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Exchangeability—in which the distribution of an infinite sequence is invariant to reorderings of its elements—

implies the existence of a simple conditional independence structure that may be leveraged in the design of sta-

tistical models and inference procedures. In this work, we study a relaxation of exchangeability in which this

invariance need not hold precisely. We introduce the notion of local exchangeability—where swapping data as-

sociated with nearby covariates causes a bounded change in the distribution. We prove that locally exchangeable

processes correspond to independent observations from an underlying measure-valued stochastic process. Using

this main probabilistic result, we show that the local empirical measure of a finite collection of observations pro-

vides an approximation of the underlying measure-valued process and Bayesian posterior predictive distributions.

The paper concludes with applications of the main theoretical results to a model from Bayesian nonparametrics

and covariate-dependent permutation tests.
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1. Introduction

Let X = X1,X2, . . . be an infinite sequence of random elements in a standard Borel space (X,Σ). The

sequence is said to be exchangeable if for any finite permutation π of N,

X1,X2, . . .
d
= Xπ(1),Xπ(2), . . . .

At first sight this assumption appears innocent; intuitively, it suggests only that the order in which ob-

servations appear provides no information about those or future observations. But despite its apparent

innocence, exchangeability has a powerful implication. In particular, the well-known de Finetti’s theo-
rem (e.g. Kallenberg, 2002, Theorem 11.10) states that an infinite sequence is exchangeable if and only

if it is mixture of i.i.d. sequences, i.e., there exists a unique random probability measure G on X such

that

P (X ∈ · |G) a.s.= G∞, (1)

where G∞ is the countable infinite product measure constructed from G. Thus, exchangeability pro-

vides a strong justification for the Bayesian approach to modeling (Jordan, 2010), and guarantees a

latent conditional independence structure of X useful in the design of computationally efficient infer-

ence algorithms. Exchangeability is also the basis of well-known nonparametric permutation testing

procedures (Pitman, 1937a,b,c; Fisher, 1966, Ch. 3; Ernst, 2004; Lehmann and Romano, 2005, Ch. 15).

However, although exchangeability may be a useful idealization in modeling and analysis, many data

come with covariates that preclude an honest belief in its validity. For example, given a corpus of doc-

uments tagged by publication date, one might reasonably expect the data to exhibit a time-dependence
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that is incompatible with exchangeability. Nevertheless, one might still expect the distribution not to

change too much if we permuted documents published only one day apart; i.e., observations with sim-

ilar covariates are intuitively “nearly exchangeable.” In this work, we investigate how to codify this

intuition.

One option is to use a kind of partial exchangeability (Camerlenghi et al., 2019, de Finetti, 1938,

Diaconis and Freedman, 1978, Le Cam, 1964) in which the distribution is invariant to permutations

within equivalence classes. Formally, we endow each observation Xn with a covariate tn from a set T ,

and assert that the sequence distribution is invariant only to reordering observations with equivalent

covariate values. Under this assumption as well as the availability of infinitely many observations at

each covariate value, we have a similar representation of X as a mixture of independent sequences

given random probability measures (Gt )t∈T ,

P (X ∈ · | (Gt )t∈T )
a.s.
=

∞∏
n=1

Gtn . (2)

The random probability measures (Gt )t∈T can have an arbitrary dependence on one another; partially

exchangeable sequences encompass those that are exchangeable (where the covariate does not matter),

decoupled (where subsequences for each different covariate value are mutually independent), and the

full range of models in between. In particular, partial exchangeability does not enforce the desideratum

that observations with nearby covariates should have a similar law, and is too weak to be useful for

restricting the class of underlying mixing measures for the data.

In this work, we introduce a new notion of local exchangeability—lying between partial and exact

exchangeability—in which swapping data associated with nearby covariates causes a bounded change

in total variation distance. We begin by studying probabilistic properties of locally exchangeable pro-

cesses in Sections 2.1 and 2.2. The main result from this section is in the spirit of de Finetti’s theorem:

we prove that locally exchangeable processes correspond to independent observations from a unique

underlying smooth measure-valued stochastic process. To the best of our knowledge, this representa-

tion theorem is the first to arise from an approximate probabilistic symmetry. Further, the existence of

such an underlying process not only shows that de Finetti’s theorem is robust to perturbations away

from exact exchangeability, justifying the Bayesian analysis of real data, but also imposes a useful con-

straint on the space of models one should consider when dealing with data that one suspects follows

a locally exchangeable random process. Next in Section 2.3, we use this result to show that the local
empirical measure of a finite collection of observations can be used to provide an approximation of

the underlying measure-valued process, Bayesian predictive posterior distributions, and the premetric

that governs local exchangeability. These results rely heavily on the intuition that locally exchange-

able observations from nearby covariates behave essentially like exchangeable observations. Finally, in

Section 3, we provide example applications in two statistical models exhibiting local exchangeability—

Gaussian processes (Rasmussen and Williams, 2006) and dependent Dirichlet processes (MacEachern,

1999, 2000)—as well as grouped permutation tests in the presence of covariates. The paper concludes

with a discussion of directions for future work. Proofs of all results are provided in the supplementary

material (Campbell et al., 2023).

1.1. Related work

Beyond de Finetti’s original result for infinite binary sequences (de Finetti, 1931) and its extensions

to more general range spaces (de Finetti, 1937, Hewitt and Savage, 1955) and finite sequences (Di-

aconis, 1977, Diaconis and Freedman, 1980b)—see Aldous (1985) for an in-depth introduction—
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correspondences between probabilistic invariances and conditional latent structure (known as repre-
sentation theorems) have been studied extensively. Notions of exchangeability and corresponding la-

tent conditional structure now exist for a wide variety of probabilistic models, such as arrays (Aldous,

1981, Austin and Panchenko, 2014, Hoover, 1979, Jung et al., 2021), Markov processes (Diaconis and

Freedman, 1980c), networks (Borgs et al., 2017, Cai, Campbell and Broderick, 2016, Caron and Fox,

2017, Crane and Dempsey, 2016, Janson, 2018, Veitch, 2015), combinatorial structures (Broderick, Pit-

man and Jordan, 2013, Campbell, Cai and Broderick, 2018, Crane and Dempsey, 2019, Kingman, 1978,

Pitman, 1995), random measures (Kallenberg, 1990), and more (Diaconis, 1988, Kallenberg, 2005, Or-

banz and Roy, 2015). Furthermore, weaker notions of exchangeability such as conditionally identical

distributions (Berti, Pratelli and Rigo, 2004, Kallenberg, 1988) have been developed. All past work on

probabilistic invariance and its consequences has pertained to exact invariance.

2. Local exchangeability

2.1. Definition

Let X = (Xt )t∈T be a stochastic process on an index (or covariate) set T taking values in a stan-

dard Borel space (X,Σ). To encode distance between covariates, we endow the set T with a premetric
d : T × T → [0,1] satisfying d(t, t ′) = d(t ′, t) and d(t, t) = 0 for t, t ′ ∈ T . We will formalize local ex-

changeability based on the finite dimensional projections of X . For any subset T ⊂ T and injection

π : T →T , let XT and Xπ,T denote stochastic processes on index set T such that

∀t ∈ T, (XT )t := Xt (Xπ,T )t := Xπ(t). (3)

In other words, XT is the restriction of X to index set T , while Xπ,T is the restriction to T under the

mapping π. Definition 1 captures the notion that observations with similar covariates should be close

to exchangeable, i.e., the total variation between XT and Xπ,T is small as long as the distances between

t and π(t) are small for all t ∈ T .

Definition 1. The process X is locally exchangeable with respect to a premetric d if for any finite

subset T ⊂ T and injection π : T →T ,

dTV(XT ,Xπ,T ) ≤
∑
t∈T

d(t, π(t)). (4)

Definition 1 generalizes both exchangeability and partial exchangeability among equivalence classes.

In particular, the zero premetric where d(t, t ′) = 0 identically yields classical exchangeability, while the

premetric d(t, t ′) = 1 − 1[t ∼ t ′] for equivalence relation ∼ yields partial exchangeability. Further, any

process is locally exchangeable with respect to the discrete premetric d(t, t ′) = 1 − 1[t = t ′]; in order to

say something of value about a process X , it must satisfy Eq. (4) for a tighter premetric.

To quantify differences in distributions, Definition 1 employs the total variation distance, which for

random elements Y,Z in a measurable space (Y,Ξ) is defined as

dTV(Y,Z) := sup
A∈Ξ

|P(Y ∈ A) − P(Z ∈ A)| .

The choice of total variation distance (as opposed to other metrics and divergences, see e.g. (Gibbs

and Su, 2002)) is motivated by its symmetry and generality. We make d a premetric—as opposed to

a (pseudo)metric, say—as the triangle inequality and positive definiteness are unused in the theory
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below. Further we use a premetric with range [0,1] because total variation always lies in this range,

and so any valid bound in Eq. (4) for a premetric d : T × T → R+ can be improved by replacing d
with min(d,1). And although Definition 1 imposes a total variation bound only for all finite sets of

covariates, it is equivalent to do so for all countable sets of covariates, as shown in Proposition 2.

Proposition 2. If X is locally exchangeable with respect to d, then for any countable subset T ⊂ T and
injection π : T →T ,

dTV(XT ,Xπ,T ) ≤
∑
t∈T

d(t, π(t)).

Example 3. A simple example of local exchangeability that we will return to throughout the paper is

the process of observable measurements X from a Bayesian linear regression model on T = R with a

quadratic trend,

θ ∼N(0,1), ∀t ∈ R, Xt
indep∼ N(θt2,1). (5)

By Lemma 14 in the supplementary material (Campbell et al., 2023), since the Xt are independent

conditioned on θ,

dTV(XT ,Xπ,T ) ≤
∑
t∈T
E

[
dTV(N(θt2,1),N(θπ(t)2,1))

]
.

We bound the terms in the sum using the Lipschitz continuity of the standard normal CDF Φ,

E

[
dTV(N(θt2,1),N(θπ(t)2,1))

]
= E

[
Φ

(
|θt2 − θπ(t)2 |

2

)
−Φ

(
− |θt2 − θπ(t)2 |

2

) ]

≤ E|θ | |t
2 − π(t)2 |
√

2π
≤ |t2 − π(t)2 |

√
2π

.

Therefore the process X in the Bayesian linear regression model Eq. (5) is locally exchangeable with

respect to the premetric d(t, t ′) =min(|t2 − t ′2 |/
√

2π ,1). Note that we are free to take min(·,1) because

the total variation is bounded above by 1. This example illustrates why we opt for the generality of a

premetric; here, observations at points t and −t are exactly exchangeable since d(t,−t) = 0, which does

not generally hold for a metric, and |t2 − t ′2 | does not satisfy the triangle inequality. Also note that the

marginal distribution of XT is a multivariate Gaussian with off-diagonal covariance terms E [Xt Xt′] ∝
t2t ′2, which varies with t, t ′; multivariate Gaussians with exchangeable components must have constant

off-diagonal covariance terms. Therefore this example also shows that there exist processes that are

locally exchangeable but not exchangeable.

2.2. de Finetti representation

In the previous example, we used the fact that the variables Xt were conditionally independent given a

latent random variable θ to demonstrate their local exchangeability. A natural question to ask is whether

all locally exchangeable processes exhibit a similar structure. Theorem 5 answers this question in the

affirmative, by providing a de Finetti-like representation of locally exchangeable processes similar to

Eq. (1) and Eq. (2). This representation guarantees the existence of a simple conditional structure that

can be leveraged in the design of statistical inference procedures, and justifies a Bayesian approach

when dealing with covariate-dependent data. We first require a weak assumption on the space T .
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Definition 4 (Infinitely-separable space). A premetric space (d,T) is infinitely separable if there

exists a countable subset T ⊆ T such that for all t ∈ T , there exists a Cauchy sequence (tn)n∈N in T

such that tn → t and |{tn : n ∈ N}| =∞.

When d is a metric, infinite separability is equivalent to T being separable with no isolated points.

When d is a pseudometric, it is equivalent to the existence of a countable dense subset T ⊆ T such that

for all t ∈ T and ε > 0, |{t ′ ∈ T : d(t, t ′) < ε}| =∞. In general, infinite separability ensures that there

are infinitely many elements to swap “nearby” each covariate value of interest t ∈ T . This assumption

precludes the situation where observations satisfy finite exchangeability (Diaconis, 1977, Diaconis and

Freedman, 1980b) but not infinite exchangeability.

Theorem 5 shows that under infinite separability, the desired de Finetti-like representation indeed

does exist. In particular, we show that there is a unique probability measure-valued process G that

renders X conditionally independent, and that G satisfies a continuity property with the same “smooth-

ness” as the observed process. For the precise statement of the result in Theorem 5, recall that a modi-
fication of a stochastic process G on T is any other process G′ on T such that ∀t ∈ T , P

(
Gt =G′

t

)
= 1.

Theorem 5. Suppose (d,T) is infinitely separable. Then the process X is locally exchangeable with
respect to d if and only if there exists a random measure-valued stochastic process G = (Gt )t∈T (unique
up to modification) such that for any finite subset of covariates T ⊂ T and t, t ′ ∈ T ,

P (XT ∈·|G) a.s.=
∏
t∈T

Gt, sup
A

E |Gt (A) − Gt′(A)| ≤ d(t, t ′). (6)

For example, given T = N and the zero premetric d(t, t ′) = 0, one recovers the de Finetti represen-

tation of exchangeable sequences; the smoothness condition asserts that Gt must be constant for all

t ∈ T as expected. Similarly, suppose we are given an equivalence relation ∼ on N where each equiva-

lence class has infinite cardinality. Then setting T =N and d(t, t ′) = 1−1[t ∼ t ′] recovers the de Finetti

representation of partially exchangeable sequences under permutation within equivalence classes; here

the smoothness condition asserts that Gt must be constant within each equivalence class, but allows for

general dependence between Gt across the equivalence classes. Thus, in the same way that Definition 1

generalizes (partial) exchangeability, Theorem 5 generalizes the de Finetti representation theorem.

Note that we still obtain the “if” direction of Theorem 5 without imposing the infinite separability

assumption on (d,T). In particular, if we are given a process G satisfying Eq. (6), then the process X
is locally exchangeable with respect to both

dc(t, t ′) := sup
A

E |Gt (A) − Gt′(A)| , and dsc(t, t ′) := E [dTV(Gt,Gt′)] .

We refer to dc as the canonical premetric and dsc as the strong canonical premetric. Note that X is

locally exchangeable with respect any premetric d satisfying d ≥ dc , and in particular, dsc ≥ dc . Given

a particular G, one can use Lemma 14 in the supplementary material (Campbell et al., 2023) to derive

an upper bound on these two premetrics (as demonstrated in Example 3), which then provides insight

into the extent to which data X generated from G are exchangeable. Note that (dc,T) and (dsc,T) may

or may not be infinitely separable, depending on the characteristics of the process G.

Example (continued). In the linear regression example, the underlying measure-valued process is the

collection of normal distributions

Gt =N(θt2,1), t ∈ T .



Local exchangeability 2089

Theorem 5 guarantees that this process is unique up to modification. In this case, the randomness in

G is entirely due to the latent variable θ ∼ N(0,1); in general G need not be determined by a finite-

dimensional quantity. We can also verify that G satisfies the required smoothness condition with respect

to d, although it is not surprising in this case given that we originally derived the premetric using the

same technique:

sup
A

E |Gt (A) − Gt′(A)| ≤ E dTV(Gt,Gt′) ≤ min

(
1

√
2π

|t2 − t ′2 |,1
)
= d(t, t ′).

2.3. Local empirical measure process

The de Finetti result in Theorem 5 guarantees the existence of a unique underlying measure-valued

process G, but does not provide any direct insight into the distribution of G or whether it is identifiable

given only (countably many) measurements of the process X . In the classical setting of an exchangeable

sequence X1,X2, . . . , the empirical measure ĜN =
1
N

∑N
n=1
δXn

of a finite collection of observations

(Xn)Nn=1
serves this purpose, as it converges weakly to G almost surely (Varadarajan, 1958), i.e.,

dP(ĜN ,G) a.s.→ 0, N →∞, (7)

where dP denotes the Lévy-Prokhorov metric. In the setting of local exchangeability more generally,

however, the usual empirical measure does not provide a result similar to Eq. (7). If we are interested

in understanding the distribution of Gτ for some τ ∈ T , and we collect measurements (Xt )t∈T of X at

a finite set of covariates T ⊂ T , the presence of far-away covariates in T from τ can result in a non-

vanishing bias in the empirical measure. To address this issue, for each τ ∈ T , let ti(τ), i = 1, . . . , |T |
be an ordering of the set T such that the values di(τ) = d(ti(τ), τ) are ordered from smallest to largest.

Then define

Mτ =max

{
M ∈ [|T |] :

1

M

(
1 +

M∑
m=1

2dm(τ)
)
> 2dM (τ)

}
, μτ =

1

Mτ

Mτ∑
m=1

dm(τ).

We construct the local empirical measure process (Ĝτ)τ∈T via

Ĝτ =

∑
t∈T
ξt (τ)δXt

, ξt (τ) =max

{
0,

1

Mτ

+ 2(μτ − d(t, τ))
}
.

The local empirical measure process Ĝ serves as an approximation of the measure-valued process G
underlying the locally exchangeable process X . Note that

∑
t∈T max{0, 1

Mτ

+ 2(μτ − d(t, τ))} = 1, so

Ĝτ is a probability measure for each τ ∈ T . Further note that (Ĝ)τ∈T is measurable with respect to

(Xt )t∈T . Intuitively, Ĝ includes only those observations at covariates sufficiently close to the point of

interest τ ∈ T such that the decrease in variance associated with adding another observation outweighs

the potential increase in bias. The value Mτ represents how many observations are included in the local

empirical measure at that location, and μτ represents the average distance of their covariates to τ.

Our goal now is to provide a weak convergence result for the local empirical measure process Ĝ in

the limit of many observations, similar to that of Eq. (7). As a key step towards that goal, Theorem 6

provides bounds on both the expected squared estimation error (Eq. (8)) as well as error tail probabil-

ities (Eq. (9)) when using the local empirical measure process Ĝτ in place of Gτ or P (Xτ ∈ · | XT ), for
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all τ ∈ T . Each bound in Theorem 6 has two terms: the first is related to the variance incurred by esti-

mation via independent sampling, and the second is related to the bias incurred by using observations

from t � τ. Note that Theorem 6 quantifies the approximation error using the metric

‖ν − η‖A =
∞∑
i=1

ci |ν(Ai) − η(Ai)| , ν,η probability measures,

where A = {ci,Ai}∞i=1, Ai are measurable subsets of X, ci ≥ 0, and
∑

i ci = 1. We work with ‖ · ‖A
rather than standard metrics because it simplifies the analysis substantially. Although the properties

of ‖ · ‖A depend on the choice of A in general, there exists a choice such that ‖ · ‖A → 0 implies

weak convergence (see Lemma 16 in the supplementary material (Campbell et al., 2023)), and the

bounds below in Theorem 6 are valid for any choice of A, as indicated by the supremum. We will

use the metric ‖ · ‖A and the results in Theorem 6 as a stepping stone to obtain weak convergence in

Corollary 7 below.

Theorem 6. Let (d,T) be infinitely separable and X be locally exchangeable with respect to d. Then

∀τ ∈ T , sup
A
E

[
‖Ĝτ − Gτ ‖2

A

]
≤ 1

4Mτ

+ μτ, (8)

and for all δ > 0, τ ∈ T ,

sup
A
P

(
‖Ĝτ − Gτ ‖A > δ +

√
2μτ + 1/Mτ

)
≤ exp

(
−δ2

2 (2μτ + 1/Mτ)

)
+

2μτ

δ +
√

1/Mτ

. (9)

Furthermore, the same bounds in Eqs. (8) and (9) apply when Gτ is replaced with P (Xτ ∈ · | XT ).

When all of the covariates in the observed set T are close to τ, the bounds in Theorem 6 provide

essentially the same guarantees as one would expect for exchangeable random variables. In particular,

suppose for all t ∈ T , d(t, τ)� exp(−|T |), and so ξt (τ) ≈ 1/|T |. In this situation the bounds above reduce

to

sup
A
E

[
‖Ĝτ − Gτ ‖2

A

]
=O(|T |−1), sup

A
P

(
‖Ĝτ − Gτ ‖A > δ + |T |−1/2

)
=O

(
e−|T |δ2

)
.

Corollary 7 uses the results in Theorem 6 to obtain a weak convergence result for Ĝτ similar to

Eq. (7). In particular, if we collect measurements of X from a sequence of sets that concentrate around

τ—for example, Tn = {ti}ni=1
such that there exists a subsequence tik → τ—then the local empirical

measure Ĝτ converges weakly to both Gτ and the Bayesian posterior predictive distribution in proba-

bility. Recall that dP denotes the Lévy-Prokhorov metric.

Corollary 7. Fix τ ∈ T . Suppose we make observations at a sequence of finite sets Tn ⊂ T , n ∈ N of
covariates such that for all ε > 0, | {t ∈ Tn : d(t, τ) ≤ ε}| →∞. Then

dP(Ĝτ,Gτ)
p
→ 0 and dP(Ĝτ,P

(
Xτ ∈ · | XTn

)
)

p
→ 0, n →∞.

A byproduct of Corollary 7 is that one can characterize the distribution of Gτ by analyzing the

distribution of Xτ conditioned on XTn for a sequence of sets of covariates Tn that concentrate around τ,

i.e., |Tn | →∞ and max{d(t, τ) : t ∈ Tn} → 0 as n →∞. Note that it is not required to know the premetric
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d governing local exchangeability in order to identify G using this technique; one can instead construct

the set of covariates Tn such that max{
(t, τ) : t ∈ Tn} → 0 for any premetric 
 : T × T → [0,1] that

dominates d in the sense that for any two sequences of covariates tn, t ′n, n ∈ N,


(tn, t ′n) → 0 =⇒ d(tn, t ′n) → 0, n →∞. (10)

The requirement in Eq. (10) is typically not stringent; it states only that when covariates get close under


, they must also get close under d, with no other stipulation about relative rates, bounds, etc. In the

following linear regression example, we will use the usual metric 
(t, t ′) = |t − t ′ | on R.

Example (continued). We return to the linear regression example to show how the distribution of Gτ

can be recovered from the process X via Corollary 7. The joint density of XT ,Xτ is

p(xτ, xT ) ∝ exp
����
−1

2
x2
τ −

1

2

∑
t∈T

x2
t +

1

2

(
xττ2

+

∑
t∈T xt t2

) 2

1 + τ4
+

∑
t∈T t4

����
.

Therefore the conditional distribution of Xτ given XT is given by

Xτ ∼N
(
τ2 ∑

t∈T Xt t2

1 +
∑

t∈T t4
,
1 + τ4

+

∑
t∈T t4

1 +
∑

t∈T t4

)
,

If we then consider a sequence of sets Tn of covariates that grows in size and concentrates quickly

around τ—e.g., Tn = {τ + i exp(−n) : i = 1, . . . ,n}—we find that the conditional distribution of Xτ

given XT converges to

Xτ ∼N (Y,1) , where Y ∼N
(
0, τ4

)
.

By setting θ = Yτ−2, we recover the fact that Xτ is generated from Gτ = N(θτ2,1), θ ∼ N(0,1), i.e.,

the marginal of the original Bayesian linear regression model. Note that one can repeat essentially the

same analysis for multiple covariates τ1, . . . , τK to recover finite marginal distributions. For example,

if we consider the bivariate distribution of Gτ1
,Gτ2

, we find that Xτ1
,Xτ2

are generated independently

from

Gτ1
=N(θτ2

1 ,1) Gτ2
=N(θτ2

2 ,1), θ ∼N(0,1).

The analysis from the example in Section 2.1 can then be used to bound the strong canonical premetric

dsc(t, t ′) = dTV(Gt,Gt′) ≤ min
(
|t − t ′ |/

√
2π ,1

)
. Thus, given only the process X , we have identified a

premetric d under which X is locally exchangeable as well as the measure-valued process G.

2.4. Regularity

The smoothness property of G in Eq. (6) may seem unsatisfying at a first glance; it bounds the ab-

solute difference in the underlying mixing measure process at nearby locations only in expectation,

leaving room for the possibility of sample discontinuities in Gt as a function of t. However, there are

many probabilistic models that, intuitively, generate observations that should be considered locally

exchangeable but which have discontinuous latent mixing measures. For example, some dynamic non-

parametric mixture models (Chen et al., 2013, Lin and Fisher, 2010) have components that are created
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and destroyed over time, causing discrete jumps in the mixing measure. As long as the jumps happen

at diffuse random times, the probability of a jump occurring between two times decreases as the differ-

ence in time decreases, and the observations may still be locally exchangeable. However, intuitively, if

there is a fixed location t0 with a nonzero probability of a discrete jump in the mixing measure process,

the observations X cannot be locally exchangeable. Corollary 8 provides the precise statement.

Corollary 8. Suppose (d,T) is infinitely separable and X is locally exchangeable with respect to d.
Then for all A ∈ Σ, t0 ∈ T , and ε > 0,

lim
η→0

sup
t :d(t ,t0)≤η

P
(
|Gt (A) − Gt0(A)| > ε

)
= 0.

That being said, it is worth examining whether different guarantees on properties of the underly-

ing measure process G result as a consequence of different properties of the premetric d. Theorem 9

answers this question in the affirmative for processes on T = R; in particular, the faster the decay of

d(t, t ′) relative to |t − t ′ | as t → t ′, the stronger the guarantees on the behavior of the mixing measure

G. Note that while this result is presented for covariate space R, the result can be extended to processes

on R ×N and more general separable spaces (Potthoff, 2009, Theorems 2.8, 2.9, 4.5).

Theorem 9. Let T = R, γ ≥ 0, and X be locally exchangeable with respect to a premetric d satisfying
d(t, t ′) =O(|t − t ′ |1+γ) as |t − t ′ | → 0. Then:

1. (γ > 1): X is exchangeable and G is a constant process.
2. (0 < γ ≤ 1): X is stationary and for any A ∈ Σ and α ∈ (0,γ), (Gt (A))t∈R is weak-sense stationary

with an α-Hölder continuous modification.
3. (γ = 0): G may have no continuous modification.

Remark. A rough converse of the first point holds: X exchangeable implies constant G, and d(t, t ′) = 0

is trivially O(|t − t ′ |1+γ) for γ > 1. But a similar claim for the second point is not true in general: X
stationary and locally exchangeable does not necessarily imply that d(t, t ′) = O(|t − t ′ |1+γ) for 0 <

γ ≤ 1. For a counterexample, consider a square wave shifted by a uniform random variable, i.e., the

process Xt = sign (sin(2π(t −U))) for U ∼ Unif[0,1]. Here Xt is stationary and locally exchangeable

with d(t, t ′) =min(|t − t ′ |,1), but |t − t ′ | �O(|t − t ′ |1+γ) for any γ > 0 as |t − t ′ | → 0.

2.5. Approximate conditional independence

In the classical setting of exchangeable sequences X1,X2, . . . , the empirical measure Ĝ = 1
N

∑N
n=1
δXn

satisfies the following property: for all bounded measurable functions h : XN → R,

E

[
h(X1, . . . ,XN )|Ĝ,G

]
= E

[
h(X1, . . . ,XN )|Ĝ

]
. (11)

Thus G and (X1, . . . ,XN ) are conditionally independent given Ĝ. In other words, the fact that

(X1, . . . ,XN ) corresponds to covariate values (1, . . . ,N) provides no additional information about G
beyond Ĝ itself.

In the setting of local exchangeability, the question of how important the covariate values are in

inferring the measure-valued process G is relevant in practice: we do not often get to observe the

true covariate values {t1, . . . , tN } = T ⊂ T , but rather we observe discretized versions that are grouped

into “bins.” For example, if XT corresponds to observed document data with timestamps T , we may
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know those timestamps up to only a certain precision (e.g. days, months, years). This section shows

that a “binned” version of the empirical measure Ĝ provides an approximate conditional independence

similar to Eq. (11), where the error of approximation decays smoothly by an amount corresponding to

the uncertainty in covariate values.

Formally, suppose we partition our covariate space T into disjoint bins {Tk }∞k=1
, where each bin has

observations Tk = Tk ∩T . We may use a finite partition by setting all but finitely many Tk to the empty

set. Although we know the number of points in each bin (i.e., the cardinality of Tk ), we will encode

our lack of knowledge of their positions as randomness: Tk ∼ μk , where μk is a probability distribution

capturing our belief of how the unobserved covariates are generated within each bin. Following the intu-

ition from the classical de Finetti’s theorem, we define the binned empirical measures G̃k =
∑

t∈Tk δXt
,

G̃ := (G̃1,G̃2, . . . ), and let G denote the subgroup of permutations π : T → T that permute observations

only within each bin, i.e., such that ∀k ∈ N, π(Tk) = Tk . Note that |G| =∏∞
k=1 |Tk |! <∞ since there are

only finitely many observations in total. Unlike classical exchangeability, G̃ does not provide exact con-

ditional independence of XT and G; but Theorem 10 guarantees that it provides a form of approximate

conditional independence, with error that depends on (μk )∞k=1
.

Theorem 10. Suppose (d,T) is infinitely separable. If X is locally exchangeable with respect to d, and
h : XT → R is a bounded measurable function,

E

���E [
h(XT ) | G̃,G

]
− E

[
h(XT ) | G̃

] ��� ≤ 4‖h‖∞E
[∑
t∈T

d(t, π(t))
]
,

where π ∼ Unif (G) and Tk
indep∼ μk .

Remark. Note that the expectation on the right hand side averages over the randomness both in the

uncertain covariates T and the permutation π.

If X is exchangeable within each bin Tk , Theorem 10 states that XT and G are conditionally indepen-

dent given G̃, as desired. Further, the deviance from independence is controlled by the deviance from

exchangeability within each bin. In particular,

E

[∑
t∈T

d(t, π(t))
]
≤

∞∑
k=1

|Tk | diamTk ≤ |T | sup
k

{diamTk }, (12)

where diamTk := supt ,t′∈Tk d(t, t ′). Both bounds in Eq. (12) are independent of μk ; thus the result holds

even if we are unwilling to express our uncertainty in the binned covariates via a distribution.

3. Examples

In this section, we provide example applications of the theory in Section 2. First, we use a case study

of Gaussian processes to show how one can use posterior predictive distributions to analyze the local

exchangeability of a process. In particular, we show how to derive the underlying measure process G,

as well as an appropriate premetric d governing local exchangeability, using only finite marginals of

the process X . Second, we use a case study of dependent Dirichlet processes to show that one can use

local empirical measures as a surrogate for otherwise intractable posterior predictive distributions in

discrete Bayesian nonparametric models. See the supplementary material (Campbell et al., 2023) for
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other examples of Bayesian nonparametric models exhibiting local exchangeability—e.g., kernel beta

process feature models (Hjort, 1990, Ren et al., 2011) and dynamic topic models (Blei and Lafferty,

2006, Wang, Blei and Heckerman, 2008), among others. Finally, we demonstrate a usage of local

exchangeability as a tool to analyze the inflation of type-I error in matched permutation tests involving

covariates.

3.1. Obtaining the underlying measure-valued process and premetric

We will first provide an example of how one can use the Bayesian posterior predictive distributions of

a locally exchangeable process X to derive the distribution of the underlying measure-valued process

G as well as the premetric of local exchangeability d. This example applies the same strategy as in the

running example from Section 2.3, albeit in a more sophisticated nonparametric model.

Consider a Gaussian process X ∼ GP(m, κ) on T = Rd with continuous mean function m : Rd → R,

and covariance function κ(x, y) = σ2(x)1[x = y] + k(x, y) for continuous nonnegative σ2 : Rd → R+
and continuous symmetric positive-definite kernel k : Rd×Rd → R+. Define a set of k unique covariate

values τ1, . . . , τk ∈ T , and consider the Euclidean metric on T . For each n ∈ N and i = 1, . . . , k, let Tin
be a finite subset of covariates such that |Tin | = n and max{‖τi − t‖ : t ∈ Tin} = o(1/n). Direct analysis

of the conditional density yields that as n → ∞, the conditional distribution of Xτ1
, . . . ,Xτk given

XT1n
, . . . ,XTkn converges to

(Xτ1
, . . . ,Xτk ) ∼ N

(
(Y1, . . . ,Yk) ,diag

(
σ2(τ1), . . . ,σ2(τk )

) )
, (13)

where

(Y1, . . . ,Yk) ∼ N ((m(τ1), . . . ,m(τk)) ,K) , Ki j = k(τi, τj ). (14)

Eqs. (13) and (14) demonstrate that X is conditionally independently drawn from the process G where

∀τ ∈ T , Gτ =N(Yτ,σ2(τ)) Y ∼ GP(m, k).

We now derive the strong canonical premetric of local exchangeability. In this setting,

dsc(t, t ′) = E [dTV(Gt,Gt′)] = E
[
dTV(N(Yt,σ2(t)),N(Yt′,σ2(t ′)))

]
.

By Devroye, Mehrabian and Reddad (2020, Theorem 1.3),

dTV(N(Yt,σ2(t)),N(Yt′,σ2(t ′))) ≤ 3|σ2(t) − σ2(t ′)|
2 max{σ2(t),σ2(t ′)}

+

|Yt −Yt′ |
2 max{σ(t),σ(t ′)} .

Applying Jensen’s inequality E|Yt −Yt′ | ≤
√
E(Yt −Yt′)2 , then evaluating the expectation and using the

bounds |σ2(t) − σ2(t ′)| ≤ 2 max{σ(t),σ(t ′)}|σ(t) − σ(t ′)|, and
√

x2
+ y2 ≤ x + y yields

dsc(t, t ′) ≤ min

(
1,

6|σ(t) − σ(t ′)| + |m(t) − m(t ′)| +
√

k(t, t) + k(t ′, t ′) − 2k(t, t ′)
2 max{σ(t),σ(t ′)}

)
. (15)
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In the usual setting with zero mean m(t) = 0, constant noise variance σ(t) = σ for some σ > 0, and

stationary kernel k(t, t ′) = r(‖t − t ′‖) for some r : R+→ R+, Eq. (15) reduces to

dsc(t, t ′) ≤ min

(
1,

√
r(0) − r(‖t − t ′‖)

σ

)
.

This example demonstrates that Gaussian processes are locally exchangeable in the presence of mea-

surement noise, i.e. where σ(t) > 0. However, note that σ(t) > 0 is not strictly necessary for local

exchangeability; to obtain a necessary and sufficient characterization of local exchangeability in Gaus-

sian processes, we could instead analyze the canonical metric dc per Theorem 5.

3.2. Approximate predictive distributions in discrete Bayesian nonparametrics

Next, we demonstrate that the local empirical measure can serve as a useful surrogate for otherwise

intractable posterior predictive distributions in discrete Bayesian nonparametric models. The Dirichlet

process (Ferguson, 1973) is a popular prior for the weights and component parameters in nonparametric

mixture models. Draws from a Dirichlet process are discrete probability measures,

G =
∞∑
k=1

wkδθk ,

where (wk )∞k=1
are weights satisfying wk ≥ 0,

∑
k wk = 1, and (θk)∞k=1

are component parameters, each

with distribution given by (Sethuraman, 1994)

θk
i.i.d.∼ H, vk

i.i.d.∼ Beta(1,α), wk = vk

k−1∏
i=1

(1 − vi), k ∈ N,

for some distribution H and concentration parameter α > 0. Given draws Xn
i.i.d.∼ G, the posterior pre-

dictive distribution of XN+1 given the first N draws X1, . . . ,XN is

XN+1 ∼
α

α + N
H +

1

α + N

N∑
n=1

δXn
=

α

α + N
H +

N

α + N
Ĝ. (16)

The fact that one can marginalize the (infinitely many) weights and parameters to arrive at Eq. (16) is

critical in tractable computational inference for models involving the Dirichlet process (Neal, 2000).

When the observations come with additional covariate information, the dependent Dirichlet process

mixture model (MacEachern, 1999, 2000) may be used instead. There are many instantiations of the

dependent Dirichlet process; for simplicity we consider a model where the weights are a function of a

covariate but the component parameters are constant across covariate values, i.e.,

Xx,n
indep∼

∞∑
k=1

wx,kδθk , n ∈ N, x ∈ R,

where wx,k = vx,k

∏k−1
i=1 (1 − vx,i), and the stick variables vx,k are now i.i.d. stochastic processes on R.

The marginal distributions of vx,k at x ∈ R are designed to be Beta(1,α) so that the dependent Dirichlet
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process is marginally a Dirichlet process for each covariate value. But even for simple stochastic pro-

cesses vx,k , the posterior predictive distribution is not tractable to obtain in closed-form. However, we

can note that the process X is locally exchangeable with strong canonical premetric

dsc(t, t ′) = E
[
dTV

( ∞∑
k=1

wx,kδθk ,

∞∑
k=1

wx′,kδθk

) ]
=

1

2

∞∑
k=1

E

��wx,k − wx′,k
�� ,

where t = (x,n) and t ′ = (x′,n′). Since wx,k is a product of independent variables, Lemma 13 in the

supplementary material (Campbell et al., 2023) yields

dsc(t, t ′) ≤
1

2
E

[��vx,1 − vx′,1
��] ∞∑

k=1

( ( α
α + 1

) k−1

+

k − 1

1 + α

( α
α + 1

) k−2
)
.

The infinite sum converges to some 0 < C <∞, and so

dsc(t, t ′) ≤ min
(
1,CE

��vx,1 − vx′,1
��) .

Therefore, as long as the stochastic process vx,1 is smooth enough, and we condition on XT , where

T concentrates closely around τ ∈ T , the posterior predictive distribution of Xτ given XT is approxi-

mately equal to the local empirical measure Ĝτ , by Theorem 6; the latter has a tractable closed-form

expression.

3.3. Type-I error inflation in grouped permutation tests

One of the key applications of exchangeability in statistical data analysis is in the design of nonpara-

metric permutation tests with exact type-I error bounds (Pitman, 1937a,b,c; Fisher, 1966, Ch. 3). In the

notation of this work, we are given observations of a stochastic process X at a finite set of covariates

T ⊂ T , a subgroup of G permutations π : T → T , and a test statistic S : XT → R. The null hypothesis

is that XT is exchangeable; so we set a desired threshold α ∈ [0,1], and reject the null with type-I error

at most α if

1

|G|
∑
π∈G

1
[
S(XT ) ≤ S(Xπ,T )

]
≤ α,

where Xπ,T is defined as in Eq. (3). This setup is commonly used in observational studies with a control

group and treatment group, where G consists of permutations that swap matched pairs of elements in

the control and treatment groups. However, a typical problem is that elements in the two groups are not

exactly comparable due to the presence of covariates. In this case, a standard approach is to construct

G to permute only those elements with similar covariates from the control and treatment groups, under

some metric d (Baiocchi et al., 2010, Cochran, 1965, Greevy et al., 2004, Hansen, 2004, Hansen and

Klopfer, 2006, Lu and Rosenbaum, 2004, Lu et al., 2011, Rosenbaum, 1989, 2002, Rubin, 1973b,a). Lo-

cal exchangeability provides a general way to analyze the type-I error of these methods; Proposition 11

shows that for a locally exchangeable process, the type-I error α may potentially be increased by the

average distance between pairs of covariates permuted by π ∈ G. Eq. (17) also incidentally provides a

rigorous justification for past work that formulates the construction of G as the minimization of this

penalty (e.g., Rosenbaum (1989)).
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Proposition 11. Let X be locally exchangeable with respect to d. For α ∈ [0,1],

P
���

1

|G|
∑
π∈G

1
[
S(XT ) ≤ S(Xπ,T )

]
≤ α���

≤ α + 1

|G|
∑
π∈G

∑
t∈T

d(t, π(t)). (17)

4. Discussion

The major question posed in this paper is what we can do with data when we do not believe that they

are exchangeable, but are willing to believe that they are nearly exchangeable. This paper answers

the question with a relaxed notion of local exchangeability in which swapping data associated with

nearby covariates causes a bounded change in total variation distance. We have demonstrated that

classical results for exchangeable processes are “robust to the real world;” indeed, locally exchangeable

processes have a de Finetti representation that may be leveraged in the design of statistical models and

inference procedures. Finally, many popular covariate-dependent statistical models—which violate the

assumptions of exchangeability—satisfy local exchangeability, extending the reach of exchangeability-

based analyses to these models.

One limitation of local exchangeability is the infinite separability assumption. There are applications

in which the covariate space T has isolated points that violate this condition, e.g., discrete time series

where the covariate space is T =N endowed with the Euclidean metric. However, if X can be extended

to a process on S ⊇ T such that (d,S) is infinitely separable and (Xs)s∈S is locally exchangeable

with respect to d, then the theoretical results from this work hold for the marginal process (Xt )t∈T .

Another limitation is that the total variation bound in the definition of local exchangeability is quite

weak, which has downstream consequences for the tightness of the error bounds in Section 2.3. Further

study on alternate definitions of local exchangeability is warranted to strengthen these guarantees.

As a final note, it is also possible that an analogue of the theory of finite exchangeability (Diaconis

and Freedman, 1980b) holds in the local setting; but it is not yet clear whether this is indeed true

or what form it would take. It would also be of interest to investigate more general notions of local

exchangeability under group actions, e.g., permutations that preserve some statistic of the data, which

have been used in past work on randomization testing in the presence of covariates (Rosenbaum, 1984).
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