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Abstract

Summary: Multiple sequence alignment is a basic part of many bioinformatics pipelines, including in phylogeny es-
timation, prediction of structure for both RNAs and proteins, and metagenomic sequence analysis. Yet many se-
quence datasets exhibit substantial sequence length heterogeneity, both because of large insertions and deletions
in the evolutionary history of the sequences and the inclusion of unassembled reads or incompletely assembled
sequences in the input. A few methods have been developed that can be highly accurate in aligning datasets with se-
quence length heterogeneity, with UPP one of the first methods to achieve good accuracy, and WITCH a recent im-
provement on UPP for accuracy. In this article, we show how we can speed up WITCH. Our improvement includes
replacing a critical step in WITCH (currently performed using a heuristic search) by a polynomial time exact algo-
rithm using Smith-Waterman. Our new method, WITCH-NG (i.e. ‘next generation WITCH’) achieves the same accur-
acy but is substantially faster. WITCH-NG is available at https://github.com/RuneBlaze/WITCH-NG.

Availability and implementation: The datasets used in this study are from prior publications and are freely available

in public repositories, as indicated in the Supplementary Materials.

Contact: warnow@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Multiple sequence alignment (MSA) is a fundamental task in com-
putational biology and is a prerequisite for many downstream analy-
ses such as phylogeny estimation (Morrison, 2006), metagenomics
(Matsen et al., 2010) and other applications. Over recent years, the
assembly of large sequence datasets has led to the development of
MSA methods that are able to scale to very large datasets [e.g.
Clustal-Omega (Sievers et al., 2011)] as well as techniques that use
divide-and-conquer to maintain high accuracy [e.g. PASTA
(Mirarab et al., 2015) and MAGUS (Smirnov and Warnow,
2021a)]. Yet, accurate MSA estimation still remains challenging, es-
pecially under conditions such as high rates of evolution or sequence
length heterogeneity.

Sequence length heterogeneity, in particular the presence of
many short sequences, is a frequent characteristic of biological data-
sets (Fig. 1 contains two examples). Sequence length heterogeneity
can arise due to various reasons, such as the inclusion of many short
reads or partially assembled sequences, or purely from evolutionary
events such as domain-level deletions. MSA methods that are accur-
ate on datasets without sequence length heterogeneity can degrade
severely in accuracy under substantial presence of fragments, and
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the resulting alignments will in-turn adversely affect downstream
analyses (Smirnov and Warnow, 2021b). Therefore, specialized
MSA estimation methods that are robust to sequence length hetero-
geneity are valuable.

One effective approach for aligning datasets with sequence
length heterogeneity selects a set of ‘full-length> sequences from the
input, aligns these sequences and then adds the rest of the sequences
(the ‘queries’) into the computed ‘backbone’ alignment. The last
step where sequences are added into an existing alignment is a neces-
sary step in other applications, including updating alignments,
updating phylogenies (i.e. phylogenetic placement) (Czech et al.,
2022), remote homology detection (Nguyen et al., 2016) and taxon
identification and abundance classification in metagenomics
(Mirarab ez al., 2011). Methods that can add sequences into existing
alignments are available in HMMER (Eddy, 2011; Finn et al., 2011)
(using the popular hmmbuild+hmmalign pipeline), PaPaRa
(Berger and Stamatakis, 2011), SEPP (Mirarab et al, 2011),
MAFFT (Katoh and Standley, 2013) (using the—add option), UPP
(Nguyen et al., 2015) and WITCH (Shen et al., 2022b).

WITCH is the most recent of these methods for adding sequences
into an existing alignment. WITCH uses a two-stage technique to
add sequences into a backbone alignment. In the first stage, it
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Fig. 1. Sequence length histograms of two biological datasets that show sequence length heterogeneity. ‘blmb’ comes from HomFam (Sievers et al., 2011) and ‘16S.B.ALL’
comes from the Comparative RNA Website (CRW) (Cannone et al., 2002). n denotes the number of sequences in the dataset

computes an ensemble of Hidden Markov Models (eHMM) to rep-
resent the backbone alignment, using tools from HMMER. In the se-
cond stage, WITCH adds the remaining sequences (i.e. the query
sequences) into the backbone alignment, using the eHMM. At a
high level, this two-stage structure is the same as in UPP, but
WITCH executes the second stage differently. While UPP simply
picks a single HMM from the eHMM to add a given query sequence
into the backbone alignment, WITCH computes an extended align-
ment for the query sequence for each of the HMM:s in the ensemble,
and then combines the top (default 10) of these extended align-
ments, weighted by the probabilities it associates to each HMM in
the ensemble, into a single extended alignment using the ‘Graph
Clustering Merger’ (GCM) from MAGUS (Smirnov and Warnow,
2021a).

The resulting pipeline improves the accuracy of UPP when align-
ing datasets that have evolved under a high rate of evolution and
otherwise matches UPP, but is somewhat slower (Shen et al.,
2022b). Since WITCH and UPP differ only in the last step, this
shows that the runtime cost is a result of its weighted consensus step
where WITCH uses the top 10 HMMs in the eHMM instead of just
one, and more importantly because WITCH uses GCM, a general
alignment merging method, for merging all the information in the
different alignments (one for each HMM) in order to add the query
sequence into the backbone alignment.

Here, we present WITCH-NG, a fast way of implementing the
same algorithmic strategy as WITCH. Most importantly, we replace
the computationally intensive and complicated GCM technique by a
simple use of the polynomial time local alignment method, Smith—
Waterman (Smith and Waterman, 1981), to add each query se-
quence into the backbone alignment, and this change achieves the
same accuracy at a fraction of the runtime. Moreover, this innov-
ation provides a new way of solving this basic bioinformatics prob-
lem, and so has broad applicability. WITCH-NG by design matches
the accuracy of WITCH but is much faster (and nearly as fast as
UPP). Like WITCH, WITCH-NG is more accurate than UPP.

2 Background

2.1 WITCH

WITCH has five basic phases. In Phase 0, the input sequences are
divided into a set of backbone sequences and the remaining sequen-
ces (called ‘query sequences’), with the backbone sequences sampled

from those sequences deemed to be full-length. An alignment (de-
fault: MAGUS) and its maximum likelihood tree [default: FastTree2
(Price et al., 2010)] are then constructed for the backbone sequences.
In Phase 1, an eHMMs is built on the backbone alignment. Phases 2
and 3 are then used to define an ‘extended alignment’ for each query
sequence, which is an alignment that contains the backbone align-
ment and the given query sequence. Phase 4 then combines the infor-
mation in different extended alignments, one per query sequence,
using transitivity, so that the output is an alignment of the entire set
of sequences that induces the constructed extended alignments.

Since Phases 2 and 3 together are the most complex and together
define how to add a given query sequence into the backbone align-
ment, we describe them in detail here. For a given query sequence,
Phase 2 operates by computing a weighted score (larger is better) for
each HMM in the ensemble, and then picking the top & such HMMs
(default: k£ = 10). Phase 3 has several steps that we now describe,
which jointly constitute a weighted version of the Graph Clustering
Merger (GCM) from MAGUS. In Phase 3(a), it builds an extended
alignment for the query sequence for each of these k selected HMM:s
and uses these to construct an ‘alignment graph’ where the nodes of
the graph correspond to the positions in the query sequence or the
backbone alignment and the edges are present between two nodes if
and only if the corresponding positions are aligned in one of these
extended alignments. These edges are weighted by the support
defined by these extended alignments. In Phase 3(b), this weighted
alignment graph is clustered using Markov Clustering (MCL),
described initially in Dongen (2000), which partitions the nodes into
disjoint clusters. Since this set of clusters may not be a ‘valid trace’
(Kececioglu, 1993) (i.e. it may not define a valid pairwise extended
alignment of the query sequence to the backbone alignment), Phase
3(c) then runs an A* algorithm to post-process the clustering to
make it consistent with a valid alignment. Thus, the output of
Phases 2 and 3 is an extended alignment for each query sequence
(i.e. an alignment containing the query sequence and the backbone
alignment).

3 WITCH-NG: redesign of WITCH

The key difference between WITCH and WITCH-NG is how each
query sequence ¢ is added to the backbone alignment. In WITCH,
this is accomplished during Phases 2 and 3, where for each query se-
quence a weighted alignment graph is computed, then passed to
MCL, then passed to an A* method (to remove violations) so that
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Fig. 2. Overview of Phases 2 and 3 of the original WITCH algorithm (applied to a single query sequence). Given a single query sequence and the ensemble of HMMs, in Phase
2 a fitness score of that query is derived for each HMM in the ensemble. In Phase 3(a), for each of the top k = 10 HMMs, an alignment of the query to the backbone alignment
(i.e. an ‘extended alignment’) is constructed, and the pairwise homologies define a bipartite ‘alignment graph’ with weights on the edges indicating the support for that hom-
ology (see text for more details). Phase 3(b): WITCH then runs Markov clustering (MCL) on the weighted alignment graph, producing a clustering of the nodes. If the modified
graph may contain ‘violations’—i.e. sets of homologies (edges) that cannot coexist in an alignment—then a post-clustering Phase 3(c) occurs. In this post-clustering analysis,
WITCH runs an A* heuristic search to modify the clustering to remove violations, so that it defines a ‘valid trace’ (i.e. a valid alignment). The MCL and A* methods are the
computationally intensive parts of Phase 3 in the WITCH pipeline. This figure is partially based on Figure 2 from Nguyen et al. (2015) used under the CC BY 4.0 license
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Fig. 3. WITCH-NG replaces Phases 3(b) and 3(c) in the WITCH pipeline. The information in the alignment graph (Step 3(a) in the WITCH pipeline) is used to define the scor-
ing matrix S, where S[x, y] is the reward in matching position x in the query sequence to position y in the backbone alignment (and with S[x, y] = —oo if the two positions are
not aligned by one of the extended alignments used to construct the alignment graph). This matrix is then used by Smith-Waterman, with zero cost gap penalty, to produce the
alignment of the query sequence to the backbone alignment. The final output from WITCH-NG may be the same as for WITCH since they both effectively try to solve the
same optimization problem (one explicitly and the other implicitly), but WITCH-NG solves the problem exactly in polynomial time while WITCH uses computationally inten-

sive heuristics. This figure is partially based on Figure 2 from Nguyen et al. (2015) used under the CC BY 4.0 license

the final output is a valid extended alignment for each query se-
quence (see Fig. 2 for how WITCH handles Phase 3). MCL can be
computationally intensive and employs randomness to perform the
graph clustering, and the A* algorithm is also often computationally
intensive. Thus, while Phases 2 and 3(a) are both fast and determin-
istic, Phases 3(b) (running MCL) and 3(c) (running the A* method)
are not fast and due to reliance on randomness, are not even predict-
able in accuracy or runtime.

In WITCH-NG, the calculation of the extended alignment for
each query sequence is handled differently. Phase 2 (scoring the
query sequence against each HMM in the ensemble and computing
the weight) and Phase 3a (keeping the top kK = 10 HMM:s and using
them to construct the weighted alignment graph) are the same.
However, WITCH-NG replaces Phases 3b and 3¢ (compare Figs 2
and 3), as we now describe. Phases 3(b) and 3(c), which run MCL
and then the A* method to produce a valid trace, are replaced by a
much simpler approach: the weighted alignment graph is used to de-
fine a scoring matrix S, where S[x, y] denotes the reward of match-
ing position x in the query sequence to position y in the backbone
sequence, and where S[x,y] = —oo if x and y are not aligned by any
of the top kK HMMs (to forbid aligning two positions that are not
supported by any of the selected HMMs). The local alignment
method, Smith-Waterman (Smith and Waterman, 1981), is then run
using S as a scoring matrix with zero cost gap penalty, to align the
query sequence to the backbone alignment. As a result of this simpli-
fication, WITCH-NG achieves the same alignment accuracy as
WITCH, but in a fraction of the time.

We now provide some intuition as to why the use of local align-
ment (computed using Smith—Waterman) instead of the Graph
Clustering Method (GCM) produces alignments of very similar ac-
curacy. Zaharias et al. (2022) have argued that there is an implicit
optimization problem in GCM that is identical to the solution to
the local alignment problem using this cost function. Specifically,
Zaharias et al. showed that GCM is a good heuristic for the opti-
mization problem ‘Maximum Weight Trace for Alignment
Merging (MWT-AM)’ [a generalization of the classical Maximum

Weight Trace (MWT) problem (Kececioglu, 1993) in bioinformat-
ics]. In short, MWT-AM defines an optimization criterion to the
scenario when merging multiple disjoint ‘constraint’ alignments
(i.e. the homologies in these alignments cannot be altered in the
merging process) and when similarity scores between the con-
straint alignment columns have been obtained. Moreover,
Zaharias et al. (2022) also showed that maximizing the MWT-AM
score for merging many alignments is beneficial for alignment
accuracy.

Given that the original WITCH always uses GCM to merge two
alignments, we consider the problem of optimizing for the MWT-
AM criterion (restricted to the case of two alignments). We give the
definition of MWT-AM on two alignments below:

Definition 1(MWT-AM, trivial case) Given a weighted undirected bi-
partite graph with nodes g1, ..., g and b1, ..., b, edges of form (q;, b;)
with weight function w((g;,b;)) > 0, select a subset of edges T (the
‘trace’) maximizing

S wllgnb)

(qi:b;)€T

subject to an additional ‘non-crossing’ constraint, where for any two differ-
ent (g;,b;) and (gx, by) in T, either both i < x and j < y, or both x < i
andy < j.

This trivial case is solvable in O(mn) time and O(mn) space by a
simple DP algorithm [i.e. a simplified version of either Smith—
Waterman or Needleman and Wunsch (1970) without gap penalty],
which coincides with our presented algorithm on S. This observation
is far from new and is mentioned in the paper introducing the max-
imum weight trace (MWT) problem (Kececioglu, 1993).

Therefore, WITCH-NG can be seen as replacing a computation-
ally intensive heuristic (i.e. GCM) for the MWT-AM problem by an
exact polynomial time algorithm for the same problem.
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3.1 Implementation

We note two major differences in the implementation of WITCH-
NG aiming for better running time compared to WITCH. Our first
change is a strict improvement to the very last step of WITCH be-
fore the output, when the extended alignments (alignments only
containing a query sequence and the backbone) are transitively
merged. The original implementation in WITCH not only conceptu-
ally builds these extended alignments but also writes these extended
alignments to the disk verbatim before consuming them using a gen-
eric transitivity merging subroutine. This strategy is heavy in IO
usage (writing extended alignments to disk then parsing them back
into memory) and is extraneous. In WITCH-NG, we directly mem-
orize each query letter’s matched position in the backbone, which is
sufficient to output the final alignment without incurring extra run-
time cost in IO or parsing.

The second difference is that WITCH-NG implements a different
strategy in invoking hmmsearch (the bottleneck step in obtaining
the bitscores for UPP and in turn the weights for WITCH). WITCH-
NG aggressively avoids invoking extra 10, and especially disk
writes. Both WITCH and UPP use temporary files to divide up the
query sequences into chunks for hmmsearch to consume and also
to save outputs of hmmsearch across often times hundreds of
HMMs. Combined with the IO usage of hmmsearch reading the
HMMs (saved on disk), these steps might hinder efficient parallel-
ization. In other words, operations can become 10-bound instead of
CPU-bound, in which case adding more cores will not speed up the
computation of this bottleneck. To allow efficient parallelization
under many cores, WITCH-NG instead relies on piping small
chunks of sequences to the hmmsearch command while also pars-
ing the hmmsearch output in-memory to minimize IO operations.
This simple design allows more cores to be efficiently used until the
IO bottleneck is hit.

4 Experimental design

We assembled a diverse set of publicly available datasets (both simu-
lated and biological, locations provided in Supplementary Material
Section S3), to evaluate the difference of WITCH-NG and WITCH,
along with WITCH’s predecessor UPP. The list of datasets and their
respective statistics are shown in Table 1, where simulated condi-
tions have been intentionally fragmented [1000M-HF series have
half of the sequences fragmented to roughly 250bp in length
(Smirnov and Warnow, 2021b)]. RNASim-500bp has half of its
sequences fragmented to an average length of 500 bp (Nguyen et al.,

Table 1. Dataset statistics (average or range)

2015), and when we later vary the backbone and query set size, we
directly assign full-length sequences to the backbone and the frag-
ments to the query.)

We performed two experiments. In Experiment 1, we compare
WITCH, WITCH-NG and UPP on both simulated and biological
nucleotide datasets [from the Comparative RNA Website (CRW)
(Cannone et al., 2002)] where we have reference alignments on the
entire set of sequences. In Experiment 2, we compare WITCH,
WITCH-NG and UPP on the 10AA dataset (a selected set of 10 pro-
tein alignment datasets that have curated alignments) (Gloor et al.,
2005; Nguyen et al., 2015; Thompson et al., 2011) and also on the
10 largest HomFam datasets (Sievers et al., 2011) (up to 93 681
sequences), which only have reference alignments on very small sub-
sets of the input sequences.

4.1 Evaluation criteria

To evaluate estimated alignments, we use the error metrics com-
puted by FastSP (Mirarab and Warnow, 2011). Briefly, each align-
ment encodes a set of homology pairs (defined by the columns of the
alignment). SPEN (Sum-of-Pairs False Negative rate) is the propor-
tion of true homology pairs (those from the reference alignment)
that are not present in the estimated alignment. SPFP (Sum-of-Pairs
False Positive rate) is the proportion of estimated homology pairs
not found in the reference. Both rates are defined from 0 to 1. For
convenience, we often report the average of SPFN and SPFP, some-
times referred as the alignment error or average error. We evaluate
the rates across the entire alignment (not just restricted on the query
sequences) both to show the final accuracy of the methods as de
novo alignment methods aligning sequences from scratch and to
also take into account the homologies between query sequences and
the backbone sequences (which will be ignored if only restricted to
the query sequences).

For speed, we record the wall-clock running time of the methods
assuming the backbone tree and backbone alignment are given (i.e.
ignoring the time used in Phase 0). Aside from the benefit of exclud-
ing a shared identical stage for all the methods, this wall-clock run-
ning time is exactly the running time for downstream analyses, such
as phylogenetic placement or taxon identification, where the back-
bone alignment and tree are assumed to be already computed.

4.2 Computing environment
All experiments were conducted on the Illinois Computing Cluster,
a heterogeneous computing cluster where most runs are constrained

Dataset No. of segs. Seq. length Align length p-dist.4 (avg)
Simulated nucleotide

1000M1-HF* 1000 631.3 3960 0.694
1000M2-HF 1000 634.3 3972 0.683
1000M3-HF 1000 629.6 2723 0.660
1000M4-HF 1000 629.6 2571 0.495
RNASim-SOObpb 1500-7000 1025.4 21946 0.408
Biological nucleotide

CRW 5507-27 643 105.6-1557.2 414-11 856 0.210-0.425
Biological protein

10AA 303-807 432.7 1745.3 0.671
Homfam*® 14 950-93 681 149.8 273.5 0.690

Note: See Supplementary Tables S4-S7 for additional details.

#The 1000M series data have 20 replicates. 1000M1 has an outlier replicate as indicated in Smirnov and Warnow (2021a), hence removed.

PRNASim-500bp has five replicates (on 5000 full-length sequences and 5000 fragmented sequences) and we sampled different configurations of backbone-

query size to benchmark the algorithm.

‘HomFam datasets only have reference alignments on a small subset of the sequences. The last two of this row are derived from these small references.

dAverage p-dist (p-distance) is the proportion of homologous pairs of letters that are different, where a ‘homologous pair of letters’ is two letters in the same

column in the alignment.
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to four hours with at least 64GB of available memory. For the most
time-consuming dataset (16S.B.ALL), we allowed methods to run
for more than four hours. We ran all methods across 16 cores.

4.3 Other MSA methods

We compare WITCH-NG to WITCH and UPP, each run in default
mode, but all three methods used the same backbone alignment and
eHMM. See Supplementary Material Section S2 for commands and
version numbers.

Methods other than UPP and WITCH were not selected for com-
parison as prior literature and preliminary results suggest that UPP
is more accurate than other published methods (that we know of).
For example, prior studies suggest that UPP is more accurate than
hmmbuild+hmmalign (Nguyen ef al., 2015) and MAFFT—add
(Shen et al., 2022a) (among those—add options that can scale to
large datasets).

5 Results

5.1 Experiment 1: Simulated and biological nucleotide
datasets

5.1.1 Alignment error

WITCH and WITCH-NG are essentially tied for average alignment
accuracy (i.e. average of SPFN and SPFP) and both are more
accurate than UPP (Table 2), with the advantage over UPP most
noticeable under higher levels of evolution (1000M2-HF and
1000M1-HF). Results on RNASim are shown in the Supplementary
Table S1, as the methods have low SPFN (0.092 to 0.102) and SPFP
(0.086 to 0.097) error, never differing in error for any model

Table 2. Alignment error rates on nucleotide datasets (four simu-
lated and four biological datasets) placing into the same backbone
alignment and tree

Dataset Method SPEN SPFP Avg. error
1000M4-HF WITCH 0.014 0.010 0.012
WITCH-NG 0.014 0.010 0.012
uPP 0.016 0.010 0.013
1000M3-HF WITCH 0.048 0.039 0.043
WITCH-NG 0.048 0.039 0.043
upP 0.054 0.038 0.046
1000M2-HF WITCH 0.128 0.106 0.117
WITCH-NG 0.128 0.106 0.117
uppP 0.137 0.106 0.121
1000M1-HF WITCH 0.172 0.143 0.157
WITCH-NG 0.171 0.143 0.157
UprP 0.182 0.142 0.162
58.3 WITCH 0.089 0.086 0.088
WITCH-NG 0.089 0.086 0.088
upPP 0.093 0.085 0.089
5S.T WITCH 0.117 0.104 0.110
WITCH-NG 0.117 0.104 0.111
uppP 0.120 0.103 0.112
16S.3 WITCH 0.089 0.166 0.128
WITCH-NG 0.089 0.166 0.128
uppP 0.090 0.166 0.128
16S.T WITCH 0.172 0.177 0.175
WITCH-NG 0.172 0.178 0.175
UpP 0.189 0.171 0.180
16S.B.ALL WITCH 0.044 0.045 0.044
WITCH-NG 0.044 0.045 0.044
uprP 0.045 0.045 0.045

Note: SPEN and SPFP are alignment error rates (lower is better, see text)
and ‘Avg. Error’ is the average of the two values, best values boldfaced.

condition by more than 0.004, but when there are differences then
UPP is less accurate. When separating into SPFN and SPFP, we see
that WITCH and WITCH-NG have higher SPFP than UPP and
lower SPFN rates, but the decrease in SPFN is larger than the in-
crease in SPFP, so that the average alignment error is lower for
WITCH and WITCH-NG than for UPP.

5.1.2 Running time

Figure 4 compares runtimes for WITCH, WITCH-NG and UPP on
datasets from Experiment 1. WITCH-NG is faster than WITCH
across all settings, in some cases much faster (e.g. many of the
HomFam datasets). While both methods finished very quickly on
some datasets (1000M-HF, 5S.3 and 5S.T), even on those datasets,
WITCH-NG was faster than WITCH (Supplementary Table S8).
WITCH failed on one replicate of the RNASim datasets (with a
backbone of 2000 sequences and 5000 query sequences) due to
exceeding the four-hour tine limit, but UPP and WITCH-NG com-
pleted on all replicates.

The comparison between WITCH-NG and UPP depends on the
dataset, with small differences on the RNASim datasets (often favor-
ing WITCH-NG), bigger differences on the ROSE datasets (favoring
WITCH-NG) and three largest CRW datasets (favoring UPP) and
variable differences on the HomFam datasets (sometimes favoring
UPP and sometimes favoring WITCH-NG). The two methods were
essentially tied for speed on the 1000M-HF, 5S.3 and 5S.T datasets
(Supplementary Table S8).

WITCH-NG differs from WITCH in two ways: algorithmic de-
sign and algorithmic engineering (implementation). To isolate the
impact of the two types of changes, we created a version of WITCH
where we replaced WITCH’s GCM subroutine by our described
variant of Smith—-Waterman. This version of WITCH thus only
includes the changes in algorithmic design. We then compare the
runtimes of WITCH (the original implementation), “WITCH(Smith—
Waterman)’ (the modified WITCH just described), and WITCH-NG
on two very different datasets used in this study, with the results
shown in Figure 5. The simplification in algorithm design is account-
able for most (in the case of 1000M1-HF) and roughly half (for zf-
CCHH) of the speed up achieved by WITCH-NG. This shows that
both the algorithmic design and engineering contribute to the speed
up.
WITCH-NG is faster than WITCH in all the conditions we
explored, sometimes by a large amount (e.g. the simulated datasets
and the 5S datasets from the CRW collection). Thus, WITCH-NG
speeds up WITCH on all datasets, sometimes by a great margin. In
addition, WITCH-NG is reasonably close to UPP in runtime, while
this is not true for WITCH.

5.2 Experiment 2: Protein datasets

5.2.1 Alignment accuracy

This experiment focused on two benchmark collections (10AA and
Homfam) of protein datasets with reference alignments; here we dis-
cuss both runtime and average alignment error for these benchmark
collections, with results on each dataset shown in the
Supplementary Tables S2 and S3.

On the 10AA datasets (first row in Table 3), WITCH and
WITCH-NG have identical average alignment SPFN and SPFP error.
UPP has slightly higher SPFN (by 0.003) and slightly lower SPFP (by
0.004) compared to WITCH and WITCH-NG, so that UPP is 0.001
lower in average alignment error than WITCH and WITCH-NG.
On the 10AA dataset, WITCH and WITCH-NG achieved essentially
identical accuracy, differing more than 0.001 in SPFN or SPFP on
only one dataset (Supplementary Table S3).

On the 10 largest HomFam datasets (second row, Table 3),
WITCH and WITCH-NG are identical in SPFN but with WITCH
better (by 0.001) than WITCH-NG for SPFP; thus, the differences
are very small. Compared to WITCH, UPP shows a large increase in
SPFN (by 0.009) and a small improvement in SPFP (by 0.02), so
that on average UPP is less accurate than both WITCH and
WITCH-NG.
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Fig. 4. Wall-clock running time (minutes) for Experiments 1 and 2, time measured
for Phases 1-4 (i.e. not counting Phase 0). (a) Runtimes on RNASim-500bp.
WITCH fails on one replicate for the condition with 5000 query sequences and
2000 backbone sequences; results shown here are on only the four replicates where
all methods complete. (b) Runtimes on ROSE (simulated). (c) Runtimes for the
CRW datasets. Left-to-right, the number of sequences in each dataset is 5507, 5751,
6323, 7350 and 27 643. (d) Runtimes on Homfam datasets. Left-to-right, the num-
ber of sequences in each dataset is 14 950, 17 200, 21 013, 21 331, 25 100, 27 610,
46 285,50 157, 88 345 and 93 681. Notes: RNASim and ROSE are HF conditions,
so the backbone alignments are on all the full-length sequences. CRW and HomFam
analyses have 1000 backbone sequences and the rest are included in the query set.
See text for discussion about 10AA datasets (where all methods took <2 min outside
Phase 0)

5.2.2 Running time

For running times on HomFam (Fig. 4, middle subfigure), we see a
dramatic reduction of the running time from WITCH to WITCH-
NG in many cases. For example, on 7 of 10 HomFam datasets

tested, WITCH-NG achieved at least a 5-fold speedup.
Furthermore, WITCH-NG uses nearly the same time as UPP for the
HomFam datasets, in most cases only paying a small penalty in run-
ning time compared to UPP. On the 10AA datasets, all three meth-
ods finished under 2 min for Phases 1-4, with WITCH-NG always
faster than WITCH, and faster than UPP on 8 of the 10 datasets
(Supplementary Table S3).

6 Discussion

WITCH-NG is designed to be a fast version of WITCH. Specifically,
WITCH-NG replaces the critical step in WITCH where a collection
of extended alignments for the same query sequence is merged into a
single extended alignment for that query sequence. This consensus
alignment step is performed in WITCH through a computationally
intensive heuristic, the Graph Clustering Merger from Smirnov and
Warnow (2021a), which uses Markov Clustering (MCL) followed
by an A* heuristic. In contrast, WITCH-NG obtains its consensus
clustering using a local alignment step computed using Smith—
Waterman. Since the GCM method and the local alignment method
essentially aim to produce the same consensus (i.e. optimizing the
Maximum Weight Trace for Alignment Merging), WITCH-NG is
designed to produce an alignment similar to that of WITCH, but to
do it faster.

Our study shows that WITCH-NG and WITCH produced nearly
identical alignments, never differing in more than 0.001 SPFN or
SPFP on any biological dataset (Supplementary Table S9). This very
high similarity is not surprising, given that both WITCH and
WITCH-NG optimize the same criterion (MWT-AM) when com-
puting the consensus alignment.

We also saw a substantial speed up in WITCH-NG over WITCH
in many datasets. This is also to be expected, since GCM is heuristic
and both its steps are computationally intensive while the Smith—
Waterman method is deterministic and polynomial time. We also
saw that while the improvement in runtime varied, the improvement
in runtime could be very large. Finally, we note that the runtime im-
provement resulted from both the algorithmic innovation (using
Smith-Waterman for the consensus alignment instead of using the
Graph Clustering Merger) as well as from the improved algorithm
engineering in WITCH-NG.

7 Conclusion

MSA is a step in many bioinformatics pipelines, and yet datasets
that are large, highly divergent or contain fragmentary sequences
are difficult to align with high accuracy. WITCH is a MSA method
that aims to address the challenge of aligning datasets with many
fragmentary sequences, and WITCH-NG is modification of the
WITCH alignment method that aims to improve the running time
without hurting accuracy. Our study shows that WITCH and
WITCH-NG methods produce nearly identical alignments, but that
WITCH-NG is generally faster, and sometimes greatly faster. The
high similarity between WITCH and WITCH-NG alignments
explains why WITCH-NG provides high accuracy in estimated
alignments and suggests that WITCH-NG should be useful for those
applications where WITCH alignments have already been shown to
be beneficial, such as phylogeny estimation (Shen er al., 2022b).

This study suggests several directions for future work. For ex-
ample, in WITCH-NG, we used a naive implementation of the naive
Smith-Waterman algorithm to add a query sequence to the back-
bone alignment. The speed up we obtain is therefore likely to be
improved, given the many optimized variants of DP sequence align-
ment algorithms that are much faster on modern architectures [e.g.
‘striped Smith—Waterman’ (Farrar, 2007)].

It is also worth noting that WITCH-NG addresses only one of
the aspects of the WITCH algorithm design that leads to a long run-
time: how it combines extended alignments for each of the query se-
quence into a consensus extended alignment, so that the query
sequence can be added to the backbone alignment. However,
WITCH has another computationally intensive step not addressed
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Table 3. Alignment error rates on 10AA and Homfam (averaged
across the 10 datasets in each collection)

Dataset Method SPFN SPFP Avg. error

10AA WITCH 0.233 0.189 0.211
WITCH-NG 0.233 0.189 0.211
urpP 0.236 0.185 0.210

Homfam WITCH 0.327 0.124 0.225
WITCH-NG 0.327 0.125 0.226
UrP 0.336 0.122 0.229

Boldfaced values are the best results found for each criterion on each
dataset.

in WITCH-NG, where it compares each query sequence to each
HMM in the ensemble of HMMs computed by WITCH for the
backbone alignment. Modifying this design so that WITCH-NG
only does a few of the query-HMM comparisons could potentially
further speed up WITCH-NG and should be evaluated. One poten-
tial such modification could use the approach in UPP2 (Park et al.,
2023) to reduce the number of query-HMM comparisons used in
UPP, and which enabled UPP2 to match the accuracy of UPP but be
faster for large datasets.

Other future research could evaluate the impact of WITCH-NG
for use in bioinformatics pipelines that use MSAs (e.g. phylogeny es-
timation, as mentioned above). WITCH-NG can also be used direct-
ly to add sequences into alignments, a problem that arises in
updating existing alignments and trees as new sequences are
assembled and in microbiome analysis. WITCH-NG should be eval-
uated for use in these applications, especially for those analyses
where runtime is extremely important (e.g. taxon identification in
metagenomics).
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