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Abstract

Hybrid (and impact) systems are dynamical systems experiencing both con-
tinuous and discrete transitions. In this work, we derive necessary and sufficient
conditions for when a given differential form is invariant, with special attention
paid to the case of the existence of invariant volumes. Particular attention is given
to impact systems where the continuous dynamics are Lagrangian and subject to
nonholonomic constraints. A celebrated result for volume-preserving dynamical
systems is Poincaré recurrence. In order to be recurrent, trajectories need to ex-
ist for long periods of time, which can be controlled in continuous-time systems
through e.g. compactness. For hybrid systems, an additional mechanism can occur
which breaks long-time existence: Zeno (infinitely many discrete transitions in a
finite amount of time). We demonstrate that the existence of a smooth invariant vol-
ume severely inhibits Zeno behavior; hybrid systems with the “boundary identity
property” along with an invariant volume-form have almost no Zeno trajectories
(although Zeno trajectories can still exist). This leads to the result that many bil-
liards (e.g. the classical point, the rolling disk, and the rolling ball) are recurrent
independent on the shape of the compact table-top.

1. Introduction

The standard billiard problem models the billiard ball as a point particle and
studies its trajectory assuming that it moves in straight lines between impacts and
under goes specular reflection (angle of incidence equals the angle of reflection)
during impact, e.g. [2,9,10,24] and the references therein to name only a few.
However, real billiard balls are not point particles; billiard balls are balls. An actual
rolling ball is an example of a nonholonomic system (it is subject to velocity-
dependent constraints). Treating the billiard ball as an actual ball complicates the
dynamics: the ball is no longer required to travel in straight lines as the ball’s spin
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influences its trajectory and the symmetric nature of impacts is destroyed (linear
momentum can be converted to angular momentum and vice versa). The goal of
this work is to understand this situation and is split up into three main goals: (a)
determine the proper impacts for nonholonomic systems, (b) understand and find
conditions for when an arbitrary differential form is preserved under impacts, and
(c) to use the power and utility of invariant forms to provide information on the
Zeno phenomenon in hybrid systems. The emphasis of this work is to deal with
(b) and (c) while (a) will be used to supply a rich plethora of examples. We point
out that there does not seem to be any results concerning goals (b) or (c) (with the
exception of some partial and limited results discussed below).

Classical mechanical systems that are not subject to nonholonomic (nonin-
tegrable) constraints satisfy the principle of least action and, equivalently, their
trajectories satisfy the Euler-Lagrange equations. Following this same paradigm,
mechanical impacts are assumed to also satisfy the principle of least action which
results in the well-knownWeierstrass-Erdmann corner conditions (these conditions
specify that energy is conserved at impact and the change in velocity is perpendicu-
lar to the normal of the impacting surface). Nonholonomic systems, by contrast, do
not satisfy the principle of least action (they are not variational). Rather they satisfy
the Lagrange-d’Alembert principle which results in the “dynamic nonholonomic
equations of motion,” [5]. For nonholonomic systems with impacts, the impact
equations are no longer given by the Weierstrass-Erdmann conditions, but rather a
modified version arising from the Lagrange-d’Alembert principle. The first goal of
this work is to derive this impact map and is the focus of Sect. 3. This problem has
been studied, albeit differently, in e.g. [17,38–40].

For a general continuous-time dynamical system generated by a differential
equation ẋ = X (x) where x ∈ M , a smooth function is a constant of motion if
LX f = 0 where L is the usual Lie derivative. Moreover, an arbitrary differential
k-form, α ∈ �k(M), is preserved under the flow if LXα = 0. For unconstrained
mechanical systems, it is known that the energy (a 0-form) and the symplectic
form (a 2-form) are always preserved under the flow. This question becomes more
difficult for hybrid/impact systems as we lose continuity at the point of impact and
differentiability falls away. In the context of this work, a hybrid/impact system will
be of the form {

ẋ = X (x), x ∈ M \ S

x+ = �(x−), x ∈ S,

where S ⊂ M is a codimension 1 embedded submanifold and � : S → M is
the reset map. A smooth function is a constant of motion if both LX f = 0 and
f ◦ � = f . An important consequence of this is that energy is still a constant of
motion for impact systems. It is known, through more direct calculations, that the
symplectic form is preserved in impact systems, [41,44]. Be that as it may, a general
test for invariant forms does not seem to exist and is rather subtle as �∗α = α is
not the correct approach. The correct test is the topic of Sect. 4.

The culmination of our study of invariant differential forms is to examine invari-
ant volumes and invariantmeasures to buildmeasurable dynamics for hybrid/impact
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systems. The Krylov-Bogolyubov theorem [26] still holds for hybrid systems [16]
which guarantees that invariant measures always exist. Even though these mea-
sures exist, they can be singular which does not convey much information about
the underlying system. As such, we apply the machinery for invariant differential
forms to construct a “hybrid cohomology equation” which, if solvable, produces
a smooth hybrid-invariant measure. Section 5 shows that there exists a smooth in-
variant volume for unconstrained mechanical systems with impacts and also lays
out conditions for when nonholonomic systems with impacts possess an invariant
volume. It turns out that if an invariant volume exists for a nonholonomic system
with impacts, it exists independently of the choice of impact surface. This implies
that the billiard problem with an actual ball (or vertical rolling coin) undergoes
Poincaré recurrence for any bounded table-top - with the important caveat of the
possibility of Zeno trajectories.

The final main endeavor of this work is to examine how measure-preservation
influences the Zeno phenomenon in hybrid systems. Roughly speaking, a trajectory
in a hybrid system is Zeno if it undergoes infinitely many impacts in a finite amount
of time. This issue has received a considerable amount of attention, cf. e.g. [3,4,8,
28,37]. The standard example of hybrid systems with Zeno trajectories are impact
systems with inelastic collisions [29]. This class of examples possess both energy
and volume dissipation which makes it difficult to ascertain which mechanism
is responsible for Zeno, cf. Example 1 and Fig. 1 below. By abandoning physical
impact laws it is possible to get energy-preserving systemswith Zeno, cf. Example 2
and Fig. 2 below. Although energy is preserved, volume is still contracting. Section
6 examines how the presence of an invariant measure inhibits the existence of
too many Zeno trajectories. Zeno can still occur, but (under a few extra regularity
assumptions which mechanical impact systems satisfy) Zeno can almost never
occur.

Example 1. (Bouncing Ball) Consider the inelastic bouncing ball. The continuous
dynamics are given by

ẋ = 1

m
p, ṗ = −mg,

where x its the ball’s height, p its momentum, m its mass, and g is the acceleration
due to gravity. When the ball strikes the table, the state changes according to the
restitution law,

�(x, p) = (x,−c · p),
where 0 < c < 1. Between impacts, both volume and energy are conserved while
both diminish at impacts as shown in Fig. 1. Both the energy and volume collapse
to zero at the Zeno time. This seems to imply a connection between energy dissi-
pation/volume contraction and Zeno. It turns out that energy conservation implies
volume conservation (Proposition 3) and volume conservation implies that Zeno
almost never occurs (Theorem 11).
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Fig. 1. Plots of the bouncing ball with dissipative impacts, m = g = 1 and c = 3/4.
Upper left: The phase portrait of the system. The blue arrows designate the continuous-
time dynamics while the dashed curve is a trajectory. The black/blue/red regions illustrate
propagation of phase volume. Due to continuous-time volume conservation of Hamiltonian
systems, the black and blue regions have equal area. However, the red region has strictly
smaller area due to the contraction of the impact. Upper right: The position vs time trajectory.
Lower left: The energy of the ball vs time. Lower right: The infinitesimal volume vs time

Example 2. (Energy preserving Zeno) Consider the planar system with dynamics

ẍ = 0, ÿ = 0,

with the reset law

�(x, y, px , py) = (x, y, px ,−py),

occurring when x = y or x = −y. This system preserves energy but still results in
Zeno when the trajectory enters the “cross”.

This paper is organized as follows: Sect. 2 outlines basics of both hybrid dy-
namical systems and geometric mechanics. Section 3 derives the impact map for
both unconstrained and nonholonomic impact systems. Section 4 derives conditions
for whether or not differential forms are hybrid-invariant and Sect. 5 specializes
to the case of invariant volume forms in mechanical systems. Section 6 explores
how volume-preservation influences the existence of Zeno states and presents an
example of a volume-preserving impact system with a Zeno trajectory. Section 7
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Fig. 2. Left: The (Zeno) trajectory. Right: The infinitesimal volume around the initial con-
dition

is a short section applying the results developed to Filippov systems. Section 8
contains two examples: the Chaplygin sleigh and the (vertical) rolling disk. Some
future research directions are presented in Sect. 9.

2. Preliminaries

We review some notation and definitions from both hybrid systems and geo-
metric mechanics.

2.1. Hybrid systems

This subsection is devoted to defining notation and presenting our version of a
hybrid system and, as such, we will not be concerned with the minutia of defining
the solution concept for hybrid systems. For more details on foundations of hybrid
systems, see e.g. [21,22].

A hybrid dynamical system is a dynamical system that experiences both con-
tinuous and discrete transitions. There exist many different, nonequivalent, ways to
formalize this idea. However, as we are concernedwithmodeling impactmechanics
as hybrid systems, we will use the following definition for a hybrid system which
depends on four pieces of data [8,15,22,34]. Throughout, smooth will mean C∞
(although most results can be relaxed to C1).

Definition 1. A hybrid dynamical system (HDS) is a 4-tuple, H = (M, S, X,�),
such that

(H.1) M is a smooth (finite-dimensional) manifold,
(H.2) S ⊂ M is a smooth embedded submanifold with co-dimension 1,
(H.3) X : M → T M is a smooth vector field,
(H.4) � : S → M is a smooth map whose image is an embedded submanifold,

and
(H.5) S ∩ �(S) = ∅ and S ∩ �(S) has co-dimension at least 2.
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The manifold M is called the state-space, S the impact surface, X the continuous
dynamics, and � the impact map, discrete dynamics, or the reset map. There are
no assumptions on the rank of �.

Remark 1. The axiom (H.5) is in place to disallow beating. Beating iswhen repeated
resets happen instantaneously; this phenomenonwill be ignored in thiswork as it is a
detriment to differentiability, particularly this assumption is critical to Theorem 1. It
is important to point out that beating is not when multiple (different) impacts occur
simultaneously, e.g. multi-legged walking when multiple legs strike the ground
simultaneously. In this case S would fail to be differentiable and violates (H.2).
This axiom will also come in useful in §6 where we prove that if there exists a
smooth invariant volume, then Zeno solutions almost never happen.

The hybrid dynamics can be informally described as{
ẋ = X (x), x 
∈ S,

x+ = �(x−), x− ∈ S; (1)

that is, the dynamics follow the continuous dynamics ẋ = X (x) away from S and
get reinitialized by � when the set S is reached.

2.1.1. Regularity of solutions We end our preliminary discussion of hybrid sys-
tems with a section on regularity of their solutions. This is needed as we will be
considering differential forms which requires a notion of differentiability. We start
with the solution concept: the hybrid flow.

Definition 2. LetH = (M, S, X,�) be an HDS. Let ϕ : R × M → M be the flow
for the continuous dynamics ẋ = X (x). Additionally, let ϕH : R × M → M be
the flow for the hybrid dynamics (1), i.e. ϕH satisfies

ϕH(t, x) = ϕ(t, x),

if, for all s ∈ [0, t], ϕ(s, x) 
∈ S, and if ϕ(s, x) 
∈ S for all s ∈ [0, t) but ϕ(t, x) ∈ S,
then

lim
s→t+

ϕH(s, x) = �

(
lim
s→t−

ϕH(s, t)

)
.

For more details on the solution concept, cf. e.g. [21].
Obviously, ϕH will not be differentiable (as it is not continuous at the impact

surface). However, it can satisfy the weaker property of being quasi-smooth, which
is a similar idea to being quasi-continuous [18,22].

Definition 3. Consider a hybrid dynamical systemH = (M, S, X,�) with hybrid
flow ϕH.H has the quasi-smooth dependence property if for every x ∈ M \ S and
t ∈ R such that ϕH(t, x) 
∈ S, there exists an open neighborhood x ∈ U such that
U ∩ S = ∅ and the map ϕH(t, ·) : U → M is smooth.

The quasi-smooth dependence property follows, essentially, from the continuous
flow and the impact surface being transverse, cf. Chapter 2 in [12].
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Theorem 1. ([12]) LetH = (M, S, X,�) be a hybrid dynamical system satisfying
(H.1)-(H.5). In addition, suppose that H satisfies

(A.1) If ϕH(t, x) ∈ S \ S, then there exists ε > 0 such that for all 0 < δ < ε we
have ϕH(t + δ, x) 
∈ S, and

(A.2) For all x ∈ S, we have TxM = Tx S ⊕ X (x)R.

Then, H has the quasi-smooth dependence property and

(A.3) If ϕH(t, x) ∈ S, then there exists ε > 0 such that for all 0 < δ < ε we have
ϕH(t + δ, x) 
∈ S.

Definition 4. A hybrid dynamical system satisfying (H.1)-(H.5) and (A.1)-(A.2) is
called smooth.

Remark 2. The condition (A.1) prohibits the trajectory from entering S through S.
Condition (A.2) is that the continuous dynamics are transverse to S. Finally, (A.3)
requires trajectories entering S to immediately leave S. In the language of mechan-
ical impact systems, (A.1) prohibits grazing impacts and (A.3) states that impacts
must move the particle away from the obstacle. These regularity assumptions are
important to control Zeno and to allow for the quasi-smooth dependence property.
Plastic impacts are not smooth and are not considered in this work.

2.2. Geometric mechanics

Although we present criteria for invariant differential forms which apply for
any smooth hybrid dynamical system, the focus of the results and examples will
all be mechanical impact systems. These systems will be presented as Lagrangian/
Hamiltonian systems. We review these systems here as well as nonholonomic con-
straints. Our overview will be brief; for more information cf., e.g. [1] and [5].

2.2.1. Lagrangianmechanics For a mechanical system, the space of all possible
positions is given by a (smooth) manifold Q called the configuration space. La-
grangian mechanics is defined by a function on the tangent bundle L : T Q → R

called the Lagrangian function. The equations of motion are given by the Euler-
Lagrange equations:

d

dt

∂L

∂ q̇
− ∂L

∂q
= 0. (2)

For most physical examples, the Lagrangian is the difference between the system’s
kinetic and potential energy. Lagrangians of this form are called natural.

Definition 5. A Lagrangian L : T Q → R is called natural if

L(q, q̇) = 1

2
gq(q̇, q̇) − V (q),

where g is a Riemannian metric on Q and V : Q → R is the potential energy.

Throughout, all Lagrangians will be assumed to be natural.
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2.2.2. Hamiltonianmechanics While Lagrangian mechanics evolves on the tan-
gent bundle, Hamiltonian systems evolve on the cotangent bundle. Given a Hamil-
tonian function, H : T ∗Q → R, the dynamics are given by Hamilton’s equations,

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
, (3)

or, equivalently, by

dH = iXH ω,

where ω = dqi ∧ dpi is the standard symplectic form on T ∗Q and iXω = ω(X, ·)
is the contraction.

Lagrangian and Hamiltonian systems are intimately related through the Legen-
dre transform. We first define the fiber derivative:

FL : T Q → T ∗Q, FL(v)(w) = d

dt

∣∣∣∣
t=0

L(q, v + tw).

When L is natural, the fiber derivative is a diffeomorphism and we have FL(v) =
g(v, ·). As long as the fiber derivative is invertable, we can define the Legendre
transform via

H(q, p) = p(q̇) − L(q, q̇), p = FL(q̇).

With this association, the equations of motion (2) and (3) are equivalent (cf. 3.6.2
in [1]).

A famous property of Hamiltonian systems is that they preserve the symplectic
form (and, consequently, the induced volume form), i.e. if ϕt is the flow of a
Hamiltonian system (3), then ϕ∗

t ω = ω and ϕ∗
t ω

n = ωn . We will show in Sect. 5
that this property will still hold true when impacts are present.

2.2.3. Nonholonomicmechanics We end our preliminary discussion with a brief
overview of nonholonomic systems. Constraints in Lagrangian systemsmanifest as
specifying a submanifoldD ⊂ T Q such that the dynamics are required to evolve on
D. Throughout this work, wewill assume thatD is a distribution, i.e. the constraints
are linear in the velocities. For more information on nonholonomic systems, cf. e.g.
[5,35].

For our purposes, the constraint manifold D will be given by the joint kernels
of differential 1-forms, i.e.

D =
m⋂

α=1

ker ηα =
{
(q, q̇) ∈ T Q : ηα

q (q̇) = 0
}

, ηα ∈ �1(Q).

With these constraints, the equations ofmotion according to theLagrange-d’Alembert
principle are

d

dt

∂L

∂ q̇
− ∂L

∂q
= λατ ∗

Qηα, τQ : T Q → Q
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ηα(q̇) = 0,

in the Lagrangian formalism. These can be equivalently described in Hamilton’s
formalism via

iXD
H

ω = dH + λαπ∗
Qηα

P(Wα)(q, p) := 〈p,Wα(q)〉 = 0,

where Wα = FL−1ηα are dual vector fields and πQ : T ∗Q → Q is the canonical
cotangent projection. A useful matrix that will appear in many of the computations
throughout this work is the constraint mass matrix.

Definition 6. Let C = {η1, . . . , ηm} be a collection of 1-forms describing the
constraint manifold D ⊂ T Q. Let Wα := FL−1ηα be the corresponding vector
fields with a natural Lagrangian. Then, the constraint mass matrix,

(
mαβ

)
is given

by

mαβ = g(Wα,Wβ) = ηα(Wβ).

The inverse will be denoted by
(
mαβ

) = (
mαβ

)−1
.

Remark 3. The nonholonomic vector field XD
H is a vector field on the constraint

submanifoldD∗ := FL(D).However,we can extend this to aglobal vector field�C
H

on the entire space T ∗Q such that�C
H |D∗ = XD

H . In [14], the global nonholonomic
vector field is shown to be given by

i�C
H

ω = dH − mαβ

{
H, P(Wα)

}
π∗
Qηβ.

This will be helpful in the computations in Section 5 and we will call νCH := i�C
H

ω

the nonholonomic 1-form.

One goal of this work is to understand invariant volumes in hybrid systems. For
unconstrained systems, Liouville’s theorem states that they preserve the symplectic
form and, consequently, the induced volume form as well. However, nonholonomic
systems need not be volume-preserving. Below, we state a nonholonomic version of
Liouville’s theorem as proved in [14] (a similar result can be found in [19]). Recall
that ηβ ∈ �1(Q) define our constraints, Wβ = FL−1ηβ are their corresponding
vector fields, and for a bundle M → Q, �(M) is the space of sections.

Theorem 2. ([14]) Let L : T Q → R be a natural Lagrangian and D ⊂ T Q be a
regular distribution. Then there exists an invariant volume with density depending
only on the configuration variables if and only if there exists ρ ∈ �(D0) such that
ϑC + ρ is exact where

ϑC = mαβ · LWαηβ.

Here, D0 ⊂ T ∗Q is the annihilator of D ⊂ T Q, {ηβ} is a frame for D0, Wα =
FL−1ηα , and mαβ = ηα(Wβ). In particular, suppose that ϑC + ρ = dg. Then the
following volume form is preserved:

exp
(
π∗
Qg

) · μC ,

where μC is the nonholonomic volume form described in [14].
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In particular, we will be interested in whether or not nonholonomic systems
with an invariant volume prescribed via Theorem 2 continue to preserve this volume
when impacts are present.

3. Mechanical impact systems

This section is devoted to fusing the ideas of §2.1 and §2.2. Hybrid systems
built from mechanical systems have the form H = (M, S, X,�) where M = T Q
or T ∗Q depending on Lagrangian/Hamiltonian and X is either (2) or (3). The set S
is the location of impact andwemake an abuse of notation where S ⊂ Q rather than
S ⊂ M as impacts will depend on location only. The final piece of information we
need to construct a mechanical hybrid system is the map �. In order to construct a
meaningful impact map, we make the following assumption (cf. §3.5 in [8]):

Assumption 1. Amechanical impact is the identity on the base and satisfies varia-
tional/
Lagrange-d’Alembert principles on the fibers. In particular, the impact map will
have the form � = (I d, δ), e.g. for Hamiltonian systems we have πQ ◦ � = πQ

where πQ : T ∗Q → Q is the cotangent projection.

Before we discuss the construction of the map �, we first clear up the notation
surrounding S. As S ⊂ Q is an embedded codimension 1 submanifold, it can be
(locally) described as the level-set of a smooth function h : Q → R. This allows
us to define the following five sets.

1. S = {q ∈ Q : h(q) = 0} ⊂ Q,
2. Ŝ = {(q, q̇) ∈ T Q : h(q) = 0, dh(q̇) < 0} ⊂ T Q,
3. S∗ = {(q, p) ∈ T ∗Q : h(q) = 0, P(∇h) < 0} ⊂ T ∗Q,
4. ŜD = Ŝ ∩ D ⊂ D, and
5. S∗

D = S∗ ∩ D∗ ⊂ D∗ = FL(D).

These sets have the following classification: S is the location of impact, Ŝ (resp.
S∗) is the impact surface for unconstrained Lagrangian (resp. Hamiltonian) sys-
tems, and ŜD (resp. S∗

D) is the impact surface for nonholonomic Lagrangian (resp.
Hamiltonian) systems.

For nonholonomic impacts, issues can arise when dh ∈ D0 which has the
impact surface as a constraint. To circumnavigate this issue, we make the following
assumption.

Assumption 2. (Nontrivial impact condition) Suppose that S ⊂ Q is given by
S = h−1(0). Then dh|S 
∈ D0|S .

3.1. Holonomic impacts

To derive � for unconstrained mechanical systems, we begin with the obser-
vation that the Euler-Lagrange equations are variational. With this, we make the
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assumption that the impact map is as well (cf. Assumption 1). This is realized by
the Weierstrass-Erdmann corner conditions, cf. §3.5 of [8] or §4.4 of [25]:

FL+ − FL− = ε · dh,

L+ − 〈FL+, q̇+〉 = L− − 〈FL−, q̇−〉, (4)

where the multiplier ε is chosen such that both equations are satisfied. These equa-
tions have a cleaner interpretation on the Hamiltonian side:

p+ = p− + ε · dh,

H+ = H−,
(5)

i.e. energy is conserved and the change inmomentum is perpendicular to the impact
surface.

In the case where L is natural, the corner conditions can be explicitly solved.
Recall that ∇h = dh�, or dh = g(∇h, ·).
Theorem 3. Given a natural Lagrangian L(q, q̇) = 1

2gq(q̇, q̇)−V (q), the impact

map � : Ŝ → T Q with (q, q̇) �→ (q, δ(q, q̇)) is given by

δ(q, q̇) = q̇ − 2
dh(q̇)

g(∇h,∇h)
∇h.

3.2. Nonholonomic impacts

Unlike unconstrained systems, nonholonomic systems are no longer variational.
As such, the Weierstrass-Erdmann conditions no longer apply. However, we can
instead utilize the Lagrange-d’Alembert principle. This leads to a modified version
of (4), [13]:

FL+ − FL− = λk · ηk + ε · dh,

L+ − 〈FL+, q̇+〉 = L− − 〈FL−, q̇−〉,
ηk(q̇+)+ = 0.

(6)

Again, when the Lagrangian is natural, the nonholonomic corner conditions can be
explicitly solved.

Theorem 4. Suppose that Wα = FL−1ηα . Then the nonholonomic impact map
�D : ŜD → D with (q, q̇) �→ (q, δ(q, q̇)) is given by

δ(q, q̇) = q̇ + λk · Wk + ε · ∇h, (7)

where

ε = −2 · dh(q̇)

dh(∇h) − mαβ · dh(Wα)dh(Wβ)
,

λk = 2 · mk� · dh(W �)dh(q̇)

dh(∇h) − mαβ · dh(Wα)dh(Wβ)
.

(8)
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Remark 4. Strictly speaking, (8) is only defined on D ⊂ T Q. However, we can
define a global version (which mimics the global aspect of [14]). The constraints
are given by specifying the submanifold D which is the joint zero level-set of
the ηβ . However, D does not uniquely determine the 1-forms ηβ . We refer to this
arbitrary choice of writing the constraints as a realization. In this sense, we let
C = {η1, . . . , ηm} be our choice for representing the constraints. Then we can
define a global impact map �C : Ŝ → T Q with form (7) but with multipliers

ε = 2mαβ · dh (
Wβ

)
ηα(q̇) − 2 · dh(q̇)

dh(∇h) − mαβ · dh(Wα)dh(Wβ)

λk = −2mk� · dh(W �) · mαβ · dh(Wβ)ηα(q̇) − dh(q̇)

dh(∇h) − mαβ · dh(Wα)dh(Wβ)
.

(9)

Notice that upon restriction,�C |ŜD = �D. Thiswill result in twodifferent versions

of nonholonomic impact systems: the local versionHD = (D, ŜD, XD,�D), and
a global version HC = (T Q, Ŝ, �C

H ,�C ). See Remark 3 and [14] for the global
nonholonomic vector field �C

H .

3.3. Intrinsic Formulation of Impacts

Below, we present an intrinsic view for both the holonomic and nonholonomic
impact relations, (5) and (6). Both versions will be stated from a Hamiltonian point
of view.

3.3.1. Holonomic impacts Let (T ∗Q, S∗, XH ,�) be an impact Hamiltonian
system.

Theorem 5. The corner conditions (5) are equivalent to

(Id × �)∗ ϑH = ι∗ϑH , (10)

where ι : R × S∗ ↪→ R × T ∗Q is the inclusion and ϑH is the action form,

ϑH = pi · dxi − H · dt ∈ �1 (
R × T ∗Q

)
.

Proof. This follows directly from choosing local coordinates such that impact oc-
curs when the last coordinate vanishes. ��
This seems to imply that the action form is preserved across impacts; as will be
seen in Proposition 3, the action form is only a relative invariant.

Weobtain the following intrinsic description of impactHamiltonianmechanics.{
iXω − dH = 0, (x, p) 
∈ S∗

(Id × �)∗ ϑH − ι∗ϑH = 0, (x, p) ∈ S∗.
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Remark 5. The intrinsic corner condition (10) also describes the case of moving
impacts. If S̃ ⊂ R×Q is a time-dependent surface described via S = {h(t, x) = 0},
then (10) states that

(
p+
i − p−

i

) = ε · ∂h

∂xi

− (
H+ − H−) = ε · ∂h

∂t
.

3.3.2. Nonholonomic Impacts We first present an intrinsic form on the contin-
uous equations of motion in a nonholonomic system, cf. [33].(

iXD
H

ω − dH
)∣∣∣D∗ ∈ F◦,

where F◦ ⊂ T ∗(T ∗Q)|D∗ is the Chetaev bundle given by

F◦ = π∗
Q

(D◦) = C∗ ((TD∗)◦
)
,

where C : T (T ∗Q) → T (T ∗Q) is the FL-related almost-tangent structure, [14].
We specialize the Chetaev bundle to be along impacts via its restriction

F◦
S = F◦ ∩ T ∗ (T ∗Q

)∣∣
S∗
D

.

Theorem 6. The nonholonomic corner conditions, (6), are equivalent to

(Id × �)∗ ϑH − ι∗ϑH ∈ τ ∗F◦
S ,

η
(
q̇+) = 0,

(11)

where τ : R × T ∗Q → T ∗Q is the projection into the second component.

This provides uswith the intrinsic description of impact nonholonomicHamiltonian
mechanics. {(

iXD
H

ω − dH
)∣∣∣D∗ ∈ F◦, (x, p) 
∈ S∗

D
(Id × �)∗ ϑH − ι∗ϑH ∈ τ ∗F◦

S , (x, p) ∈ S∗
D,

along with satisfying the constraints.

3.4. Regularity of mechanical hybrid systems

This subsection proves that mechanical hybrid systems are smooth as per Defi-
nition 4. We will prove that only unconstrained mechanical systems are smooth as
the nonholonomic case follows similarly.

Proposition 1. LetH = (T ∗Q, S∗, XH ,�) be a hybrid Hamiltonian system. Then
H is smooth.
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Proof. We need to show that H satisfies (H.1)-(H.5) along with (A.1) and (A.2).
Conditions (H.1)-(H.4) are immediate. For (H.5), we notice that

S∗ = {(q, p) ∈ T ∗Q : h(q) = 0, P(∇h) < 0},
�(S∗) = {(q, p) ∈ T ∗Q : h(q) = 0, P(∇h) > 0},

S∗ ∩ �(S∗) = {(q, p) ∈ T ∗Q : h(q) = P(∇h) = 0}.
Therefore, S∗ ∩�(S∗) = ∅ and S∗ ∩�(S∗) has codimension 2 so (H.5) is satisfied.

For (A.1), assume that (q(0), p(0)) ∈ S∗ ∩ �(S∗) = S∗ \ S∗ and that there
exists ε > 0 such that for all δ ∈ (0, ε), we have (q(δ), p(δ)) ∈ S∗. Since q(δ) ∈ S
and P(δh)(q(δ), p(δ)) < 0, q(t) must intersect S transversely at δ. This leads to a
contradiction.

To finish the proof, we need to show that for (q, p) ∈ S∗, we have the direct
sum:

T(q,p)T
∗Q = T(q,p)S

∗ ⊕ XH · R,

i.e. XH is not tangent to S∗. This follows from similar reasoning to (A.1); let γ (t)
be a base curve of XH , then γ intersects S transversely. This gives us (A.2) and we
are done. ��

3.5. Refraction

The intrinsic impact condition (10) can also describe refraction. Let Q be a
smooth manifold with separating hyper-surface S given by the zero level-set of a
function h : Q → R. Partition Q into

Q+ = {q ∈ Q : h(q) > 0} , Q− = {q ∈ Q : h(q) < 0} .

Endow each piece with a distinct Hamiltonian to obtain two Hamiltonian systems,
(T ∗Q+, H+) and (T ∗Q−, H−). The variational reset map from exiting Q+ and
entering Q− is given by

(Id × �)∗ ϑH+ = ι∗ϑH− . (12)

Example 3. (Sphere in the Plane) Suppose that Q = R
2 is the plane. Outside the

circle with radius 1/2, the kinetic energy is given by the flat metric while it is
spherical within the circle, i.e. h = x2 + y2 − 1/4 and

H+ = 1

2

(
p2x + p2y

)
, H− = 1

2

[
px py

] · M−1 ·
[
px
py

]
,

where

M =

⎡
⎢⎢⎣
1 − x2

1 − x2 − y2
xy

1 − x2 − y2
xy

1 − x2 − y2
1 − y2

1 − x2 − y2

⎤
⎥⎥⎦ .

Solving (12) produces two solutions. One solution corresponds to actual refrac-
tion while the other is reflection. Notice that the reflection solution is invalid as it
preserves the wrong energy. See Fig. 3.
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Fig. 3. Left: Trajectories under the “refraction” solution to (12) in Example 3. Right: Tra-
jectories under the “reflection” solution to (12) in Example 3. Initial conditions are taken to
be horizontal; px (0) = 1 and py(0) = 0

4. Hybrid-invariant differential forms

The fundamental goal of this work is to answer the following question: if α ∈
�m(M) is a differential form andϕH

t is the flowof a hybrid system, does
(
ϕH
t

)∗
α =

α? As this requires differentiability, we will tacitly assume that �(S) ⊂ M is a
smooth embedded submanifold. Also, the results in this section do not require that
the hybrid system be mechanical; this is reserved for the following section.

It would seem natural to want LXα = 0 and �∗α = α. However, this does not
make sense. The impact map � and the form α do not have the same domains; �

is a function on S while α is a form on M . This leads to the idea of the augmented
differential, cf. [15].

Definition 7. LetH = (M, S, X,�) be a hybrid system and x ∈ S. Then the linear
map �X∗ : TxM → T�(x)M is called the augmented differential where

�X∗ · u = �∗ · u, u ∈ Tx S ⊂ TxM,

�X∗ · X (x) = X (�(x)).

Remark 6. In order for �X∗ to be defined at a point x ∈ S, X (x) 
∈ Tx S. Moreover,
for �X∗ to be invertible, X (�(x)) 
∈ T�(x)�(S) (in addition to �∗ : Tx S →
T�(x)�(S) being invertible).

Theorem 7. Let H = (M, S, X,�) be a smooth hybrid system with hybrid flow
ϕH
t . For a given α ∈ �m(M), we have

(
ϕH
t

)∗
α = α if and only if LXα = 0 and

α�(x)

(
�X∗ · v1, . . . ,�

X∗ · vm

)
= αx (v1, . . . , vm) .

Proof. For simplicity of calculations,wewill assume thatα is a 1-form.Let x0 ∈ M ,
then the condition that

(
ϕH
T

)∗
α = α means

αϕH
T (x0)

((
ϕH
T

)
∗ v

)
= αx0 (v) .
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Choose x0 and T such that a single impact occurs along the path {ϕH
t (x0) : t ∈

(0, t)} and call this time t1 and location y0, i.e. y0 = ϕt1(x0) ∈ S. Additionally,
call z0 := �(y0) and w0 := ϕT−t1(z0) = ϕH

T (x0). Because the vector field is
transverse to S at y0, we can split up the tangent space at x0 in the following way:

Tx0M = T S
x0M ⊕ X (x0) · R,

(
ϕt1

)
∗
(
T S
x0M

)
= Ty0 S.

To compute
(
ϕH
T

)
∗ v, we split into the cases where v ∈ T S

x0M and v ∈ X (x0) · R

(which can be taken as v = X (x0) by linearity). See Fig. 4 for an illustration of
this setup.

Let v ∈ T S
x0M . Therefore, we can choose a curve γ : (−ε, ε) → M such

that ϕt1 (γ (s)) ∈ S for all s ∈ (−ε, ε). Then ϕH
T (γ (s)) = ϕT−t1 ◦ � ◦ ϕt1(γ (s)).

Differentiating this provides(
ϕH
T

)
∗ v = (

ϕT−t1

)
∗ · �∗ · (ϕt1

)
∗ v.

Therefore, for v ∈ T S
x0M ,

αϕH
T (x0)

((
ϕH
T

)
∗ v

)
= αϕH

T (x0)

((
ϕT−t1

)
∗ · �∗ · (ϕt1

)
∗ v

)
.

Which, if LXα = 0, invariance is equivalent to α�(y0) (�∗ · v) = αy0(v) for
v ∈ Ty0 S ⊂ Ty0M .

Let v = X (x0). To complete the proof, we need to show that
(
ϕH
T

)
∗ X (x0) =

X (ϕH
T (x0)). Let γ : (−ε, ε) → M be given by γ (t) = ϕt (x0) such that ε < t1 (so

γ is also the hybrid flow). Then we have(
ϕH
T

)
∗ v = d

dt

∣∣∣∣
t=0

ϕH
T ◦ ϕH

t (x0)

= d

dt

∣∣∣∣
t=0

ϕH
T+t (x0)

= X (w0),

which completes the proof. ��

Definition 8. A differential form α is called hybrid-invariant if
(
ϕH
t

)∗
α = α. Let

the set AH ⊂ �(M) be all the hybrid-invariant forms.

Computing the augmented differential is tedious in practice as it is a nonorthogonal
projection. We can instead decompose �X∗ to avoid its computation. This leads to
the following criteria.

Theorem 8. A differential form α is hybrid-invariant if and only if LXα = 0 and

�∗ι∗
S̃
iXα = ι∗SiXα, (13)

�∗ι∗
S̃
α = ι∗Sα, (14)

where S̃ = �(S) and ιS : S ↪→ M, ιS̃ : S̃ ↪→ M are the inclusion maps.
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S S̃

Ty0S

y0

X(y0)TS
x0

M

x0 X(x0)

Tz0 S̃

z0 X(z0)
ϕT−t1

)
∗

(
Tz0 S̃

)

w0
X(w0)

Fig. 4. Diagram for the proof of Theorem 7. The set S̃ := �(S) and T S
x0M := (

ϕ−t1
)
∗ Ty0 S

Proof. Suppose thatα ∈ �2(M) (the proof is almost identical for forms of different
degrees). For y0 ∈ S and u, v ∈ Ty0M , decompose the vectors in the following
way:

u = a · X (y0) + ũ, ũ ∈ Ty0 S

v = b · X (y0) + ṽ, ṽ ∈ Ty0 S.

Under this decomposition, the augmented differential is

�X∗ · u = a · X (z0) + �∗ũ
�X∗ · v = b · X (z0) + �∗ṽ.

Therefore, according to Theorem 7 invariance is equivalent to

αy0(a · X (y0) + ũ, b · X (y0) + ṽ) = αz0(a · X (z0) + �∗ũ, b · X (z0) + �∗ṽ).

Using the bi-linearity of α results in

0 = a · α(X (y0), ṽ) − a · α(X (z0),�∗ṽ)

+ b · α(ũ, X (y0)) − b · α(�∗ũ, X (z0))

+ α(ũ, ṽ) − α(�∗ũ,�∗ṽ).

This condition is equivalent to

iX (y0)α(ṽ) = iX (z0)α(�∗ṽ)

α(ũ, ṽ) = α(�∗ũ,�∗ṽ)

for all ũ, ṽ ∈ Ty0 S. These are equivalent to (13) and (14). ��
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It is interesting to point out that hybrid-invariance requires two additional condi-
tions, not one. For reasons that will be apparent in §5, condition (13) will be called
the energy condition while (14) will be called the specular condition.

A benefit of using the specular and energy conditions is that we can describe
some algebraic properties of the space AH.

Corollary 1. The set of hybrid-invariant forms AH ⊂ �(M) is a ∧-subalgebra
closed under d and iX .

Proof. If we denote A := {α ∈ �(M) : LXα = 0}, then it is already known that
A ⊂ �(M) is a ∧-subalgebra closed under d and iX (see Corollary 3.4.5 in [1]).
Therefore, in order to prove the theorem, it suffices only to check (13) and (14).
Let α, β ∈ AH. We only need to check that dα, iXα, and α ∧β obey (13) and (14).

Consider iXα. This satisfies (14) because α satisfies (13) and (13) is satisfied
because iX iXα = 0.

Consider dα. Condition (14) follows from the fact that d commutes with pull-
backs:

�∗ι∗
S̃
dα = d

(
�∗ι∗

S̃
α
)

= d
(
ι∗Sα

) = ι∗Sdα.

Condition (13) requires Cartan’s magic formula (LX = diX + iXd):

�∗ι∗
S̃
iXdα = �∗ι∗

S̃

(
���LXα − diXα

) = −�∗ι∗
S̃
diXα

= −d
(
�∗ι∗

S̃
iXα

)
= −d

(
ι∗SiXα

)
= −ι∗SdiXα = ι∗SiXdα.

Finally, consider α ∧ β. The condition (14) holds because pullbacks distribute
over the wedge product: f ∗(α ∧β) = f ∗α ∧ f ∗β. For condition (13), we see that

�∗ι∗
S̃
iX (α ∧ β) = �∗ι∗

S̃
(iXα ∧ β − α ∧ iXβ)

=
(
�∗ι∗

S̃
iXα

)
∧

(
�∗ι∗

S̃
β
)

−
(
�∗ι∗

S̃
α
)

∧
(
�∗ι∗

S̃
iXβ

)
= (

ι∗SiXα
) ∧ (

ι∗Sβ
) − (

ι∗Sα
) ∧ (

ι∗SiXβ
)

= ι∗SiX (α ∧ β) ,

which completes the proof. ��

Remark 7. We point out how the conditions for invariant forms manifest for func-
tions, i.e. 0-forms. The energy condition becomes trivial as iX f = 0 while the
specular condition reads that f ◦ � = f . This is in agreement with the common
notion that a function is hybrid-invariant if it is preserved across both the smooth
flow (LX f = 0) and across impacts ( f ◦� = f ). On the other hand, ifμ ∈ �n(M)

is a volume form, then the specular condition becomes trivial and we are only in-
terested in the energy condition. We investigate this below.
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4.1. Hybrid-invariant volumes

Suppose that dim M = n, then a volume form is given by a non-vanishing
form μ ∈ �n(M). This volume form is hybrid-invariant if μ ∈ AH, i.e. we wish
to determine whether or not AH ∩ �n(M) is empty. To test for hybrid-invariant
volume forms, we have the following refinement of Theorem 8.

Theorem 9. Let H = (M, S, X,�) be a smooth hybrid system. A volume form
μ ∈ �n(M) is hybrid-invariant if and only if{

divμ(X) = 0,

�∗ι∗
S̃
iXμ = ι∗SiXμ.

Proof. These conditions match those of Theorem 8 with the exception of the spec-
ular term, (14). This is because μ is an n-form and dim S = n − 1 and therefore
ι∗Sμ ≡ 0 so the specular term is trivially satisfied. ��
Recall that the dimension of �n(M) over C∞(M) is one which means that for a
given volume-form μ ∈ �n(M), then any other form ν ∈ �n(M) can be written as
ν = f μ for some f ∈ C∞(M). This fact can be useful in finding hybrid-invariant
volumes in the following way: suppose that μ ∈ �n(M) but μ 
∈ AH. What
conditions can be placed on a function f ∈ C∞(M) to guarantee that f μ ∈ AH?

Definition 9. LetH = (M, S, X,�)be a smoothhybrid systemand letμ ∈ �n(M)

be a volume form. The unique function Jμ(�) ∈ C∞(S) such that

�∗ι∗
S̃
iXμ = Jμ(�) · ι∗SiXμ, (15)

is called the hybrid Jacobian of � (with respect to μ).

The hybrid Jacobian allows for conditions on f to be described via a “hybrid
cohomology equation.”

Proposition 2. For a smooth hybrid system H = (M, S, X,�), there exists a
smooth hybrid-invariant volume, f μ, if there exists a smooth function g ∈ C∞(M)

such that

dg(X) = −divμ(X)

g ◦ � − g|S = − ln
(Jμ(�)

)
.

(16)

Then the density is (up to a multiplicative constant) f = exp(g).

5. Invariant volumes in mechanical hybrid systems

It turns out that unconstrained impact systems remain volume preserving while
the problem in nonholonomic systems is much more difficult to answer. It is al-
ready known that unconstrained impact systems are symplectic (and hence volume-
preserving), [41]. We prove this below using Theorem 8.
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Proposition 3. LetH = (T ∗Q, S∗, XH ,�) be an unconstrained Hamiltonian im-
pact system. Then ωn ∈ AH.

Proof. First off, LXH ω = 0 by Liouville’s theorem. To show that ω is hybrid-
invariant, we need to show that it satisfies both the energy and specular conditions.
The energy conditions follows from conservation of energy:

�∗ι∗
S̃
iXH ω = �∗ι∗

S̃
dH = ι∗SdH = ι∗SiXH ω.

To show the specular condition, choose coordinates such that xn = h. In these
coordinates,

ι∗
S̃
ω = dx1 ∧ dp1 + . . . + dxn−1 ∧ dpn−1.

According to the first corner condition, (4), the impact is the identity on every
coordinate with the exception of pn , but this is invisible to the restricted form ι∗

S̃
ω.

Therefore, it is preserved across impacts.
We have proven that ω ∈ AH and ωn ∈ AH follows from Corollary 1. ��

This proposition demonstrates the naming convention of both the energy and spec-
ular conditions: the energy condition comes from conservation of energy and the
specular condition comes from the impact being specular (the two corner conditions
in (4)).

5.1. Invariant volumes in nonholonomic hybrid systems

Proposition 3 shows that unconstrained hybrid mechanical systems automati-
cally preserve volume (independent of the choice of S). In the language of Propo-
sition 2, divωn (XH ) = 0 and Jωn (�) = 1 which admits a trivial solution to the
hybrid cohomology equation. On the contrary, it is no longer generally true that
divμC (XD

H ) = 0 where μC is the nonholonomic volume form (cf. [14]) and XD
H

is the nonholonomic vector field. Likewise, it is no longer obvious whether or not
JμC (�D) = 1. In what follows, we compute the hybrid Jacobian and show that
it, indeed, does equal 1.

5.1.1. The hybrid Jacobian In order to find invariant volumes for nonholonomic
hybrid systems, we need to be able to compute JμC (�D). In order to calculate
this, we will first compute the “global” version Jωn (�C ) and restrict to D∗ (recall
Remark 4). The following computation will make use of the nonholonomic volume
form (which was used in Theorem 2) which is defined as below.

Definition 10. Let C = {
η1, . . . , ηm

}
be a collection of constraints realizing the

constraint submanifold D ⊂ T Q. The nonholonomic volume form, μC , is a vol-
ume form on D∗ which is constructed as follows: Let Wα = FL−1ηα be the
corresponding vector fields and P(Wα) be their momentum functions. Define the
m-form

σC := dP(W 1) ∧ . . . ∧ dP(Wm).
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Then the nonholonomic volume form is given by

μC = ι∗ε, σC ∧ ε = ωn,

where ι : D∗ ↪→ T ∗Q is the inclusion.

It is shown in [14] that the nonholonomic form, as defined above, is a unique volume
form onD∗. Computationswith this volume form are difficult as it requires utilizing
local coordinates. The following lemma offers a computational trick to sidestep this
issue:

Lemma 1. Let HC = (T ∗Q, S∗, �C
H ,�C ) be the global version of the nonholo-

nomic hybrid system HD = (D∗, S∗
D, XD

H ,�D) and let μC be the nonholonomic
volume form. Then

Jωn (�C )|D∗ = JμC (�D).

Proof. A computation yields

�C ∗ι∗
S̃
i�C

H
ωn = �C ∗ι∗

S̃
i�C

H
(σC ∧ ε)

= �C ∗ι∗
S̃

(
i�C

H
σC ∧ ε + (−1)mσC ∧ i�C

H
ε
)

= (−1)m
(
�C ∗ι∗

S̃
σC

)
∧

(
�C ∗ι∗

S̃
i�C

H
ε
)

= (−1)m
(
ι∗SσC

) ∧
(
�C ∗ι∗

S̃
i�C

H
ε
)

,

which uses the fact that the constraints are preserved under the flow. That is,
i�C

H
σC = 0 and �C ∗ι∗

S̃
σC = ι∗SσC . The right side of (15) produces

Jωn (�C ) · ι∗Si�C
H

(σC ∧ ε) = Jωn (�C ) · ι∗S
(
i�C

H
σC ∧ ε + (−1)mσC ∧ i�C

H
ε
)

= (−1)mJωn (�C ) · (ι∗SσC ) ∧
(
ι∗Si�C

H
ε
)

.

Combining both of the above gives

(
ι∗SσC

) ∧
(
�C ∗ι∗

S̃
i�C

H
ε
)

= Jωn (�C ) · (ι∗SσC ) ∧
(
ι∗Si�C

H
ε
)

.

The result follows from restricting to D∗. ��
Therefore, to calculateJωn (�C ), we need to understand�C ∗ι∗

S̃
i�C

H
ωn . Expanding

gives

�C ∗ι∗
S̃
i�C

H
ωn = �C ∗ι∗

S̃

(
n · νCH ∧ ωn−1

)
= n ·

(
�C ∗ι∗

S̃
νCH

)
∧

(
�C ∗ι∗

S̃
ω
)n−1

.

Therefore, the hybrid Jacobian is determined by how much the nonholonomic 1-
form and the symplectic form fail the specular condition (14). We next present a
helpful computational lemma which will be useful for computing the above.
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Lemma 2. Let x1, . . . , xn−1, p1, . . . , pn be local coordinates and let A =
(
αi
j

)
be an (n − 1) × n matrix. Then⎛

⎝n−1∑
j=1

n∑
i=1

αi
j · dx j ∧ dpi

⎞
⎠

n−1

= (−1)�
n−1
2 � · (n − 1)! ·

n∑
k=1

det(Ak) · �k,

�k := dx1 ∧ . . . ∧ dxn−1 ∧ dp1 ∧ . . . ∧ d̂pk ∧ . . . dpn,

(17)

where Ak is the (n − 1) × (n − 1) matrix obtained from deleting the kth-column
from A and the caret d̂pk means that dpk is omitted from the wedge product.

Proof. Recall the multinomial theorem which states that⎛
⎝n−1∑

j=1

n∑
i=1

αi
j · dx j ∧ dpi

⎞
⎠

n−1

=
∑

S(dij )=n−1

(
n − 1

d11 , . . . , d
n
n−1

)∏
i j

(
αi
j · dx j ∧ dpi

)dij
, (18)

where

S(dij ) =
n−1∑
j=1

n∑
i=1

dij ,

(
n − 1

d11 , . . . , d
n
n−1

)
= n!

d11 ! · . . . · dnn−1!
.

Notice that for any i, j we have
(
αi
j · dx j ∧ dpi

)2 = 0. This implies that the only

nonzero terms in (18) have dij ∈ {0, 1}. This simplifies (18) to

⎛
⎝n−1∑

j=1

n∑
i=1

αi
j · dx j ∧ dpi

⎞
⎠

n−1

= (n − 1)! ·
∑

S(dij )=n−1

dij∈{0,1}

∏
i j

(αi
j · dx j ∧ dpi )

dij .

(19)

In order to evaluate (19), we wish to understand the structure of the matrices d =(
dij

)
that contribute a nonzero term. In addition to having coefficients in {0, 1},

they also have the following property: if dij = 1, then dkj = dik = 0 for all k. This

is due to the fact that
(
dx j ∧ dpi

) ∧ (
dx� ∧ dpk

) = 0 whenever j = � or i = k.
In other words, the matrix d must have a single nonzero entry in each row and at
most one in each column. The matrix d is then given as a column permutation of
the matrix

d0 =

⎡
⎢⎢⎢⎣
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎦ .
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LetD be the set of all such matrices and partition it asD = �n
k=1Dk where d ∈ Dk

if its kth-column is identically zero. The expression (19) becomes

⎛
⎝n−1∑

j=1

n∑
i=1

αi
j · dx j ∧ dpi

⎞
⎠

n−1

= (n − 1)! ·
n∑

k=1

∑
(dij )∈Dk

∏
i, j :dij 
=0

αi
j · dx j ∧ dpi .

(20)

By deleting the kth-row fromDk there is a natural isomorphism Sn−1 → Dk , where
Sn−1 is the symmetric group of n − 1 elements. A matrix (dij ) ∈ Dk if and only if

there exists σ ∈ Sn−1 such that dij = 1 if and only if σk( j) = i where

σk( j) =
{

σ( j), σ ( j) < k

σ( j) + 1, σ ( j) > k.

(This modified permutation keeps track of the kth-column deletion.) Before we
finish the calculation of (17), we notice that (see 3.1.3 in [1])

n−1∏
j=1

dx j ∧ dpσk ( j) = (−1)�
n−1
2 � · dx1 ∧ . . . ∧ dxn−1 ∧ dpσk (1) ∧ . . . ∧ dpσk (n−1)

= (−1)�
n−1
2 � · sgn(σ ) · dx1 ∧ . . . ∧ dxn−1 ∧ dp1 ∧ . . . ∧ d̂pk ∧ . . . dpn︸ ︷︷ ︸

=:�k

.

Using this, we see that (20) becomes

⎛
⎝n−1∑

j=1

n∑
i=1

αi
j · dx j ∧ dpi

⎞
⎠

n−1

= (−1)�
n−1
2 � · (n − 1)! ·

n∑
k=1

∑
σ∈Sn−1

sgn(σ )

n−1∏
j=1

α
σk ( j)
j · �k

= (−1)�
n−1
2 � · (n − 1)! ·

n∑
k=1

det(Ak) · �k,

which is precisely (17). ��

Proposition 4. In local coordinates where h = xn, we have

ι∗S
(
νCH ∧ ωn−1

)
= (−1)�

n−1
2 � · (n − 1)! ·

(
∂H

∂pn

)
· dx1 ∧ . . . ∧ dxn−1 ∧ dp1 ∧ . . . ∧ dpn .



13 Page 24 of 42 Arch. Rational Mech. Anal. (2023) 247:13

Proof. By Lemma 2 we can compute (ι∗Sω)n−1 where αi
j = δij . This provides(

ι∗Sω
)n−1 = (−1)�

n−1
2 � · (n − 1)! · �n .

Due to the fact that �n depends on every dx j and dpi with the exception of dpn ,
the only component of νCH that wedges with (ι∗Sω)n−1 to produce a nonzero term
is the pn term, i.e.

νCH ∧ (
ι∗Sω

)n−1 =
(

∂H

∂pn
· dpn

)
∧ (

ι∗Sω
)n−1

= (−1)�
n−1
2 � · (n − 1)! · ∂H

∂pn
· �n ∧ dpn,

where �n ∧ dpn = dpn ∧ �n because �n has even degree. ��
Corollary 2. In coordinate-free language, we have

ι∗S
(
νCH ∧ ωn−1

)
= (−1)�

n−1
2 � · (n − 1)! · π∗

Qdh
(
�C

H

)
· �h,

where �h is a volume on S∗ given by

�h = ι∗Sε, dh ∧ ε = (−1)n−1 · dx1 ∧ . . . ∧ dxn ∧ dp1 ∧ . . . ∧ dpn .

We are now ready to proceed with calculating the hybrid Jacobian.

Theorem 10. The hybrid Jacobian is given by

Jωn (�C ) = (2 · π∗
Qπ∗

Ddh − π∗
Qdh)(�C

H )

π∗
Qdh(�C

H )
. (21)

In particular, JμC (�D) = 1.

Proof. We will choose local coordinates such that h = xn in a manner similar to
Proposition 4 and later translate to a coordinate-free language as in Corollary 2.

We will first compute
(
�C ∗ι∗

S̃
ω
)n−1

. In coordinates where h = xn , this becomes

(
�C ∗ι∗

S̃
ω
)n−1 =

(
dx1 ∧ d(p1 ◦ �C ) + . . . + dxn−1 ∧ d(pn−1 ◦ �C )

)n−1
.

The map �C given by Remark 4 depends on both x and p:

d
(
p j ◦ �C

)
= αi

j dpi + βi j dx
i .

With this notation, we have(
�C ∗ι∗

S̃
ω
)n−1 =

(
αi
j · dx j ∧ dpi + βi j · dx j ∧ dxi

)n−1

=
(
αi
j · dx j ∧ dpi

)n−1
,
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where the βi j ·dx j ∧dxi terms do not contribute because any piece containing them
will necessarily have a repeated term. Therefore if we can determine the coefficients
αi
j , Lemma 2 shows how to compute the product. The expression (9) shows that

the impacts are linear in the momentum and so the coefficients are

αi
j = δij − 2

(πD∇h)i

dh (πD∇h)

(
π∗
Ddh

)
j ,

where (πD∇h)i is the i th-component of the vector πD∇h and similarly for π∗
Ddh.

We must now calculate the determinants of the matrices Ak . For the remainder
of the proof, we will deal with the n = 4 case but the general case works in the
same way. For ease of notation, let u := πD∇h and v := π∗

Ddh. Notice that in our
choice of local coordinates,

dh(πD∇h) = dxn(πD∇h) = (πD∇h)n = un =: 1

κ
.

The matrix A = (αi
j ) is given by

A =
⎡
⎣1 − 2κu1v1 −2κu2v1 −2κu3v1 −2κu4v1

−2κu1v2 1 − 2κu2v2 −2κu3v2 −2κu4v2
−2κu1v3 −2κu2v3 1 − 2κu3v3 −2κu4v3

⎤
⎦ .

The determinants det Ak are

det A1 = −2v1,

det A2 = 2v2,

det A3 = −2v3,

det A4 = 1 − 2κ
(
u1v1 + u2v2 + u3v3

)
= 2v4 − 1.

Lemma 2 asserts that

(
�C ∗ι∗

S̃
ω
)3 = (−1)�

n−1
2 � · (n − 1)! · 2

[(−v1 · �1 + v2 · �2 − v3 · �3 + v4 · �4) − �4] . (22)

To finish the theorem, we need to compute the wedge product of �C ∗ι∗
S̃
νCH with

(22). It turns out that �C ∗ι∗
S̃
νCH ∧

(
�C ∗ι∗

S̃
ω
)3 = ι∗SνCH ∧

(
�C ∗ι∗

S̃
ω
)3
. This is

because

�C ∗ι∗
S̃
νCH = �C ∗ι∗

S̃
dH − �C ∗ι∗

S̃

(
mαβ{H, P(Wα)}π∗

Qηβ
)

= ι∗SdH − �C ∗ι∗
S̃

(
mαβ{H, P(Wα)}π∗

Qηβ
)
,
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by conservation of energy. Notice that the second term above has the form γi · dxi
which pairs to zero when wedged with any �k . Therefore,

�C ∗ι∗
S̃

(
νCH ∧ ωn−1

)
= ι∗SdH ∧

(
�C ∗ι∗

S̃
ω
)n−1

= (−1)�
n−1
2 � · (n − 1)! ·

[
2

(
v j · ∂H

∂p j

)
− ∂H

∂p4

]
· �

= (−1)�
n−1
2 � · (n − 1)! ·

[
2 · π∗

Ddh
(
�C

H

)
− dh

(
�C

H

)]
· �.

The result follows from applying Proposition 4 which says

ι∗S
(
νCH ∧ ωn−1

)
= (−1)�

n−1
2 � · (n − 1)! · dh

(
�C

H

)
· �.

The quotient of coefficients is (21). ��
Since JμC (�D) = 1, we need an invariant density to be conserved across

impacts: if f μC is invariant then f ◦ �D = f |S∗
D . As it turns out, there is a clear

qualitative difference between nonholonomic systems with measures depending on
configurations versus those who do not. This is because �D is the identity on the
configuration variables but is not on the momenta/velocities. If f only depends on
the configurations, then f ◦ � = f is automatically satisfied. If f depends on the
momenta/velocities, then we can always choose some impact surface, S, such that
f ◦ � 
= f . This is summarized in the following proposition.

Proposition 5. Let L : T Q → R be a natural Lagrangian andD ⊂ T Q a regular
distribution. Suppose that there exists an invariant volume form f μC such that
f = π∗

Qh for some h : Q → R (cf. Theorem 2). Then f μC ∈ AH where

H = (D∗, S∗
D, XD

H ,�D) for any S ⊂ Q.

Before we demonstrate this with examples, we will address the Zeno issue in
measure-preserving systems.

6. The Zeno issue in volume-preserving systems

In dynamical systems, invariant measures are useful for studying recurrent
properties e.g. the Poincaré recurrence theorem and ergodic theory. However, in
the context of hybrid systems, the existence of invariant measures has another
advantage: they impose strong limitations on the Zeno behavior of the trajectories.

Definition 11. (Zeno States) Let ϕH
t be the hybrid flow of a hybrid system H =

(M, S, X,�). A point x ∈ M has a Zeno trajectory if there exists an increasing
sequence of times {ti }∞i=0 such that ϕH

ti (x) ∈ S for all i and ti → t∞ < ∞.

It seems that there are only sufficient conditions for Zeno behavior [3].However,
to the best of our knowledge, there are no results on necessary conditions which
would provide a way to rule them out all together. We demonstrate that, under a
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few additional assumptions, the existence of an invariant measure rules our Zeno
behavior (almost everywhere). For more results and properties of Zeno states, cf.
e.g. [3,4,8,28,37].

To rule out Zeno behavior in hybrid systems, it is important to subdivide this
into two classes: spasmodic and steady.

Definition 12. Let x ∈ M have a Zeno trajectory. The trajectory is spasmodic if the
sequence {ϕH

ti }∞i=0 escapes every compact set as i → ∞. The trajectory is called
steady if it is not spasmodic.

6.1. Spasmodic Zeno Trajectories

Our goal is to utilize volume-preservation to show that Zeno almost never
happens. However, this is not true for spasmodic Zeno trajectories as this subsection
demonstrates.

Example 4. (Super-elastic spasmodic) Consider the hybrid mechanical systemwith
Q = [0, 1] and S = {0, 1}. Suppose that the impactmap is given by� : q̇ �→ −α ·q̇
where α > 1 (which injects energy into the system). Then the particle bounces off
the walls faster and faster until breaking in a finite amount of time.

tZeno = 1

v0

∞∑
k=0

α−k = 1

v0
· α

α − 1
< ∞.

We have a finite Zeno time but we also have

lim
t→t−Zeno

|q̇(t)| = ∞.

The common idea is that only sub-elastic collisions can lead to Zeno states.
However, super-elastic collisions can still pose issues.

Example 5. (Volume-preserving spasmodic) Consider a modification of Example
4 where Q = [0, 1] × R and S = {0, 1} × R. We have the standard dynamics

X = ẋ
∂

∂x
+ ẏ

∂

∂y
,

and suppose the impact map has the form δ(ẋ, ẏ) = (−α ẋ, β ẏ). It follows from
the previous example that when α > 1, we have a spasmodic Zeno state. However,
can we choose β < 1 such that this system is volume-preserving? This would lead
to Zeno states in volume-preserving systems which is troublesome. Consider the
volume form μ = dx ∧ dy ∧ dẋ ∧ d ẏ, then we have that

ι∗
S̃
iXμ = ẋdy ∧ dẋ ∧ d ẏ.

This gives us a hybrid Jacobian of

Jμ(�) = α2β.

If we take β = α−2, then Jμ(�) = 1 and we have a volume-preserving system
with spasmodic Zeno states.
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Fig. 5. Trajectory of the spasmodic Zeno trajectory discussed in Example 4. This has the
first 40 impacts

If the hybrid systempossesses a Lyapunov function (i.e. a proper functionwhich
is non-increasing along trajectories) then spasmodicZeno states are prohibited. This
is good news as both unconstrained and nonholonomic systems preserve energy
which is a Lyapunov function, provided it is proper.

Proposition 6. Let H = (T ∗Q, S∗, XH ,�) be an impact Hamiltonian system
with a natural Hamiltonian (this also holds true for nonholonomic systems). If Q
is compact, then spasmodic Zeno states do not occur.

Proof. This follows from the fact that H−1(e) is compact for e ∈ R. ��
The following example illustrates the necessity of having Q compact in this

proposition.

Example 6. (Elastic Hamiltonian spasmodic) Consider the (mathematical) Hamil-
tonian on Q = R

2,

H = px
(
1 + x2

)
+ 1

2
p2yx .

The Hamiltonian vector field is

XH =
(
1 + x2

) ∂

∂x
+ pyx

∂

∂y
−

(
2xpx + 1

2
p2y

)
∂

∂px
.

It is clear that if x(0) = 0, then x(t) = tan(t) which escapes to infinity at t = π/2.
This can be used to make a spasmodic Zeno state by choosing S = {0, 1}× R with
elastic impact map

�(x, y, px , py) = (x, y, px ,−py).
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This system is volume-preserving and energy-preserving but still has spasmodic
Zeno states.

6.2. Steady Zeno Trajectories

Let us assume, henceforth, that any Zeno state will not be spasmodic, i.e. it will
be steady. Any Zeno issues will occur within the setZ := S∩�(S), which by (H.5)
has codimension at least 2 (exactly 2 for mechanical systems). We will therefore
focus our attention on trajectories that intersect this set; let N be all points in M
that eventually move to Z ,

N :=
{
x ∈ M : ∃t > 0 s.t. lim

s→t−
ϕH
s (x) ∈ Z

}
.

Our goal is to show that N has zero measure. A key ingredient in proving this is
the following assumption (which holds for mechanical systems).

Proposition 7. Let x ∈ M have a steady Zeno trajectory with impact times {ti } and
let d be the induced distance metric from a Riemannian metric on M. Then,

lim
i→∞ d

(
ϕH
ti (x),Z

)
= 0.

Proof. As x is not spasmodic, there exists a compact set that contains the trajectory.
Therefore, we can take M to be compact. Let g be a Riemannian metric on M with
induced distance metric d. Then, because M is compact, we have

sup
x∈M

√
g(X (x), X (x)) = δ < ∞.

If follows that we have the uniform bound:

d (x, ϕt (x)) < tδ, ∀x ∈ M.

Since the trajectory is Zeno, successive impact times converge to zero and the
inequality above shows that successive impact locations converge, i.e.

lim
i→∞ d(xi , ϕti (xi )) = 0.

Therefore, x∞ ∈ Z . ��
Remark 8. WhenH = (T Q, Ŝ, XL ,�) is a Lagrangian mechanical hybrid system,
the Zeno set isZ = T S. This has the interpretation that Zeno states occur when the
impact surface ismet tangentially, i.e. the impact is a “scuff.” As an impact becomes
increasingly tangential, the impulse from the impact goes to zero. This phenomenon
is key to ruling out Zeno states as the following assumption formalizes.

Assumption 3. (Boundary identity property) Consider a smooth hybrid dynamical
systemH = (M, S, X,�). Then for any sequence {sn} ∈ S such that sn → s ∈ Z ,
we have �(sn) → s.
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This assumption is useful because it allows us to “complete” the hybrid flow in a
manner similar to [4]. Essentially, suppose x0 is Zeno so lims→t− ϕH

s (x0) = z0 ∈
Z . Then we define ϕH

t (x0) := z0 and we can extend it via assumption (A.1). Let
ε > 0 such that ϕt (z) does not intersect S for all t ∈ (0, ε). We define the completed
flow to be ϕH

t+δ(x0) = ϕδ (z0). If a hybrid flow is measure-preserving then its
associated completed flow is too precisely due to the boundary identity property;
we are ignoring any impacts at z0 which comes from continuously extending the
impact map from S to S. We can now state the following theorem.

Theorem 11. Suppose thatH = (M, S, X,�) is a smooth compact hybrid dynam-
ical system (cf. Definition 4) with the boundary identity property, Assumption 3. If
H preserves a smooth measure μ, then μ(N ) = 0.

Proof. The assumption that H be compact is to disallow spasmodic Zeno states.
Partition Z into a countable collection of compact sets, {Vα}, and partition N in
the following way:

Nα,δ =
{
x ∈ N : ∃t ∈ (0, δ) s.t. ϕH

t (x) ∈ Vα

}
.

It follows that if eachNα,δ has zero measure then all ofN has zero measure, since
a countable union of null sets is still a null set. In particular, we only need to prove
that for all α, there exists δ such that Nα,δ has zero measure. This is because for
δ > s

ϕH
s

(Nα,δ \ Nα,s
) = Nα,δ−s .

Fix an α. By (A.1), for each z ∈ Vα , there exists ε > 0 such that ϕt (z) 
∈ S
for all t ∈ (0, ε). Let δ be the infimum of all such ε which is positive due to the
compactness of Vα . By the measure-preserving property of the flow, we get

μ
(Nα,δ/4

) = μ
(
ϕH

δ/2

(Nα,δ/4
)) ≤ μ (O(Vα, δ)) ,

where

O(Vα, δ) =
⋃

t∈(0,δ)

ϕt (Vα).

Because zero impacts occur, the set O(Vα, δ) is a manifold with codimension at
least 1 which necessarily has zero measure. ��
In order for a hybrid dynamical system to be volume-preserving, its divergencemust
be zero and its hybrid Jacobian must be one. However, if a trajectory is Zeno, the
continuous component of the flow is finite while the impact component is infinite.
This seems to suggest that the hybrid Jacobian controls Zeno states much more
than the divergence does.

Theorem 12. Let H = (M, S, X,�) be a smooth compact hybrid dynamical sys-
tem with the boundary identity property and let μ ∈ �n(M) be a volume form. If
Jμ(�) = 1 everywhere on S, then Z̃ has measure zero.
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Proof. This follows via the same construction as in Theorem 11 along with the fol-
lowing bounds on μ. Notice that μt := (

ϕH
t

)∗
μ satisfies the following differential

equation:

μ̇t = divμ(X) · μt ,

(notice that nothing occurs at impacts as Jμ(X) = 1). Let M := max divμ(X)

and m = min divμ(X). Then Grönwall’s inequality states that for any finite-time,
the translated volume will be equivalent to the original volume. Therefore the set
O(Vα, δ) will still be a null set. ��
Corollary 3. Nonholonomic mechanical systems have almost no Zeno states.

Even though nonholonomic systems can experience dissipation during the con-
tinuous phase, there is never dissipation occurring during the moment of impact.
Therefore, a trajectory in any mechanical system (with elastic impacts) will al-
most never be Zeno. We will use this to justify that our ignorance of Zeno states is
essentially benign.

6.3. Steady Zeno in an Elastic System

It is important to notice that Theorem 11 states that Zeno almost never happens.
Below, we present an example of an elastic impact system which does possess a
Zeno trajectory.

We start with the observation that the inelastic bouncing ball is Zeno. Consider
the example with continuous dynamics

ẍ = 0, ÿ = −1,

which is the usual falling particle in the plane. Suppose that an impact occurs when
y = 0 and the reset is described via

�(x, y, ẋ, ẏ) = (x, y, ẋ,−α ẏ),

where 0 ≤ α ≤ 1 is the coefficient of restitution.
Let α < 1. The resulting dynamics are Zeno by the following: Suppose that

we have the initial conditions y(0) = 0 and ẏ(0) = v0 > 0. The time of the first
impact is given by t1 = 2v0. Consequently, t2 − t1 = 2v1 = 2αv0. The trajectory
is Zeno as the limit converges,

tZeno = lim
k→∞ tk = lim

k→∞

k∑
j=1

�t j = lim
k→∞

k∑
j=1

2v0α
j = 2v0

1 − α
< ∞.

Each jump in the inelastic bouncing ball is shorter than the previous which results
in Zeno. For elastic bouncing, all jumps must remain the same height. As such, we
will artificially shrink the bounces by raising the table.

Consider the curve

y = α2x
(√

2v0 − α2x
)

, (23)
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for some parameters v0 > 0 and 0 < α < 1. Notice that y(0) = 0 and its maximum
occurs at

ymax = y

(
v0√
2α2

)
= 1

2
v20 .

Consider the hybrid system with continuous dynamics

ẍ = 0, ÿ = −1,

with impact occurring when (23) is satisfied with reset

x �→ x, ẋ �→ ẋ
y �→ y, ẏ �→ −ẏ.

Proposition 8. The trajectory of the above hybrid systemwith the initial conditions

x(0) = 0, ẋ(0) = 1,
y(0) = 0, ẏ(0) = v0

has a steady Zeno trajectory and the Zeno points happens at

x

(
v0√
2α2

)
= v0√

2α2
, y

(
v0√
2α2

)
= v20

2
. (24)

Theorem 13. Let (xn, yn) be the location of the nth impact for the above Zeno
trajectory. Choose a function h such that yn = h(xn) and h′(xn) = 0 for all n.
Then h 
∈ C3.

Proof. We will compute Var(h′′) and show that it is not finite. Let (xZ , yZ ) be the
Zeno point (24). In particular,

lim
n→∞ xn = xZ , lim

n→∞ yn = yZ .

By the mean value theorem, there exists a point c ∈ (xn, xn+1) such that

h′(c) = yn+1 − yn
xn+1 − xn

.

Applying the mean value theorem a second time, there exists a point c̃ ∈ (xn, c)
such that

h′′(c̃) = h′(c) − h′(xn)
c − xn

≥ yn+1 − yn
(xn+1 − xn)2

.

Likewise, there exists some c̄ ∈ (c, xn+1) such that

h′′(c̄) ≤ yn − yn+1

(xn+1 − xn)2
.

Combining both of these estimates, we see that

Var(h′′) ≥ 2
∞∑
n=0

yn+1 − yn
(xn+1 − xn)2

.
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Fig. 6. A steady Zeno trajectory in an elastic mechanical system

The result follows as long as the sum is divergent. Let (xn, yn) be an arbitrary
impact location. The vertical velocity (post-impact) is

vn =
√

v20 − 2yn .

Therefore, the next impact occurs when

−1

2
(xn+1 − xn)

2 +
√

v20 − 2yn(xn+1 − xn) + yn = α2xn+1(
√
2v0 − α2xn+1),

where the left side is the vertical trajectory, yn+1, as x = t and the right side is the
impact location. Solving for xn+1,

xn+1 = −xn − 2

2α4 − 1

(
xn +

√
v20 − 2α2xn(

√
2v0 − α2xn) − α2

√
2v0

)
.

This produces

lim
xn→xZ

yn+1 − yn
(xn+1 − xn)2

= α2

√
2


= 0.

Therefore, the sum is divergent and Var(h′′) = ∞. ��

This theorem prompts the following conjecture.

Conjecture 1. Let (T ∗Q, S∗, XH ,�) be a natural and elastic Hamiltonian system.
If S ∈ C3, then there are no Zeno trajectories.
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7. Filippov Systems

Throughout this work, it was implicitly assumed that the reset map was not the
identity. In this section, we draw attention to the special case where the reset is the
identity but the vector field is discontinuous. Systems of this form appear in e.g.
nonsmooth stabilization [6].

Filippov systems are continuous-time dynamical systems where the vector field
is discontinuous. Let M be a smooth manifold, h : M → R be a smooth function
with zero as a regular value, and f, g ∈ X(M) be two smooth vector fields. We will
call

( f, g)h(x) :=
{
f (x), h(x) > 0,

g(x), h(x) < 0.
(25)

For an in-depth review of these systems see, e.g. [20].
We answer whether or not (25) preserves a volume-form, which was studied in

[36]. We present the following theorem which addresses whether or not a volume
is preserved under a Filippov system and note that we get the same result as in [36].

Theorem 14. Let Id f,g
h denote the augmented differential for (25). Then,

Id f,g
h = Id + 1

dh( f )
· (g − f ) ⊗ dh. (26)

In particular, if μ ∈ �dim M (M) is a volume-form, the hybrid Jacobian is

Jμ (Id) = det
(
Id f,g

h

)
= dh(g)

dh( f )
.

Proof. The augmented differential must satisfy{
Id f,g

h · v = v, dh(v) = 0,

Id f,g
h · f = g,

where we tacitly assume that dh( f ) 
= 0. It can be seen that (26) satisfies this. The
hybrid Jacobian follows from the matrix determinant lemma. ��
Corollary 4. Let μ ∈ �dim M (M) be a volume form and define the (discontinuous)
density by

ρ(x) =
{

α+(x), h(x) > 0

α−(x), h(x) < 0.

Then ρμ is invariant if and only if

L f α
+ + α+divμ( f ) = 0, h(x) > 0,

Lgα
− + α−divμ(g) = 0, h(x) < 0,

and α+(x)dhx ( f (x)) = α−(x)dhx (g(x)) for all x ∈ h−1(0).

Remark 9. Note the similarity between the discontinuous invariant volume condi-
tion and the Rankine-Hugoniot jump conditions for a shock wave.



Arch. Rational Mech. Anal. (2023) 247:13 Page 35 of 42 13

8. Examples

We present three examples of nonholonomic mechanical systems: the Chaply-
gin sleigh, the (uniform) rolling ball, and the vertical rolling disk.

8.1. The Chaplygin sleigh

The Chaplygin sleigh is a nonholonomic systemwith configuration space, Q =
SE2, the special Euclidean group and has the following Lagrangian.

L = 1

2

(
mẋ2 + mẏ2 + (I + ma2)θ̇2 − 2maẋ θ̇ sin θ + 2maẏθ̇ cos θ

)
,

where m is the mass of the sleigh, I is its rotational moment of inertia, and a is
the distance from the center of mass to the contact point (cf. §1.7 in [5]). The
constraint is that the sleigh can only slide in the direction in which it is pointed
which is described by

ẏ cos θ − ẋ sin θ = 0.

It was shown in [14] that the Chaplygin sleigh has no invariant volumes with
density depending only on configuration. Therefore, we do not get an immediate
hybrid-invariant volume. In [12] it is shown that p−3

θ is an invariant density for the
sleigh. However, this density is not preserved across arbitrary impacts. Therefore,
no smooth hybrid-invariant measures exist for the Chaplygin sleigh.

8.1.1. Statistical distributionof the sleigh Toaugment thediscussiononvolume-
preservation for the Chaplygin sleigh, we present some numerical calculations for
the statistical distribution of its trajectories. For the choice of the impact set S, we
chose an elliptical billiard table:

E =
{
(x, y) ∈ R

2 : x
2

a2
+ y2

b2
≤ 1

}
,

S = {(x, y, θ) ∈ SE2 : (x ± L cos θ, y ± L sin θ) ∈ ∂E} ,

where L is the length of the sleigh and the ± in the definition of S corresponds to
the front or the back of the sleigh striking the wall. The full state of the system lies
in the set D∗ ⊂ T ∗SE2, which is 5-dimensional. To simplify the figures, we only
track the (x, y)-location of the sleigh. This produces a function ρ : E → R given
by

∫
A

ρ(x, y) dxdy = lim
n→∞

1

n

n−1∑
k=0

χ Ã(ϕk(z)), (27)

where ϕ = ϕH
1 is the time-1 map of the hybrid dynamics, χ Ã is the indicator

function for the set Ã, and

Ã = {
(x, y, θ, px , py, pθ ) ∈ D∗ ⊂ T ∗SE2 : (x, y) ∈ A

}
.

Plots of numerical approximations for ρ are shown in Fig. 7.
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Fig. 7. Plots of the statistical asymptotic behavior of the billiard Chaplygin sleigh. Each
row corresponds to a different semi-minor axis length while each column corresponds to
a different length of the sleigh. The density ρ is approximated by dividing E into 100 by
100 boxes and tracking the locations for 106 time-1 maps. The first thousand iterations were
discarded to minimize the influence of transient behavior

8.2. The rolling ball

The next example is that of the (homogeneous) rolling ball; for more detail, cf.
e.g. [33]. The Lagrangian is the kinetric energy and is given by

L = 1

2

(
ẋ2 + ẏ2 + k2

(
θ̇2 + ϕ̇2 + ψ̇2 + 2ϕ̇ψ̇ cos θ

))
.

The constraints which prohibit slipping while rolling are given by

ẋ = r θ̇ sinψ − r ϕ̇ sin θ cosψ,

ẏ = −r θ̇ cosψ − r ϕ̇ sin θ sinψ.

The rolling ball possesses the invariant volume whose density depends only on the
configuration variables, cf. [14]. Therefore, the invariant volume is also hybrid-
invariant by Proposition 5. The Poincaré recurrence theorem can be applied to
obtain that almost every trajectory is recurrent for any compact table-top E ⊂ R

2.
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8.3. The vertical rolling disk

The final example presented here will be the vertical rolling disk. The La-
grangian is, again, the kinetic energy of the disk,

L = 1

2
m

(
ẋ2 + ẏ2

)
+ 1

2
I θ̇2 + 1

2
J ϕ̇2. (28)

Here, m is the mass of the disk, I is the moment of inertia of the disk about the
axis perpendicular to the plane of the disk, J is the moment of inertia about an axis
in the plane of the disk, and R is the radius of the disk. The constraints enforcing
rolling without slipping are

ẋ = Rθ̇ cosϕ,

ẏ = Rθ̇ sin ϕ.

More information on the hybrid nonholonomic equations of motion can be found
in [13]. Similarly to the rolling ball, the vertical rolling disk possesses an invari-
ant volume whose density depends only on the configuation variables, [14], and
Proposition 5 can be applied.

8.3.1. Statistical distribution of the disk We present some numerical results on
the long term behavior of the disk. Consider the interior of the billiard table (an
ellipse)

E =
{
(x, y) ∈ R

2 : x
2

a2
+ y2

b2
≤ 1

}
,

S =
{
(x, y, θ, ϕ) ∈ R

2 × S1 × S1 : (x ± R cosϕ, y ± R sin ϕ) ∈ ∂E
}

,

where the ± serves the same roll as in the sleigh; either the front or the back of the
disk may strike the wall. The density function ρ : E → R is given by the same
numerical procedure as (27) with the definition Ã changed accordingly. Numerical
results can be found in Fig. 8.

9. Conclusion and future work

This work was motivated by the goal of understanding the set AH of hybrid-
invariant differential forms. Straight-forward testable conditions were developed
(Theorem 8) which allowed for a trivial proof that unconstrained hybridmechanical
systems are symplectic, and consequently, volume preserving (Proposition 3).

When restricted to volume forms, the conditions prescribed by Theorem 8
produce a “hybrid cohomology” equation (16). This has a trivial solution for un-
constrained mechanical systems. Existence of solutions for nonholonomic systems
is completely controlled by the continuous component as the discrete component is
trivial (Theorem 10). As the existence of an invariant volume is independent on the
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Fig. 8. Plots of the asymptotic locations of the penny for various semi-minor axis lengths.
The density ρ is approximated by dividing E into 200 by 200 boxes and tracking the location
of 106 time-1 maps

structure of the impacts, existence of an invariant volume for the continuous com-
ponent results in hybrid-invariant volumes independent of the impacts (Proposition
5).

Finally, the existence of an invariant volume imposes considerable limitations
on Zeno solutions in hybrid systems (Theorem 11); although this result does not
apply to spasmodic Zeno states, only steady Zeno states. Moreover, it is not needed
that the continuous component be volume-preserving; as long as the impacts are
not dissipative, Zeno trajectories are still controlled (Theorem 12). In particular, all
elastic mechanical systems (holonomic or nonholonomic) possess almost no Zeno
states.

We draw attention to two possible future extensions of this work: hybrid inte-
grators and hybrid brackets.

For a given α ∈ AH, the goal is to construct a numerical integrator which
preserves this form. This idea is explored in [41] where an integrator is constructed
which preserves the symplectic form for hybrid Hamiltonian systems. One way to
further this topic is to find a systematic method to generate integrators for arbitrary
hybrid systems which preserve an arbitrary invariant differential form α ∈ AH.

The next direction is concerned entirely with hybrid mechanical systems. It
would seem natural to define a hybrid bracket (which mimics the usual Pois-
son bracket for continuous Hamiltonian systems) in the following way. Let D :
C∞(T ∗Q) → C∞(S∗, T ∗Q) be given byD(H) = �H such that�H satisfies (5).
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Then we would define the hybrid bracket via

{ f, g}H =
{

{ f, g}, x 
∈ S∗,
D( f )∗g − g, x ∈ S∗,

where { f, g} is the usual Poisson bracket. However, this is problematic for (at least)
four reasons.

– It is not clear that the hybrid bracket is either smooth or continuous.
– The hybrid bracket may not be skew.
– Certain conditions are needed for H to guarantee a single, nontrivial, solution
to (5).

– Impacts might not occur; for example if S = {x2+ y2 = 1}, then impacts never
occur with the Hamiltonian H = xpy − ypx , but do with the Hamiltonian
H = p2x + p2y .

We intend to address these issues in future work.
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