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The Noisy Drawing Channel: Reliable Data Storage
in DNA Sequences

Andreas Lenz, Paul H. Siegel, Antonia Wachter-Zeh, and Eitan Yaakobi

Abstract—Motivated by recent advances in DNA-based data
storage, we study a communication system, where information
is conveyed over many sequences in parallel. In this system, the
receiver cannot control the access to these sequences and can
only draw from these sequences, unaware which sequence has
been drawn. Further, the drawn sequences are susceptible to
errors. In this paper, a suitable channel model that models this
input-output relationship is analyzed and its information capacity
is computed for a wide range of parameters and a general
class of drawing distributions. This generalizes previous results
for the noiseless case and specific drawing distributions. The
analysis can guide future DNA-based data storage experiments
by establishing theoretical limits on achievable information rates
and by proposing decoding techniques that can be useful for
practical implementations of decoders.

I. INTRODUCTION

DNA-based data storage is a novel approach for long-term
archiving of digital data. It has drawn recent attention due
to significant advances in biochemical technologies, such as
synthesizing and sequencing of DNA. Manifold experiments
[4], [5], [6], [7], [8], [9] have been published in the last decade,
addressing many different aspects of digital data storage,
such as reliability, lifetime, random-access, and efficiency.
At the same time, the unique nature of DNA-based storage
systems has fueled theoretical investigations inside a variety of
research fields, such as computational biology, coding theory,
information theory and signal processing.

The process of writing and reading digital data in DNA-
based data storage usually involves three main steps. First, the
digital binary data is encoded into many short vectors over
the alphabet {A,C,G,T}, which are then synthesized as DNA
strands. In most experiments, each strand is synthesized many
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times such that multiple copies of each strand are present.
Second, those strands are transferred into a storage medium
that preserves the chemical structure of DNA and enables
robustness over a long period of time. Third and finally, when
accessing the data inside the archive, the DNA strands from the
storage medium are sequenced. This is often an uncontrollable
procedure in the sense that it is not possible to choose which
strands are sequenced.1 Using the sequenced data, a decoder
then estimates the original digital data.

These writing and reading processes distinguish DNA-based
storage systems from conventional transmission or storage
systems in the following aspects. First, the unordered nature
of reading is rarely observed in traditional communication
systems. Next, due to the uncontrolled drawing of strands, it is
possible that some strands are never observed at the output and
others might be read multiple times. In this work, we study
the noisy drawing channel, which embodies these properties.

A. Related Work

Most information-theoretic studies related to DNA-based
data storage discuss insertion and deletion error correction.
Classical papers on this topic are those by Gallager [10] and
Davey and Mackay [11]. More recently, increased interest
towards channel models with multiple transmissions over a
channel impaired by insertion and deletion errors arose, due to
the existence of multiple copies of each stored strand in DNA-
based storage systems. For example, [12], [13], [14] study
reconstruction from DNA sequences, where [12], [13] discuss
uncoded sequences and [14] focuses on coded sequences.
Decoding algorithms and achievable information rates are
discussed in [15], [16].

Another related line of research is that on channels that
permute several parallel input sequences [17], [18]. In their
setup, a given number of parallel sequences is arbitrarily
permuted and then transmitted over known constituent channels.
In principle such a communication scenario is similar to ours,
differs however in the nature of the constituent channels and
the knowledge of the receiver about the origin of each sequence.
A different type of permutation channels, where the symbols
of a single sequence can be permuted, has been discussed in
[19], [20].

This work deals with the so-called noisy drawing channel
that models the pipeline from synthesized to sequenced DNA

1There are studies [6], [7] that have developed methods for random access
and for sequencing of specific strands. This was accomplished by designing
primers that are appended to the DNA strand. Here however, we are studying
the raw system without the usage of such primers.
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strands. The channel has an input of many parallel sequences.
Out of these sequences, the receiver draws sequences in a
random fashion, oblivious of the origin of the drawn sequences,
i.e., the drawing indices. The drawn sequences are observed
through an erroneous channel and thus can differ from the
input sequences. This channel has previously been studied in
several variants. Originally, the channel has been studied for
the noiseless case [21], [22] assuming uniform and independent
draws of the input sequences. The capacity has been derived
for this case and it has been shown [21] that a simple indexing
and erasure correction scheme achieves capacity. Later, the
capacity for the case where each sequence is drawn exactly
once and transmitted over a binary symmetric channel has
been derived in [23]. Also in this case, an efficient capacity-
achieving scheme has been presented. This scheme indexes
each sequence and protects the whole sequence with a capacity-
achieving code for the binary symmetric channel. The results
in [23] have been extended to the case of transmission over
erasure channels [24]. Recently, the capacity has been found
for the case where each sequence is drawn according to a
Bernoulli distribution and transmitted over a binary symmetric
channel [25]. It has also been shown that a concatenated code
with an outer erasure code and an inner indexing and error
correction code can achieve capacity. In [26], the results from
[2], [21] have been generalized to general memoryless channels,
together with a derivation of bounds on the decoding error
probability. Using novel proof techniques, [26] proved converse
and achievability bounds, which hold for arbitrary parameters,
which is in contrast to previous work, which focused on a
special parameter regime. This established capacity results for
a larger set of parameters.

B. Contribution and Outline

In this paper, we study the noisy drawing channel for a
broad class of distributions on the drawing indices and for the
case of transmission over the q-ary memoryless channel. In
particular, we define the notion of regular drawing distributions
in Definition 1 for which we derive the capacity of the noisy
drawing channel in Theorem 4. Our results thus generalize and
unify previous results [1], [2], [3], [21], [25] to a much broader
class of drawing indices distributions and to arbitrary alphabet
sizes. Similar as in previous work, our capacity results hold
for the low-noise scenario, where the number of sequences
is moderate, depending on the channel noise. For a thorough
discussion on the parameter range, see Section III-C. Compared
to [26], our results are more specific regarding the constituent
channel and its parameters, however more general with respect
to the drawing distribution. Notice that the proof techniques
employed in this manuscript follow the lines of our conference
contributions [1], [2], [3], which are different from those
presented in [26]. For a more detailed comparison of proof
techniques, we refer the reader to [26].

We start by defining the channel model in Section II. This
section further contains an equivalent channel model that is both
useful for the later derivation and also an intuitive understanding
of the channel. We proceed with presenting the result about
the capacity of this channel together with definitions regarding

codes and reliable transmission over the noisy drawing channel
in Section III. The presentation is enriched with a discussion of
the parameter range and with thoughts regarding practical code
constructions over the channel. Sections IV and V are devoted
to proving the capacity result by showing that the capacity is
an upper bound on achievable information rates and a proof of
the existence of codes with vanishing error probabilities and
information rates arbitrarily close to capacity. In Section VI we
apply the results to popular drawing distributions, recovering
and generalizing the results from [1], [2], [3], [21], [25].

C. Notation

Throughout this paper, we discuss sequences over the finite
alphabet Σq = {0, 1, . . . , q − 1}, where we may write Σ4 =
{A,C,G,T} to highlight the DNA alphabet. The set of positive
integers up to n is denoted by [n] = {1, 2, . . . , n}. We use the
logarithm logq with respect to the base q and log depicts the
binary logarithm. We write random variables in upper case
and their realizations in lower case. The probability of an
event is denoted as Pr (X = x), where we sometimes omit
the random variable, e.g., Pr (x), when it is clear from the
context. The expected value and variance of a random variable
X are denoted by E [X] and V [X]. Further, we denote by
H(X) = −

∑
x Pr (x) logq(Pr (x)) the entropy of a random

variable X . The q-ary entropy function is denoted by Hq(p) =
p logq(q − 1) − p logq p − (1 − p) logq(1 − p). We highlight
vectors with bold font, e.g. x, and denote by |x| the number
of elements in x.

II. CHANNEL MODEL

The input of the noisy drawing channel is M sequences
X1, . . . ,XM where each Xi = (Xi,1, . . . , Xi,L) ∈ ΣL

q , i ∈
[M ], is a vector of length L over the alphabet Σq . From this
input, N sequences are drawn and received with errors. Denote
by I = (I1, . . . , IN ), Ij ∈ [M ] the indices of the draws, i.e., in
the j-th draw, the input sequence XIj is drawn. We consider
random drawing indices I , which are independent of the input
X1, . . . ,XM and will concretize its distribution in Section
II-A. Note that, depending on the distribution of I , N may
also be random. The output of the channel is then given by N
sequences Yj = (Yj,1, . . . , Yj,L) ∈ ΣL

q , j ∈ [N ], each of length
L. Each sequence Yj is obtained by drawing a random input
sequence XIj and transmitting it over the q-ary symmetric
channel with error probability p. That is, the output sequences
are given by

Yj = XIj +Ej ,

for all j ∈ [N ], where the sum is performed over the finite ring
of integers Σq , i.e., modulo q. Hereby, Ej = (Ej,1, . . . , Ej,L)
are random error vectors with independent and identically
distributed entries

Pr (Ej,� = ej,�) =

{
1− p, if ej,� = 0
p

q−1 , if ej,� �= 0

for all j ∈ [N ] and � ∈ [L] that are independent of the input
X1, . . . ,XM and the drawing indices I . For convenience,
we stack all input and output sequences to matrices X =
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Fig. 1: Visualization of the transmission scheme over the noisy drawing channel. A message W is encoded into a total of M
transmit sequences X1, . . . ,XM . Out of these M sequences, N are drawn according to the random drawing indices I . The
resulting vectors are transmitted over parallel q-ary symmetric channels, resulting in the channel output Y1, . . . ,YN .

(X1, . . . ,XM ) ∈ ΣM×L
q and Y = (Y1, . . . ,YN ) ∈ ΣN×L

q ,
such that each sequence is a row of the corresponding matrix.
Hence, the input-output relationship can be summarized as

Pr (Y = y|X = x) =
∑
i

Pr (I = i)Pr (y|x, i)

=
∑
i

Pr (I = i)

|i|∏
j=1

p(yj |xij ),

where p(yj |xij ) is according to the q-ary symmetric channel
described above. Here and in the following, we refer to the
sets {Yj : Ij = i}, i ∈ [M ] of sequences, which are obtained
from the same input sequence as clusters. Figure 1 illustrates
the transmission scheme over the noisy drawing channel.

A. Drawing Indices, Drawing Composition, and Drawing
Frequency

The distribution of the drawing indices I is an important as-
pect of the noisy drawing channel and we continue by defining
relevant random variables associated with the drawing indices.
Throughout this paper, we use the term drawing composition
D = (D1, . . . , DM ) with Di = |{j ∈ [N ] : Ij = i}|, i ∈ [M ]
for the variables, which count the number of times an input
sequence i has been drawn and the term drawing frequency
N = (N0, N1, . . . ) with Nd = |{i ∈ [M ] : Di = d}|,
d ∈ {0, . . . , N} for the variables which count the number
of input sequences that have been drawn d times. With this
definition,

N =
M∑
i=1

Di =
∑
d≥0

dNd

and
M =

∑
d≥0

Nd.

Since I is a random variable, so are the drawing composition
D and the drawing frequency N . The distributions of N and
D can directly be derived from that of I .

We impose the following three restrictions on the distribution
of I for our capacity result that will both simplify the derivation
of the bounds and ensure that the involved quantities are well-
defined. The restrictions are as follows.

Definition 1. Let Pr (I = i) be a given family of probability
mass functions2 for the drawing indices and denote by D and
N the derived drawing composition and drawing frequency.
We say that the distribution Pr (I = i) is regular if it fulfills
the following conditions.

1) Permutation invariance: The distributions Pr (I = i) and
Pr (D = d) are invariant over permutations of the vectors
i and d.

2) Frequency convergence: The distribution converges to
ν = (ν0, ν1, . . . ), νd ∈ R, d ≥ 0 in frequency, i.e., for
every ε > 0,

lim
M→∞

Pr


∑

d≥0

∣∣∣∣
Nd

M
− νd

∣∣∣∣ > ε


 = 0.

3) Bounded draws: There exists some constant c ∈ R such
that for all M ,

Pr (N ≤ cM) = 1.

We concisely highlight the main background and conse-
quences of the constraints imposed in Definition 1.

First, the distributions Pr (I = i) and Pr (D = d) are in-
variant to permutations. Under this constraint, both the index
j of an output sequence yj and the cluster sizes do not reveal
anything about the origin of an output sequence. Technically,
the uniformity of Pr (I = i) over permutations ensures that the
alternative channel model, which will be presented in Section II,
is equivalent to the noisy drawing channel. The permutation
invariance of Pr (D = d) entails the desirable property that
the assignment of output sequences with input sequences is
independent of the cluster sizes, which will be used in Lemma 7.

2We refer here to a family of probability mass functions, as the function
Pr (I = i) may vary with M . This dependence is omitted for reasons of
readability.
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Both restrictions are essential for the capacity result to hold, as
otherwise a receiver could infer information about the origin
of output sequences by observing cluster sizes or sequence
indices, which may result in a larger channel capacity.

Second, we restrict the relative drawing frequencies Nd

M to
converge to a deterministic value. This is a key requirement
of our analysis and is reflected through the appearance of
the limits ν in the capacity expression in Theorem 4. The
main effect of this property is that the overall channel quality
converges to a deterministic value and thus the capacity may
be expressed by a weighted sum of channel appearances and
their capacity. The lifting of this restriction will likely change
the capacity expression and an analysis may require techniques
used in probabilistically varying channels.

Third, the total number of draws is deterministically at most
cM for a constant c ∈ R. This is a technical requirement,
which simplifies the analysis at several instances, in particular
the proof of Lemma 8 and Lemma 14. The useful consequence
for Lemma 8 is that we can use trivial bounds on the entropy of
some sequences for rare events without an asymptotic rate loss.
On the other hand, the achievability proof is simplified, as this
restriction forbids the appearance of too many output sequences,
which may hinder clustering of sequences. It is conceivable
that this restriction is not fundamental to the channel and may
be lifted with a different proof technique.

Remark 2. We note that Definition 1 includes previously stud-
ied drawing distributions considered in [21], [23], [24], [25],
[26]. Skew sampling distributions, which are not permutation
invariant, such as the Poisson sampling distribution, however
are not covered in this definition and require further analysis.
A generalization to such distributions appears to be possible
with the same approach as in this paper. However, it further
requires computing the amount of information which may be
deduced about the origin of a sequence through observing its
draw index and cluster size.

B. Equivalent Channel using Multinomial Channels

We proceed with introducing an equivalent channel model
that will be helpful for both, an intuitive understanding and
the derivation of our analytical results. Due to the randomness
of the drawing indices, it is possible that the receiver obtains
multiple sequences that originate from the same input sequence.
To reflect this behavior, consider the following reformulation
of the input-output relationship using the drawing composition
D.

Pr (Y = y|X = x) =
∑
i,d

Pr (d)Pr (i|d)
M∏
i=1

∏
j:ij=i

p(yj |xi).

Here, the sets {j ∈ [N ] : ij = i} have size di and∏
j:ij=i p(yj |xi) is the conditional probability mass function

of a channel that has input Xi and di output sequences, each
resulting from transmitting the same sequence Xi over a q-ary
symmetric channel. This motivates to introduce an equivalent
channel presented in Figure 2. In this regard, we denote by Zi

the cluster containing the output sequences that originate from
Xi, for i = 1, . . . ,M . Here Zi = (Yj : Ij = i) ∈ ΣDi×L

q

stems from the Di-repeated transmission of Xi over a q-ary
symmetric channel. The output clusters are permuted by a
uniformly random permutation S, resulting in the permuted
clusters Z ′

i and the sequences Y1, . . . ,YN are then obtained
by a permutation of the individual sequences of the clusters.
Notice that the permutation of the clusters is immaterial to
the input-output relationship due to the uniformly random
second permutation of all sequences. However, we introduce
this permutation, since the channel from X1, . . . ,XM to
Z ′

1, . . . ,Z
′
M will be used for our converse bound later. The

overall channel is equivalent to the noisy drawing channel
as derived above due to the fact that Pr (i|d) is permutation
invariant, as required in Definition 1. Note that the splitting into
two separate permutations of clusters and individual sequences
has no additional effect on the input-output relationship of this
channel, however it will be useful for the derivation of our
results later.

The individual channels of repeated transmissions have
been discussed first by Mitzenmacher [27] for binary inputs
under the name of the binomial channel. Here we refer to
the channel as the multinomial channel as for q-ary input
alphabets, the channel law follows a multinomial distribution.
The multinomial channel is a discrete memoryless channel with
letter-wise input X ∈ Σq and output3 Z = (Z1, . . . , Zd) ∈ Σd

q ,
where d is the number of draws of the input X . Each Zi

is obtained by transmitting X repeatedly and independently
over a q-ary symmetric channel with error probability p. The
conditional channel probability of this channel is denoted
by pd(z|x). We will derive the capacity of this channel in
Lemma 22 in Appendix A.

III. CAPACITY OF THE NOISY DRAWING CHANNEL

The capacity of a channel characterizes the exact region of
code rates for which reliable communication is possible. As
introduced by Shannon [28], the capacity of a probabilistic
channel is the supremum of code rates for which transmission
with vanishing error probability is feasible. In the following,
we first specify the notion of code rates and error probabilities
over the noisy drawing channel and then proceed with stating
our main result about its capacity.

A. Error-Correcting Codes
We start with an introduction of error-correcting codes

and their rates. The input of the channel is the sequences
X1, . . . ,XM , each of length L. Thus, a code is a set
C ⊆ ΣM×L

q such that each codeword consists of M sequences,
each of length L over the alphabet Σq . Consequently, the rate
of a code C ⊆ ΣM×L

q is given by

R =
logq |C|
ML

.

Each code C is equipped with an encoder enc : [qMLR] �→ C
that maps a message W ∈ [qMLR] to a codeword and a decoder

dec :
⋃
n≥0

Σn×L
q �→ [qMLR]

3Note that although strictly speaking, Z is a vector of length d, we view Z
as a symbol of the output alphabet Σd

q and thus do not highlight it in bold.
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Fig. 2: The noisy drawing channel as the cascading of parallel multinomial channels followed by a permutation of clusters and
a joint re-indexing of all sequences within the clusters. Each cluster Zi = (Yj : Ij = i) consists of Di individual sequences.
The N = D1 + · · ·+DM individual sequences of all clusters are permuted, resulting in the output sequences Y1, . . . ,YN .

that outputs an estimate Ŵ of the original message W given
the received sequences Y1, . . . ,YN . The error probability of a
code C ⊆ ΣM×L

q and a decoder dec is given by

Pr (Err|C) = 1

qMLR

qMLR∑
w=1

Pr (dec(Y1, . . .YN ) �= w|W = w) ,

where Y1, . . .YN is the random result of transmitting
enc(W ) = (X1, . . .XM ) over the noisy drawing channel and
Err is the event that dec(Y1, . . . ,YN ) �= W . Here we assumed
that the messages are chosen uniformly from the set of all
messages W ∈ [qMLR], i.e., Pr (W = w) = 1

qMLR .

B. Noisy Channel Coding Theorem

To characterize the channel capacity and achievable rates,
it is necessary to specify how the channel parameters scale
relative to each other. We consider the regime, where q, p are
fixed and M → ∞ and M = qβL for some fixed 0 < β < 1.
This choice is motivated by the following two facts. First, the
case where M is exponential in L is the interesting case, as
for M = qβL with β > 1 it has been shown in [21] that
no positive rate can be achieved (even in the error-free case)
and for the case where M is subexponential in L, the rate
loss of indexing is asymptotically vanishing, which essentially
removes the unordered nature of the sequencing. Second, this
parameter regime is practically relevant for the case, where
one wishes to transmit many relatively short sequences, as is
the case in DNA-based archival storage. We use the standard
notion of achievable rates and channel capacity over the noisy
drawing (ND) channel as follows.

Definition 3. Let 0 < β < 1, 0 < p < 1, q ∈ N be fixed and
Pr (i) be a regular distribution that converges in frequency

to ν. Then, a code rate R is achievable, if there exists a
family of codes C(M,L) ⊆ ΣM×L

q with |C(M,L)| = qRML

together with a decoder that has vanishing error probability
Pr (Err|C(M,L)) → 0 as M → ∞, where M = qβL.

The Shannon capacity CND(ν, β, p, q) is the supremum over
the set of achievable rates.

With this definition, for any code rate R < CND(ν, β, p, q)
there exists a family of codes with rate R that has vanishing
error probability as M → ∞. Conversely, every family of
codes with code rate R > CND(ν, β, p, q) has a non-vanishing
error rate. With these prerequisites we are in the position
to formulate the main theorem on the capacity of the noisy
drawing channel. Recall to this end the definition of regularity
for the probability mass function of the drawing indices i from
Definition 1, which implies convergence in distribution and a
bounded number of draws.

Theorem 4. Let β > 0, q ∈ N, 0 < p < q−1
2q be fixed

parameters satisfying 2β < 1−Hq(2p) and Pr (i) be a given
regular distribution that converges in frequency to ν. Then,
the capacity of the noisy drawing channel is given by

CND(ν, β, p, q) =
∑
d≥0

νdCMul(d, p, q)− β(1− ν0).

We prove Theorem 4 in Sections IV and V.

C. Parameter Range

Theorem 4 holds for the range of the parameters 2β <
1−Hq(2p) and p < q−1

2q . This parameter restriction appears
in the the derivation of the converse and achievability bound
and is caused due to the following.

As we will elaborate in Section V, our proof for achievability
relies on a decoder that clusters sequences based on their
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Fig. 3: Region of channel parameters, for which Theorem 4
holds, when q = 4. For comparison, we show the region for
which the capacity was established in [26]. Common parameters
of current DNA-based storage experiments are β < 0.1 and
p < 0.1, which lie well within our region.

Hamming distance. This clustering however is only accurate
if the sequences form distinguishable clusters, i.e., sequences
within a cluster are close as compared to sequences from
different clusters. Using sphere-hardening arguments, similar to
those used in classical coding theorems [29], the clustering can
be performed accurately if the total number sequences is less
than the number of input sequences times the potential volume
of a cluster. Assuming an expected maximum relative distance
of 2p between any two sequences within a cluster, and thus a
cluster diameter of 2p, gives the inequalities β < 1−Hq(2p)
and p < q−1

2q .
On the other hand, the converse bound is derived by finding

an upper bound on the mutual information between input and
output. In our analysis, we show that under the condition 2β <
1−Hq(2p) input distributions that favor well separated clusters
maximize mutual information, resulting in matching converse
and achievability bounds and thus establishing capacity within
this region.

Compared to [25], we obtain the same parameter range.
In comparison with [26], where the capacity is derived for
2β < 1 − Hq(2p − p2 q

q−1 ) and any p, see [26, Proposition
13], Theorem 4 holds for a smaller range of parameters β, p.
The results in [26] are however restricted to independent and
uniformly distributed draws. For q = 4, we visualize the
parameter ranges of Theorem 4 and [26] in Figure 3.

D. Extension to Other Component Channels

The analysis in this paper is focused on the case, where
each output sequence is observed through the q-ary symmetric
channel with crossover probability p. While the extension
to other classes of channels is non-trivial in general4, one
may deduce some insights on more general channels from

4The case of general discrete memoryless channels has been treated in [26]
using novel techniques in their analysis.

our analysis. For example the capacity in Theorem 4 may
serve as a lower bound on the capacity of an asymmetric
memoryless channel, for which a symbol is received correctly
with probability 1− p. This is because we derive achievable
rates with a decoder that uses computations based on the
Hamming metric and sequence typicality, which may be
conservatively bounded with a symmetric channel. However,
since the channel’s asymmetry may produce a bias in output
sequences, the bound on β needs to be reevaluated for such a
channel.

Our analysis further suggests that Theorem 4 may, within
an appropriate parameter regime, generalize to channels with
memory, such as insertion and deletion channels by replacing
the capacity of the multinomial channel with the capacity of the
multiple draw insertion and deletion channel in Theorem 4. This
conjecture is substantiated by that fact that the main channel
property that our analysis requires is the forming of typical
sequences and distinguishable clusters. Thus, even without the
knowledge of the exact individual capacity expressions, one
may prove a corresponding coding theorem.

E. Practical Aspects for Code Design with Rates Approaching
Capacity

Interestingly, in contrast to the information-theoretic results,
it is still an open problem to find efficiently encodable and
decodable schemes that achieve capacity on the noisy drawing
channel. This is mainly due to the apriori incertitude how
often each input sequence is drawn combined with the loss of
ordering of sequences. We will break down these two aspects
and existing solutions for each of the aspects in the following.

Channel uncertainty: The amount of information that a
receiver may deduce about an input sequence increases with
the number of times the input sequence is observed at the
output. Since this number is random in the noisy drawing
channel, the encoder cannot choose appropriate code rates for
each sequence in advance. Thus, in order to operate close to
capacity, the input strands must be coded with appropriate
cross-correlation such that input sequences with more draws
may help in the decoding of those with less (or no) draws.
For the case, where the ordering of the output sequences is
known to the receiver, rate-matching codes [17], [18] provide a
solution to construct this correlation. Explicit constructions of
rate-matching codes exist [17], for example based on erasure
codes.

Loss of ordering: Through the random drawing of sequences,
the receiver has no immediate information about how the output
sequences may be associated with input sequences. This loss
of ordering can be combat with indexing, i.e., each input
sequence Xi is prepended with a field that designates its index
i. However, due to channel noise, also these indices require
appropriate protection from errors. As explained in the previous
paragraph, indices of sequences with more draws are easier to
decode, which implies that also the efficient decoding of the
indices requires rate-matching techniques.

The crux of the noisy drawing channel is that the combination
of these two techniques in an efficient manner is non-trivial.
On the one hand, the rate-matching techniques require a correct



7

ordering of sequences, on the other hand an efficient decoding
of the indices requires rate-matching.

For the case of Bernoulli drawing compositions this code
design issue could be elegantly solved [23] using a scheme,
which equips each sequence with an index and a capacity-
achieving code on the q-ary symmetric channel, together with
an outer erasure code. Here, the erasure code takes the roll of
the rate-matching code and a rate-matching decoding of the
indices is not necessary, as sequences may be drawn at most
once. For drawing distributions with more than one draw per
sequence, it remains however an open problem to design codes
that protect against channel uncertainty and loss of ordering.
One possible solution could be the usage of rate-matching
techniques that do not require knowledge of the sequence
ordering.

IV. CONVERSE BOUND

We start with a short overview of the ideas, which will be
used in our proof of the converse bound.

The starting point for the bound is Fano’s inequality [30],
which implies an upper bound on achievable code rates
by means of the mutual information I(X;Y ). Using the
equivalent channel model from Section II, we simplify the com-
putation of the mutual information using I(X;Y ) ≤ I(X;Z ′).
The main difficulty when deriving upper bounds on I(X;Z ′)
is the non-trivial dependence of both the output entropy H(Z ′)
and the conditional entropy H(Z ′|X) on the input distribution
Pr (X). This dependence arises due to the different effect the
permutation of the channel has on sets of input sequences,
which are either little or well distributed in Hamming distance.
In the subsequent analysis we show that for moderate noise,
input distributions that favor well separated input sequences
give the largest mutual information. As the main technique,
we use an approach similar to that in [23], which introduced a
statistic that characterizes the similarity of the output sequences
by the means of the largest subset of sequences with a certain
minimum Hamming distance. We adapt this statistic for the
case of the noisy drawing channel in Definition 6.

The converse bound for the noisy drawing channel is
formulated in the following lemma.

Lemma 5. Let β > 0, q ∈ N, 0 < p < q−1
2q be fixed

parameters satisfying 2β < 1−Hq(2p) and Pr (i) be a regular
drawing distribution that converges in frequency to ν. Then,
any achievable rate R over the noisy drawing channel satisfies

R ≤ CND(ν, β, p, q).

Proof. Let C ⊆ ΣM×L
q be a code of rate R =

logq |C|
ML . The code

C has an encoder enc and decoder dec. Denote by W ∈ [qMLR]
a uniformly random message to be transmitted over the channel
and Ŵ = dec(Y ) the output of the decoder, where Y is the
result of transmitting X = enc(W ) over the noisy drawing
channel. The error probability of this scheme is Pr (Err|C) =
Pr

(
W �= Ŵ

)
and Fano’s inequality implies that

R ≤ Pr (Err|C)R+
1 + I(X;Y )

ML
.

Here we can use Lemma 7, that we will derive in the sequel,
which gives an upper bound on the mutual information I(X;Y )
to obtain

R ≤ CND(ν, β, p, q) + Pr (Err|C)R+ o(1),

as M → ∞. By definition of achievable rate, the error
probability Pr (Err|C) has to approach 0, as M → ∞, and
we have that any achievable rate R satisfies

R ≤ CND(ν, β, p, q).

A. Bound on Mutual Information

We proceed with bounding the mutual information I(X;Y )
from above in a step-by-step fashion. In order to prove our
statements, we work with the equivalent channel presented in
Section II-B. The following statistic of the output sequences is
the key ingredient for deriving an analytically tractable upper
bound on the entropy terms of the mutual information.

Definition 6. Consider the permuted clusters Z ′ introduced
in Section II-B. Denote by D′

i = DSi
the number of draws of

the i-th output cluster Z ′
i. Write each Z ′

i as

Z ′
i =




Z ′
i,1
...

Z ′
i,D′

i


 ,

such that each Z ′
i,j corresponds to one draw of the multinomial

channel. We define U ⊆ [M ] to be the largest subset of [M ]
such that

1) For all i ∈ U : D′
i > 0.

2) For all i, j ∈ U with i �= j: dH
(
Z ′

i,1,Z
′
j,1

)
> αL.

If the largest subset is not unique, we choose the first according
to some (arbitrary) ordering of subsets. We further denote
the conditional expectation of |U| given D′ = d′ by Ud′ �
E [|U| |D′ = d′].

Note that only the size of U will be of importance later, and
we can choose U arbitrarily (but deterministic) in the case of
ties between several subsets. We start with a short explanation
of how U is used to bound the output entropy H(Z ′). The
main idea is the following. Conceptually, in Lemma 8 we will
split the output into two types of clusters. Those, which are
contained in U and those, which are not contained in U . Then,
with some careful analysis, the entropy of the free clusters in U
is bounded simply by the sum of maximum output entropies of
the corresponding multinomial channels. On the other hand, the
entropy of those clusters, which are not in U can be bounded
more severely, as their first sequence has to be close to at least
one of the sequences in the clusters in U , resulting in a smaller
entropy as compared to the free clusters. This means that, if the
input distribution is chosen such that it favors sequences that
are close in Hamming distance, which corresponds to the case
of small U , also the bound on the output entropy H(Z ′) will be
smaller. Note that there are a couple of subtleties that need to
be overcome when rigorously applying such an argument. One
important difference with respect to the derivation of [25] is
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that, the entropy of the non-free clusters is not trivially bounded
by L and we thus apply careful combinatorial arguments using
Lemma 23.

Lemma 7. Let β > 0, q ∈ N, 0 < p < q−1
2q be fixed parameters

satisfying 2β < 1 − Hq(2p) and Pr (i) be a given regular
distribution that converges in frequency to ν. Then,

I(X;Y ) ≤ MLCND(ν, β, p, q) + o(ML).

Proof. We start by using the data processing inequality to
obtain

I(X;Y ) ≤ I(X;Z ′).

In the next steps, we incorporate the permutation S into the
mutual information I(X;Z ′). To start with, we have by the
definition of mutual information

I(X;Z ′) = H(Z ′)−H(Z ′|X).

The draw variable D′ is a function of Z ′, as we can directly
infer it from the size of the clusters, and we thus can compute
the mutual information by

I(X;Z ′) = H(Z ′,D′)−H(Z ′,D′|X)

= H(Z′|D′) +H(D′)−H(Z ′|X,D′)−H(D′|X)

= H(Z ′|D′)−H(Z ′|X,D′) = I(X;Z ′|D′).

Hence, the condition on D′ does not change the mutual
information. On the other hand we can express the conditional
mutual information as

I(X;Z ′|D′)
(a)
= H(Z ′|D′)−H(Z ′|X,S,D′)

−H(S|X,D′) +H(S|X,Z ′,D′)

(b)
= H(Z ′|D′)−H(Z ′|X,S,D′)

+H(S|X,Z ′,D′)−M logq M +O(M),

where we applied the chain rule of entropy twice in equality (a).
In equality (b), it has been used that H(S|X,D′) = H(S) =
M logq M + O(M) due to the permutation invariance of D.
Expanding the condition on D′, we obtain

I(X;Z ′|D′) =
∑
d′

Pr (d′) (H(Z ′|d′)−H(Z ′|X,S,d′)

+H(S|X,Z ′,d′))− βML+O(M).

Recall from Definition 6, the notation Ud′ �
E [|U| |D′ = d′] for conditional expectation of the size
of the random variable U . Plugging in the bounds on the
conditional entropy terms H(Z ′) and H(Z ′|X) from Lemma
8, Lemma 9 and 10, we obtain

H(Z ′|d′)−H(Z ′|X,S,d′) +H(S|X,Z ′,d′)− βML

≤ L
∑
d≥0

ndCMul(d, p, q)− Ud′ logq Ud′ + L
∑
d≥D

nd

+ (M−n0−Ud′)(logq Ud′+L(Hq(α)−1))+o(ML), (1)

for any α > 2p, D ∈ N and large enough M . Denote by
f(Ud′) the terms in the mutual information expression (1) that
do not vanish and depend on Ud′ , i.e.,

f(Ud′) = (M − n0 − Ud′)(logq Ud′ + L(Hq(α)− 1))

− Ud′ logq Ud′ .

Taking the derivative with respect to Ud′ , we see that

f ′(Ud′) = − (logq Ud′ + L(Hq(α)− 1))

+ logq(e)
M − n0 − Ud′

Ud′
− logq Ud′ − logq(e)

> L(1−Hq(α)))− 2 logq Ud′ − logq(e).

Therefore, f ′(Ud′) > 0 if

Ud′ < e−
1
2 q

L(1−Hq(α))

2 = e−
1
2M

1−Hq(α)

2β .

Hence, if 2β < 1−Hq(α), the exponent of M is larger then
1 and f ′(Ud′) > 0 for all 0 ≤ Ud′ ≤ M , provided that M is
large enough. This means that f(Ud′) is strictly increasing and
using further Ud′ ≤ M−n0, as U consists of sequences, which
have been drawn at least once, we obtain for 2β < 1−Hq(α)
and large enough M ,

f(Ud′) ≤ f(M − n0) = −(M − n0) logq(M − n0).

We proceed with introducing the event Nε for an arbi-
trary ε > 0 as the event on the random variable D′ that∑

d≥0

∣∣Nd

M − νd
∣∣ ≤ ε/4. Splitting the sum over d′ in the com-

putation of I(X;Z ′|D′) according to this event and choosing
D � Dε as the smallest integer such that

∑
d≥Dε

νd ≤ ε, we
obtain

I(X;Z ′|D′) =
∑
d′

Pr (d′) I(X;Z ′|D′ = d′)

=
∑

d′ /∈Nε

Pr (d′) I(X;Z ′|d′) +
∑

d′∈Nε

Pr (d′) I(X;Z ′|d′)

(c)

≤ (Pr (D′ /∈ Nε) + 3ε)ML− (M − n0) logq(M − n0)

+ L
∑

d′∈Nε

Pr (d′)
∑
d≥0

ndCMul(d, p, q) + o(ML),

where we used that for all d′ ∈ Nε

L
∑
d≥Dε

nd ≤ ML
∑
d≥Dε

νd + ε/4ML ≤ 2εML,

and we also used I(X;Z ′|d′) ≤ H(X|d′) ≤ ML to bound
the mutual information in the first term in inequality (c).
Analyzing the term inside the sum, we find that for all d′ ∈ Nε,
it holds that

L
∑
d≥0

ndCMul(d, p, q) ≤ ML
∑
d≥0

νdCMul(d, p, q) +MLε/4.

On the other hand, we can bound

−(M − n0) logq(M − n0)

≤ −M(1− ν0 − ε/4) log(M(1− ν0 − ε/4))

≤ −βML(1− ν0) + βMLε/4 +O(M)

for all d′ ∈ Nε. Using that Pr (D′ /∈ Nε) → 0 as M → ∞ by
the definition of frequency convergence from Definition 1, we
obtain

I(X;Z ′|D′) ≤ MLCND(ν, β, p, q) + o(ML),

as we can choose ε as small as desired. Under the condition
0 < p < q−1

2q and 2β < 1 − Hq(2p), we can guarantee the



9

existence of an α with 2p < α < q−1
q and 2β < 1 −Hq(α)

thus obtain the lemma.

We proceed with a derivation of the bound on the output
entropy H(Z ′|D′ = d′) and will bound the entropy terms
H(Z ′|X,S,D′ = d′) and H(S|X,Z ′,D′ = d′) afterwards.

B. Output Entropy Bound

We start with deriving an upper bound on the output entropy,
which is given in the following lemma. Recall from Definition 6
that Ud′ depends on α.

Lemma 8. Let 0 < β < 1, q ∈ N, 0 < p < 1 be fixed
parameters. For any constant D ∈ N and any α with 0 < α <
q−1
q , the output entropy satisfies

H(Z ′|D′ = d′) ≤ L
∑
d≥0

nd(CMul(d, p, q) + dHq(p))

+ (M − n0 − Ud′)(logq Ud′ + L(Hq(α)− 1))

+ L
∑
d≥D

nd + o(ML).

Proof. We start with the observation that Z ′ given D′ is
distributed as M parallel multinomial channels with D′ draws,
induced by an input distribution, which is shuffled according
to S. We begin by splitting H(Z ′|D′ = d′) according to
d′i ≥ D or d′i < D. To this end, for an arbitrary subset
A ⊆ [M ], we introduce the notation Ac � [M ] \ A and also
the notation Z ′

A = (Z ′
i : i ∈ A) as the matrix, which contains

all output clusters Z ′
i with i ∈ A. The clusters are ordered

according to ascending indices such that the matrix is well-
defined. Abbreviating D = {i ∈ [M ] : d′i < D}, we obtain

H(Z ′|D′ = d′) = H(Z ′
D|D′ = d′,Z ′

Dc)+H(Z ′
Dc |D′ = d′),

by the chain rule of entropy. Since the individual entropy
of every cluster is trivially bounded by H(Z ′

i|D′ = d′) ≤
L(CMul(d

′
i, p, q) + d′iHq(p)), we may bound the second sum-

mand by

H(Z ′
Dc |D′ = d′) ≤

∑
i∈Dc

H(Z ′
i|D′ = d′)

≤ L
∑
i∈Dc

(CMul(d
′
i, p, q) + d′iHq(p)).

We proceed with splitting H(Z ′
D|D′ = d′,Z ′

Dc) again into
two parts, according to whether i ∈ U or not. We obtain

H(Z ′
D|D′ = d′,Z ′

Dc) ≤ H(Z′
D,U|D′ = d′,Z ′

Dc)

≤ H(Z′
D|D′ = d′,U ,Z ′

Dc) +H(U|D′ = d′).

Since U is a subset of [M ], it has at most 2M different possible
outcomes and, henceforth, the second entropy term is at most
H(U|D′ = d′) ≤ logq(2)M . We thus have

H(Z ′
D|D′ = d′,Z ′

Dc) ≤ H(Z′
D|D′ = d′,U ,Z ′

Dc) +O(M)

=
∑

u⊆[M ]

Pr (U = u|D′ = d′)H(Z ′
D|D′ = d′,U = u,Z ′

Dc)

+O(M).

We are now in the position to use the chain rule of entropy to
perform the above mentioned splitting of the remaining clusters
according to the partition u and [M ] \ u. By the chain rule of
entropy,

H(Z ′
D|D′ = d′,U = u,Z ′

Dc) ≤ H(Z′
u∩D|D′ = d′,U = u)

+H(Z ′
uc∩D|D′ = d′,U = u,Z ′

u). (2)

We proceed with bounding the first term in (2) using the fact
that the joint entropy is bounded by the sum of marginal
entropies

H(Z ′
u∩D|D′ = d′,U = u) ≤

∑
i∈u∩D

H(Z ′
i|D′ = d′,U = u).

(3)

To simplify the subsequent analysis, we fix an arbitrary ε > 0
and introduce the random binary indicator variable Fi, i ∈ [M ],
which is equal to 0, if the error vectors of the i-th cluster are
ε-typical as defined in Lemma 23, and 1, otherwise. We obtain

H(Z ′
i|D′ = d′,U = u) ≤ H(Z ′

i, Fi|D′ = d′,U = u)

(a)

≤ 1 +
∑

fi∈{0,1}

Pr (Fi = fi|D′ = d′,U = u)

H(Z ′
i|D′ = d′, Fi = fi,U = u)

(b)

≤ 1 +H(Z ′
i|D′ = d′, Fi = 0,U = u)

+ Pr (Fi = 1|D′ = d′,U = u) d′iL, (4)

where we used that the entropy of a Bernoulli random
variable is at most 1 in inequality (a). Inequality (b) follows
from splitting the sum over fi into two terms and bounding
Pr (Fi = 0|D′ = d′,U = u) ≤ 1 as well as H(Z ′

i|D′ =
d′, Fi = 1,U = u) ≤ d′iL. The latter bound is due to the
fact that the cluster Z ′

i consists of d′iL symbols over Σq and
thus its entropy is directly bounded by d′iL. Denoting the d′i
sequences of the i-th cluster by Z ′

i,1, . . . ,Z
′
i,d′

i
∈ ΣL

q as in
Definition 6, we can rewrite the above entropy as

H(Z ′
i|D′ = d′, Fi = 0,U = u)

= H
(
Z ′

i

∣∣∣D′ = d′, Fi = 0,U = u,Z ′
i,1

)

+H
(
Z ′

i,1

∣∣∣D′ = d′, Fi = 0,U = u
)
.

The first summand can be bounded using Lemma 23, as follows.
To start with, for the sake of the argument, consider the
distribution of Z ′

i given Z ′
i,1 and D′ without the condition

on Fi and U first. To this end, denote by e
(j)
i � Z ′

i,j − xi

the error vectors of the i-th cluster. As we have remarked in
the beginning of the proof, without the condition on Fi and
U those are distributed according to the multinomial channel
model, independent from the input. Now, we can express the
conditional distribution of Z ′

i

Pr
(
Z ′

i = yi

∣∣∣d′,Z ′
i,1 = y

(1)
i

)
= Pr

(
e
(2)
i − e

(1)
i = y

(2)
i − y

(1)
i ,

. . . , e
(d′

i)
i − e

(1)
i = y

(d′
i)

i − y
(1)
i

∣∣∣di = d′i,Z
′
i,1 = y

(1)
i

)

as that of the error vectors e
(j)
i − e

(1)
i . By Lemma 23, given

that Fi = 0, i.e., the error vectors are ε-typical sequences, the
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number of possible options for the error vectors is at most
qL(CMul(d

′
i,p,q)+d′

iHq(p)−1+ε). Further conditioning decreases the
number of possible options and thus, H(Z ′

i|D′ = d′, Fi =
0,U = u,Z ′

i,1) ≤ L(CMul(d
′
i, p, q)+d′iHq(p)−1+ε). Together

with the trivial bound H(Z ′
i,1|D′ = d′, Fi = 0,U = u) ≤ L,

we obtain for all i ∈ u

H(Z ′
i|D′ = d′,Fi = 0,U = u)

≤ L(CMul(d
′
i, p, q) + d′iHq(p) + ε). (5)

We now bound the second entropy term in (2) using again the
fact that the joint entropy is at most the sum of the individual
entropies and obtain

H(Z ′
uc∩D|D′ = d′,U = u,Z ′

u)

≤
∑

i∈uc:0<d′
i<D

H(Z ′
i|D′ = d′,U = u,Z ′

u), (6)

where we used that H(Z ′
i|D′ = d′,U = u,Z ′

u) = 0 for all
i ∈ [M ] \ u with d′i = 0. Performing the analogous steps as
above to introduce the conditioning on the random variable Fi,
we obtain for all i ∈ uc

H(Z ′
i|d′,U = u,Z ′

u) ≤ 1 +H(Z ′
i|d′, Fi = 0,U = u,Z ′

u)

+ Pr (Fi = 1|d′,U = u) d′iL. (7)

Using the same notation as in the derivation of the first term,
we obtain for all i ∈ uc

H(Z ′
i|D′ = d′, Fi = 0,U = u,Z ′

u)

= H
(
Z ′

i

∣∣∣D′ = d′, Fi = 0,U = u,Z ′
i,1,Z

′
u

)

+H
(
Z ′

i,1

∣∣∣D′ = d′, Fi = 0,U = u,Z ′
u

)

(c)

≤ L(CMul(d
′
i, p, q)+d′iHq(p)−1+ε+Hq(α))+logq|u|, (8)

where the first summand in inequality (c) has been bounded
using the same arguments as above. The second summand
has been bounded using the fact that, given U = u and Z ′

u,
there are only |u|qLHq(α) options for Z ′

i,1, as Z ′
i,1 has to have

distance at most αL to one of the sequences in Z ′
u. Note that

this entropy bound on the size of the Hamming ball is only
valid if α < q−1

q . Plugging (8), (7), (6), and (3), (4), (5) into
(2), we conclude that

H(Z ′|D′ = d′,U = u)

≤
M∑
i=1

L(CMul(d
′
i, p, q) + d′iHq(p) + ε)

+
∑

i∈uc:0<d′
i<D

logq |u|+ L(Hq(α)− 1)

+
∑
i∈D

Pr (Fi = 1|D′ = d′,U = u) d′iL+M

(d)
=

∑
d≥0

Lnd(CMul(d, p, q) + dHq(p) + ε)

+ (M−n0−|u|)(logq |u|+ L(Hq(α)−1))+L
∑
d≥D

nd

+
∑
i∈D

Pr (Fi = 1|D′ = d′,U = u) d′iL+M,

where in equality (d) we replaced the sum over i by a sum
over d. We further used that the number of terms in the sum
over i ∈ [M ] \ u with d′i > 0 is precisely M − n0 − |u|. As
a reminder we note that the above inequality holds for all
0 < ε < 1, where Fi is the random variable that depends on ε
through the ε-typical sequences from Lemma 23. We turn to
bounding the last summand from above

L
∑
u

Pr (U = u|D′=d′)
∑
i∈D

Pr (Fi = 1|D′=d′,U = u) d′i

= L
∑
i∈D

Pr (Fi = 1|D′=d′) d′i.

We now use that by Lemma 23, Pr (Fi = 1|D′ = d′) < ε for
all L ≥ Ld′

i
(ε). Therefore,

L
∑
i∈D

Pr (Fi = 1|D′ = d′) d′i
(e)

≤ εL
∑
i∈D

d′i
(f)

≤ εcML,

where inequality (e) holds for all L ≥ max0≤d<D Ld(ε). We
further used in inequality (f) that the total number of draws
is bounded by cM , according to Definition 1. We are now in
the position to compute the overall entropy

H(Z ′|D′ = d′,U)

=
∑

u⊆[M ]

Pr (U = u|D′ = d′)H(Z ′|D′ = d′,U = u)

≤ L
∑
d≥0

nd(CMul(d, p, q) + dHq(p))

+ E[(M − n0 − |U|)(logq |U|+ L(Hq(α)− 1))|D′ = d′]

+ L
∑
d≥D

nd + εcML+O(M)

(g)

≤ L
∑
d≥0

nd(CMul(d, p, q) + dHq(p)) + (M − n0 − Ud′)·

(logq Ud′ + L(Hq(α)− 1)) + L
∑
d≥D

nd + εcML+O(M),

where inequality (g) is due to Jensen’s inequality and the
fact that −|U| logq |U| is a concave function in |U|. Note that
this inequality holds for any constant D and large enough
L ≥ max0≤d<D Ld(ε). The claim of the lemma follows as we
can choose ε arbitrarily small.

C. Ordered Conditional Entropy Bound
Next, we compute the conditional output entropy, conditioned

on the permutation S.

Lemma 9. Let 0 < β < 1, q ∈ N, 0 < p < 1 be fixed
parameters. Then,

H(Z ′|X,S,D′ = d′) =
∑
d≥0

nddHq(p).

Proof. We can use the fact that, given S, there exists a
deterministic bijection between Z and Z ′, since Z ′

i = ZSi , to
obtain that the conditional output entropy is given by

H(Z ′|X,S,D′ = d′) = H(Z|X,S,D′ = d′)

=
∑
s

Pr (s|d′)H(Z|X,S = s,D′ = d′).
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This allows to compute the entropy by

H(Z|X,S=s,D′=d′)
(b)
=

M∑
i=1

H(Zi|X,S = s,D′ = d′)

(c)
=

M∑
i=1

H(Zi|Xi,S = s,D′ = d′)

(d)
=

M∑
i=1

diHq(p) =
∑
d≥0

nddHq(p),

where equality (b) follows from the independence of the
variables Zi given the input X and drawing composition
D (which is implicitly given by the combination of S and
D′

i = DSi). In equation (c) we used that, given Xi and
Di, the variable Z ′

i is independent of all Z ′
j and Dj with

j �= i due to the fact that Z ′
i can be expressed as the sum

of the Di-fold repetition of Xi and an error vector that is
chosen independently, as presented in Section II-B. Note that
H(Zi|Xi,S = s,D′ = d′) = diHq(p) is precisely the
channel entropy of the multinomial channel, which has been
shown in Lemma 22 to be independent of the input distribution
of Xi and thus is only dependent on Di, which we used in
equality (d).

D. Permutation Entropy Bound

The last ingredient that is missing to prove Lemma 7 is
to bound the entropy of the permutation given the input and
output sequences. Note that our proof is motivated by the idea
of [25], where a similar statement has been proven for the case
where the drawing composition is distributed according to i.i.d.
Bernoulli variables.

Lemma 10. Let 0 < β < 1, q ∈ N, 0 < p < 1 be fixed
parameters. Then, for any α with 2p < α < 1,

H(S|X,Z ′,D′ = d′) ≤ M logq M −Ud′ logq Ud′ +o(ML).

Proof. To start with, we observe that

H(S|X,Z ′,D′ = d′) = H(S|X,Z ′,U ,D′ = d′), (9)

as U is a function of Z ′ and we thus can introduce the
condition without changing the entropy. We can further expand
the entropy to

H(S|X,Z ′,U ,D′ = d′) ≤
∑
u

Pr (U = u|D′ = d′) ·

M∑
i=1

H(Si|X,Z ′,U = u,D′ = d′). (10)

On the one hand, for each i ∈ [M ] with d′i = 0, we trivially
bound H(Si|X,Z ′,U = u,D′ = d′) ≤ logq M , as there are
at most M options for si. On the other hand, for an arbitrary
δ > p, for each i ∈ [M ], we introduce the Bernoulli variable
Ei, which is equal to one, if d′i > 0 and dH

(
XSi ,Z

′
i,1

)
≥ δL

and equal to 0, otherwise. Here Z ′
i,1 ∈ ΣL

q is the first sequence
in the cluster according to the nomenclature of Definition 6.
As the Hamming distance between xsi and Z ′

i,1 is binomial

distributed with success probability p and L trials, we know
from Lemma 19 that for all i ∈ [M ] with d′i > 0

Pr (Ei = 1|d′) ≤ e−2L(δ−p)2 . (11)

This allows to derive the following upper bound on the
individual entropy terms.

H(Si|X,Z ′,U = u,D′ = d′)

≤ H(Si, Ei|X,Z ′,U = u,D′ = d′)

≤ H(Ei|X,Z ′,U = u,D′ = d′)

+H(Si|X,Z ′, Ei,U = u,D′ = d′)

(a)

≤ 1 +
∑

ei∈{0,1}

Pr (Ei = ei|U = u,D′ = d′) ·

H(Si|X,Z ′, Ei = ei,U = u,D′ = d′)

(b)

≤ 1 + Pr (Ei = 1|U = u,D′ = d′) logq M

+H(Si|X,Z ′, Ei = 0,U = u,D′ = d′), (12)

where we used in inequality (a) that the entropy of a Bernoulli
random variable is at most 1 and inequality (b) follows
from the fact that Pr (Ei = 0|U = u,D′ = d′) ≤ 1 and
the fact that we can again trivially bound the entropy of
H(Si|X,Z ′, Ei = 1,U = u,D′ = d′) by logq M . It remains
to bound H(Si|X,Z ′, Ei = 0,U = u,D′ = d′) from above.
To this end, we set δ = α/2 and for all i ∈ u, we introduce
the set

Ai =
{
j ∈ [M ] : dH

(
Xj ,Z

′
i,1

)
< δL

}

of input sequences that have distance less than δL to the first
sequence in the i-th output cluster. This set contains all input
sequences that could potentially have produced Z ′

i,1, given
that Ei = 0. Note that by definition of Ei and Ai, we directly
have Si ∈ Ai, given Ei = 0. Further, the sets Ai are disjoint,
as for any i, k ∈ u and any sequence j ∈ Ai it holds by the
triangle inequality,

dH
(
Xj ,Z

′
k,1

)
≥ dH

(
Z ′

i,1,Z
′
k,1

)
− dH

(
Xj ,Z

′
i,1

)

> (α− δ)L = δL,

implying that each j ∈ [M ] can be contained in at most one
set Ai. For all i ∈ u, Si ∈ Ai, and Si can thus assume at most
|Ai| values, limiting its entropy to at most logq |Ai|. Bounding
the entropy for all other terms i /∈ u by logq M , we obtain

∑
i:d′

i>0

H(Si|X,Z ′, Ei = 0,U = u,D′ = d′)

≤
∑

i/∈u:d′
i>0

logq M +
∑
i∈u

logq |Ai|

= (M − n0 − |u|) logM +
∑
i∈u

logq |Ai|

(c)

≤ (M − n0 − |u|) logM + |u| logq(M/|u|)
= (M − n0) logM − |u| log |u|, (13)

where inequality (c) follows from
∑

i∈u |Ai| ≤ M due to the
disjointedness of the sets Ai. Thus the sum is bounded from
above by setting |Ai| = M/|u| and using Jensen’s inequality
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and the concavity of the logarithm. Plugging (13) and (12)
into (10) and taking also those i with d′i = 0 into account, we
obtain

H(S|X,Z ′,U ,D′ = d′)

≤ M logq M +
∑
u

Pr (u|d′) ·

−|u| logq |u|+

∑
i:d′

i>0

(1 + Pr (Ei = 1|d′, u) logq M)




≤ M logq M − E
[
|U| logq |U| |D′ = d′]

+ logq M

M∑
i:d′

i>0

Pr (Ei = 1|d′) +O(M)

(d)
= M logq M − Ud′ logq Ud′ + o(ML), (14)

where we used Jensen’s inequality in inequality (d) together
with the bound (11) on the probability Pr (Ei = 1|d′), which
proves the claim of the lemma with (9).

V. ACHIEVABLE RATES

We proceed by deriving achievable rates for the noisy
drawing channel. We derive these results using standard random
coding techniques [28], [29].

The outline of our arguments is as follows. Choose a random
codebook C of rate R with independently and identically
distributed codewords that are drawn from some given input
distribution Pr (X). Then, we define a suitable decoder
and compute its average error probability, averaged over all
codebooks. We prove that for a given rate R, the average error
probability tends to zero and thus there exists at least one
codebook of rate R whose error probability also tends to zero.

Our decoder consists of the two following stages. First, the
decoder clusters the output sequences Y1, . . . ,YN to clusters of
sequences Ẑ1, . . . , ẐM , according to their Hamming distance.
If the channel is not too noisy, we prove that with high
probability sequences within a cluster originate from the same
input sequence. The second stage then matches the clusters to
input sequences of a codeword based on the following measure
of typicality. An input sequence Xi and an output cluster Ẑj

may be matched, if they are jointly typical with respect to the
multinomial channel in the sense introduced by Shannon [29],
[28]. Given a channel output Y1, . . . ,YN , the decoder then
decides for a codeword if the number of matching input-cluster
pairs is close to M . Analyzing this decoder will show that for
any rate R below the capacity of the noisy drawing channel,
the probability that the correct transmitted codeword is jointly
typical with the received word with high probability and any
other codeword is jointly typical with small probability.

We now turn to a rigorous derivation of achievable rates.
We will devote the rest of this section to prove the following
result about achievable rates in a step-by-step fashion. We will
proceed by presenting the final results first and wrap up the
necessary ingredients towards the end of the section.

Lemma 11. Let 0 < β < 1, 0 < p < q−1
2q , q ∈ N be fixed

parameters satisfying β < 1−Hq(2p) and Pr (i) be a regular

Algorithm 1 Clustering algorithm

1: Input: N received sequences Y1, . . . ,YN ; cluster radius
φL

2: Output: M Clusters Ẑ1, . . . , ẐM

3: M̂ ← 0
4: Y ← {{Y1, . . . ,YN}}
5: while Y �= ∅ do
6: M̂ ← M̂ + 1
7: for Y ∈ Y do
8: if (Ẑ

M̂
is empty) or

(
dH

(
Y , Ẑ

M̂,1

)
< φL

)
then

9: append Y to Ẑ
M̂

10: Y ← Y \ {Y }
11: if M̂ > M then discard ẐM+1, . . . , ẐM̂

12: if M̂ < M then add empty clusters Ẑ
M̂+1

, . . . , ẐM

distribution that converges in frequency to ν. Then, any rate
R with

R < CND(ν, β, p, q)

is achievable over the noisy drawing channel.

We start with setting up the necessary definitions required
for the following expositions and assume that the conditions of
Lemma 11 are fulfilled throughout the remainder of this section.
We will prove the results using the conventional random coding
argument. To this end recall the communication setup presented
in Section III-A. Let now C = {X(1), . . . ,X(qMLR)} ⊆
ΣM×L

q be a randomly chosen codebook of code rate R, where
each codeword X(i) ∈ ΣM×L

q is selected independently and
uniformly over all possible words in ΣM×L

q , i.e., each symbol
in X(i) is chosen independently and uniformly over Σq . We
will write X(i) = (X1(i), . . . ,XM (i)). In order to define
the decoder, we fix an 0 < ε < 1 and a clustering radius
α > 2p. Consider Algorithm 1, which greedily picks an output
sequence and adds other output sequences, such that their
Hamming distance with respect to the first pick is less than φL.
These sequences are combined to a cluster Ẑ1 and all elements
in Ẑ1 are removed as candidates for succeeding clusters. The
procedure successively continues to form clusters Ẑ2, . . . , ẐM̂
on the remaining sequences with the same procedure until
no more sequences are present. Afterwards, the algorithm
adds empty clusters or removes excess clusters, such that the
total number of estimated clusters is M . It is evident that
this clustering algorithm is neither efficient in computational
complexity or accuracy, however it is easy to analyze and
will suffice for our purposes. Interestingly, under some mild
conditions, this naive clustering algorithm produces many
correct clusters, as we will see in Section V-A. We proceed
with the definition of typicality.

Definition 12. Consider the q-ary multinomial channel with
error probability p, d draws and uniform input X ∈ Σq with
corresponding output Z ∈ Σd×L

q . We define the set of ε-jointly
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typical sequences x ∈ ΣL
q and z ∈ Σd×L

q by

T (L,ε)
Mul (d, p, q)�

{
(x, z) :

∣∣∣∣−
logq Pr (z)

L
−H(Z)

∣∣∣∣ < ε,

∣∣∣∣−
logq Pr (x, z)

L
−H(X,Z)

∣∣∣∣<ε

}
.

Note that usually joint typicality includes also a condition on
the input Pr (x), however in our case this is trivially fulfilled
for all input sequences since we consider uniformly distributed
input sequences. We can then define a measure of typicality
over parallel multinomial (PM) channels as follows.

Definition 13. We define the largest typicality matching
T ε
PM(x, z) between an input x = (x1, . . . ,xM ) and output

z = (z1, . . . ,zM ) as the largest integer T such that there
exist two sequences of integers i1, . . . , iT and j1, . . . , jT , with
it, jt ∈ [M ] for all 1 ≤ t ≤ T , each sequence composed of
distinct integers, such that (xit , zjt) ∈ T (L,ε)

Mul (djt , p, q) for all
1 ≤ t ≤ T , where djt is the size of the cluster zjt .

In other words, the typicality between an input X and
output Z is measured by the number of (distinct) pairs of
input sequences and output clusters (Xi,Zj) that are jointly
typical with respect to the multinomial channel. The decoder
dec(Y ) first estimates the clusters Ẑ using Algorithm 1 and
decodes to Ŵ , if X(Ŵ ) is the unique codeword that satisfies
T ε
PM(X(Ŵ ), Ẑ) ≥ M(1 − ε). If there is none or more than

two codewords that are typical in the above sense with Ẑ, then
the decoder outputs a failure, resulting in a decoding error.

We will proceed with deriving the ingredients used to prove
Lemma 11. Roughly speaking, we will first show in Lemma
14 and 15 that with high probability there are many correct
clusters and thus the typicality T ε

PM(X(i), Ẑ) is close to the
typicality T ε

PM(X(i),Z). Afterwards, we will use standard
joint typicality results to prove that, T ε

PM(X(1),Z) ≥ M(1−ε)
with high probability in Lemma 16. Conversely, we show that
if the code rate is chosen small enough, then T ε

PM(X(i),Z) <
M(1 − ε) for all 2 ≤ i ≤ qMLR with high probability
in Lemma 17. Combining these results with the fact that
T ε
PM(X(i), Ẑ) ≈ T ε

PM(X(i),Z) with high probability yields
the proof of Lemma 11.

A. Clustering Accuracy

We start with discussing the accuracy of the proposed
clustering algorithm. Consider the bipartite graph Gcluster with
vertices Zj , j ∈ [M ] on the left and Ẑi, i ∈ [M ] on the right.
We draw an edge from Zj to Ẑi, if the multiset of sequences
in Zj is equal to the multiset of sequences in Ẑi. With this
graph, we define by G the size of the largest matching5 of the
graph Gcluster, which we will refer to by correct clusters in
the sequel. The following lemma proves that the number of
correct clusters is large with high probability and essentially
uses two ingredients. First, if 2p < φ < q−1

q , the probability
that a sequence in a cluster has Hamming distance more than
φL with respect to the first sequence is small, because the

5A matching of a bipartite graph is a set of edges such that no two edges
share common end points.

expected number of errors per sequence is pL. Second, if
β < 1 − Hq(φ), the probability that a sequence of another
cluster is close to the first sequence is small. This is because
the probability that a given output sequence has Hamming
distance at most φL to the first sequence is q−L(1−Hq(φ)) and
then, under the condition on β, the union bound over all output
sequences is small.

Lemma 14. Let β > 0, q ∈ N, 0 < p < 1 be fixed parameters
and Pr (i) be a given regular distribution. Then, for any φ
with 2p < φ < q−1

q , β < 1−Hq(φ), the probability of having
at least M(1− ε) correct clusters satisfies

lim
M→∞

Pr (G ≥ M(1− ε)) = 1.

Proof. Denote by Gi, i ∈ [M ] a binary indicator variable that is
equal to 1, if Di > 0 and Zi has been clustered correctly and 0,
otherwise. Further, let M̂ be the number of non-empty clusters
produced by Algorithm 1, before removing clusters or adding
empty clusters. To start with, it holds that G ≥

∑M
i=1 Gi +

min{N0,M − M̂}, since we can construct a matching, where
we arbitrarily match the M − M̂ empty clusters and we match
each cluster yi with Gi = 1 to the correct cluster produced
by the algorithm. Note that the edges of this matching share
no common vertices, since the matching of empty clusters is
arbitrary and the non-empty clusters, produced by Algorithm
1, are disjoint by construction of the algorithm. Notably, the
bound further covers the case, where M̂ > M and we possibly
remove some of the correct clusters. Thus, by the union bound,
the probability on the number of correct clusters is at least

Pr (G ≥ M(1− ε)) ≥ 1−Pr

(
M∑
i=1

Gi ≤ M −N0 −Mε/2

)

− Pr
(
M−M̂ ≤ N0−Mε/2

)
. (15)

We proceed with showing that the sum over the variables Gi

in (15) is close to M −N0 with high probability and M − M̂
is close to N0 with high probability.

We start with the second term. To this end, let 2p < φ < q−1
q

and denote by Fj , j ∈ N the binary indicator, which is equal
to 1, if dH

(
XIj ,Yj

)
> φL/2 and 0, otherwise, where Ij

is the original input sequence that corresponds to Yj . With
this definition, we observe that M̂ ≤ M − N0 +

∑N
j=1 Fj .

This is because, whenever the clustering algorithm selects a
sequence Yj with Fj = 0, the remaining sequences j′ from
this cluster with Fj′ = 0, that have not been clustered yet,
will be contained in the estimated cluster. Thus, each sequence
Yj with Fj = 1 can produce at most one extra cluster. Since
Fj , j ∈ [N ] are independent and identical Bernoulli random
variables with success probability at most e−2L(φ/2−p)2 (see
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Lemma 19), it holds that

Pr
(
M − M̂ ≤ N0 − εM/2

)
≤ Pr




N∑
j=1

Fj ≥ Mε/2




=
∑
n

Pr (N = n)Pr




n∑
j=1

Fj ≥ Mε/2

∣∣∣∣∣N = n




(a)

≤ Pr




cM∑
j=1

Fj ≥ Mε/2

∣∣∣∣∣N = cM




(b)

≤ e
−2cM

(
ε/(2c)−e−2L(φ/2−p)2

)2

= o(1),

for all ε > 0, as M → ∞. We used in inequality (a) that
N ≤ cM with probability 1 by definition of the regular drawing
distribution together with the fact that the second probability
term is monotonically increasing in n. In inequality (b), we
employed Lemma 19 on the binomial tail.

We turn towards the first summand in (15). Recall that
according to Definition 6, we denote by Zi,1, . . . ,Zi,Di

the
sequences of a cluster Zi. We can bound the probability
Pr (Gi = 1) for all i with Di > 0 as follows. A cluster Zi is
guaranteed to be estimated correctly, if dH (Xi,Zi,j) ≤ φL/2
for all sequences j ∈ [di] and also if there exists no other
output sequence Zi′,j′ from another cluster i′ �= i that has
distance less than φL to one of the sequences in the cluster
yi. Demarginalizing with respect to the drawing composition,
we obtain

Pr(Gi = 1) =
∑
di

Pr (di)Pr (Gi = 1|di)

(c)

≥
∑
di≥1

Pr (di)
(
1−die

−2L(φ/2−p)2−cMdiq
−L(1−Hq(φ))

)

(d)
= Pr (Di≥1)−E [Di]

(
e−2L(φ/2−p)2+cq−L(1−Hq(φ)−β)

)

where in inequality (c) we used the union bound and, assuming
φ < q−1

q , we used Lemma 19 on the probability of the event
dH (Xi,Zi,j) ≤ φL/2. We further used Corollary 20 together
with a union bound that at least one of at most N ≤ cM other
i.i.d. uniform output sequences has distance at most φL to
Zi,1. In inequality (d), we used that

∑
di≥1 Pr (di) di = E [di]

and M = qβL. Next, we compute

E

[
M−N0−

M∑
i=1

Gi

]
≤M

(
ce−2L(φ/2−p)2+c2q−L(1−Hq(φ)−β)

)
,

where we used that E [N0] =
∑M

i=1 Pr (Di = 0) and∑M
i=1 E [Di] ≤ cM . Using Markov’s inequality, we conclude

that the probability of the first summand in (15) is at most

Pr

(
M −N0−

M∑
i=1

Gi ≥ Mε/2

)

≤ 2ce−2L(φ/2−p)2 + 2c2q−L(1−Hq(φ)−β)

ε
,

which approaches 0 as M → ∞ for any β < 1−Hq(φ) and
φ > 2p and thus the lemma statement follows.

X

X1

X2

X3

X4

X5

X6

Z

Z1

Z2

Z3

Z4

Z5

Z6

Ẑ
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Ẑ4

Ẑ5
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Fig. 4: Illustration of the tripartite matching graph in the proof
of Lemma 15. The solid lines highlight edges, which contribute
to the joint typicality T ε

PM(X, Ẑ).

We continue with a relationship between the number of
correct clusters and the typicality. Loosely speaking, the next
lemma shows that the sizes of the matching between X , Z,
and between X , Ẑ are close, if the number of correct clusters
is close to M .

Lemma 15. The joint typicality of X and Ẑ satisfies

|T ε
PM(X, Ẑ)− T ε

PM(X,Z)| ≤ M −G.

Proof. Consider a tripartite graph Gtri with vertices Xi, i ∈
[M ] on the left, Zi, i ∈ [M ] in the middle and Ẑi, i ∈ [M ] on
the right. We connect two vertices Xi and Zj , if (Xi,Zj) ∈
T (L,ε)
Mul (d, p, q). We further draw an edge from Zj to Ẑi, if

the multiset of sequences in Zj is equal to the multiset of
sequences in Ẑi. This tripartite graph is illustrated in Figure 4.

Let Mg ⊆ [M ] be the vertices in the middle which belong to
the largest matching between the middle and right vertices, i.e.,
that correspond to the correct clusters, and let Mt ⊆ [M ] be
the vertices in the middle which belong to a matching between
the middle and left vertices. With this definition,

T ε
PM(X, Ẑ) ≥ |Mt ∩Mg| = |Mt|+ |Mg| − |Mt ∪Mg|

(a)

≥ |Mt|+ |Mg| −M = |Mt|+G−M,

where in inequality (a) we used that both Mt and Mg are
subsets of [M ]. Choosing |Mt| = T ε

PM(X,Z) as the largest
matching between the left and middle vertices, yields an upper
bound on the difference. On the other hand,

T ε
PM(X, Ẑ) ≤ |Mt∩Mg|+|[M ]\Mg| ≤ T ε

PM(X,Z)+M−G,

since the number of correct clusters which can be matched to
an input sequence is at most the size of the largest matching on
the left |Mt∩Mg| ≤ T ε

PM(X,Z) and the |[M ]\Mg| incorrect
clusters could potentially also add to the joint typicality.
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B. Decoding Probability for the Correct Codeword

We continue with bounding the probability that the correct
codeword X(1) has many typical matches with Z.

Lemma 16. Let 0 < β < 1, 0 < p < 1, q ∈ N be fixed
and Pr (i) be a regular distribution. For any 0 < ε < 1, as
M → ∞, it holds that

Pr (T ε
PM(X(1),Z) ≥ M(1− ε)|W = 1) → 1.

Proof. We bound Pr (T ε
PM(X(1),Z) ≥ M(1− ε)|W = 1)

from below. For an arbitrary ε > 0 denote by Nε the event
on the random variable N that

∑
d≥0

∣∣nd

M − νd
∣∣ ≤ ε/4. We

demarginalize with respect to the drawing composition D and
obtain

Pr (T ε
PM(X(1),Z) ≥ M(1− ε)|W = 1)

=
∑
d

Pr (d)Pr (T ε
PM(X(1),Z) ≥ M(1− ε)|W = 1,d)

≥
∑
d∈Nε

Pr (d)Pr (T ε
PM(X(1),Z) ≥ M(1− ε)|W = 1,d) ,

where we used that the drawing composition D is independent
of the message W . Note that the event Nε is defined as an
event on the drawing frequency N , however since N is a
function of D, one can also view it as an event on the drawing
composition D. In the sequel, we will analyze the number

T ε
OPM(X(1),Z)�

∣∣∣
{
i ∈ [M ] : (Xi(1),Zi)∈T (L,ε)

Mul (di, p, q)
}∣∣∣

of ordered jointly typical pairs over the parallel multino-
mial (OPM) channel. This is because T ε

PM(X(1),Z) ≥
T ε
OPM(X(1),Z) due to the fact that each matching Zi to Xi(1)

for all pairs of sequences that contribute to T ε
OPM(X(1),Z)

also gives a matching for T ε
PM(X(1),Z). Note that this

matching could also be larger, however this bound is sufficient
for our analysis as this implies that

Pr (T ε
PM(X(1),Z) ≥ (1− ε)M |W = 1,D = d)

≥ Pr (T ε
OPM(X(1),Z) ≥ (1− ε)M |W = 1,D = d) .

For a given number of draws D = d the size of the largest
typical matching T ε

OPM(Z(1),Y ) is the sum of M independent
random Bernoulli random variables with success probabilities
πi � Pr

(
(Xi(1),Zi) ∈ T (L,ε)

Mul (di, p, q)|W = 1, Di = di

)
.

From the results about jointly typical sequences [29, Thm.
7.6.1] we know that for all ε > 0 and i ∈ [M ], it holds that
πi > 1−ε/2 for all L ≥ Ldi

, as Zi is the result of transmitting
Xi(1) over the multinomial channel. As maxi∈[M ] Ldi

might
increase with M , we focus our attention to a subset of
multinomial channels whose number of draws is bounded
from above by a large, but finite quantity. To this end, let Dε

be the smallest integer such that
∑

d≥Dε
νd < ε/4. We have

that for all d ∈ Nε, the number of positions i ∈ [M ] with
di < Dε is at least

Dε−1∑
d=0

nd ≥ M

Dε−1∑
d=0

νd −
Mε

4
> M

(
1− ε

2

)
.

Thus, at least M(1 − ε/2) Bernoulli variables have success
probability at least πi > 1− ε/2 for all L ≥ max0≤d<Dε Ld

(which is finite) and we obtain

Pr (T ε
OPM(X(1),Z) ≥ (1− ε)M |W = 1,D = d)

≥
M−Mε

2∑
i=M−Mε

(
M − Mε

2

i

)(
1− ε

2

)i ( ε

2

)M−Mε
2 −i

=

Mε
2∑

i=0

(
M − Mε

2

i

)(
1− ε

2

)M−Mε
2 −i ( ε

2

)i

= 1−
M−Mε

2∑

i=Mε
2 +1

(
M − Mε

2

i

)(
1− ε

2

)M−Mε
2 −i ( ε

2

)i

(a)

≥ 1− e
−2(M−Mε

2 )
(

ε2

4−2ε

)2

,

for all 0 < ε < 1 and large enough L. Here we used Lemma
19 to bound the binomial tail in inequality (a). Thus, finally,
for any 0 < ε < 1 and large enough L,

Pr (T ε
PM(X(1),Z) ≥ (1− ε)M |W = 1)

≥
(
1− e

−2(M−Mε
2 )

(
ε2

2−ε

)2
)
Pr (D ∈ Nε) ,

where the first term approaches 1 as M → ∞ for any 1 < ε < 0
and the second term approaches 1 as well by assumption of
convergence in frequency on the drawing distribution. The
claim of the lemma follows.

C. Decoding Probability for the Wrong Codewords

The next lemma proves that the probability that any other
codeword X(i), i ≥ 2 has many typical matches with Z is
small.

Lemma 17. Let 0 < β < 1, 0 < p < 1, q ∈ N be fixed and
Pr (i) be a regular distribution that converges in frequency to
ν. For any 0 < ε < 1, and any R < CND(ν, β, p, q)− 5ε, as
M → ∞,

Pr
(
∃i : 2≤ i≤qMLR, T ε

PM(X(i),Z)≥M(1−ε)|W = 1
)
→0.

Proof. Denote by J ′
i the event that T ε

PM(X(i),Z) ≥ M(1−ε).
We again denote by Nε the event for N that

∑
d≥0

∣∣nd

M − νd
∣∣ ≤

ε/4. Similar as in the proof of Lemma 16 we demarginalize
with respect to the drawing composition D and obtain

Pr




qMLR⋃
i=2

J ′
i

∣∣∣∣∣W = 1




≤ Pr (D /∈ Nε)+
∑
d∈Nε

Pr (d)Pr




qMLR⋃
i=2

J ′
i

∣∣∣∣∣W =1,D=d




(a)

≤ Pr (D /∈ Nε)+qMLR
∑
d∈Nε

Pr (d)Pr (J ′
2|W =1,D=d) ,

(16)

where in inequality (a) we used the union bound together with
the fact that Pr (J ′

i |W = 1,D = d) is invariant over all 2 ≤
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i ≤ qMLR due to the independent and identical choice of code-
words. To start with, denote X(2) = (X1(2), . . . ,XM (2))
as the random codeword X(2). For an arbitrary h ∈ [M ]
denote by P(M,h) = {m = (m1, . . . ,mh) ∈ [M ]h : mi �=
mj ∀ i �= j} the set of length-h partial permutations of the
set [M ]. Denote further by Tm,j a Bernoulli random variable,
which is equal to 1, if (Xm(2),Zj) ∈ T (L,ε)

Mul (dj , p, q) and 0,
otherwise. This allows to rewrite the above probability as

Pr (J ′
2|W = 1,D = d)

= Pr


∃m∈P(M,M) :

M∑
j=1

Tmj ,j≥M(1−ε)

∣∣∣∣∣W =1,D=d


.

We next use the fact that Tm,j = 1 with probability 1 for
all empty clusters, i.e., j ∈ [M ] with dj = 0. Denote by
j1, . . . , jM−n0

those indices with djt > 0 for all 1 ≤ t ≤
M − n0. Then, we can simplify the above expression by

Pr (J ′
2|W = 1,D = d)

(b)

≤
∑

m′∈P(M,M−n0)

Pr

(
M−n0∑
t=1

Tm′
t,jt

≥M(1−ε)−n0

∣∣∣∣∣W =1,D=d

)
,

where inequality (b) is due to an application of the union bound.
We will bound the above probability as follows. To start with,
since X(2) is chosen independently from Z, given D =
d, for all i, j ∈ [M ], πj � Pr (Ti,j = 1|W = 1,D = d) <
q−L(CMul(dj ,p,q)−ε) for L ≥ Ldj

[29, Thm. 7.6.1], where Ldj

are large enough integers that depend on ε and the channel dj .
Since at least M(1− ε)− n0 of the Bernoulli variables Tm′

t,jt

must be equal to 1, we can use these definitions to bound the
above probability

Pr

(
M−n0∑
t=1

Tm′
t,jt

≥ M(1− ε)− n0

∣∣∣∣∣W = 1,D = d

)

≤
∑

I⊆[M−n0]:|I|=M(1−ε)−n0

∏
t∈I

πjt

(c)

≤
∑

I⊆[M ]:|I|≤M(1−ε)

∏
j∈I

πj

≤
(

M

M(1− ε)

)
max

I⊆[M ]:|I|=M(1−ε)

∏
j∈I

πj .

Note that in inequality (c) we factored those j with dj = 0
into the product, which will simplify the subsequent notation
and analysis. Mathematically, inequality (c) holds, as each
set I1 in the first sum is contained in some set I2 of the
second sum such that the positions j ∈ I2 \ I1 are exactly
those positions with dj = 0 and πj = 1 and thus each term
in the first sum is accounted for by at least one term in the
second sum. In order to use the above bound on πj , we restrict
our attention to those channels j with at most a finite but
large number of draws, such that the maximum over Ldj

is
guaranteed to be constant in M . To this end, let Dε be the
smallest integer such that

∑
d≥Dε

νd < ε/4 and abbreviate
D(ε) = {j ∈ [M ] : dj < Dε}. We can then bound the product
over πj to

∏
j∈I

πj ≤
∏

j∈I∩D(ε)

πj <
∏

j∈I∩D(ε)

q−L(CMul(dj ,p,q)−ε)

= q−L
∑

j∈I∩D(ε)(CMul(di,p,q)−ε)

for all L ≥ max0≤d<Dε
Ld, which is constant and not a

function of M or L, as desired. Analyzing the exponent of the
error probability expression above, we find that

∑
j∈I∩D(ε)

(CMul(dj , p, q)− ε)

=




M∑
j=1

(CMul(dj , p, q)− ε)−
∑

j /∈I∩D(ε)

(CMul(dj , p, q)− ε)




(d)

≥




M∑
j=1

(CMul(dj , p, q)− ε)− 3Mε

2




=
∑
d≥0

ndCMul(d, p, q)−
5Mε

2
≥M

∑
d≥0

νdCMul(d, p, q)−
7Mε

2
,

where in inequality (d) we bounded the second sum using
CMul(dj , p, q) ≤ 1 together with the fact that by definition of
Dε and for all d ∈ Nε,

|D(ε)| =
Dε−1∑
d=0

nd ≥ M

Dε−1∑
d=0

νd −
Mε

4
> M

(
1− ε

2

)
,

and thus

|{j ∈ [M ] : j /∈ I ∩D(ε)}| ≤ M −|I|+M −|D(ε)| = 3Mε

2
.

For any 0 < ε < 1 and large enough M , and any d ∈ Nε, the
resulting upper bound Pr (J ′

2|W = 1,D = d) is henceforth

Pr (J ′
2|W = 1,D = d)

≤ |P(M,M−n0)|
(

M

M(1−ε)

)
q−ML(

∑
d≥0 νdCMul(d,p,q)−7ε/2)

(e)

≤ 2Mq−ML(
∑

d≥0 νdCMul(d,p,q)−β(1−ν0)−9ε/2), (17)

where we used
(

M
M(1−ε)

)
≤ 2M and |P(M,M −n0)| = M !

n0!
≤

MM−n0 ≤ qβLM(1−ν0+ε) for all d ∈ Nε in inequality (e).
Plugging (17) into the average code ensemble error probability
(16), we obtain

Pr




qMLR⋃
i=2

J ′
i

∣∣∣∣∣W = 1




≤ Pr (D /∈ Nε) + q−ML(−R+CND(ν,β,p,q)−9ε/2−logq(2)/L).

In the above expression, it holds that Pr (D /∈ Nε) → 0
as M → ∞ by assumption of a drawing distribution that
converges in frequency. Further, logq(2)/L → 0 as M → ∞
and thus, for any R < CND(ν, β, p, q)− 9ε/2, the sought-after
error probability converges to 0 as M → ∞, which proves the
claim of the lemma.

D. Proof of Lemma 11

We are now in the position to prove Lemma 11 using the
ingredients derived above.

Proof of Lemma 11. The average probability of a decoding
error, averaged over all codebooks, is given by

Pr (Err) =
∑
C

Pr (C)Pr (Err|C) = Pr (Err|W = 1) ,
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where the last equality is due to the symmetry of the choice of
random codebooks, see, e.g., [29, Ch. 7.7]. The two possible
error events are that either X(1) is not jointly typical with
Ẑ or that one of the other codewords is jointly typical with
respect to Ẑ. Denote by Ji the event that the i-th codeword
X(i) is jointly typical with Ẑ, i.e., T ε

PM(X(i), Ẑ) ≥ M(1−ε)
and by J c

i the complement event. By the union bound we
obtain

Pr (Err|W = 1) ≤ Pr


J c

1 ∪
qMLR⋃
i=2

Ji

∣∣∣∣∣W = 1




≤ Pr (J c
1 |W = 1) + Pr




qMLR⋃
i=2

Ji

∣∣∣∣∣W = 1


 .

The first summand can be bounded as follows. Denote by G
the event that G ≥ M(1− ε/2). We obtain

Pr(J c
1 |W = 1)

(a)

≤ Pr (J c
1 |W = 1,G) + 1− Pr (G)

(b)

≤ Pr (T ε
PM(X(1),Z)<M(1− ε/2)|W =1,G)+1−Pr (G)

(c)

≤ Pr (T ε
PM(X(1),Z)<M(1− ε/2)|W =1)

Pr (G)
+1−Pr (G)

(d)
= o(1),

where we used Lemma 21 in inequalities (a) and (c) and
Lemma 15 in inequality (b). Inequality (d) was proven by
applying Lemma 14 on the probability of having many good
clusters, where we require β < 1 −Hq(2p) and p < q−1

2q to
guarantee the existence of a suitable φ. We further used Lemma
16 on the probability of having a large matching between X
and Z. Conversely, we bound the second summand

Pr




qMLR⋃
i=2

Ji

∣∣∣∣∣W =1


 (e)

≤ Pr




qMLR⋃
i=2

Ji

∣∣∣∣∣W =1,G


+1−Pr (G) .

Abbreviate further by J ∗
i the event that T ε

PM(X(i),Z) ≥
M(1− 3ε/2), we obtain

Pr




qMLR⋃
i=2

Ji

∣∣∣∣∣W =1,G


 (f)

≤ Pr




qMLR⋃
i=2

J ∗
i

∣∣∣∣∣W =1,G




(g)

≤
Pr

(
⋃qMLR

i=2 J ∗
i

∣∣∣∣∣W =1

)

Pr (G)
(h)
= o(1),

where we used Lemma 21 in inequalities (e) and (g) and
Lemma 15 in inequality (f). Inequality (h) follows from
Lemma 14 on the probability of having many good clus-
ters and Lemma 17 on the probability of having a large
matching between X and Z under the assumption that
R < CND(ν, β, p, q) − 5ε. It follows that for any ε > 0
and R < CND(ν, β, p, q)− 5ε, the error probability vanishes,
Pr (Err|W = 1) → 0 as M → ∞.

As we can choose ε arbitrarily small, it follows that for each
R < CND(ν, β, p, q), the error probability Pr (Err|W = 1) →
0 vanishes as M → ∞. Since the average error probability over
all codebooks vanishes, for all code rates R < CND(ν, β, p, q),

there exists at least one codebook of rate R that has vanishing
error rate and thus R is an achievable rate.

VI. APPLICATION TO POPULAR DRAWING DISTRIBUTIONS

We continue with applying Theorem 4 to two examples of
popular drawing distributions.

A. Bernoulli Draws

We start with the case of independent Bernoulli draws, i.e.,
Pr (D = d) =

∏M
i=1 Pr (Di = di) and Pr (Di = 0) = 1 −

Pr (Di = 1) = r. This case has been investigated in [25]. It
is easy to check that this distribution is regular in the sense
of Definition 1 as the distribution converges in frequency to
ν0 = 1−ν1 = r by the weak law of large numbers. Further, the
number of draws is limited to M . It follows that the capacity
in this case is given by

CBer(r, β, p, q) = (1− r)(1−Hq(p)− β).

B. Independent and Uniform Draws

We now consider the case, where N = cM is fixed for some
c > 0 and I are i.i.d. variables with Pr (Ij = i) = 1

M for all
i ∈ [M ] and j ∈ [N ]. This is the distribution discussed in [1],
[2], [3], [21], [26]. We will show that the capacity with such
a drawing distribution is precisely

CDNA(c, β, p, q) =
∑
d≥0

Poic(d)CMul(d, p, q)− β(1− e−c).

In view of Theorem 4, we merely have to prove that this
distribution is regular.

Lemma 18. The distribution with i.i.d. uniform draws
Pr (Ij = i) = 1

M for all j ∈ [N ] and i ∈ [M ] is a regular
distribution that converges to νd = Poic(d) � e−ccd/d! in
frequency.

Proof. We start by showing that the drawing frequency
Nd = |{i ∈ [M ] : Di = d}| converges to νd = Poic(d)
in frequency. To this end, for an arbitrary ε > 0 denote by
Nε the event that

∑
d≥0 |Nd − Mνd| ≤ εM . We will use

the effect of Poissonization [31] of the drawing composition.
Denote by D̃i, i ∈ [M ] independent and identically distributed
random variables with mean c, i.e., Pr

(
D̃i = d

)
= νd. It

has been shown [31, Corollary 2.12] that any event on the
exact distribution has probability at most

√
2πeN times the

probability of the event for the case of i.i.d. Poisson variables.
It follows that

Pr (D /∈ Nε) ≤
√
2πeNPr

(
D̃ /∈ Ñε

)
, (18)

where Ñε is the event that
∑

d≥0 |Ñd −Mνd| ≤ εM , where
Ñd = |{i ∈ [M ] : D̃i = d}| is the drawing frequency derived
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from the i.i.d. Poisson variables. We will split the probability
in sequences with many draws and few draws,

Pr
(
D̃ /∈Nε

)
≤Pr




M1/3−1∑
d=0

|Ñd −Mνd| ≥
εM

2




+ Pr


 ∑

d≥M1/3

|Ñd −Mνd| ≥
εM

2


 . (19)

We will now use that Ñd is binomial distributed with M trials
and success probability νd and thus

Pr

(
|Ñd −Mνd| ≥

εM2/3

2

)
(a)

≤ 2e−
ε2

2 M1/3

,

where we used Lemma 19 on the two-sided binomial tail
distribution in inequality (a). Therefore, by the union bound,
the first summand in (19) is at most

Pr




M1/3−1∑
d=0

|Ñd −Mνd| ≥
εM

2




≤
M1/3−1∑

d=0

Pr

(
|Ñd−Mνd|≥

εM2/3

2

)
≤2M

1
3 e−

ε2

2 M
1
3 . (20)

Next, we will bound the second summand in (19). By the
triangle inequality, |Ñd − Mνd| ≤ Ñd + Mνd and we thus
bound the second summand by

Pr


 ∑

d≥M1/3

|Ñd −Mνd| ≥
εM

2




≤ Pr


 ∑

d≥M1/3

Ñd ≥ M


 ε

2
−

∑
d≥M1/3

νd




 .

To begin with, we see that
∑

d≥M1/3 Ñd is a binomial
distribution with M trials and success probability

∑
d≥M1/3 νd.

The tail of the Poisson distribution has exponential decay, see,
e.g., [32, Theorem 2.1], or, more precisely,

∑
d≥M1/3

νd ≤ e−M1/3

for all M ≥ (7c)3 by the result of [32, Eq. 2.11]. It follows
that we can derive the following upper bound on the outage
probability

Pr


 ∑

d≥M1/3

Ñd ≥ M


 ε

2
−

∑
d≥M1/3

νd






≤ e
−2M

(
ε/2−2e−M1/3

)2

(21)

where we used the bound on the binomial tail from Lemma 19.
Note that this inequality only holds for large enough M , as
we require M ≥ (7c)3 and also ε/2 > 2e−M1/3

in order for

Lemma 19 to apply. Plugging (21), (20), and (19) into (18),
we obtain

Pr (D /∈ Nε) ≤
√
2πecM

(
2M1/3e−

ε2

2 M1/3

+ e
−2M

(
ε/2−2e−M1/3

)2)
→ 0,

as M → ∞, as the first exponent scales at least as −ε2M1/3

and the second exponent scales as −ε2M and consequently
the polynomial scaling factors are asymptotically negligible.

Next, the total number of draws is precisely N = cM by
the definition of the drawing distribution and thus also the
maximum draws condition from Definition 1 applies.

VII. CONCLUSION

This paper deals with the noisy drawing channel. The main
contribution of our results is the derivation of Theorem 4,
which states the capacity of the channel for moderate noise
levels and a broad class of drawing distributions. Theorem 4
generalizes previous results, which have focused on different
drawing distributions.

In view of our results and related research [21], [25], [26],
there remain several intriguing open problems regarding the
noisy drawing of sequences.

• The extension of the parameter range of Theorem 4 to a
broader range or, similarly, extending the results of [26],
which hold for a larger range of parameters but more
specific drawing distributions, to more general drawing
distributions is one interesting direction. Further, even
for standard drawing distributions, the capacity for the
extremely noisy case outside the range of the results from
[26] has not yet been established.

• The generalization of the constituent channels to channels
with memory, such as insertion-deletion channels is of
practical importance in DNA-based data storage. While
the capacity for even a single insertion-deletion channel
is unknown to date, it seems not unlikely that expressions
similar to those in Theorem 4 hold, provided that one can
prove sufficient results on the appearance of clusters and
on the nature of the capacity-achieving input distribution
for multiple draw insertion-deletion channels.

• Another interesting research direction is to design ef-
ficiently encodable and decodable codes that achieve
capacity. While there exist codes for the case, where
each sequence is drawn at most once [25], the codes for
the more general case achieve rates, which are relatively
close to capacity [33], but do not yet approach capacity.
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APPENDIX A
AUXILIARY LEMMAS

Lemma 19. Let n ∈ N, 0 < p < 1 and k ∈ N, k ≥ np. Then,
the binomial tail distribution can be bounded from above by

n∑
i=k

(
n

i

)
pi(1− p)n−i ≤ 2−nD( k

n ||p),

n∑
i=k

(
n

i

)
pi(1− p)n−i ≤ e−2n( k

n−p)
2

where D(p1||p2) = p1 log(p1/p2)+(1−p1) log((1−p1)/(1−
p2)) is the Kullback-Leibler divergence between two Bernoulli
distributions with probabilities p1 and p2.

Proof. The first inequality is a well-known upper bound on the
binomial tail, which can be found in, e.g., [34, Lemma 4.7.2].
The second inequality can directly be proven using Hoeffding
inequality [35, Theorem 2.2.6], by using the property that the
expected value of the binomial distribution is equal to np.

Corollary 20. Let q ∈ N, α < q−1
q and x,y ∈ Σn

q be random
sequences. If x is i.i.d. uniform and independent from y, then

Pr (dH (x,y) ≤ αL) ≤ q−n(1−Hq(α)).

Proof. The statement follows from Lemma 19 as follows.

Pr (dH (x,y) ≤ αL) =

αn∑
i=0

(
n

i

)(
1

q

)i (
q − 1

q

)n−i

(a)
=

n∑
i=(1−α)n

(
n

i

)(
q − 1

q

)i (
1

q

)n−i

(b)

≤ 2−nD((1−α)||(1/q)) = q−n(1−Hq(α)),

where in inequality (a), we made a change of variable of the
summation index i → n − i and in inequality (b), we used
Lemma 19.

Lemma 21. For any events A,B, the conditional probability
of A given B satisfies

Pr (A) + Pr (B)− 1 ≤ Pr (A|B) ≤ Pr (A)

Pr (B)
.

Proof. The proof follows directly from basic stochastic princi-
ples. On the one hand, we have

Pr (A|B) = Pr (A ∩ B)
Pr (B)

≤ Pr (A)

Pr (B)
.

For the lower bound, we denote by Bc the complement event
of B with Pr (Bc) = 1−Pr (B). The lower bound then follows
from the following series of inequalities

Pr (A|B) = Pr (A ∩ B)
Pr (B)

≥ Pr (A ∩ B)

= Pr (A)− Pr (A ∩ Bc) ≥ Pr (A)− Pr (Bc) .

Lemma 22. The capacity of the q-ary multinomial channel
with d draws and error probability p is given by

CMul(d, p, q) =
1

q

∑
t0,...,tq−1:

t0+···+tq−1=d

(
d

t0, . . . , tq−1

) q−1∑
i=0

(1− p)ti ·

(
p

q − 1

)d−ti

logq




(1− p)ti
(

p
q−1

)−ti

1
q

∑q−1
j=0(1− p)tj

(
p

q−1

)−tj


 ,

where
(

d
t0,...,tq−1

)
= d!

t0!·t1!...tq−1!
is the multinomial coefficient.

The capacity achieving input distribution is the uniform
distribution.

Proof. We begin by noticing that the multinomial channel is
discrete and memoryless channel. Therefore, the capacity can
be found by maximizing the symbol-wise mutual information

CMul(d, p) = max
Pr(x)

I(X;Y ).

We start by finding the maximizing input distribution Pr (x)
and then compute the mutual information for this distribution.
To this end, we first show that the channel exhibits symmetry, as
defined in [36, Chapter 4.5], which allows to use [36, Theorem
4.5.2] to conclude that the uniform input distribution maximizes
the mutual information. Using our notation, a channel is called
symmetric6 if there exists a partition Σd

q(1), . . . ,Σ
d
q(P ) of

Σd
q such that for each part j ∈ [P ] it holds that the multiset

{{pd(y|x) : x ∈ Σq}} is invariant over all y ∈ Σd
q(j) and the

multiset
{{
pd(y|x) : y ∈ Σd

q(j)
}}

is invariant over all x ∈ Σq .
In our case we will partition Σd

q into parts for which the set of
all numbers of symbol occurrences is the same. More precisely,
let ctx(y) = |{i ∈ [d] : yi = x}| be the number of occurrences
of the symbol x ∈ Σq in y and we define the count spectrum

cs(y) = {{ctx(y) : x ∈ Σq}}

as the multiset of the number of occurrences of each symbol
in y. We then partition Σd

q into Σd
q(1), . . . ,Σ

d
q(P ) according

to cs(Y ) such that for all y1 ∈ Σd
q(j1), and y2 ∈ Σd

q(j2),
cs(y1) = cs(y2) holds if and only if j1 = j2. Therefore cs(y)
is constant over all y in one part Σd

q(j). Using the fact that

pd(y|x) = (1− p)d−t

(
p

q − 1

)t

,

where t = |{i ∈ [d] : yi �= x}| is the number of times that a
symbol in y is different from x, we have

{{pd(y|x) : x ∈ Σq}}=

{{
(1− p)d−t

(
p

q − 1

)t

: t∈cs(y)

}}
,

which is invariant over all y ∈ Σd
q(j). Further, for all x ∈ Σq

the number

|{y ∈ Σd
q(j) : |{i ∈ [d] : yi �= x}| = t}|

6In other words, if we view pd(y|x) as a matrix, whose rows are indexed
by x and whose columns are indexed by y, then a channel is symmetric if
there exists a partition of the columns of the matrix pd(y|x) such that each
submatrix, obtained by restricting pd(y|x) to the columns corresponding to a
part, has the property that the rows are permutations of each other and the
columns are permutation of each other.
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of words y ∈ Σd
q(j) with a given cs(y) that have exactly

t symbols equal to a given x ∈ Σq is only a function of
j and t and does not depend on x. it follows that the set{{
pd(y|x) : y ∈ Σd

q(j)
}}

does not depend on x and thus the
multinomial channel is symmetric.

Due to the symmetry, we know that the uniform input
distribution Pr (x) = 1

q for all x ∈ Σq maximizes mutual
information. We thus proceed with computing the entropies
H(Y ) and H(Y |X) for uniform inputs. We obtain for the
output distribution

Pr (y) =
∑
x∈Σq

pd(y|x)Pr (x)

=
1

q

∑
a∈Σq

(1− p)cta(y)
(

p

q − 1

)d−cta(y)

,

where we used that the multiset {{pd(y|x) : x ∈ Σq}} does
not depend on x as shown above and we thus can express
Pr (y) only as a function of the number of appearances of each
symbol a ∈ Σq in y. In order to compute the output entropy,
we now use the fact the number of y ∈ Σd

q with a given symbol
composition t0, . . . , tq−1 ∈ N0, is given by

|{y ∈ Σd
q : cta(y) = ta ∀ a ∈ Σq}| =

(
d

t0, . . . , tq−1

)
,

where ti is the number of times the i-th symbol in Σq appears
in y and

(
d

t0,...,tq−1

)
is the multinomial coefficient. Combining

all words y with a given composition in the computation of
the output entropy, we obtain

H(Y ) = −1

q

∑
t0,...,tq−1:

t0+···+tq−1=d

(
d

t0, . . . , tq−1

) q−1∑
i=0

(1− p)ti ·

(
p

q − 1

)d−ti

logq


1

q

q−1∑
j=0

(1− p)tj
(

p

q − 1

)d−tj


 ,

where the sum over t0, . . . , tq−1 is over all possible composi-
tions of a vector in Σd

q . Finally, we compute the conditional
entropy to

H(Y |X) =−
∑
y∈Σd

q

∑
x∈Σd

pd(y|x)Pr (x) logq pd(y|x)

= − 1

q

∑
y∈Σd

q

∑
a∈Σq

(1− p)cta(y)
(

p

q − 1

)d−cta(y)

·

logq

(
(1− p)cta(y)

(
p

q − 1

)d−cta(y)
)
,

where we used that {{pd(y|x) : x ∈ Σq}} is independent of x,
as shown before and could thus replace the sum over x by a
sum over the symbol count spectrum of y. Combining those y
with the same composition t0, . . . , tq−1, we arrive at

H(Y |X) =− 1

q

∑
t0,...,tq−1:

t0+···+tq−1=d

(
d

t0, . . . , tq−1

) q−1∑
i=0

(1− p)ti ·

(
p

q − 1

)d−ti

logq

(
(1− p)ti

(
p

q − 1

)d−ti
)
.
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Fig. 5: Capacity of the multinomial channel for q = 4 and
different number of draws d over the channel error probability
p.

Notice that the conditional entropy H(Y |X) = dHq(p), where
Hq(p) is the q-ary entropy function, however here we prefer
to express the entropy in the above form as this way it can
compactly be combined with H(Y ). The lemma then follows
from the fact that I(X;Y ) = H(Y )−H(Y |X) with uniformly
distributed inputs X .

Figure 5 shows the capacity of the multinomial channel for
the DNA alphabet Σ4 = {A,C,G,T} for different numbers of
draws over the channel error probability.

Lemma 23. Let the parameters d, p, q of the multinomial chan-
nel be arbitrary and fixed. Further, let Ei = (Ei,1, . . . , Ei,L) ∈
ΣL

q , 1 ≤ i ≤ d be random error vectors with independently
and identically distributed entries

Pr (Ei,� = ei,�) =

{
1− p, if ei,� = 0
p

q−1 , if ei,� �= 0
,

for all 1 ≤ i ≤ d and 1 ≤ � ≤ L. For an arbitrary ε > 0, let F
be the event that the sequence E′ � (E2−E1, . . . ,Ed−E1) ∈
Σ

(d−1)×L
q is an ε-typical sequence7. Then, the number of ε-

typical sequences e′ is at most qL(CMul(d,p,q)+dHq(p)−1+ε) and
there exists an integer Ld(ε), such that for all L ≥ Ld(ε), it
holds that Pr (F) ≥ 1− ε.

Proof. To start with, define the single letter variable E′ =
(E2 − E1, . . . , Ed − E1), where Ei ∈ Σq, 1 ≤ i ≤ d are
independently and identically distributed variables with

Pr (Ei = ei) =

{
1− p, if ei = 0
p

q−1 , if ei �= 0
.

Notice that with this definition E′ is a sequence of vectors
over Σd−1

q , where each vector is independently and identically

7By typical, we refer to typical in the Shannon-sense, i.e., their log-
probability is close to the negative entropy. For more details, see [28] and [29,
Chapter 3].
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distributed according to Pr (E′ = e′). We can thus define set
of ε-typical sequences T L,ε

QSC(d, p, q) as

T (L,ε)
QSC (d, p, q)

�

{
e′ ∈ Σ(d−1)×L

q :

∣∣∣∣−
logq Pr (e

′)

L
−H(E′)

∣∣∣∣ < ε)

}
.

By the standard asymptotic equipartition property [29, Thm
3.1.2], it follows that Pr (F) ≥ 1 − ε for all L ≥ Ld(ε),
where Ld(ε) is a constant that depends only on d, p, q
and ε. Further, the asymptotic equipartition property implies
|T (L,ε)

QSC (d, p, q)| ≤ |2L(H(e′)+ε)| for any L.
It remains to compute the entropy H(e′). We will do so

by relating the entropy H(E′) with the output entropy of
the multinomial channel. To this end, let X ∈ Σq be a
random variable, which is uniform and is independent of
E1, . . . , Ed, which will be used as the input of the multinomial
channel. Denote further by Y = (X + E1, . . . , X + Ed) the
corresponding output. Then, as the uniform input distribution
maximizes the mutual information between X and Y , on the
one hand, we know from Lemma 22 that

H(Y ) = I(X;Y ) +H(Y |X) = CMul(d, p, q) + dHq(p).

On the other hand, we show that E′ is independent of E1+X
using the following sequence of equalities,

Pr (E′ = e′|E1 +X = y1) =
Pr (E′ = e′, E1 +X = y1)

Pr (E1 +X = y1)
(a)
= qPr (E′ = e′, E1 +X = y1)

(b)
=

∑
e1∈Σq

qPr (E′ = e′, E1 = e1, X = y1 − e1)

(c)
=

∑
e1∈Σq

Pr (E′ = e′, E1 = e1) ,

where we used in equality (a) that Pr (E1 +X = y1) = 1/q
for all y1, as the sum of a uniform distribution x with any
independent variable E1 is again uniformly distributed over
Σq . In equality (b), we demarginalized with respect to x and in
equality (c), we used the independence of x from E1, . . . , Ed

and Pr (X = y1 − e1) =
1
q due to the uniform distribution of

x. This proves that E′ is independent of E1 +X . It follows
that

H(E′) = H(E′|E1 +X)
(d)
= H(E2 +X, . . . , Ed +X|E1 +X)

= H(Y )−H(Y1) = CMul(d, p, q) + dHq(p)− 1,

where we used [29, Problem 2.14] on the conditional entropy
of a sum in inequality (d).
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