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Abstract

Speciation in the marine environment is challenged by the wide geographic distribu-
tion of many taxa and potential for high rates of gene flow through larval dispersal
mechanisms. Depth has recently been proposed as a potential driver of ecological di-
vergence in fishes, and yet it is unclear how adaptation along these gradients' shapes
genomic divergence. The genus Sebastes contains numerous species pairs that are
depth-segregated and can provide a better understanding of the mode and tempo of
genomic diversification. Here, we present exome data on two species pairs of rock-
fishes that are depth-segregated and have different degrees of divergence: S. chlo-
rostictus-S. rosenblatti and S. crocotulus-S. miniatus. We were able to reliably identify
“islands of divergence” in the species pair with more recent divergence (S. chlorostic-
tus-S. rosenblatti) and discovered a number of genes associated with neurosensory
function, suggesting a role for this pathway in the early speciation process. We also
reconstructed demographic histories of divergence and found the best supported
model was isolation followed by asymmetric secondary contact for both species pairs.
These results suggest past ecological/geographic isolation followed by asymmetric
secondary contact of deep to shallow species. Our results provide another example
of using rockfish as a model for studying speciation and support the role of depth as

an important mechanism for diversification in the marine environment.
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1 | INTRODUCTION

Understanding mechanisms of speciation in the marine environment
remains difficult due to the lack of apparent geographical barri-
ers and high rates of gene flow among populations (Dennenmoser
et al.,, 2017). Most marine species demonstrate high dispersal ca-
pabilities and connectivity among populations, which can impede
local adaptive processes and differentiation (Bierne et al., 2003;
Carreras et al., 2017). However, even with the homogenizing effects
of gene flow, there is potential for local adaptation that may be the
driving force for genomic differentiation in the marine environment
(Whitney et al., 2018).

Early work on speciation in marine fishes was thought to be a
consequence of geographic isolating mechanisms. The formation of
land barriers (Bermingham et al., 1997; Bernardi et al., 2004), islands
(Leray et al., 2010), and physical boundaries generated from oceano-
graphic processes (Gaither & Rocha, 2013; Hubert et al., 2012) were
used from a biogeographical perspective to describe speciation pat-
terns in marine fishes. However, the role of pelagic larval duration
in contributing to gene flow among populations suggested that al-
lopatric divergence may be rarer in marine fish (reviewed in Bindea
et al., 2013). Although large-scale allopatric events can drive marine
speciation, there is evidence that other isolating mechanisms occur
in the marine environment (Faria et al., 2021; Rocha et al., 2005).
Studies have demonstrated the possibility for closely related species
to be sympatrically distributed, indicating ecology may be import-
ant (Burford, 2009; Crow et al., 2010; Rocha et al., 2005). Although
Rocha et al. (2005) found evidence for sympatrically distributed
reef fishes, there remains a lack of knowledge for how ecological
speciation applies to temperate marine environments. Furthermore,
sympatric or parapatric distribution of species contradicts existing
knowledge that gene flow can be a barrier to speciation. This creates
an apparent “marine speciation paradox,” or how can marine specia-
tion occur in the face of high apparent gene flow (Faria et al., 2021;
Johannesson, 2009)?

The model of ecological speciation is important in under-
standing the speciation process in the marine environment
(Bernardi, 2013; Puebla, 2009). Numerous studies have now docu-
mented the role that ecological specialization, especially in fishes,
plays in speciation. A number of environmental factors have been
documented that lead to ecological divergence in the marine en-
vironment; these include temperature (Teske et al., 2019) and sa-
linity (Momigliano et al., 2017), which are often correlated with
other habitat characteristics (e.g., depth and latitude). Depth has
already been identified as a potential factor in the diversification
of rockfishes (Behrens et al., 2021; Heras & Aguilar, 2019; Hyde
et al., 2008; Ingram, 2010; Sivasundar & Palumbi, 2010), and depth
may be important in driving speciation for other marine organisms
(Carlon & Budd, 2002; Gaither et al., 2018; Hirase et al., 2021;
Prada & Hellberg, 2013). Thus, adaptation to these environmen-
tal differences can lead to divergence in life history traits, such as
spawning behavior, which subsequently drives reproductive isola-
tion between incipient species.

Rockfishes (genus Sebastes) inhabit temperate waters across the
Atlantic and Pacific Ocean, with 60 different species found in the
North Pacific that have radiated over the past 5million years (Johns
& Avise, 1998). Species are found from rocky intertidal habitats to
depths greater than 1500 m (Love et al., 2002). Given the ecological
partitioning and habitat similarity between recently diverged forms
of rockfish, ecological speciation may have contributed to their di-
vergence (Behrens et al., 2021; Burford, 2009; Pavoine et al., 2009).
Depth has been proposed as an important component in the diver-
sification of rockfishes (Behrens et al., 2021; Heras & Aguilar, 2019;
Hyde et al., 2008; Ingram, 2010; Sivasundar & Palumbi, 2010).

This study aims to identify genomic regions that have contributed
to differentiation among recently diverged Northern Pacific species
pairs of rockfish: (S. chlorostictus-S. rosenblatti and S. crocotulus-S.
miniatus). The two species pairs occur along a continuum of diver-
gence, with S. chlorostictus-S. rosenblatti diverging approximately
0.21 Mya and S. crocotulus-S. miniatus diverging approximately
2.3 Mya (Hyde & Vetter, 2007). Both species pairs are found at dif-
ferent depths. S. chlorostictus occurs between 60 and 240m, while S.
rosenblatti occurs between 100 and 490 m. S. miniatus occurs at 30-
100m, while S. crocotulus occurs between 100 and 200m (Hyde &
Vetter, 2007). Our goals are to determine whether depth-segregated
speciation is a result of selective sweeps that generates islands of
genomic differentiation or “divergence islands” (Via, 2012; Wolf &
Ellegren, 2017). We will also examine islands of genomic differen-
tiation to see whether they are shared across species pairs. Sharing
of these divergence islands may indicate parallel evolutionary pres-
sures in depth adaptation. Finally, we also investigated the demo-
graphic history of speciation in these species pairs, to see whether
similar patterns exist and whether these patterns are consistent with

ecological speciation.

2 | METHODS AND ANALYSIS
2.1 | Sample collection

Ethanol-preserved fin clips for the following depth-separated spe-
cies pairs were obtained from S chlorostictus-S. rosenblatti and S.
crocotulus-S. miniatus (Table 1). High molecular weight DNA was
obtained using standard phenol-chloroform methods followed by
ethanol precipitation (Sambrook & Russell, 2006). DNA integrity was
checked on a 2% agarose gel and quantified on a Qubit fluorometer

before preparing the samples for lllumina library preparation.

2.2 | Targeted sequence capture design

We designed a series of oligonucleotide capture baits that could
efficiently enrich DNA sequencing libraries across Perciformes,
a large order of more than 2200 species that includes Sebastes
(Daane et al., 2016, 2019; Nelson et al., 2016). We targeted
protein-coding exons, conserved non-coding elements (CNEs),
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TABLE 1 Rockfish samples used for this study

Scientific name Common name

Greenblotched
Rockfish

S. rosenblatti

S. chlorostictus Greenspotted

Rockfish

Location

Palos Verdes, CA USA
Guadalupe Island, MX

La Jolla, CA USA

60 Mile Bank, CA USA

San Nicholas Island, CA USA
Point Reyes, CA USA
Osborne Bank, CA USA
Tanner Bank, CA USA

San Clemente Island, CA USA
San Nicholas Island, CA USA
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Palos Verdes, CA USA
Tanner Bank, CA USA
San Quintin, MX

S. crocotulus Sunset Rockfish

S. miniatus Vermilion Rockfish
Punta Baja, MX
Shelter Cove, CA USA
Depoe Bay, OR USA

Halfmoon Bay, CA USA

miRNAs and ultra-conservative elements (UCNEs) for enrichment.
Protein-coding exons were extracted from Ensembl BioMart for
the three-spined stickleback (Gasterosteus aculeatus, BROAD S1),
the Japanese medaka (Oryzias latipes, MEDAKA1), and green-
spotted puffer (Tetraodon nigroviridis, TETRAODON 8.0; Kinsella
et al.,, 2011). CNEs were defined from the constrained regions
>50bp within the Ensembl compara 11-way teleost alignment
that did not overlap with coding sequences (Ensembl release-91)
(Herrero et al., 2016). miRNA hairpins were identified from miR-
base and UCNEs from UCNEbase (Dimitrieva & Bucher, 2013;
Kozomara & Griffiths-Jones, 2010).

We used BLASTN (ncbi-blast-2.2.30+; parameters “-max_tar-
get_seqgs 1 -outfmt 6”) to identify each targeted element within
multiple perciform genome assemblies. The majority of capture
baits were designed against the genome of the Chabot de Rhénanie
Cottus rhenanus (ASM145555v1). Importantly, certain genetic re-
gions may be absent or highly divergent within the genome of this
sculpin but remain conserved in other Perciformes. To account
for these regions and ensure their capture, we iteratively de-
signed capture baits from the genomes of the shorthorn sculpin
Myoxocephalus scorpius (ASM90031295v1) (Malmstrgm et al., 2016),
the sablefish Anoplopoma fimbria (AnoFim1.0) (7), the golden red-
fish S. norvegicus (ASM90030265v1) (Malmstrgm et al., 2016), the
flag rockfish S. rubrivinctus (SRub1.0), the rougheye rockfish S.
aleutianus (ASM191080v2), the European perch Perca fluviatilis
(ASM90030264v1) (Rondeau et al., 2013), and the three-spined
stickleback G. aculeatus (BROAD S1). For each species, we included
new capture baits if the targeted elements were either not identified
(coverage <70% or a BLASTN E-value >0.001), or had <85% identity
to an existing capture bait. As a result of this iterative addition of

La Jolla Canyon, CA USA

n Year Latitude Longitude
1996 33.81 -118.44
4 1996 29.16 -118.27
1994 32.87 -117.31
1994 32.11 -118.24
1994 33.20 -119.51
5 1998 38.07 -123.53
3 2005 33.36 -119.03
3 2007 32.70 -119.06
3 2007 32.78 -118.36
3 2007 33.28 -119.51
3 2018 33.69 -118.33
10 2004 32.69 -119.07
10 2005 30.67 -116.13
5 2000 32.83 -117.25
5 1994 29.89 -115.82
3] 2008 40.25 -124.4
4 2008 44.8 -124.07
3 2003 37.46 -122.43

sequence information from new species, there should be oligonu-
cleotide capture baits of at least 85% identity to each clade included
in the capture design. This multi-species design enables efficient
enrichment across distantly related perciform fishes. The final spe-
cies composition of the capture baits: C. rheanus (62.0%), M scorpius
(6.7%), A. fimbria (6.4%), S. norvegicus (5.9%), S. rubrivinctus (2.0%), S.
aleutianus (1.8%), P. fluviatilis (5.3%), and G. aculeatus (9.8%).

SeqCap EZ Developer (cat #06471684001) capture oligos were
designed in collaboration with the Nimblegen design team to stan-
dardize oligo annealing temperature, reduce probe redundancy, and
remove low complexity DNA regions. The capture design contained
sequence from 492,506 regions (81,493,221 total bp) across all eight
perciform reference genomes. Accounting for probe redundancy
between the perciform reference genomes, the final capture design
comprised 407,084 distinct elements, including 285,872 protein-
coding exons, 118,406 conserved non-coding elements, 2508
UCNEs, and 298 miRNAs (see Daane et al., 2016).

2.3 | Exome sequencing

Exome sequencing of 20 individuals from four different species
was done using a pool-seq approach (Table 1) (Daane et al., 2016;
Schl6tterer et al., 2014). DNA from 20 individuals was pooled in
equimolar amounts, and libraries were constructed using the Kapa
HyperPlus kit (Table S1). Enrichment of exome sequences was done
following the approach of Daane et al. (2019). Individually barcoded
libraries were quantified using qPCR, pooled, and sequenced on an
lllumina HiSeq4000 at the UC Berkeley Vincent Coates Genomics
facility with 150 PE sequencing.
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2.4 | Read mapping

Following sequencing, reads were demultiplexed, then trimmed, and
quality filtered with Trimmomatic (Bolger et al., 2014) using the param-
eters: ILLUMINACLIP:TruSeq3-PE-2:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15  MINLEN:36"  ILLUMINACLIP:TruSeq3-
PE-2:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
MINLEN:36. The resulting high-quality trimmed reads were mapped
to the S. umbrosus genome (Kolora et al., 2021; assembly fSebUmb1.
pri) with bwa-mem (Li & Durbin, 2010). Resulting BAM files were con-
verted to mpileup format with samtools (Table S1) (Daane et al., 2019),
and regions surrounding indels were masked with the identify-indel-
regions.pl script for subsequent analysis. Allele frequencies were es-
timated with Popoolation2 (Kofler et al., 2011), and loci with a minor
allele frequency (MAF) less than 0.05 were removed for subsequent
analyses. We use this MAF cutoff to avoid any bias from fixed or
nearly fixed variants between species.

We identified divergence islands across species pairs using out-
lier approaches. We estimated F¢; for species pairs using the pa-
rameters in Popoolation2: -suppress-noninformative -min-count
6 -min-coverage 80 -max-coverage 500 -min-covered-fraction 1
-window-size 1 -step-size 1 -pool-size 20 (Kofler et al., 2011; Li
et al., 2009). Results from the F¢; analysis were then plotted uti-
lizing ggman to generate Manhattan Plots in R (Turner, 2018). Our
comparisons include two species pairs that span a range of diver-
gence across the speciation continuum (Behrens et al., 2021; Hyde
et al., 2008). Identification of clear regions of divergence in the more
diverged species pair possesses additional challenges, as drift and
recombination may erode any signals associated with speciation-
related divergence (Quilodran et al., 2020).

2.5 | Sliding window analysis

To identify divergence islands, we applied an approach similar to
Holliday et al. (2016) and Renaut et al. (2013). We performed a sliding
window analysis of F¢; across each chromosome, using a window of
10 adjacent SNPs and sliding the window every two SNPs, to identify
the number of regions that contained SNPs greater than the top one
percentile for Fg; of the genome-wide analysis. To assess significance,
we randomly sampled 10 SNPs from across the genome with replace-
ment for their F¢; values 100,000 times. For each of these subsam-
ples, we estimated the proportion of top one percentile Fo; SNPs
present. The proportion of top one percentile SNPs in each window,
over the resampled dataset, was used to determine significance for

the original dataset (p <.001) to reduce the signal from false positives.

2.6 | Gene ontology enrichment analysis

We identified genes found in outlier windows from our sliding win-

dow analysis. These served as our candidate list of genes that was

then compared with the background list of all annotated genes
found from our exome dataset. To test for enrichment of molecu-
lar pathways and/or function between the background and can-
didate lists and to allow for the visualization of the gene ontology
networks, we used Cytoscape-CLUEGO and its plug-in CLUEPedia
(Bindea et al., 2009, 2013). Cytoscape-CLUEGO utilizes hypergeo-
metric testing followed by Bonferroni multiple testing corrections
between a candidate gene list and a custom background list (Bindea
et al., 2009). For Cytoscape-CLUEGO, all annotations were made
using the D. rerio genome from the Gene Ontology Consortium
(Ashburner et al., 2000), provided as it was the closest related spe-
cies to genus Sebastes in this analysis package. Finally, Cytoscape-
CLUEGO groups genes by GOterm to avoid redundancy in the
results.

2.7 | Demography of speciation

We utilized folded site frequency spectra in 8adi (Gutenkunst
et al., 2009) to determine the demographic history of speciation
in each of the species pairs. To generate datasets for this analy-
sis, we used all identified SNPs from Popoolation2 (before filtering
for MAF as above). To assure independence (linkage equilibrium)
of each SNP, we randomly sampled one SNP every 1,000,000bp
across the genome. Raw SNP frequencies were converted into 5adi
SNP format using genomalicious (https://rdrr.io/github/j-a-thia/
genomalicious/). We explored seven simple two-population models
in 8adi: no migration, symmetric migration, asymmetric migration,
symmetric migration followed by isolation, asymmetric migration
followed by no migration, secondary contact with symmetric mi-
gration, and secondary contact with asymmetric migration. We hy-
pothesize that if ecological speciation has occurred in these species
pairs, due to adaptation to different depths, we would expect to
observe a demographic history with at least some gene flow. We
utilized the 8adi optimization procedure from Portik et al. (2017)
(https://github.com/dportik/dadi_pipeline). We ran four iterations
of optimizations for each model with 10, 20, 30, and 40 replica-
tions, respectively. For each species pair, we compared models
using AIC and A AIC. We did not convert parameters from the best
fit model into biologically meaningful values, as our goal was simply
to reconstruct a reasonable demographic scenario for each species
pair.

3 | RESULTS

3.1 | Genome assembly and coverage

We obtained sequences for pooled sequenced from each species
that contained 20 individuals. The average read depth was 10.36

across species and >99% of the reads mapped back to the S. umbri-

nus genome (Table S1).
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3.2 | SNPcalling and F¢;

We used Fg; to identify islands of divergence between each spe-
cies pair and found F¢; values for 48,106 SNPs in S. crocotulus-S.
miniatus and 52,626 SNPs in S. chlorostictus-S. rosenblatti. Mean
F¢; for S. crocotulus-S. miniatus was 0.10 with a standard error of
0.0014; for S. chlorostictus-S. rosenblatti, mean Fo; was 0.03 with a
standard error of 0.0003. We found a total of 10 non-overlapping
windows in the S. crocotulus-S. miniatus comparison that passed
our significance threshold (p <0.0001) and 33 windows for S. chlo-
rostictus-S. rosenblatti (Figure 1; Tables S2 and S3). There were two
windows that were shared in both comparisons, one on chromo-
some 6 and the other on chromosome 12 (Figure 1, Tables 5S2-54).

3.3 | Enrichment analysis of significant F¢;
windows and candidate genes

Genes found within significant F; windows for S.chlorostictus-S.
rosenblatti were enriched for pathways related to neuropep-
tide signaling, monovalent inorganic cation inorganic homeo-
stasis, galanin receptor activity, proton-transporting two-sector
ATPase complex—catalytic domain, active transmembrane trans-
porter activity, P-P-bond-hydrolysis driven transmembrane

10 - (a)
0.8 —
L]
0.6 —
FST
0.4 —
0.2
0 -
1 2
10 (b)
FIGURE 1 Manhattan plot of 0.8 —
individual Fg; values based on pooled
exome sequencing between Sebastes 06
chlorostictus-Sebastes rosenblatti (a) and F
S. crocotulus-S. miniatus (b) species pairs ST
displaying individual SNP F; values by 04 7
chromosome number (aligned to the S.
umbrosus genome). Highlighted green 0.2 -
values are of SNPs that reside in windows
that contain a higher-than-expected o0
proportion of F¢; values above the top 1% 1 2
of genome-wide estimated differentiation
(p<.001).
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transporter activity, and proton transmembrane transporter ac-
tivity (Bonferroni <0.05). Eighteen of the 200 candidate genes in
this species pair were enriched within these GO terms. Of the 18
genes: five are related to ATP binding, ATP synthase or ATPase
activity (abcb8, atp5fle, atpévih, atplb2b, and atpéapla), four are
solute carriers (slc4a2b, slc12a9, slc2a10, and slc9a7), and two are
integrin beta subunits (itb4r and itb4r2a). The remaining seven
genes have functions related to melanophore production stimula-
tion, germ cell migration, behavioral, ectodermal placode develop-
ment, cell proliferation inhibition, and MHC class | binding activity
(adcyaplb, cal5b, galrib, oprk1, pnocb, pth2, and tap2t) (Table 2,
Figure 2a, Table S5).

Genes found within significant Fg; windows for S.crocotulus-S.
miniatus were enriched for pathways related to bicellular tight
junction, positive regulation of actin filament polymerization, his-
tone lysine methylation and SWI/SNF superfamily-type complex
(Bonferroni <0.05). Alone, 12 candidate genes from a list of 126
candidate genes were enriched for these GO terms and provided
functional and cellular pathway insight. Of the 12, three are in-
volved in chromatin remodeling (aridlab, arid1b, and tfpt), three
are involved in methylation (dnmt1, setdl1a, and setdb1b), four are
related to cytoskeletal organization (zgc:158689, tbcd, cldnk, and
baiap2a), one to GTP binding (cdc42ep4a), and one to intracellular

membrane organization (rab13) (Table 3, Figure 2b, Table S5).

4 5 6 7 89 1011 12 13 14 15 16 17 18 19 2021222324
Chromosome

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021222324

Chromosome
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FIGURE 2 Significantly enriched

GO terms (Bonferroni <0.05) for genes (a)
found in genomic islands of divergence

identified via sliding window analysis

for the Sebastes chlorostictus-Sebastes

rosenblatti (a) and S. crocotulus-S. miniatus

(b) comparisons using Cytoscape-

CLUEGO. The different color circles

represent unique functional GO terms. abcbs
Linked functional GO terms illustrate a

functional pathway. The candidate genes

that connect each significant GO term

are labeled red. Finally, highlighted terms

are known as a leading term as they are

the most significant GO term from the

tap2t

Ecology and Evolution 7 of 13
=t e W LEY- 7o

monovalent
inorganic cation

homeostasis catsh ph2

Itb4r2a

slc4a2b galanin receplor activity

®.
atp1b2b
®

—_—
oprk1
\ Itb4r g
®
slc12a9
neuro ep
galr1b
active fransmenmbrane tfansporter @ 5/°%27 signalin pat
agtivity [ adcyapﬂ)
® tpsapta slc2a10

pnocb
atp5fte;

atpévih

proton transmembrane transporter

analysis. activity
proton-transporting two-sector
ATPase complex, catalytic domain
arid1b setd1a
L]
(b) \
SWI/SNF e ardiab ®  dnmt1
superfamily-type . .
co%plex y-typ / histone lysine
/ methylation
(J
thpt setdb1b
baiap2a cldnk

3

cdcdzepda
‘\. P rab13

positive regulation
of actin filament
polymerization

3.4 | Demography of speciation

In order to assess the demographic history of speciation within
our two species pairs, we tested seven models of population di-
vergence using 5adi. We used pruned datasets that consisted of
5368 and 5310 SNPS for the S. rosenbaltti-S. chlorostictus and S.
miniatus-S. crocotulus species pairs, respectively. For both species
pairs, we found the secondary contact with asymmetric gene flow
from the deep to shallow species to be the best model (Tables 4
and 5).

4 | DISCUSSION

The presumed lack of geographic barriers and propensity for high
levels of gene flow poses challenges for studying speciation in the
marine environment. Our results build on a growing body of work
that indicate the genus Sebastes is a good model for better under-
standing of the mechanisms that promote speciation in the marine
environment (Behrens et al., 2021; Burford & Bernardi, 2008; Heras

[ ]
zgc:158689 tbed

& Aguilar, 2019; Ingram, 2010; Kolora et al., 2021). Using pooled
exome sequences, we were able to uncover islands of genomic dif-
ferentiation in two different Sebastes species pairs that exhibit depth
segregation. We were able to identify a greater number of islands in
the S. chlorostictus-S. rosenblatti than in the S. crocotulus-S. miniatus
pair, which is expected given the disparity in divergence time ob-
served in these taxa (Hyde & Vetter, 2007). Recently diverged spe-
cies pairs are likely to retain signals of divergent selection associated
with speciation as these signals erode over the amount of time spe-
cies pairs are isolated (Quilodran et al., 2020). Enriched GO terms
for genes found within the S. chlorostictus-S. rosenblatti species pair
divergence islands suggest that genes involved in neuropeptide sign-
aling and cellular homeostasis are important in the divergence of this
species pair. A less clear pattern was observed for S. crocotulus-S.
miniatus, but we were able to identify shared islands between the
two species pairs. This work builds upon previous findings in the
genus Sebastes and suggests a more complex pattern of genomic di-
vergence as it relates to speciation in this group.

Exome-wide analysis revealed a number of enriched GO terms
found within significant outlier regions for the S. chlorostictus-S.
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TABLE 5 Results of the demographic model analysis (8asi) for the Sebastes crocotulus-Sebastes minatus species pair

Model

T T1 T2

m2-12

mil—-2?

nul nu2

theta

AlC delta AIC

Log-I

abbreviation

0.4318

28.6354

1.0233

9.0238

2.5635

151.38 0.6573

0

3611.86

-1799.93

asym_mig

sec_contact

0.0022
20.2339

0.0544
5.5264
2.8042
1.8633

0.0311
4.5392
1.6168
1.6042

1246.52

184.92

3796.78
4175.4

-1895.39
-2083.7
-2082.8
-2087.1

g

no_mi
sym_mig

0.8282

114.23
260.87

563.54

1.4564 8.119

2.5446
2.5214

563.74

4175.6

asym_mig

2.7467

2.9266

325.39

572.34

4184.2

sym_mig

sec_contact

0.0377
0.0119

17.1097

0.6727

2.5924

6.0197
0.8302

2.2964
0.3464

145.73

1071.12

624.14
858.54

4236

-2112

ym_mig

anc_as

0.0132

0.6722

-2230.2 4470.4

anc_sym_mig

Note: The log likelihood (Log-l), Akaike Information Criteria (AIC), difference in AIC values compared with the best model (delta AIC), scaled ancestral population sizes (theta, nul, and nu2), migration rates

(m - symmetrical; m1—2 and m2—1 - asymmetrical), and scaled divergence times (T, T1, and T2) are reported for each model.

21: S. crocotulus; 2: S. miniatus.
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rosenblatti comparison including cation homeostasis and the neuro-
peptide signaling pathway. The identification of genes in the neu-
ropeptide signaling pathways in the S. chlorostictus-S. rosenblatti
species pair is more directly related to ecological divergence and
speciation in this group. Wang et al. (2021) point out the interplay
between chemosensory divergence and ecological speciation. They
focus on the importance of chemosensory drive in this process with
a particular focus on diet adaptations. While dietary differences may
exist in the S. chlorostictus-S. rosenblatti pair, it is likely adaptation to
depth-related features is more important. Hyde and Vetter (2007)
proposed a mechanism by which depth segregation could lead to di-
vergence in Sebastes. In Sebastes, juveniles are attracted to species-
specific habitat types during settlement, and homing to a different
depth-related habitat could contribute to sensory drive that would
eventually lead to reproductive isolation via habitat differences
(Heras et al., 2015).

We can only speculate on the relative importance of these
pathways to the ecological divergence of this species pair. Genes
involved in homeostatic functioning are likely crucial in maintain-
ing cellular stability in the face of environmental differences. While
there has not been adequate characterization of depth-related
habitat differences for any of the species we studied or the phys-
iological demands of these environments, we can hypothesize that
differences in temperature, pH, and salinity exist along the depth
gradient that may drive local adaptation for these and other species.
Overall, the enrichment of candidate genes near significant Fg; win-
dows of genomic islands of differentiation for the S. chlorostictus-S.
rosenblatti pair provides functional descriptions of genes and gene
networks related to behavior, development, homeostasis, and im-
munity, supporting previous work on rockfish that has found similar
evolutionary evidence corresponding to depth driving their specia-
tion (Behrens et al., 2021; Hyde & Vetter, 2007; Ingram, 2010).

We found fewer enriched gene ontology groups for the S. croco-
tulus-S. miniatus species pair, concordant with the finding of fewer
significant outlier windows. This finding is likely due to the increased
divergence of this species pair compared with S. chlorostictus and
S. rosenblatti. It is possible that our approach is not applicable to
more diverged species pairs and would benefit from methods that
could account for levels of intraspecific variation (Cruickshank &
Hahn, 2014). The amount of divergence between S. crocotulus and
S. miniatus has likely eroded most of the signal associated with
speciation due to the increased effects of drift and recombination
(Quilodran et al., 2020). The significant gene ontology terms that we
did identify for this pair were associated with basic housekeeping
functions (actin regulation of polymerization, the SWI/SNF path-
ways, histone lysine methylation pathways, tight junction, and reg-
ulation of actin filament polymerization) and cannot be associated
with differences in depth for this species pair. The SWI/SNF path-
ways act as ATP-dependent chromatin remodelers that repress and
activate genes and are associated with cardiovascular development
(Table S4). The finding that histone lysine methylation pathways are
enriched in this species pair could be related to hybrid sterility, as
this pathway has been found to be related to hybrid sterility in mice
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(Mihola et al., 2009). Histone lysine methylation could indicate a
postzygotic barrier in this species pair (Sha et al., 2020). It may be
that the enriched genes found in this species pair are indicative of
postzygotic barriers as chromatin remodeling genes are known to
cause hybrid sterility and these molecular functions may be more
present in longer diverged species of rockfish; however, additional
work needs to be done to assess the validity of these findings.

We found a limited number of shared outlier windows between
the two species pairs, a window on chromosome 6 and one on chro-
mosome 12. These overlapping windows contained only four an-
notated genes (Table S4), some of which are involved in the basic
metabolism. The lack of clear shared divergence islands across
species pairs is likely due to the difference in estimated divergence
times. This pattern was also observed by Behrens et al. (2021) in
a comparison of genome-wide divergence in three Sebastes species
pairs and demonstrates the limitations of using Fg; in these types of
studies (Quilodran et al., 2020).

4.1 | Comparison to previous work

A recent study of the genomic architecture of speciation in Sebastes
found evidence for two “islands” across two different chromosomes
(Behrens et al., 2021). As in our study, Behrens et al. (2021) also uti-
lized the S. crocotulus-S. miniatus pair and they found evidence for
six regions of elevated genomic differentiation; however, this study
also utilized an additional species pair (S. carnatus-S. chrysomelas)
that has a recent divergence (similar to S. chlorostictus-S. rosenblatti).
A more direct comparison of divergence islands with our study is not
entirely possible, as Behrens et al. (2021) used different approaches
and reference genome. They used SNPs derived from reduced rep-
resentation sequencing (ddRAD-Seq) to identify regions of high di-
vergence between species pairs and whole genome resequencing
of a single individual from S. carnatus and S. chrysomelas to identify
“functionally” divergent SNPs (Behrens et al., 2021). The approaches
to identifying the function of outliers were also different between
the two studies; Behrens et al. (2021) focused on identifying genes
that contained outlier SNPs, while we looked at genes found within
outlier windows and tested for the enrichment of GO terms for these
genes. Regardless, we did not find similar gene sets in our analyses,
with Behrens et al. (2021) finding a set of genes related to vision and
immune function. Clearly, future work should focus on employing
whole genome approaches and standardized genomic resources for

Sebastes species.

4.2 | Demography of speciation

Examination of a limited set of demographic models indicated
that the same model, secondary contact with asymmetric gene
flow, was most likely for both species pairs. This suggests that
the invasion of a novel habitat (deeper water in this case) is fol-
lowed by a period of isolation in these species pairs. Models of

ecological speciation predict that gene flow should persist upon
invasion of the new ecological space. However, a recent study
on depth-segregated ecomorphs in S. mentella found support
for demographic models that were similar to those found in this
study (Benestan et al., 2021). Benestan et al. (2021) suggested
that divergence in S. mentella was relatively recent (0.5 MYA) and
driven by changes in sea level during the Pleistocene. Support
for the secondary contact model found in this study is also sup-
ported by other studies of speciation history in marine organisms
(Fairweather et al., 2018; Filatov et al., 2021; Leder et al., 2021).
Another aspect of our analysis is that the directionality of asym-
metric gene flow, following isolation, went consistently from the
deeper species to the shallower species. It is unclear whether this
pattern will hold across other depth-segregated species pairs in
Sebastes, but could be indicative of climatic shifts impacting the
depth distribution of these species. Future work on Northeastern
Pacific Sebastes will determine whether the overall pattern of
isolation followed by secondary contact holds across depth-

segregated species pairs.

4.3 | Limitations

Our work is limited in that we utilized a pool-seq approach and only
focused on enriched exome, CNE and UCE sequences. The main ad-
vantage of the pool-seq approach is that it reduces the overall cost
of sequencing (Schlotterer et al., 2014). It does have the disadvan-
tage that allele frequency estimates can be biased, but this is over-
come with increased sequencing coverage (Schlotterer et al., 2015).
We intentionally utilized high coverage regions in our SNP discovery
steps (40-500x coverage) to reduce any error. On top of this, we
utilized enriched sequences in our analysis, which has the advan-
tage of reducing sequencing efforts to protein-coding regions of the
genome but would potentially be missing signals from extragenic
regions. We were also limited in any inference from the comparison
between the more divergent species pair (S. crocotulus-S. minatus),
and future work in this area should focus on more recently derived

species.

5 | CONCLUSIONS

Our exome scan of two Sebastes species pairs revealed a handful
of genes and pathways associated with depth-related divergence.
There were a small number of shared islands of divergence between
the pairs, but islands of divergence were more readily detected in
the pair with more recent divergence. In the S. chlorostictus-S. rosen-
blatti pair, we found enrichment for the neuropeptide synthesis
pathway in outlier loci, which suggests that chemosensory drive may
be involved in depth-related speciation for this pair. Our analysis of
demography of speciation revealed support for a similar model of
divergence for the two pairs (isolation followed by secondary con-
tact), which has been observed in other marine taxa. These results
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build on the growing knowledge of speciation history in the genus
Sebastes and suggest Sebastes will continue to be a valuable model in

understanding mechanisms of speciation in temperate marine fishes.
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