the input gene tree bipartitions and potentially some
additional bipartitions. Although ASTRAL runs in poly-
nomial time, its worst-case runtime is nearly quadratic in
the number of distinct bipartitions found in the constraint
set. Since this constraint set can be quite large when there is
substantial heterogeneity between gene trees and large num-
bers of genes, ASTRAL can sometimes take a long time to
complete (i.e. days).

To reduce ASTRAL’s runtime and improve scalability to
large datasets, two high-level techniques have been devel-
oped. The first is the use of DTM pipelines, described
above in the context of gene tree estimation, but adapted to
enable species tree estimation on multi-locus datasets. As
shown in [41,44], DTM pipelines greatly reduce the running
time for ASTRAL on large taxon sets and can also improve
accuracy. The divide-and-conquer pipeline presented in [12]
is also used to estimate a species tree, with ASTRAL the
method for constructing species trees on each subset.
Although the details of the pipeline in [12] are slightly differ-
ent from the specific DTM pipeline structure given in figure 2,
clearly the divide-and-conquer pipeline in [12] is a DTM
pipeline for species tree estimation.

The second technique operates by replacing the constraint
set that ASTRAL computes from the input with a smaller
constraint set. One such approach uses ‘external constraints’,
for example partial information about the species tree, in
order to reduce the constraint set size. The ASTRAL codebase
was recently enhanced by such a technique [59], and we refer
to its usage as ‘ASTRAL-J’ to reflect the flag used in ASTRAL
given external constraints. Another approach runs ASTRID
on a collection of subsamples of the gene trees, so that each
ASTRID analysis of each subsample produces a candidate
species tree. The bipartitions from those estimated trees are
then used as the constraint set for ASTRAL. This approach,
called ‘FASTRAL’ [60], is provably statistically consistent
under the multi-species coalescent model. Furthermore,
FASTRAL is generally similar in accuracy to ASTRAL while
being much faster when the number of species and/or
genes is large enough [60]. Finally, FASTRAL-J, a combi-
nation of FASTRAL and ASTRAL-J, has been developed,
which provides runtime advantages over ASTRAL-J and
comparable accuracy [61].

(b) Species tree estimation in the presence of gene
duplication and loss

Genes can evolve with duplication and loss (GDL), in which
case a given organism can have multiple copies of a given
gene. When phylogenies are computed on datasets with
more than one gene copy in a given species, the gene trees
that are produced will have leaves for each of these copies.
As a consequence, the phylogeny for that gene (called a
‘gene family tree’) can have multiple leaves corresponding
to these copies, each labelled by the same species. These
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gene family trees are called ‘MUL-trees’ to distinguish them
from single-copy trees [62].

Here we describe four techniques for estimating species
trees from genes that evolve with GDL. The first is to elimin-
ate those genes that evolve with GDL and restrict instead to
those genes that are single-copy in every organism. This prac-
tice reduces available data, and so raises the concern that
accuracy could be reduced. The second approach uses
methods to detect orthology, so that the multi-copy gene
family can be reduced to single-copy genes. However, orthol-
ogy detection is still not reliably solved well [63], and so this
approach also has some problems. The third approach
co-estimates gene family trees and species trees from the
sequence alignments. Phyldog [64] is the best known of
these approaches, and uses a statistically rigorous approach.
Although it is highly accurate, it is computationally intensive
and limited to very small datasets.

The final approach constructs the species trees from the
gene family trees and some methods using this approach
have strong theoretical guarantees and can be very fast. For
example, a recent theoretical advance is the proof that
ASTRAL-multi [65] and ASTRAL-one [66], two modifications
of ASTRAL to enable them to estimate species trees from
MUL-trees, are statistically consistent under statistical
models of gene evolution that allow for GDL [66,67]. How-
ever, these statistically consistent methods are not as
accurate as ASTRAL-Pro [68], a variant of ASTRAL recently
developed specifically to address GDL [68]. Other methods
that can estimate species trees from a set of MUL-trees have
been developed, with gene tree parsimony the most well
known (e.g. DupTree [69]), but also including MixTrEm-
DLRS [70], MulRF [71], FastMulRFS [72] and SpeciesRax
[73]. While not all of them have been compared to
ASTRAL-Pro, those that have been evaluated have not been
shown to be as reliably accurate as ASTRAL-Pro [74].

Tree-decomposition provides another way of combining
MUL-trees. In a tree-decomposition approach, each gene
family tree is decomposed into a set of single-copy trees,
and then the resultant set of single-copy trees is given to a
selected summary method, such as ASTRAL or ASTRID.
There are several such tree-decomposition methods, with
DISCO [75] being a recent and promising technique. As
seen in figure 4, using DISCO with ASTRID on a dataset
with 1000 species produces a tree that is more accurate than
ASTRAL-Pro and SpeciesRax, while being much faster and
having lower memory requirements than both methods.
5. Recent advances in updating large trees
Once a large tree is estimated, if new sequence data become
available, then starting all over is undesirable (especially
since the first tree may have already required a great deal
of computational effort and time). Hence, the problem of
updating a tree by adding newly found sequences into the
tree becomes relevant. The step of adding a sequence into a
phylogeny is called ‘phylogenetic placement’ and it can be
used both for gene trees and for species trees.

The methods described in this section are also relevant to
understanding microbial diversity: given a sequence, placing
it into a taxonomy makes it possible to characterize the
sequence taxonomically, and so also enables an assessment
of microbial diversity in a population [76–79]. This approach
is particularly relevant for characterizing novel sequences (i.e.
sequences that are not in public databases) and the accuracy
of the taxonomic assignment improves on larger trees [79].
Therefore, methods for placing sequences into large trees
also have utility for assessment of microbial diversity.

Phylogenetic placement is also useful when the input
sequence dataset exhibits sequence length heterogeneity.
For example, FastTree 2 can have poor topological accuracy
on datasets with fragmentary sequences [33,34], with the
consequence that in some conditions constructing trees on
the full-length sequences and then using phylogenetic place-
ment to add the remaining sequences can be more accurate
than FastTree 2 on a good alignment [33].
(a) Adding sequences to gene trees
One of the earliest methods for phylogenetic placement is
pplacer [80]. The input is a binary tree with sequences at
the leaves in an alignment, ML numeric parameters (e.g.
branch lengths and substitution rate matrix) on the tree for
that alignment, and a set of query sequences that need to
be added into the tree. The approach used in pplacer is like-
lihood-based, with ML or Bayesian options both available;
here we describe the ML version. Given query sequence q,
pplacer seeks the edge in the tree where attaching q would



Table 1. Average delta error (Δe) for phylogenetic placement methods in backbone trees of size n. Analyses were limited to 64 Gb of memory.

n = 5000 n = 10 000 n = 50 000 n = 100 000 n = 200 000

Δe

pplacer-SCAMPP 0.150 0.132 0.085 0.084 0.075

EPA-ng 0.239 0.219 X X X

APPLES 0.366 0.330 0.239 0.247 0.250

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20210244

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 M

ay
 2

02
3 
optimize the ML score. Because pplacer is likelihood-based,
this approach can be computationally intensive [81].

Other phylogenetic placement methods have been devel-
oped that seek to improve scalability to larger trees or reduce
running time (e.g. UShER [82], RAPPAS [83], EPA-ng [84],
APPLES [81] and APPLES-2 [85]). EPA-ng is likelihood-
based and has been optimized for ‘batch processing’ of
query sequences, so that the cost of performing phylogenetic
placement of a large number of query sequences is much less
than the cost of placing them one-by-one. EPA-ng has slightly
reduced accuracy compared to pplacer. APPLES is a very fast
distance-based method that places each query sequence into
the tree so as to minimize the weighted least-squares error.
APPLES-2 is an improvement on APPLES with respect
to accuracy and running time, and also scales to at least
200 000 sequences. Recent studies [81,85,86] show that
APPLES and APPLES-2 can run on trees with 200 000
leaves and are much faster than both pplacer and EPA-ng;
however, even APPLES-2 does not match the accuracy of
pplacer. UShER is parsimony-based and very fast, but has
not been compared to pplacer, APPLES, or APPLES-2,
while RAPPAS, which is based on k-mers, is very fast but
not as accurate as EPA-ng or pplacer [83]). Thus, the highest
accuracy in phylogenetic placement is obtained using likeli-
hood-based methods, but these tend to be relatively
computationally intensive compared to other approaches,
especially distance-based or k-mer-based methods.

Recently, two divide-and-conquer methods, pplacer-
SCAMPP [86] and pplacer-DC (pplacer-Divide-and-Conquer)
[87], were developed in order to improve accuracy for phyloge-
netic placement when inserting into trees that are too large for
pplacer. Here we describe the pplacer-SCAMPP approach, as
a comparison of pplacer-SCAMPP with pplacer-DC on the
RNASim VS datasets reported in [86,87] shows that pplacer-
SCAMPP is faster, uses less memory, and is more accurate
than pplacerDC. In addition, pplacer-SCAMPP is able to scale
to trees with 200 000 leaves, whereas pplacer-DC scales only
to 100 000 sequences [86,87].

The pplacer-SCAMPP pipeline uses four stages to insert a
query sequence q into a tree T. First, a leaf that has the greatest
sequence similarity to q is found. In the second stage, a con-
tiguous subtree t is extracted from T that includes the nearest
leaf and up to N− 1 additional leaves (where N = 2000 when
the SCAMPP framework is used with pplacer). In the third
stage, pplacer is used to insert the query sequence into the
subtree t (i.e. an edge e in the subtree t is identified); since
N was set to be only 2000, pplacer can complete on this data-
set. Finally, in the fourth stage, an edge e0 in the tree T is
found corresponding to the edge e, and the query sequence
is placed into edge e0. By design, this four-stage approach
can be modified to suit a different phylogenetic placement
method, so that methods that can run on larger trees can
have larger values for N. For example, when using the
SCAMPP framework with EPA-ng, N is set to 10 000. Every
stage of this pipeline, other than the third stage (which
runs pplacer), is very fast and uses little memory.

Table 1 compares pplacer-SCAMPP (i.e. pplacer used
within the SCAMPP framework) with APPLES and EPA-ng
with respect to delta-error (ameasure for the increase in topolo-
gical error in the tree produced by the phylogenetic placement
method; see [81,86] for the definition). The placement methods
are given full-length sequences in the true alignment and place
these sequences in a leave-one-out strategy into the model tree
on the remaining sequences, with trees varying from 5000 to
200 000 sequences. EPA-ng fails to be able to place into the lar-
gest trees due to memory requirements, but APPLES and
pplacer-SCAMPP succeed on all trees. Note that pplacer-
SCAMPP has the lowest placement error of all methods.

(b) Adding species to species trees
While the methods above focused on adding sequences into
gene trees, adding species (represented by genome-scale
data) into species trees is another kind of phylogenetic place-
ment problem. One such method is MGPlacer [88], which
uses reads from across a genome to place a genome into a
species tree. Other approaches, such as INSTRAL [89], have
been developed that consider heterogeneity across the
genome due to processes such as ILS. Given an existing
species tree T, INSTRAL will add the new species into the
existing tree to optimize the quartet tree support for the
extended species tree (i.e. INSTRAL extends the theoretical
approach in ASTRAL). Another new method is DEPP [90],
which computes distances using a deep neural network
and then runs APPLES to place the new species into the
tree. Of these methods, MGPlacer has the desirable property
in that it can decide to not add a sequence into a tree due to
insufficient evidence of homology.
6. Concluding remarks
This review has described some of the significant innovations
over the past few years in the development of methods for
multiple sequence alignment and phylogenetic tree estimation
that provide high accuracy on very large datasets (even up to 1
000 000 sequences). Because so many of the methods
discussed in this review are extremely new, additional studies
are needed to explore and understand the conditions under
which these methods are reliably more accurate than alterna-
tive methods, and our review has suggested some potential
directions where such study is needed.

Owing to space constraints, we did not discuss all the rel-
evant problems for large-scale tree estimation, including how
to efficiently and accurately estimate numeric parameters
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(e.g. branch lengths) or evaluate branch support in a large
tree. There is active work on these problems (e.g. [6,91,92]),
but each of these problems is likely to remain an important
direction for research. We also did not address Bayesian infer-
ence, which is an important class of phylogenetic methods
[78,93,94]. Bayesian methods, such as MrBayes [95], are well
established in the research community and have been
shown to provide highly accurate point estimates of align-
ments, gene trees and species trees; however, most Bayesian
methods use MCMC (Markov Chain Monte Carlo) and are
computationally intensive on large datasets since conver-
gence to the stationary distribution is required for high
confidence in an accurate result. Some progress has been
made on improving the scalability of these point estimations
using Bayesian methods, e.g. by using divide-and-conquer to
break a large dataset into subsets or constraining the search
space (e.g. [20,58,96,97]). However, Bayesian methods pro-
duce distributions from which point estimates can be
obtained, and these distributions have significant additional
value since they enable uncertainty quantification. Scaling
Bayesian methods to large datasets so that a good estimate
of the distribution can be obtained is of great interest, but is
generally not enabled through the techniques that focus on
scaling the point estimates. Here we note that [43] has made
some progress in scaling MrBayes, suggesting that additional
effort in this direction is merited. In general, fully scaling Baye-
sian methods requires additional techniques beyond those
explored in this survey.

We also did not discuss in full how different causes for
gene tree discord can affect species tree estimation. As we
have seen, even in the presence of ILS and GDL, a tree is a
reasonable model for the evolutionary relationships between
the species. However, some biological processes, such as gene
flow, horizontal gene transfer and species hybridization, may
require graphical models of evolution called ‘explicit phylo-
genetic networks’ [98–100] that are not purely tree-like. For
example, in a hybridization network, a hybrid species will
have two parents rather than one, while in a network repre-
senting evolutionary relationships that include HGT events,
there will be two types of edges: those depicting vertical
transmission and those depicting HGT events.

Under some conditions, such as with limited gene flow or
relatively small amounts of random HGT, the estimation of
the ‘main’ tree within a phylogenetic network is a reasonable
objective [101–104], especially if a well-established subset of
the genes are believed to evolve down this main tree [105].
Asimulation study in [101] evaluatingmethods for estimat-
ing themain tree in thepresenceof gene flowshowed that using
PhyloNet [106] to construct a hybridization network (under
ML) and then suppressing the ‘minor’ hybrid edge produced
the most accurate results, followed by ASTRAL, NJst [107]
and finally concatenation. Thus, ASTRAL provided superior
accuracy compared to the other tree inference methods, but a
phylogenetic network approach was key to obtaining high
accuracy. Because of this performance, Solís-Lemus et al. [101]
argue for the use of likelihood-based phylogenetic network
methods for estimating the ‘main tree’ in the presence of gene
flow. Unfortunately, likelihood-based methods for estimating
explicit phylogenetic networks are enormously computation-
ally intensive and even the most scalable such methods are
limited to a few tens of species [108–111].

Therefore, method development for explicit phylogenetic
network estimation is also needed. Alternative approaches,
such as providing approximate representations of evolution-
ary relationships (e.g. clusterings and visualizations) rather
than trees or explicit phylogenetic networks, are also valu-
able, especially when evolutionary relationships are
complex and the dataset is very large; the paper by Lees
et al. [112] is a promising example of such an approach.

This study did not discuss all the recent advances in large-
scale alignment and tree estimation, and some of these may
provide even better scalability and accuracy. For example,
there are new methods for large-scale ML tree estimation
(e.g. Very Fast Tree [113]), new techniques to speed up co-esti-
mation of gene trees and species trees [96,114], and even
divide-and-conquer approaches to phylogenetic network esti-
mation [115]. This continued effort to develop methods that
are highly accurate and scalable leads us to the optimistic pre-
diction that the next 5–10 years will result in new scalable
methods to estimate accurate alignments, trees and even phy-
logenetic networks, and that these methods will enable
biologists to make discoveries on the large and ultra-large
phylogenomic datasets that they assemble.
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