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ABSTRACT

Modern statistics provides an ever-expanding toolkit for estimating unknown parameters. Consequently,
applied statisticians frequently face a difficult decision: retain a parameter estimate from a familiar method
or replace it with an estimate from a newer or more complex one. While it is traditional to compare estimates
using risk, such comparisons are rarely conclusive in realistic settings.

In response, we propose the “c-value” as a measure of confidence that a new estimate achieves smaller loss
than an old estimate on a given dataset. We show that it is unlikely that a large c-value coincides with a
larger loss for the new estimate. Therefore, just as a small p-value supports rejecting a null hypothesis, a
large c-value supports using a new estimate in place of the old. For a wide class of problems and estimates,
we show how to compute a c-value by first constructing a data-dependent high-probability lower bound
on the difference in loss. The c-value is frequentist in nature, but we show that it can provide validation of
shrinkage estimates derived from Bayesian models in real data applications involving hierarchical models
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1. Introduction

Modern statistics provides an expansive toolkit of sophisticated
methodology for estimating unknown parameters. However, the
abundance of different estimators often presents practitioners
with a difficult challenge: choosing between the output of a
familiar method (e.g., a maximum likelihood estimate (MLE))
and that of a more complicated method (e.g., the posterior mean
of a hierarchical Bayesian model). From a practical perspective,
abandoning a familiar approach in favor of a newer alternative
is unreasonable without some assurance that the latter provides
a more accurate estimate. Our goal is to determine whether it is
safe to abandon a default estimate in favor of an alternative, and
to provide an assessment of the degree of confidence we should
have in this decision.

Traditionally decisions between estimators are based on
risk, the loss averaged over all possible realizations of the data
with respect to a pre-specified likelihood model (Lehmann and
Casella 2006, chap. 4-5). We note two limitations of using risk.
First, it is rare that one estimator within a given pair will have
smaller risk across all possible parameter values. Instead, it is
more often the case that one estimator will have smaller risk
for some unknown parameter values but larger risk for other
parameter values. Second, one estimator may have lower risk
than another but incur higher loss on a majority of datasets; see
Appendix S2 for an example in which an estimator with smaller
risk has larger loss on nearly 70% of simulated datasets.

In this work we propose a framework for choosing between
estimators based on their performance on the observed dataset
rather than their risk. Specifically, we introduce the “c-value”

« »

¢’ for confidence in the new estimate), which we construct
using a data-dependent high-probability lower bound on the
difference in loss. We show that it is unlikely that simultaneously
the c-value is large and the alternative estimate has larger loss
than the default. For the c-value to be useful, it must meet two
desiderata:

1. The c-value must not frequently guide practitioners to incor-
rectly report the alternative estimate when the default esti-
mate has smaller loss.

2. The c-value must, in some cases, allow one to correctly iden-
tify that the alternative estimate has smaller loss.

We demonstrate that the c-value meets the first desideratum
with theory showing how to use the c-value to select between
two estimates in a principled, data-driven way. Critically, the
c-value requires no assumptions on the unknown parameter;
our guarantees hold uniformly across the parameter space. We
demonstrate that the c-value can meet the second desideratum
with case studies; we provide an overview of these next as
motivating examples, and then proceed to present our general
methodology.

Shrinkage estimates on educational testing data. We revisit
HofF’s (2021) estimates of average student reading ability at
several schools in the 2002 Educational Longitudinal Study.
These estimates are obtained from a hierarchical Bayesian
model that “shares strength” by partially pooling data across
similar schools. Hoft’s (2021) analysis relied on a simplifying and
subjectively chosen prior. A practitioner might wonder whether
the resulting estimates are more accurate than the MLE in terms
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of squared error loss. As we will see, a large c-value provides
confidence that Hoff’s estimate is indeed more accurate. We
additionally consider a clearly inappropriate prior and verify
that our methodology does not always favor more complex
alternative estimators. Although these estimates have a Bayesian
provenance, the use of the c-value to justify these estimates does
not require subjective belief in the prior.

Estimating violent crime density at the neighborhood level.
Considerable empirical evidence links a community’s exposure
to violent crime and adverse behavioral, mental, and physical
health outcomes among its residents (Buka et al. 2001; Kondo
et al. 2018). Although overall violent crimes rates in the
United States have decreased over the last two decades, there is
considerable variation in time trends at the neighborhood level
(Balocchi and Jensen 2019; Balocchi et al. 2022). A critical first
step in understanding what drives neighborhood-level variation
is accurate estimation of the actual amount of violent crime that
occurs in each neighborhood.

Typically, researchers rely on the reported counts of violent
crime aggregated at small spatial resolutions (e.g., at the census
tract level). However, in light of sampling variability due to the
relative infrequency of certain crime types in small areas, it is
natural to wonder if auxiliary data could be used to improve
estimates of violent crime incidence.

As a second application of our framework, we analyze the
number of violent crimes reported per square mile in several
neighborhoods in the city of Philadelphia. Our analysis suggests
that one can obtain improved estimates of the violent crime
density by using a shrinkage estimate that incorporates informa-
tion about nonviolent crime incidence. Further c-value analysis
reveals that leveraging spatial information on top of nonviolent
incidence does not provide additional improvement.

Gaussian process kernel choice: Modeling ocean currents.  Accu-
rate estimation of ocean current dynamics is critical for forecast-
ing the dispersion of oceanic contaminations (Poje et al. 2014).
While it is commonplace to model ocean flow dynamics at or
above the mesoscale (roughly 10 km), Lodise et al. (2020) have
recently advocated modeling dynamics at both the mesoscale
and the submesoscale (roughly 0.1-10 km). They specifically
proposed a Gaussian process model that accounts for variation
across multiple resolutions to estimate ocean currents from
positional data taken from hundreds of free-floating buoys.

In a third application of our framework, we find that the
multi-resolution procedure produces a large c-value, indicating
that accounting for variation across multiple scales enables more
accurate estimates than are obtained when accounting only for
mesoscale variation.

1.1. Organization of the Article and Contributions

We formally present our general framework and define the
c-value in Section 2. In Section 2.1 we highlight similarities
and differences between our framework and existing work on
preliminary testing and post-selection inference. Our approach
to computing c-values depends on the availability of high-
confidence lower bounds on the difference in the losses of
the two estimates that holds uniformly across the parameter

space. Sections 3-5 provide these bounds for several models
and classes of estimators for squared error loss. In Section 3, we
illustrate our general strategy in the canonical normal means
problem. Then, in Section 4, we generalize this strategy to
compare affine estimates of normal means with correlated
observations. Section 5 shows how to extend the framework
to cover two nonlinear cases: a nonlinear shrinkage estimator
and regularized logistic regression. We provide simulations
validating our approach in these settings. We apply our
framework to the aforementioned motivating examples in
Section 6. In our discussion in Section 7, we outline ways to
extend our framework beyond the estimates considered here.
Software that implements the c-value computation, and code
that reproduces our analyses is available at: https://github.com/
blt2114/c_values.

2. Introducing the c-value

We now describe our approach for quantifying confidence in
the statement that one estimate of an unknown parameter is
superior to another. We begin by introducing some notation and
building up to a definition of the c-value, before stating our main
results. This development is very general, and we defer practical
considerations to the subsequent sections. We include proofs of
the results of this section in Appendix.

Suppose that we observe data y drawn from some distribution
that depends on an unknown parameter 6. We consider deciding
between two estimates, 6(y) and 6*(y), of 6 on the basis of a
loss function L(8, -). Our focus is on asymmetric situations in
which () is a standard or more familiar estimator while 6*(-)
is a less familiar estimator. For simplicity, we will refer to (-) as
the default estimator and 6*(-) as the alternative estimator.

We next define the “win” obtained by using 6* (y) rather than
6(y) as the difference in loss, W (6, y) := L(6,0(»))—L(6, 6*(%)).
While a typical comparison based on risk would proceed by tak-
ing the expectation of W (6, y) over all possible datasets drawn
for fixed 0, we maintain focus on the single observed dataset.
Notably, the win is positive whenever the alternative estimate
achieves a smaller loss than the default estimate. As such, if we
knew that W(0,y) > 0 for the given dataset y and unknown
parameter 6, then we would prefer to use the alternative 6*(y)
instead of the default § ).

Since 6 is unknown, determining whether W(0,y) > 0 is
impossible. Nevertheless, for a broad class of estimators, we can
determine whether the win is positive with high probability. To
start, we construct a lower bound, b(y, o), depending only on the
data and a pre-specified level o € [0, 1], that satisfies for all 6

Po [W(0,y) = b(y, )] > a. (1)
For values of o close to 1, b(y,«) is a high-probability lower
bound on the win that holds uniformly across all possible values
of the unknown parameter 0. Loosely speaking, if b(y, o) > 0 for
some « close to 1, then we can be confident that the alternative
estimate has smaller loss than the default estimate.

To make this intuition more precise, we define a measure of
confidence that 6*(y) is superior to é(y). We call our measure
the c-value c(y):

c(y) = aér[l()fl] {alb(y,a) < 0} . (2)

>



The c-value marks a meaningful boundary in the space of con-
fidence levels; it is the largest value such that for every o < ¢(y),
we have confidence o that the win is positive.

Remark 2.1. An alternative definition for the c-value is ¢ (y) =
SUP,co,17ib(y, ) > 0}. Although ct(y) = c(y) when b(y, -) is
continuous and strictly decreasing in o, ¢ (-) may be overconfi-
dent otherwise. We detail a particularly pathological example in
Appendix S3.

Our first main result formalizes the interpretation of c(y) as
a measure of confidence.

Theorem 2.2. Let b(-, -) be any function satisfying the condition
in Equation (1). Then for any 6 and « € [0, 1] and c(y) as defined
in Equation (2),

Py [W(0,y) <0andc(y) > o] <1—a. (3)

The result follows directly from the definition of ¢(-) and
the condition on b(:, -). Informally, Theorem 2.2 assures us that
it is unlikely that simultaneously (A) the c-value is large and
(B) 6*(y) does not provide smaller loss than é(y). Just as a
small p-value supports rejecting a null hypothesis, a large c-
value supports abandoning the default estimate in favor of the
alternative.

The strategy described above necessarily uses the data twice,
once to compute the two estimates and once more to compute
the c-value to choose between them. Accordingly, one might
justly ask how such double use of the data affects the quality of
the resulting procedure. To address this question, we formalize
this two-step procedure with a single estimator,

0T (@) := 1[c(y) < ald(y) + 1lc(y) > al0*().  (4)

67 (y, @) picks between the two estimates é(y) and 6*(y) based
on the value c(y) and a pre-specified level @ € [0, 1]. We can
characterize the possible outcomes when using 67(-, ) with
a contingency table (Table 1), where rows correspond to the
estimate with smaller loss, and the columns correspond to the
reported estimate.

Recall that we are interested in an asymmetric situation where
the alternative estimator is less familiar than the default esti-
mator. This asymmetry makes desirable the reassurance that
0% (-, ) does not incur greater loss than é('). As such, we focus
on the upper right hand entry of the table. Our second main
result formalizes that when we use 87 (-, o) with « close to 1, the
probability of the event represented by this table entry is small.

Theorem 2.3. Let b(-,-) be any function that satisfies the condi-
tion in Equation (1). Then for any 6 and & € [0, 1],

Po[L(6,6"00) > L(6.6p)] s1-a. ()

Overview of the remainder of the article. The c-value is useful
insofar as the lower bound b(y, «) is sufficiently tight and readily
computable. It remains to show that such practical bounds exist.
A primary contribution of this work is the explicit construction
of these bounds in settings of practical interest. In what follows,
we (A) illustrate one approach for constructing and computing
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Table 1. Contingency table with possible outcomes when using the two-stage esti-
mator61 (-, @).6T (-, &) controls the probability of the boldface event (Theorem 2.3).

Default reported Alternative reported

Incorrect
Correct

Correct
Incorrect

Default has lower loss
Alternative has lower loss

b(y,a), (B) explore our proposed bounds’ empirical properties
on simulated data, and (C) demonstrate their practical utility on
real-world data.

2.1. Related Work

Hypothesis testing, p-values, and pretest estimation. Our pro-
posed c-value bears a resemblance to the p-value in hypothesis
testing, but with a few key differences. Indeed, just as a small p-
value can support rejecting a simple null hypothesis in favor of a
possibly more complex alternative, a large c-value can support
rejecting a familiar default estimate in favor of a less famil-
iar alternative. Furthermore both tools provide a frequentist
notion of confidence based on the idea of repeated sampling.
From this perspective, the two-step estimator 67 (-, &) resembles
a preliminary testing estimator. Preliminary testing links the
choice between estimators to the outcome of a hypothesis test
for the null hypothesis that 6 lies in some pre-specified subspace
(Wallace 1977).

The similarities to hypothesis testing go only so far. Notably,
we consider decisions made about a random quantity, W(6, y).
Hypothesis tests, in contrast, concern only fixed statements
about parameters, with nulls and alternatives corresponding to
disjoint subsets of an underlying parameter space (Casella and
Berger 2002, Definition 8.1.3). Our approach does not admit an
interpretation as testing a fixed hypothesis.

Nevertheless, the connection to p-values can help us under-
stand some limitations of the c-value. First, just as hypothesis
tests may incur Type II errors (i.e., failures to reject a false
null), for certain models and estimators there may be no bound
b(-,-) that consistently detects improvements by the alternative
estimate. Accordingly, the two stage estimator 87(-,a) does
not control the probability that we report the default estimate
when the alternative in fact has smaller loss. In such situations,
our approach may consistently report the default estimate even
though it has larger loss. Second, even if good choices of b(-, )
exist, it could be challenging to derive them analytically. This
analytical challenge is reminiscent of difficulties for hypothesis
testing in many models, wherein conservative p-values that are
stochastically larger than uniform under the null are used when
analytic quantile functions are unavailable. Third, we note that
it may be tempting to interpret a c-value as the conditional
probability that an alternative estimate is superior to a default;
however, just as it is incorrect to interpret a p-value as a proba-
bility that the null hypothesis is true, such an interpretation for
a c-value is also incorrect.

Post-selection inference. In recent years, there has been
considerable progress on understanding the behavior of
inferential procedures that, like 87(-, ), use the data twice,
first to select amongst different models and then again to
fit the selected model. Important recent work has focused
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on computing p-values and confidence intervals for linear
regression parameters that are valid after selection with the lasso
(Lockhart et al. 2014; Lee et al. 2016; Taylor and Tibshirani
2018) and arbitrary selection procedures (Berk et al. 2013).
Somewhat more closely related to our focus on estimation are
Tibshirani and Rosset (2019) and Tian (2020), which both
bound prediction error after model selection. Unlike these
papers, which study the effects of selection on downstream
inference, we effectively perform inference on the selection itself.

3. Special Case: c-values for Estimating Normal Means

In this section, we derive a bound b(y,«) and compute the c-
value in a simple case: we compare a certain class of shrinkage
estimators to maximum likelihood estimates (MLE) of the mean
of a multivariate normal from a single vector observation (i.e.,
the normal means problem). Our goal is to illustrate a simple
strategy for lower bounding the win that we will later gener-
alize to more complex estimators and models. In Section 3.1,
we define the model and the estimators that we consider. In
Section 3.2, we introduce our lower bound b(-, -) and present a
theorem that guarantees this bound satisfies Equation (1). Then,
in Section 3.3, we examine the resulting c-value empirically and
study the performance of the estimator 87 (-,a) that chooses
between the default and alternative estimators based on the
c-value (Equation (4)). Several details, including the proof of
Theorem 3.1, are left to Appendix S4.

3.1. Normal Means: Notation and Estimates

Let & € RN be an unknown vector and consider estimating @
from a noisy vector observation y = 6 + ¢ where € ~ N(0, Iy)
under squared error loss L®,0) := ||0 — 0| For simplicity,
we focus on the case of isotropic noise with variance one; we
remove this restriction in Section 4. For our demonstration,
we take the MLE O(y) = y to be the default estimate. As the
alternative estimator, we consider a shrinkage estimator that was
first studied extensively by Lindley and Smith (1972),

-2
0*(y) = ——=—,
) 1+172
where 1y is the vector of all ones, T > 0 is a fixed positive
constant, and y := N~!1]y is the mean of the observed y,s.
Operationally, 6*(y) shrinks each coordinate of the MLE toward
the grand mean y.

3.2. Construction of the Lower Bound

To lower bound the win, we first rewrite 6*(y) = 6 ) —
where G := (1 + t2)7'P{ and P{ = Iy — N7lIn1] is
the projection onto the subspace orthogonal to 1. The win in
squared error loss may then be written as

Wb, y) = 10(») -6l

Observe that we can compute ||Gy|| directly from our data.
As a result, in order to lower bound the win W (8, ), it suf-
fices to lower bound 2¢ " Gy. As we detail in Appendix S4.1,
2¢ "Gy follows a scaled and shifted noncentral Chi-squared
distribution,

—16*() —01* = 2¢ " Gy—IGylI*. (6)

1 1
227Gy~ [xf;_l(ZIIPfGIIZ) - ZHP%GHZ} ,

where XI%Fl (1) denotes the noncentral Chi-squared distribution
with N — 1 degrees of freedom and non-centrality parameter A.
Thus, for any « € (0,1) and any fixed value of ||Pf-9 2,

2
Fyl, (= o ||PL9||)—2”(11+”) IGyll?
)

W,y = I

with probability «, where Fﬁil(l — a3 )) denotes the inverse
cumulative distribution function of x 1%!—1 (1) evaluated at 1 — «.
Were ||Pi-0||? known, the right hand side of Equation (7) would
immediately provide a valid bound. However, since ||Pf-6 I is
not typically known, we use the data to address our uncertainty
in this quantity. We obtain our bound by forming a one-sided
confidence interval for ||Pf‘0 [? that holds simultaneously with
Equation (7).

Bound 3.1 (Normal means: Lindley and Smith estimate vs. MLE).
Observe y = 0 + € with € ~ N(0,Iy) and consider é(y) =y
versus 0*(y) = (y + r’z)_/lN)/(l +772). We propose

,O) ‘= mn _ 5
) reo U 5o [1+12 N0 2 4
_ L e ®)
20+ 12 (1+12)?2

as an «-confidence lower bound on the win, where

1-— _ 1—
U(,Ta> 1nf{6‘||P1y|| <FN11< 205;8>} 9)

is a high-confidence upper bound on ||P1L9 2.

Bound 3.1 relies on a high-confidence upper bound on
||Pf-9||2, but a two-sided interval could in principle provide
a valid bound as well. In Appendix S4.3 we provide an intuitive
justification for the choice of an upper bound. Theorem 3.1
justifies the use of Bound 3.1 for computing c-values.

Theorem 3.1. Define c(y) = infycpoa{a|b(y,) < 0} for
b(-,-) in Bound 3.1. Then c(y) is a valid c-value, satisfying the
guarantees of Theorems 2.2 and 2.3.

Remark 3.2 (Computability of the bound). Equation (8) in
Bound 3.1 can be readily computed. Notably, many standard
statistical software packages provide numerical approximation
to noncentral y? quantiles. Further, the one-dimensional
optimization problems in Equations (8) and (9) can be solved
numerically.

Remark 3.3 (Unknown variance). For cases when the noise
variance o2 is unknown but a confidence interval is available,
one can adapt the procedure above by replacing b(y, o) with its
infimum with respect to o over the confidence interval and
reducing the confidence level & accordingly.
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Figure 1. Bound calibration and the two-stage estimator for a hierarchical normal model in simulation. (a) Empirical coverage of the lower bound b(-, @) across different
levels «.. Coverage is nearly identical across the parameter space. (b) Probability that the default has smaller loss but the alternative estimate is selected across the parameter
space, with dashed lines reflecting nominal coverage. (c) Probability of selecting the alternative estimate. Selection probability is higher for lower thresholds «. (d) Risk
profiles of the two-stage estimators for different choices of «, as well as the MLE A(-) and the shrinkage estimator 6*(-). Each data point is computed from 500 replicates

with N = 50.

Remark 3.4. The alternative estimator 6*(y) considered in this
section is the posterior mean of 6 corresponding to the hierar-
chical prior 0| ~ N (uly, T2Iy) with further improper hyper-
prior on u. This prior encodes a belief that 6 lies close to the one-
dimensional subspace spanned by 1y. Using a similar approach
to the one above, we can derive lower bounds on the win for
a more general class of estimators that shrink the MLE toward
a pre-specified D-dimensional subspace. See Appendix S4.4 for
details and an application to a real dataset on which a large
computed c-value indicates an improved estimate.

3.3. Empirical Verification

To explore the empirical properties of Bound 3.1, we simulated
500 datasets with N = 50 as y ~ AN (0,Iy) for each of
several values of 6. For each simulated dataset y, we computed
the win W (6, y), the proposed lower bound b(y, @), and the c-
value c¢(y). Conveniently, for this likelihood, the distributions
of W(6,y) and b(y,) depend on 6 only through N2 |P{-0].
Consequently, we can exhaustively assess how our procedure
behaves for different 6 by varying this norm. Throughout our

simulation study, we fixed r = 1. With larger 7, the alternative
6* behaves more similarly to the default , but the qualitative
properties of the c-value and estimators remain similar.

We first checked that the empirical probability that the win
W (8, y) exceeded the bound b(y, o) in Bound 3.1 was at least as
large as the nominal probability o (Figure 1(a)). Across various
choices of N2 ||Pf-9 |, we see that b(-, ) is conservative, typi-
cally providing higher than nominal coverage. Surprisingly, the
gap between the actual and nominal coverages does not seem to
depend heavily on 6, suggesting we could potentially obtain a
tighter bound by calibrating b(y, @) to its actual coverage.

We next examined the probability that the alternative esti-
mate is selected on the basis of a large c-value but obtains higher
loss than the default estimate. Theorem 2.3 upper bounds this
probability, and in Figure 1(b) we confirm this bound holds
in practice across different thresholds «. Figure 1(b) addition-
ally compares our proposed approach to using Stein’s unbiased
estimate of the risk (Stein 1981) of 6*(-) to select between the
estimates. This approach, which we label “SURE’”, returns 6 (-) if
the risk estimate exceeds N and returns 6*(-) otherwise, and is
akin to the focused information criterion (Claeskens and Hjort
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Table 2. Contingency tables of simulation outcomes with ||P1i9 Il/~/N = 1.7 when

using Stein’s unbiased risk estimate (SURE), 9*(-,0{ = 0.95), or 9“(-,0: = 0.5) to
choose between the default and alternative estimates.

SURE 0t (,a = 0.95) 67, = 05)

DR AR DR AR DR AR

DLL 2% 44% 46% 0% 37% 9%
ALL 36% 18% 54% 0% 54% 0.1%

NOTE: DLL: default has lower loss, ALL: alternative has lower loss, DR: default
reported, AR: alternative reported.

2003). However, in contrast to the two-stage estimator GT(-, o),
SURE does not provide tunable control over the probability that
the alternative estimator 6*(-) is mistakenly returned.

In the case that ||Pf‘9 I/~/N =17, choosing based on SURE
gives the wrong estimate 80% of the time. Moreover, in the
majority of these cases it is the alternative that is incorrectly
returned (Table 2, Figure 1(b)). By contrast, the estimator that
chooses based on the c-value (with a threshold « = 0.95)
conservatively returns the default estimate in every replicate for
this ||Pf-9 I/vN (Figure 1(c)). While this approach provides the
estimate with greater loss in 54% of cases, it incorrectly reports
the alternative in 0% of cases (Table 2). This behavior is expected
as Theorem 2.3 provides an upper bound of 100 (1—)% = 5%.
An estimator using the unbiased risk estimate satisfies no such
guarantee.

We next checked that our computed c-values successfully
detected improvements by the alternative estimate. Recall that
the alternative estimate 6* (y) shrinks all components of y toward
the global mean y. Further, recall that by construction 6 (y, o) =
0*(y) if and only if c(y) > «. Intuitively, then, we would expect
the alternative estimator to improve over the MLE and for the
two-stage 67 (-, ) to select #*(-) when 6 is close to the subspace

spanned by 1y and N -2 ||P{-0]| is small. Figure 1c, which plots
the probability that 67 (-, &) selects 6*(-) across different values

of 6 and «, confirms this intuition; when N -3 ||P1L9 || is small,
we very often obtain large c-values and select the alternative
estimator.

For completeness, we also considered the risk profile of the
two-stage estimator 07 (-, ) (Figure 1(d)). Specifically, for dif-
ferent choices of & we computed a Monte Carlo estimate of the
expected squared error loss. For the most part, the risk of 67 (-, &)
lies between the risks of é(~) and 6*(-). However, the risk of the
two-stage estimator appears to exceed the risks of the default
and alternative estimators for a narrow range of values of ||Pf-9 Il
While it is tempting to characterize this excess risk as the price
we must pay for “double-dipping” into our data, we note that the
bump in risk appears to be nontrivial only for very small values
of «v. Recall again that we recommend choosing 6* (y) in place of
é(y) only when ¢(y) is close to 1. As such, we do not expect this
type of risk increase to be much of a concern in practice.

Interpreted together, Figure 1(c) and (d), illustrate the con-
servatism of the two stage approach with « = 0.95. For ||P1L0 I
between 1 and 1.5, 7(-, &) only rarely evaluates to 8*(-) even
though this estimator has lower risk and typically has smaller
loss.

Unlike conventional p-values under a null hypothesis, we
should not expect the distribution of informative c-values to

be uniform; indeed for parameters such that the win is consis-
tently positive or negative, c-values can concentrate near 1 or 0,
respectively.

4. Comparing Affine Estimates with Correlated Noise

We now generalize the situation described in the previous sec-
tion in two ways. First, we consider correlated Gaussian noise
with covariance X, where ¥ is any N x N positive definite
covariance matrix rather than restricting to ¥ = Iy. Second,
we let our default and alternative estimates, 6 (y) and 0*(y),
be arbitrary affine transformations of the data y. Though these
two estimates take similar functional forms in this section, we
remain concerned with asymmetric comparisons wherein 6*(y)
is less familiar than & ).

Although such generalization introduces considerable ana-
Iytical challenges beyond those encountered in Section 3, we
nevertheless can construct an approximate lower bound on the
win that works well in practice. Specifically, for Bound 3.1, we
used the tractable quantile function of the noncentral x 2 to guar-
antee exact coverage in Theorem 3.1. Now we encounter sums
of differently scaled noncentral x? random variables, which do
not admit analytically tractable quantiles. However, by approx-
imating these sums with Gaussians with matched means and
variances, we can proceed in essentially the same manner as in
Section 3 to derive an approximate lower bound on the win.
After introducing the bound, we comment on the key steps
in its derivation to highlight the approximations involved, but
leave details of intermediate steps to Appendix S5. We conclude
with a non-asymptotic bound on the error introduced by these
approximations on the coverage of the proposed bound on the
win.

Approximate Bound 4.1 (Correlated Gaussian likelihood: arbi-
trary affine estimates). Observe y = 0 + € with e ~ N(0, X)
and consider 6(y) = Ay + k versus 6*(y) = Cy + ¢, where
A,C € RN*N are matrices and k, £ € RN are N-vectors. We
propose

b(y,a) =10 — y|> — 10" — y|* + 2tr[(A — O) %]
UGy, 52
+Hz2A+ AT —Cc-chHz12
(10)

+2Z1-a
2

as an approximate high-probability lower bound for the win.
In this expression, tr[-] denotes the trace of a matrix, G(y) :=
(A—COy+ (k—10),| - |z denotes the ¥ quadratic norm of a
vector (||v||s := ~/vT Zv), || - ||r denotes the Frobenius norm of
a matrix, and z, denotes the a-quantile of the standard normal.

UG 13,1 — @)
= infs>0 {5 ‘ IGWIE < G+ =24 - OT2|3)

T 2|T1(A-CO)Z(A-O)T 21|32 }
T HIZEA - OB iR
(11)
is an approximate high-confidence upper bound on ||G(6)||2E
where ||-||op denotes the L2 operator norm of a matrix.



To derive Approximate Bound 4.1 we again start by rewriting
the alternative estimate as 0*(y) = é(y) — G(y), where now G(-)
is an affine transformation of y, G(y) := (A — Oy + (k — ©).
We next write the squared error win of using 6*(y) in place of
2 (y) as

W@y =266l + (100) = yIP = 16%0) — yI?)
(12)

and observe that it suffices to obtain a high-probability lower
bound for this first term. For tractability, we approximate the
distribution of € G(y) by a normal with matched mean and
variance. As we will soon see, this approximation is accurate
when N is large and A — C is well conditioned; in this case € ' G(y)
may be written as the sum of many of uncorrelated terms of
similar size. The mean and variance may be expressed as

Ele' G()] = tr[(A — O],

IS2(A+AT —C—-CHxzz|3

vare | G(»)] = IG@O) |} + 3

(13)

With these moments in hand, we form a probability « lower
bound approximately as

W,y > 100) — yI> = 18" () — yII* + 2tr[(A — O) 2]

1
+ 2z1,o,\/||G(9)||§_ + E||2%(A +AT —C—CNzz |2
(14)

However, as before, in order to use this approximate bound
we require a simultaneous upper bound on a norm of a trans-
formation of the unknown parameter, in this case ||G(9)||22.
We compute one by considering the test statistic ||G(y) ”22 and
again appealing to approximate normality. In particular we char-
acterize the dependence of the distribution of this statistic on
IG(6) ||§: through its mean and variance. We find its mean as

E[IG))I3] = IGO)|3 + [Z2(A — OS2 (15)
and upper bound its variance by
var[|GO)IZ] < 2122 (A — OZ(A—O)Tx7)2
1 1
+4I22(A - OZ2[HpIGO)II5.  (16)

Using the two quantities above and an appeal to approximate
normality, we propose the approximate high-confidence upper
bound, U(||G(y)||%,1 — ), in Equation (11). As before, by
splitting our « across these two bounds we obtain the desired
expression, Equation (10) in Approximate Bound 4.1.

Approximation Quality. Due to the two Gaussian approxima-
tions, Approximate Bound 4.1 does not provide nominal cov-
erage by construction. Our next result shows that little error
is introduced when N is large enough and the problem is well
conditioned.
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Theorem 4.1 (Berry—Esseen bound). Let o € (0,1) and consider
b(-, o) in Approximate Bound 4.1. If both A and C are symmet-
ric, then

104/2

By [WE.) = bip)] = 0 = =Gk (24 = OB

(17)

where k (-) denotes the condition number of its matrix argument
(i.e., the ratio of its largest to smallest singular values) and C; <
1.88 is a universal constant (Berry 1941, Theorem 1).

Remark 4.2. Theorem 4.1 is a special case of a more general
result that we provide in Appendix S5.4, which does not require
A and C to be symmetric. We highlight this special case here
because the bound takes a simpler form from which the depen-
dence on the conditioning of A-C is clearer, and because this
condition is satisfied for many important estimates. Notably A
and C are symmetric in all applications discussed in this article.

Though Theorem 4.1 provides an expected O(N _%) drop
in approximation error, the bound itself may be too loose to
be useful in practice. In Section 6.1 we show in simulation
that Approximate Bound 4.1 provides sufficient coverage even
without this correction. This conservatism likely owes to slack
from (A) the operator norm bound in Equation (16) and (B) the
union bound ensuring that the confidence interval for ||G(0) ”22
and the quantile in Equation (14) hold simultaneously.

Remark 4.3 (Fast computation of b(y,«)). A naive approach to
computing b(y, &) in Equation (10) involves finding U(||G(y) [|%.,
1_7“) with a binary search. For more rapid computation, we can
recognize U(||G(y)|%, I_T“) as the root of a quadratic. Specifi-

1 1
cally, define y := |[G()[I: — Z2(A— O)22|2,n = ze,p =

2Z2(A-OZA-C) TS| and v = 4|Z2(A — OS2 |p
then from Equation (11) we have that the § that achieves the
supremum satisfies y = § + n+/p + v3. Rearranging, we find
that U(|G() (1%, 177"‘) is the larger root of x> — 2y + n?v)x +
(> =n’p)=0.

5. Extending the Reach of the c-value

Up to this point, we focused on estimating normal means with
fixed affine estimators. Now we extend our c-value framework
in two important directions, which we support with both theo-
retical and empirical results. In Section 5.1, we derive c-values
for a nonlinear shrinkage estimator of normal means. We then
move beyond Gaussian likelihoods in Section 5.2 and derive
c-values for regularized logistic regression. In contrast to the
earlier cases, these settings introduce nonlinear estimates and
non-Gaussian models. To gain analytical tractability, we approx-
imate the estimates by linear transformations of a statistic that
is asymptotically Gaussian. This approximation allows us to
derive bounds b(y, ) that we show have the correct coverage
in an asymptotic regime. Our approach provides a template that
can be followed for other nonlinear estimates and models for
which the MLE is asymptotically Gaussian. We defer all proofs
and details of synthetic data experiments to Appendices S6
and S7.
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5.1. Empirical Bayes Shrinkage Estimates

Many Bayesian estimates are affine in the data for fixed settings
of prior parameters. But when prior parameters are chosen using
the data, the resulting empirical Bayesian estimates are not affine
in general. We next explore computation of approximate high-
confidence lower bounds on the win of empirical Bayesian esti-
mators. In particular, we consider an approach that essentially
amounts to ignoring the randomness in estimated prior param-
eters and computing the bound as if the prior were fixed. For
simplicity, we focus on a particularly simple empirical Bayesian
estimator for the normal means problem that coincides with the
James—Stein estimator (Efron and Morris 1973). We find that,
in the high-dimensional limit, bounds obtained with this naive
approach achieve at least the desired nominal coverage. Finally,
we show in simulation that the approximate bound has favorable
finite sample coverage properties.

Empirical Bayes for estimation of normal means. Consider a
sequence of real-valued parameters 61,6, . . ., and correspond-

indep
ing observations y, ~ N(0y,1). Foreach N € N, let Oy :=
[01,0,...,05]" and Yy = i,y .. ,)/N]T denote the first N
parameters and observations, respectively.

We consider the MLE for Oy (i.e., Yy) as our default, which
we denote by C:)N(YN) = Yy, and we take the James-Stein
estimate as our alternative; we compare on the basis of squared
error loss. We write the ]ames—Stein estimate on the first N
data points as O%(Yn) = (1 — (14 74(Yn))"") Y, where
rN(YN) : ||YN|| /(N — 2) — 1. ®}(YN) corresponds to the

Bayes estimate under the prior 6, i N(0, ff]) (Efron and
Morris 1973). For this comparison, the win is Wy (Yy, On) =
10N (Yn) — O I2 — 0% (Yiy) — Onl1%, and Appendix $6 details
the associated bound by (Y, «) obtained with Bound S4.1. In
the following theorem, we lower bound the win by applying our
earlier machinery for Bayes rules with fixed priors. We find that
the desired coverage is obtained in the high-dimensional limit.

Theorem 5.1. For each N € N, let tf = N-'YN 62
If the sequence tj,72,... is bounded, then for any a €
[0,1], imy_ oo P[WN(YN,On) = by(YN, )] > a.

The key step in the proof of Theorem 5.1 is establishing an

Op(N _%) rate of convergence of ff, — tﬁ, to zero; under this
condition the empirical Bayes estimate and bound converge to
the analogous estimates and bounds computed with the prior
variance fixed to 7. Accordingly, we expect similar results to
hold for other models and empirical Bayes estimates when the
standard deviations of the empirical Bayes estimates of the prior

parameters drop as O, (N~ 2 ).

Remark 5.2. Theorem 5.1 easily extends to cover the case in
which we consider a sequence of random (rather than fixed)
parameters drawn iid from a Bayesian prior, which is a more
classical setup for guarantees of empirical Bayesian methods;
see, for example, Robbins (1964). Specifically, our proof
goes through in this Bayesian setting so long as the sequence
t{,74,... is bounded in probability. This condition is satisfied,
for example, when the 6, are iid from any prior with a finite
second moment.

To check finite sample coverage, we performed a simulation
and evaluated calibration of the associated c-values (Figure S4
in Appendix S6). Despite the empirical Bayes step, the c-values
appear to be similarly conservative to those computed with the
exact bound in Figure 1(a). Furthermore, this calibration profile
does not appear to be sensitive to the magnitude of the unknown
parameter.

5.2. Logistic Regression

In this section we illustrate how to compute an approximate
high-confidence lower bound on the win in squared error
loss with a logistic regression likelihood. Our key insight is
that by appealing to limiting behavior, we can tackle the non-
Gaussianity using the machinery developed in Section 4.

Notation and estimates. Consider a collection of M data points
with random covariates X := [xl,xz, cooxym] T e RMXN and
responses Yy = [yl,yz,...,yM € {1,—1}™. For the mth
data point, assume

o p(- L 6) = (1 + expl—x 01715,

+ (1 +exp{xp 07161, (18)

where # € RY is an unknown parameter of covariate effects and
81 and 6_; denote Dirac masses on 1 and —1, respectively.

In this section, we choose the MLE as our default, § X Yym) =
arg max, log p(Y|Xa1;0). And we choose our alternative to
be a Bayesian maximum a posteriori (MAP) estimate under a
standard normal prior (8 ~ N(0,Iy)):

1
0" (Xp, Yaq) = arg max, {logp<YM|XM;e) - Enenz} .

While a first choice for a Bayesian estimate might be the poste-
rior mean, the MAP is an effective and widely used alternative to
the MLE in practice. Furthermore, 6*(Xys, Yar) is also of interest
as an L2 regularized logistic regression estimate.

Approximating 0* by an affine transformation. In moving
away from a Gaussian likelihood we forfeit prior-to-likelihood
conjugacy. In previous sections, conjugacy provided analyt-
ically convenient expressions for Bayes estimates. In order
to regain analytical tractability, we appeal to a Gaussian
approximation of the likelihood, defined with a second order
Taylor approximation of the log-likelihood around the MLE.
Under this appr0x1mat10n, X, Yr) ~ N(O,Ey), where
Ty = —V? logp(YMlXM,0)|0 i) DS such, we regain
conjugacy, and we obtain an approximate Bayes estimate as an
affine transformation of the MLE,

- ~ -1 .
§* (Xp, Yor) = [IN + zM] 0 Y. (19)

As we show in Appendix S7, 0* (Xyy, Yay) is a very close approx-
imation of " (X, Yar), with distance decreasing at an O, (M —2)
rate.

An approximate bound and an asymptotic guarantee. We
leverage the form in Equation (19) to compute Approximate
Bound 4.1 as a lower bound on the win in squared error of
using the MAP estimate in place of the MLE. In particular, we



take y := 0(Xp Y) as the data in Approximate Bound 4.1

(this corresponds to A = Iy and k = 0) and approximate

the distribution of € := Oy, Yy) — 6 as N(0, Zp).

Further, to compute the bound, we approximate 6*(Xys, Yar)

by 6*(Xp, Yar) as in Equation (19), corresponding to C =
-1

[Iv+ Eu] ande=o0.

While the precise coverage of this bound is difficult to ana-
lyze, our next result reveals favorable properties in the large
sample limit.

Theorem 5.3. Consider a sequence of random covariates
X1,%2,... and responses yi,y»,... distributed as in Equa-
tion (18). For each M € N, let Wy := 10X, Ymr) — 012 —
16*(Xpr, Yar) — 011> be the win of using the MAP estimate in
place of the MLE. Finally, let bjs(«) be the level-o approximate
bound on Wy, described above. If x1, x;, . .. are iid with finite
third moment and with positive definite covariance, then for
any o € (0,1), limpy— 00 Pg [Wir > by()] > c.

Theorem 5.3 guarantees that in the large sample limit, ba(-)
has at least nominal coverage. We provide a proof of the theorem
and demonstrate its favorable empirical properties in simulation
in Appendix S7.

6. Applications

We now demonstrate our approach on the three applications
introduced in Section 1. Our goal in this section is to demon-
strate how one can compute and interpret c-values in realistic
workflows. In analogy to hypothesis testing, where a p-value
cutoft of 0.05 is standard for rejecting a null, we require a c-
value of at least 0.95 to accept the alternative estimate; with this
threshold, we expect to incorrectly reject the default estimate
in at most 5% of our decisions. This choice, instead of 0.5 for
example, reflects the presumed asymmetry of the comparisons;
we demand strong support to adopt the alternative over the
default. For all applications, we provide substantial additional
details in Appendix S8.

6.1. Estimation from Educational Testing Data and
Empirical Bayes

In this section we apply our methodology to a model and dataset
considered by (Hoff 2021, sec. 3.2), in which the goal is to
estimate the average student reading ability at different schools
in the 2002 Educational Longitudinal Study. At each of N = 676
schools, between 5 and 50 tenth grade students were given a
standardized test of reading ability. We let y = [y1,y2, ..., yn]"
denote the average scores, and for each school, indexed by n,

model y, ndep N (6y,02), where @ = [61,65,...,05]" denotes
the school-level means and each o, is the school-level standard
error; specifically o, := o/4/N,, where o denotes a student-level
standard deviation and N,, is the number of students tested at
school N,,. For convenience, we let X := diag([alz, 022, s crf,])
so that we may write y ~ N(6, ). The goal is to estimate the
school-level performances 6.

Following Hoft (2021), we perform small area inference with
the Fay-Herriot model (Fay and Herriot 1979) to estimate 6
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under the assumption that similar schools may have similar
student performances. Specifically, we consider a vector of
D = 8 attributes of each school X = [x1,%2,...,xn]";
these include participation levels in a free lunch program,
enrollment, and other characteristics such as region and school
type. We model the school-level mean as a priori distributed as
0 ~ N(XB,tIy) where B is an unknown D-vector of fixed
effects and 72 is an unknown scalar that describes variation
in 6 not captured by the covariates. Following Hoff (2021),
we take an empirical Bayesian approach and estimate S, 7,
and o with 1me4 (Bates et al. 2015). We then compare the
posterior mean—which is affine in y for fixed 8,7, and o—
as an alternative to the MLE as a default; we use Approximate
Bound 4.1. Specifically, we take 6*(y) := E[f|y;8,7,0] =
Iy + T 221 Yy + [Iy + 227 117'XB and 6(y) = y. We
compute a large c-value (¢ = 0.9926); its closeness to one
strongly suggests that 6* () is more accurate than 6 (y).

We should not always expect to obtain a large c-value for
any alternative estimate, however. We next describe a case where
we expect the alternative estimate to be less accurate than the
default, and we check that we obtain a small c-value. In par-
ticular, we now let our alternative estimate be the posterior
mean under the same model as above but with the covariates,
X, randomly permuted across schools. In this situation, the
responses y have no relation to the covariates, and we should
not expect an improvement. Indeed, on this dataset we compute
a c-value of exactly zero. However, we recall that just as a large p-
value in hypothesis testing does not provide support that a null
hypothesis is true, a small c-value does not provide direct sup-
port that the alternative estimate is less accurate than the default.

We provide additional details for all parts of this application
in Appendix S8.1 . There, we demonstrate in a simulation study
that our bounds remain substantially conservative for these
estimators and model even with an empirical Bayes step.

6.2. Estimating Violent Crime Density in Philadelphia

As a second application, we consider estimating the areal den-
sity of violent crimes (i.e., counts per square mile) reported
in each of Philadelphia’s N = 384 census tracts. Following
Balocchi et al. (2022), we work with the inverse hyperbolic sine
transformed density. Letting y, be the observed transformed
density of reported violent crimes in census tract n, we model

indep
In ™
formed density and ayz is the noise variance. While one might
interpret 6, as the true density of violent crime in census tract
n, we note that the implicit assumption of zero-mean error in
each tract may not be realistic. Namely, systematic biases may
impact the rates at which police receive and respond to calls and
file incident reports in different parts of the city. Unfortunately,
we are unable to probe this possibility with the available data.
Nevertheless, our goal is to estimate the vector of unknown
rates, 6 = [61,65,...,05]" from y = Ly .. ,yN]T. The
observations y are a simple proxy of transformed violent crime
density, but they are noisy. So it is natural to wonder if we might
obtain a more accurate estimate of 6.

Figure 2 plots the transformed densities of both violent and
nonviolent crimes reported in October 2018 in each census tract.

N (Qn,a)%) where 6, represents the underlying trans-
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Figure 2. Transformed densities of reported (a) violent and (b) nonviolent crimes in each census tract in Philadelphia in October 2018.

Immediately, we see that, for any particular census tract, the
observed densities of the two types of crime are similar. Further,
we observe considerable spatial correlation in each plot. It is
tempting to use a Bayesian hierarchical model that exploits this
structure in order to produce more accurate estimates of 6.
In this application, we consider iteratively refining an estimate
of 6 by (A) incorporating the observed nonviolent crime data
and then by (B) carefully accounting for the observed spatial
correlation. At each step of our refinement, we use a c-value
to decide whether to continue. Before proceeding, we make a
remark about our sequential approach.

Remark 6.1. Consider using c-values and a chosen level o to
choose one of three estimates (say é(y),@*(y), and 6°(y)) in
two stages. Suppose we first choose 6*(y) over 6(y) only if the
associated c-value is greater than «. Second, only if we chose
0*(y), we next choose 6°(y) over 6*(y) only if the new c-value
associated with those estimates exceeds . Then a union bound
guarantees that 6°(y) will be incorrectly chosen with probability
at most 2(1 — «).

We begin by seeing if we can improve upon the MLE, 8 (y) =
¥, by leveraging the auxiliary dataset of transformed nonvio-
lent crimes in each tract, z1, 2y, . ..,2zn. To this end, we model
these auxiliary data analogously to y; in each tract n, we let
Ny be the unknown transformed density and independently

indep . . .
model z, ~ N (nn,azz). We next introduce a hierarchical
prior that captures the apparent similarity between 6 and 75
within each tract. Specifically, for each tract n we decompose
O, = pn+ 8, and n, = wun + 8%, where 1, is a shared
mean for the transformed densities of violent and nonviolent
reports and &), and 87 represent deviations from the shared mean
specific to each crime type. Rather than encode explicit prior
beliefs about ji,, we express ignorance in these quantities with
an improper uniform prior. Additionally, we model &}, 62 K
N (0,032). We fix the values of 0y, 0;, and o5 using historical
data. We then compute the posterior mean of 6 as an alterna-
tive estimate, 0*(y). Thanks to the Gaussian conjugacy of this
model, 6*(y) is affine in the data y, and a closed form expres-
sion is available. See Appendix S8.2 for additional details. The
resulting c-value exceeded 0.999, suggesting that we should be
highly confident that 6* (y) is a more accurate estimate of 6 than

0(y).

We next consider additionally sharing strength amongst spa-
tially adjacent census tracts. To this end, consider a second
model with spatially correlated variance components: 6, =
Un + 8 + k) and ny = pn + 8% + k. The additional terms
K = [k],K%, .. k]| and k% = [k5,k5,...,k5]" capture a

priori spatial correlations; we model «7, «* i N(0, K), where K
isan N x N covariance matrix determined by a squared exponen-
tial covariance function (Rasmussen and Williams 2006, chap.
4) that depends on the distance between the centroids of the
census tracts. Once again, we exploit conjugacy in this second
hierarchical model to derive the posterior mean 6°(y) in closed
form. As 6°(y) is also an affine transformation of y, we can use
Approximate Bound 4.1 to compute the c-value for comparing
0°(y) to 0*(y). The c-value for this comparison is only 0.843,
providing much weaker support for using 6°(y) over 6*(y).
Because this c-value is less than 0.95, we conclude our analysis
content with 6*(y) as our final estimate.

6.3. Gaussian Process Kernel Choice: Modeling Ocean
Currents

Accurate understanding of ocean current dynamics is impor-
tant for forecasting the dispersion of oceanic contaminations,
such as after the Deepwater Horizon oil spill (Poje et al. 2014).
Lodise et al. (2020) have recently advocated for a statistical
approach to inferring ocean currents from observations of free-
floating, GPS-trackable buoys. Their approach seeks to provide
improved estimates by incorporating variation at the subme-
soscale (roughly 0.1-10 km) in addition to more commonly
considered mesoscale variation (roughly 10 km and above). In
this section we apply our methodology to assess if this approach
provides improved estimates relative to a baseline including only
mesoscale variation.

In our analysis, we consider a segment of the Carthe Grand
Lagrangian Drifter (GLAD) deployment dataset (Ozgokmen
2013). Specifically, we model a set of 50 buoys with velocities
estimated at 3 hr intervals over one day (N = 400 observations
total). Each observation n consists of latitudinal and longitudinal
ocean current velocity measurements y, = [yg,l), )/,(12)]T €
R? and associated spatio-temporal coordinates [lat,, lon,, t,].
Following Lodise et al. (2020), we model each measurement as
a noisy observation of an underlying time varying vector-field

ind
distributed independently as y, P N (F (laty, lon,, t,,), ‘75212) ,



where F : R* — R? denotes the time evolving vector-field
of ocean currents and o2 is the error variance. Our goal is to
estimate F at the observation points 6 := [61,6s,... JON1T,
where for each 1,6, = [0",6]T = E(lat,, lony, t,,).

Following Lodise et al. (2020), we place a Gaussian process
prior on F to encode expected spatio-temporal structure while
allowing for variation at multiple scales. Specifically, we model
F ~ GP (0,k(-,-)), where

kO9,609) = ki (0,69) + ko (6,69, i€ {1,2). (20)
Here k; and k; are squared exponential kernels with spatial and
temporal length-scales that reflect mesoscale and submesoscale
variations, respectively; see Appendix S8.3 for details. For sim-
plicity, we model the latitudinal and longitudinal components
of F independently. We take the posterior mean of 6 under this
model as the alternative estimate, 6*(y).

As abaseline, we consider an analogous estimate with covari-
ance function k(65”,0%) = ki(6,”,6) + kx05,6' ) 1[n =
#'], which maintains the same marginal variance but excludes
submesoscale covariances. We take the posterior mean under
this model as the default estimate 6 (y). Both 6*(y) and 6 (y) may
be written as affine transformations of y.

Using Approximate Bound 4.1, we compute a c-value of
0.99981. This large c-value allows us to confidently conclude
that modeling both mesoscale and submesocale variation can
yield more accurate estimates of ocean currents than mesocale
modeling alone.

7. Discussion

We have provided a simple method for quantifying confidence
in improvements provided by a wide class of shrinkage estimates
without relying on subjective assumptions about the parameter
of interest. Our approach has compelling theoretical properties,
and we have demonstrated its utility on several data analyses
of recent interest. However, the scope of the current work has
several limitations. The present article has explored the use of
the c-value only for problems of moderate dimensionality (N
between 20 and 700). Loosely speaking, we suspect c-values may
be underpowered to robustly identify substantial improvements
provided by estimates in lower dimensional problems. Further
investigation into such dimension dependence is an important
direction for future work. In addition, our approach depends
crucially on a high-probability lower bound that is inherently
specific to the underlying model of the data, a loss function,
and the pair of estimators. In the present work, we have shown
how to derive and compute this bound for models with gen-
eral Gaussian likelihoods, when accuracy may be measured in
terms of squared error loss, and when both estimates are affine
transformations of the data. We have provided a first step to
extending beyond simple Gaussian models with the application
to logistic regression; while we have not yet explored the efficacy
of this extension on real data, we view our work as an important
starting point for generalizing to broader model classes and
estimation problems. We believe that further extensions to the
classes of models, estimates, and losses for which c-values can
be computed provide fertile ground for future work.

One direction we believe is promising is to construct the
bound b(y, @) in a model and loss agnostic manner using, for

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1

example, the parametric bootstrap. Constructing an informative
c-value is possible because in some cases the distribution of
the win depends on the unknown parameter only through
some low-dimensional projection (or at least approximately
s0). We suspect that this phenomenon may extend to more
complex models and estimates. In such cases, when this low-
dimensional characteristic sufficiently captures the distribution
of the win and is estimated well enough, a parametric bootstrap
may present a powerful solution. In particular, one would begin
by forming an initial estimate of the parameter, and simulate
a collection of bootstrap datasets by sampling data from the
likelihood parameterized by the initial estimate, compute the
win for each simulated dataset, and return for each b(y, )
the 1 — o quantile of this distribution. We expect that this
method may work in many important settings; indeed, much
of modern statistics and nonlinear methods are predicated on
the assumption that low-dimensional structure (e.g., sparsity)
exists and may be inferred. We leave further development of
this more flexible approach, including an investigation of the
theoretical properties, to follow-up work.

Appendix

Proof of Theorem 2.2

Proof. The result follows directly from the definition of ¢(y) and the
conditions on b(-, -). More explicitly,

Py [W(Q,y) < 0andc(y) > a] <Py [W(@,y) <0and b(y,@) > 0]

=Py [W(b.y) < b(y,0)]
<l-ua

where the first line follows from the definition of the c-value and the
final line follows from Equation (1). O

Proof of Theorem 2.3

Proof. The condition L(0, GT(y, «)) > L9, é(y)) can occur only when
both (A) 0 > W(8,y) and (B) 07 (;,a) evaluates to 6*(-) rather than
9(-). Event (B) implies ¢(y) > « and therefore b(y,a) > 0. By
transitivity, b(y,a) > 0and 0 > W(,y) = b(,a) > W(0,y).
By assumption, the event b(y,w) > W(6, y) occurs with probability at
most 1 — «. O

Supplementary Materials

The readme in the github provides a list of the computational resources and
experimental code. And the supplementary text includes a table of contents.
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SUPPLEMENTARY MATERIAL

S2 Pitfalls of risk when choosing between estimators

Before proceeding, we require some additional notation and definitions. We denote the risk
of an arbitrary estimator ¢'(-) by R(0,6) = E, [L (6, 0’(y))} . Given two estimators 6'(-)
and 07(-) we say that €'(-) dominates 01(-) if, for all values of 0, R(0,0") < R(0,0") and
R(0,0') < R(6,0") for at least one value of 6.

If we were able to show that one of 6(-) or #*(-) dominates the other, it would be
tempting to always select the dominating estimator. Unfortunately, it is very often the
case that neither estimator dominates the other. In other words, it may be the case
that R(0,0%) < R(0,0) for all values of # in some non-trivial subset of the space Oy but
R(6,6%) > R(6,0) for some 0 ¢ O,. Lindley & Smith (1972) provide a simple illustration of
this dilemma in the following normal means problem. Suppose that we observe an N-vector
normally distributed about its mean and with identity covariance, Iy, as y ~ N (6, Iy), and
wish to compare the default estimate é(y) =y of f and the alternative estimate
i) = LT
for a fixed value of 7 > 0, where 7j := N~! Zfl\;l yn and 1y is the N-vector of ones. Lindley
& Smith (1972) showed that R(0,0%) < R(0,0) if and only if

10 = 01y]ls < /(N —1)(2 4 72), (S21)

where § := N1 27]:7:1 60,,. Without strong assumptions about the value of 8, which we may
be unable or unwilling to make, a simple comparison of risk functions can prove inconclusive.
Interestingly, in the setting considered by Lindley & Smith (1972), it is possible to construct
0 so that (A) R(0,0%) < R(0,0) but (B) Py[L(0,0%(y)) > L(6,0(y))] > 0.5. In particular,
for N =2,7 =1, and || — 01 x> = 2.999, #*(-) has slightly smaller risk than the MLE, but
the MLE has smaller loss in 3397 out of 5000 simulated datasets, or about 68% of the time.
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In other words, even if we were to assume that 6 satisfied Equation (S21), for the majority
of datasets y that we might observe, the alternative estimator incurs higher loss than the
default. The situation above highlights an important, but in our mind under-discussed,
limitation of risk: the loss averaged over all possible unrealized datasets may not be close
to the loss incurred on an observed dataset.

This disagreement between risk and the probability of having smaller loss can be especially
pronounced when the distribution of the loss of one of the estimators is heavy-tailed. For
example, consider a scalar parameter § = 0, a deterministic default estimate 6 =1, and an
alternative estimate distributed as 6% ~ 16 Nz + (1 — 1)do, where d, denotes a Dirac
mass on x and € > 0. Then 6*(-) has larger risk than 6(-) (1 + € rather than 1), but has
smaller loss with probability 1 — i By taking a — oo, we see that 6*(-) may have smaller
loss than é( -) with arbitrarily high probability. This example is particularly extreme; our
intent is merely to illustrate that large disagreements could, at least in principal, arise in

practical settings.

S3 Defining c-values as a supremum vs. infimum

In this section we describe a pathological model and construction of a lower bound function
for which the two possible definitions of the c-value described in Remark 2.1 lead to notably
different behaviours.

Consider a variant of the normal means problem. Let § € R be an unknown mean and

observe

0+¢
Yy = )
U

where € ~ N (0,1) and u ~ U([0, 1]) is a uniform random variable on [0, 1]. Note that w is
ancillary to 6 (i.e. its distribution does not depend on ). We will construct a pathological
b(y,«) that depends on y only through u and will therefore be ancillary to 6 as well.

We begin by constructing a countably infinite collection of independent uniform random
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variables from wu, indexed by the rationals Q, S(u) := {u,},cq. Such a countably infinite
collection may be obtained by segmenting the decimal expansion of u; for example, if we
let d; denote the it digit of u, we could obtain this sequence by defining uniform random

variables with decimal expansions

= [d17d2ad4,d7,d11 .. .],
U2 L= [d37d5ad8,d12 .. .],

U3 L= [dﬁ,dg,d13...],
u4 L= [d105d147' . .],
U5 L= [d15,...],

and so on, and then mapping from {u'};cn to S(u).
Next, define

(—1)te<dloo ifa € Q
by, @) =

—00 otherwise.
For any bounded default and alternative estimators, the win will be finite and the bound
b(y, ) holds if an only if it evaluates to —oo. Because b(y, a) = —oo with probability at
least «, even though b(y, «) is ancillary to 6, it still satisfies the condition in Equation (1)
for every 6 and « € [0, 1]. However, consider two possible definitions of the c-value,
¢"(y) = sup {afbly,a) 2 0} vs. " (y) := inf {alb(y, ) <0},
a€l0,1]

where ¢~ (y) = ¢(y) is the definition we have chosen in Section 2. Note that ¢~ (y) < ¢*(y),
and that if b(y, «) is continuous and strictly decreasing in « for every y, then ¢~ (y) = ¢*(y).
In this almost surely discontinuous case, however, we have that ¢*(y) = 1. and ¢~ (y) “ 0.
Since estimators exist for which W (6, y) < 0 with positive probability, the guarantees of
Theorems 2.2 and 2.3 are not met by ¢*(y).

In the present paper, ¢ (y) = ¢*(y) for all bounds considered. Our preference for

defining the c-value as ¢~ (y) derives from simplicity; we may disregard edge cases like the
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one above, which would complicate our proofs. However for the reason described in this
section, we emphasize that using ¢~ (y) rather than ¢*(y) may have practical implications

when these quantities differ.

S4 Additional details related to Section 3

S4.1 Distribution of win term

We here provide a derivation of the distributional form of 2¢" Gy given in Section 3.2. In

Section 3.2 we found that

1 1
T 2 12 L2
276y ~ s [ GIPEI) - IR0

where x%_;(\) denotes the non-central chi-squared distribution with N — 1 degrees of

freedom and non-centrality parameter .

Recall that Gy = (1 +72)7'P(0 + ¢). As such we can rewrite

2¢" Gy = 1572 :ETP1L€+€TP1LQ
— L [BTr + (T (R
// since Pi- = P{-Pj
- - er :||P1ie + %PﬁGHQ — iIIPHIIQ:

// by completing the square

B 2
1472

1 1 ]
Xn-(ZIPEON%) = S Pol

as desired, where in the last line the degrees of freedom parameter is N — 1 because P

projects into an N — 1 dimensional subspace of RV,

S4.2 Proof of Theorem 3.1

We here provide a proof of Theorem 3.1.

38



Proof. The proof amounts to showing that b(-,-) achieves at least nominal coverage, i.e. for
any 6 and o € [0, 1], P [W(y, 0) > b(y, 04)} > «v. By construction, W (6,y) > b(y, «) may be
violated only if either (A) || P{-0]|* € [0,U(y, 55%)] or (B) W(0,y) < 25 FyL, (552 ||P%0H2>_

1472 2 4
1IP0I |IPfyll?
2(1+72) (1+72)2"

Noticing that || Piy||? ~ x%_,([[P{-0]%), we can recognize [0, U(5%)] as

valid confidence interval for ||Pj-6]|?> and see that (A) occurs with probability at most

159 Next, comparing to Equation (7), we see that (B) represents 2¢' Gy falling below its
1—7(1 quantile and thus occurs with probability at most I_T"‘ Therefore the union bound
guarantees that b(y, a) obtains at least nominal coverage. O

S4.3 Why an upper bound on ||Pj-0]*?

We here provide justification for the use of a high-confidence upper bound on ||Pj-6]]? in
Bound 3.1. Recall that Equation (7) provides a lower bound on W (6, y) if we can control
| Pi-0||?. However, it is not immediately obvious what sort of control on || P{-8]|? will yield
the tightest bound; should we have derived a two-sided interval or a lower bound instead of
an upper bound? We answer this question by appealing to a normal approximation of the
non-central y? for intuition. This approximation will be close when the degrees of freedom
parameter is large. Specifically, by replacing the non-central x? quantile with that of a

normal with matched first and second moments we may approximate the lower bound as

W(h.y) >
<7y)—1+7_2

Pyl
(1+72)%’

[N— 1— (| PL6|? + 2N — 2)3z, (S22)

where z, is the a quantile of the standard normal.

Equation (S22) is monotone decreasing in || P{-6|? for any o > 1. As such, we can expect
this quantile to be smallest for large values of || Pi-0]|?, and for this reason seek to find a
high-confidence upper bound on ||Pit||?. Indeed, in agreement with Equation (522) we
have found empirically that the infimum in Equation (8) is always achieved at this upper

bound, and conjecture that this is true in general.
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S4.4 Shrinking towards an arbitrary subspace

We now show how the approach developed in Section 3 immediately extends to a broader
class of models in the spirit of those considered by Morris (1983). In particular, let 6
again be an unknown N-vector and X € R¥*P be a design matrix where for each n, X,
is a D-vector of covariates associated with 6,. If we believe that the parameters can be
roughly described as scattered around a linear function of these covariates with variance
72, we might consider trying to improve our estimates by estimating the linear dependence

and interpolating between the sample estimate and the associated linear approximation.

Following Morris (1983), we obtain this type of shrinkage with the estimate
. y+ 712X (XTX) X Ty
) = —

1+72
which is the posterior mean of the Bayesian model that assumes for each n, 8, ~ N'(X,[ 3, 72)

I

a priori. Here [ is an unknown D-vector of coefficients that is given an improper uniform
prior.

For this setting, we propose the following bound.

Bound S4.1 (Normal Means: Flexible shrinkage estimate vs. MLE). Observe y =0 + ¢

with € ~ N(0, Iy) and consider estimates
Yyt T2X(XTX)IX Ty
14772

Oy) =y and 0°(y):

)

where T is a scalar and X is an N by D matrixz of covariates. We propose

, 2 B 1—a A A | Pxyl|?
by, ) = inf SR i =] = — X S23
B0 = o TP N-D( 2 4) A+ (rep OB

as a high-probability lower bound on the win. In this expression, F&iD(l — a, \) denotes
the inverse cumulative distribution function of the non-central x* with N — D degrees of
freedom and non-centrality parameter \ evaluated at 1 — a. Py = Iy — X(XTX)71XT is

the projection onto the subspace orthogonal to the column-space of X.
U1 - a) = int {0 Pyl < Pt o1 - a.6) (s24)
>
is a high-confidence upper bound on | Px0||?.
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This bound is identical to Bound 3.1 except that it projects to a different subspace, and
loses D degrees of freedom in the x? random variables, rather than 1. Indeed, this is a strict
generalization, as we obtain our earlier example when we take X = 1. Bound S4.1 is also
computable (for the same reasons discussed in Remark 3.2) and valid, as we see in the next

proposition.

Proposition S4.1. Equation (S23) in Bound S4.1 satisfies the conditions of Theorem 2.2.
In particular, for any 0 and o € [0, 1], Py [W(y, 0) > b(y, a)} > a.

Proof. Proposition S4.1 follows from an argument very closely analogous to the proof of
Theorem 3.1. We first rewrite 0*(y) as 0*(y) = y — Gy for G := (1 + 7%)"'P¢. Equation (6)
then holds exactly as before (i.e. W(0,y) = 2¢' Gy — ||Gy||?). The two terms are treated as
in Theorem 3.1; the only differences are that the norm under consideration is ||Pg0|| rather

than || P{*6]|, and the change in degrees of freedom from N — 1 to N — D. O
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Figure S3: The estimate shrinking towards a quadratic fit provides a significant improvement
(¢ = 0.953). The noise and prior standard deviations were set as ¢ = 0.025 and 7 = 0.025,

respectively.
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Figure S3 demonstrates an application to Ty Cobb’s season batting averages, an example
adapted from Morris (1983). In this analysis, our approach indicates that we should be
highly confident (¢ = 0.953) that the alternative estimate, which shrinks the observations
towards a quadratic fit of the data, outperforms the MLE . While Morris (1983) provides
an argument for estimators of this style based on risk, the present analysis goes a step
further by providing a measure of confidence that the estimator improves on this particular
dataset. Even though the risk of the estimator 6*(-) may be greater than that of 8(-) for
many possible 6, this analysis supports the conclusion that for the true unknown 6 and

observed y, 6*(y) is superior.

S5 Affine estimators supplementary information

S5.1 Step by step derivation of Equation (12)

The win of using 6*(y) in place of f(y) may be expressed as
W0, y) = 16(y) — 61 — 116" () — 011
= (HOwIE + 10112 = 2670() ) — (16" W) + 0] — 2076 (1)
= =20"G(y) + (16 - 11" W)
// where G(y) == 0(y) — 6"(y)
= 2¢"G(y) — 29" Gy) + (1011 = 110" (v) )

=26 G(y) + (Hé(y) —ylI* = 16"(y) - y“2> ‘

(S25)
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S5.2 Derivation of Equation (13)

Observe that

Ele"G(y)] = E[e¢"G(0) + € (A — O)¢]
=E[e]" G(0) + E[tr[(A — C)ee']]
= tr[(A — C)Y]

and

Var[e"G(y)] = Var[e' G(0)] + Varle' (A — C)¢]

// since €' G() and €' (A — O)e are uncorrelated
T_o_ T T _ T
— (G(O)TS(G(0)) + 26 AA ) ¢-C pAtrd ) C-C 5

= GO + 5rl((A+ AT~ C ~ CTy5)

1, 1 1
= GO)% + SlIE2(A+ Al —C-CN)xz|F,

where || - || and || - ||z denote the ¥ quadratic norm and Frobenius norm, respectively. The
third line of the derivation above obtains from recognizing Var[e' (A — C)e] as a quadratic

form (Mathai & Provost 1992, Chapter 2).

S5.3 Derivations of Equations (15) and (16)

Equations (15) and (16) characterize the dependence of the distribution of |G(y)|% on
|G(6)||% through its mean and variance. Recognizing ||G(y)||% as a quadratic form (Mathai
& Provost 1992, Chapter 2), with G(y) ~ N (G(0), (A — C)E(A - C)"), we find its mean

as

E[|G(y)|3] = G(0) TSG(9) + tr[S((A — C)S(A - C)T))]
= |GO)]13 + 122 (A - C)B(A - C)T32]
= IGO)3 + [22(A - C)22 3.
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For the variance, we similarly rely on the known variance of a quadratic form. Starting
from that expression, we upper bound the variance as
Var(|[G(y)[|] = 2t {z (A-oma-o)) 3 ((a-oys(a- C)T)] +
A4GO)'E ((A-O)Z(A-C)" ) 2G(0
()7 ((A-O)2(A-0)T) 2G(0) s
— 2|24 - O)=(4 - O)TSH |} + 4 (54 - )5t HG(0)13
< 2|B2(A - O)Z(A - C) B2 7 + 422 (A = O) 22 B | GO,

where || - ||op denotes the L2 operator norm.

S5.4 The Berry—Esseen bound: Theorem 4.1

We here prove Theorem 4.1, a non-asymptotic upper bound on the error introduced by
the two Gaussian approximations in Approximate Bound 4.1. We begin by restating key
notation for convenience. We then state a more general variant of the bound that removes
the restriction that the operators A and C be symmetric, and we show how it reduces to
the simpler quantity stated in Theorem 4.1. Finally, we present a proof of the theorem as

well as several supporting lemmas.

Notation and statement of the theorem its more general form. Recall that we

are concerned with the coverage of Approximate Bound 4.1

by, @) = 10— yl* = 116" — yl|* + 26e[(A — O)X] +

1— 1, w1 1
22150 (UG 52+ SIBH A+ AT — 0Ty

In this equation, G(y) := (A — C)y + (k — {), z, denotes the a-quantile of the standard
normal, and

1l—«

U(I60IRA S = {5 IGWIR < 6+ 1234 - )R +

e VRIS A - OB - ) B + 4l (A - O)2h s
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is a high-confidence upper bound on ||G(6)||%.

For convenience, we introduce

GO, ) = 2n{(A — O)3) + 220\ IGO)E + JIZH(A + AT - €~ CT)H .
(S27)

to denote the inverse CDF of our normal approximation to the distribution of 2¢'G(y)

evaluated at a. As such, we may write

. - l—a, 1—«
b.) =10yl = 16"~ + P (U651 5.

Finally, recall that to prove the theorem we desire to show

10v/2
O\/_Cl . K/(Z
N

N
N

Py [W(eay) > b(yv O‘)} > o= )2

(A— )%

for any 6 and « € [0, 1], where C; < 1.88 is a universal constant, in the case when both A
and C are symmetric. We accomplish this by first proving a more general bound holds even

in the non-symmetric case,

Py [W(0,y) > by, a)] > o — %C& R(X

N

(A_cnﬁﬁ+m@aA+AT—c_cUz%]
(S28)

The special case obtains by replacing AT and C'T with A and O, respectively, and noting
that x(M)? > k(M) for any matrix, M.

A key tool in this proof is the classic result of Berry (1941), which we restate below.

Theorem S5.1 (Berry, 1941, Theorem 1). Let X1, Xs, ..., Xn be random variables. For

eachn € {1,2,..., N}, let 0% and p, denote the variance and third central moment of X,,

respectively. Define N, := 25 if 0% >0 and \, = 0 otherwise. Define o* := ZN o? and

n=1"n
X :=N'N X,. Then

max,, A
< Cl#;
o

Eﬁ@—@(il@ig

sup
T g

where C < 1.88 is a universal constant and Fx(-) is the cumulative distribution function

of X.
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Proof of Theorem 4.1 The desired bound may be stated equivalently as, for any
a € [0,1],
5v2

Py [W(0,y) < bly,a)] < (1 —a)+ ﬁcl K(S2(A—O)S2)2 + K(22(A+ AT —C — CT)Z%)] .

(529)

We first rewrite the condition W (0,y) < b(y, @) as 2¢" G(y) < F~H (U(||G(y)|12, 52), 52)
(recall Equation (S25)). Since F~! is monotonically decreasing in its first argument,
this condition may occur only if either 2¢' G(y) < F~* (IG(0)]%,52) or [|GO)|E >
UG, 5.

Therefore, by the union bound, we have that
- 1 —
B [W(0,4) < by, )] <Py lzeTG@) S (O T“)]
(S30)
11—«
+ 1 I6O)1 > VIGWIR 5]

Lemmas S5.1 and S5.2 provide that Py [QETG(y) < F1(]|G(9)| 2, 1_70‘)] < 1_7"—!—%501%(25(/1—%
AT —C—CT)SH) and By [|GO)IE > U(IGW)IE, 52)] < 52+ B2Cin(SHA - C)zh,
respectively. Substituting these two bounds into Equation (S30) we obtain Equation (S29)

as desired.

Lemma S5.1. Let y = 6 +¢ be a random N-vector with e ~ N'(0,%). Let F~' be the normal
approzimation to the inverse CDF of 2¢"G(y) in Equation (S27). Then for any o € [0, 1],

Py [QJG(y) < FH(|G0))2, a)] <a+ %501/{(2%(,4 + AT —Cc—CcNza).

Proof. Note first that for any a we may rewrite
Py [27Gly) < F(IGO)IIE, 0)| = F [F (IGO) )]
— ot {F [FH (GO 0)] - F [P (160)1.)] .

where F and F are the exact and approximate CDFs of 2¢" G (y), respectively. Recalling

that the normal approximation comes from matching moments to 2¢' G(y), we have that
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P v—E[2¢" G(y)] )

. Therefore, it will suffice to obtain that for every v,
Var[2e T G(y)]

for any v, F(v) =

F(v) — F(v)| = |F(v) — ® (“ ~ E[2€TG(y)]> 5v/2

Va2 Gw) )| = ﬁcﬂ( £:(A+ AT - C - CT)s2),

We will obtain this result by writing 2¢"G(y) a sum of independent random variables
and using a Berry-Esseen Theorem (Theorem S5.1) to bound the error of this normal
approximation.

Lemma S5.3 allows us to write 2¢' G(y) = 2" (A — C)e+2 [(A— C)0 + (k — f)f € as
a shifted sum of N differently-scaled, independent non-central y? random variables. We
denote these N random variables by Xi, Xs, ..., Xy. Lemma S5.3 additionally tells us that
the scaling parameters of these non-central x? random variables will be the eigenvalues of
S2(A+ AT — CT — )%z, which we denote by A > Ay > -+ > Ay > 0.

To use Theorem S5.1 we require the ratios of the third to second central moments of

these random variables, as well as the variance of the sum. Specifically,

v —ERTGE), e o
N L M VA

where for each index n, p(X,,) := E[(X,, — E[X,])?] is the third central moment of X,,, and

(' < 1.88 is a universal constant.

Conveniently, as we show in Lemma S5.4, for each n pXn) < 10\,,. Further, since

» Var[Xn]
/ Var[2¢"G(y)] > SV A2 > V2N )y (recall that Equation (13) provides that Var[2¢" G(y)] =
4G(O)]|E + 2L (A+ AT —C — CT)EEHF) we may additionally see that

v—E[2¢"G(y)] 10 max, A,
P - F <Ol————
ilellg ( Var[2e "G (y)] () ! V2N min, A,

- Cl%n ( A+ AT - - CT)E%)

where k(-) denotes the condition number of its matrix argument, as desired. O
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Lemma S5.2. Let y = 0 + ¢ be a random N -vector with € ~ N(0,%). Let U(]|G(y)||%, @)
be the approzimate high-confidence upper bound on ||G(0)||%. Then for any a € [%, 1],
Py [|GO)3 > U(IG()[I3, 1 — )] <1—a+ 22C1K(T(A - C)52)2

Proof. Our proof of the lemma follows roughly the same approach taken to prove Lemma S5.1.

First note that the condition that ||G(0)]|% > U(||G(y)||%,1 — «) implies that

IG)|E < (IGO)|% + |22 (A~ C)B2 %) +

212 SHA - C)S(A — O)TSH |2 + 4|23 (A — O) 2, | GO)]12

< E[G(y) 3] + z1-aV/ Var[G(y)]

for any « € [3,1], where the first line follows from the definition of U(||G(y)[|%,1 — «). The
second line follows from the observations that (A) z1_, < 0 and (B) the second term in the
first line uses an upper bound on the variance of ||G(y)||% (Equation (16)).

We now proceed to upper bound the probability of the event in the display equation
above. First consider a normal approximation to the distribution of ||G(y)||x with matched
moments, and denote its inverse CDF by F=1(0, o). We may then write the probability of

the event above as
PIIGW)IE < EIGW)IE] + 7/ VarlGW)]| = F |F17(60,0)]
—a+ {F [F~'(0,0)] — F' [FH(G, a)] } ,

where F(-) and FT(-) denote the exact and approximate CDFs of |G (y)||%. It will suffice to

show that for any v,

|F(v) — F(v)| < %3,@(2%(14 —C)x2)?.

As in Lemma S5.1 we obtain this result through the Berry—Esseen theorem. In this case,
the variable of interest is |G(y)[|2 = €' (A —C)TS(A - C)e+2¢" [(A—-C)0+ (k—0)] .
As in this previous lemma, we use Lemma S5.3 to write this variable as a shifted sum of

independent, scaled non-central y? random variables, this time with scaling parameters

48



equal to the eigenvalues ¥2 (A — C) TS (A — C)%2. Recognizing that the cigenvalues of the
matrix M "M are the squares of the singular values of M for any matrix M, we obtain the

desired result. O

Lemma S5.3. Let X be a random N-vector distributed as X ~ 2¢' Ae + b'e where
A e RV*Nh € RN, and ¢ ~ N(0,X). Then X is distributed as a shifted sum of
differently scaled, independent non-central x* random wvariables. In particular, if we
let Udiag(\)UT be the eigen-decomposition of $2(A + AT)S2, then we can write X L
SNy, - }IHdiag(/\)_lUTZ%bHQ, where each Y, " )\nxf(%kgleZUTE%b), where e, is the

nt" basis vector.

Proof. The proof of the lemma proceeds through a long algebraic rearrangement. In

particular we rewrite X as

X =2"Ae+b"¢
=0TS2(A+ AT)T5 + b 026
// defining & := ¥~ 2¢ so that § ~ A(0, Iy).
= §TUdiag(\U "8 + bT$2Udiag(\)~2diag(A)2U T8
// Letting Udiag(\)U " := E%(A + AT)E% be an eigen-decomposition,
// with UTU = Iy and A € RY

£ 5Tdiag(\)S + b S2Udiag(\)~2diag(\) 26
N 1 1 1 1 1 1 1
= (Md, + §A;§eIUTzab)2 - ZszaUdiag(A)—lUTzab
n=1
BT (A4 AT)"
a b + Z)\nxl “leTU TR,

where each e,, denotes the n'* basis vector and each of the scaled non-central y? random

variables in the last line are independent. O

Lemma S5.4. Consider a scaled non-central chi-squared random variable, X ~ sx3(\),

where s and X\ are scaling and non-centrality parameters, respectively. Denote the second

49



and third central moments of X by o® = Var[X] and p = E [(X — E[X])®] . Then % < 10s.

Proof. Recall that the second and third central moments of the scaled non-central x? have

known forms, 0?2 = 2s%(1 + 2)\) and p = 8s*(1 + 3)\). Therefore we may write

p 855(1+3)\)

o2 252(1+2)) 2)\

+(3-3)

S

= 10s,

as desired. ]

S6 Empirical Bayes supplementary details

S6.1 Additional figure

Figure S4 shows the calibration in the simulation experiment described in Section 5.1.
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-_Empirical Bayes Calibration
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Figure S4: Calibration of approximate high-confidence bounds on the win of an empirical
Bayes estimate over the MLE in simulation. Each series depicts calibration for a different

choice of the parameter 6 (N = 50).

S6.2 Asymptotic coverage of the empirical Bayes estimate

Theorem 5.1 shows that we can apply the machinery developed for Bayes rules with fixed
priors to lower bound the win with at least the desired coverage asymptotically. We here

consider a scaling of win,

1

VN

We use a special case of Bound S4.1 in Appendix S4.4 with no covariates (i.e. D = 0), and

Wn(On,Yy) = 1Yy — On|* = |08 (YN) — On ] -

we treat the estimate 7% (Yy) as if it were fixed rather than estimated from the data. For
each N, this bound is

Yol

by (Y] =
V) 1+ 737

2 A, 11—« A
L ), ]_ -
VN xepu(vy,52) 1+ 7% [XN(ZL) 2 21+ 73%)

where F~! [XJQV()\), 1— a} denotes the inverse cumulative distribution function of the non-

central 2 with N degrees of freedom and non-centrality parameter ), evaluated at 1 — o
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and U(Yn,1 — ) = 1nf5>0{ ‘HYNH2 < FH[x4(06),1 - a}} is a high-confidence upper
bound on ||6]|2.
For our theorem and its proof, a key quantity is, for each N, the sample second moment

for the first N parameters, which we denote by 7% := N~ Z 2 'We emphasize, however,

n=1 n
that while it may be convenient to describe 7% as a sample moment, 6 is fixed in Theorem 5.1

and throughout this analysis.

Proof of Theorem 5.1. We prove the theorem by showing that for any «, the gap
between the win Wy (O, Yy) and the bound by (Yy, o) computed for the empirical Bayes
estimate converges in distribution to the gap between the analogous win and bound
computed for the same estimates but with prior variance fixed as 72 = 7%. We denote
these latter quantities by W5 (Ox,Yy) and by (Yy,a), and note that since 7% is fixed
PW(On,Yy) > b*(Yy, )] > a by construction (Proposition S4.1). For convenience, we
denote Wy (On, Yn) by Wy, by(Yn, @) by by, Wi (On, Yy) by W5, and by (Y, ) by by

Observe that we can write

Wy — by
Wy —by = ————(Wx — by)-

By Lemma S6.4, W3, — by is asymptotically Gaussian, and by Lemma S6. 2 W = 1. As

W* b*
a result, the distribution of Wy — by approaches the distribution of W3 — by in supremum

norm. Since b} obtains the desired coverage by construction, the result follows.

Supporting lemmas.

Lemma S6.1. If the sequence 72 is bounded, then % —7% is O,(N~2), where O,(-) denotes

stochastic convergence in probability.

Proof. Note that for each N, [|[Yy||? ~ x4 (N7%). Therefore we have that E[|Yy||?] =

N + N7% and Var|[||[Yx|]?] = 2(N +2N7%). So, recalling that 7% := ”}\;N”; 1= —”YNHIQ\, (2N 2)

52



we may write
A2 H§N|’2 E[H)NHQ] (N NTJ%[) (l‘ 2)
™ = +

N -2 N -2
1Y * = E[[Yn]*] 1
= T+ O(5)-
And so
. Yull* = E[|[Yn]] 1
2 2| < ‘H N L
N —Tnl < N +O(N)
2+ 4732 Ynll? — E[||Yn]|? 1
_ (V2447 Y] HYn 7] Loy,
VN Var[|| Yy ||?] N

Y 2 —E[[Yn %]
Var([|Y||?]

7% — 7% is Op(N_%). O

By Chebyshev’s inequality, is bounded in probability and we can see that

Lemma S6.2. Let W} and by, denote the win and its bound evaluated for 7> = 1%, rather

than the empirical Bayes estimate. Then

Wxn —05 2 72 1
]X iV: N AZNZI"'OP( ).
W — by L+ 7y vN
Proof. Recall that we may decompose Wy as
1 2 1
Wi (O ,Y = — —AETY — 55 Y, 2
N( N N) \/N 1_|_7_]%7NN (1+7_]%])2|| NH]

and that our bound is

1 , 2 A l—a Y [V |?

by(Yv,a) = — inf F7H 3 (5), — — ,
v (¥, a) VN {Ae[O,U(YN,lga)]lJr%fV {XN(él) ] 2(1 + 72

2

where U(Yy, «) does not depend on 7y.

As such,
2 A 1-a A
Wy —by = —————<exYn — inf F_I[Q—, }—l——,
Mo VN(1+73) { NN AE0,U (Y, 152)] XN(4) 2 4
and we can see that
WN — bN . 1 -+ T]2V
Wi —by  1+7%
=1+ s _ij
1+75
By Lemma S6.1 the second term is O,(N~2), as desired. O
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Lemma S6.3. Let A\, Ao, ... be a sequence of reals satisfying, for each N, N~*Ay < K
for some constant k. Let F ()\N, «) denote the inverse CDF of a non-central x* with N

degrees of freedom and non—centmlz’ty parameter An. Then for any o € (0,1),

\/LN [F);%(AN,Q)—<N+)\N>:| = 2+4)‘ Za + O(

where z,, is the a-quantile of the standard normal.

L)
e}

Proof. Note that a % (Ay) random variable is equal in distribution to a sum of N i.i.d.
X3(N~'A\y) random variables. Let 03 := Var[x?(N~'A\y)] = 2+ 4N~"'\y and note that
each 012\, > 2. Let py := 8 + 24N~ \y be third central moment of these variates and note
that each py < 8 + 24k.

Let Fy2 (ry)(2) denote the CDF of a non-central x? random variable with N degrees of
freedom and non-centrality parameter Ay evaluated at x. By the Berry—Esseen theorem

(Berry 1941, Theorem 1), for all z

F _
X%\;O\N)('r> /—2N+4)\N = Ugm

< Cl (8 + 24/‘6)
22N
1

where C; < 1.88 is a universal constant. Since ®(-) is continuously differentiable and

[x— (N+>\N)H _ Ci

invertible, we obtain the same convergence rate for the inverse CDFs. That is, for any

€ (0,1), |
FX?\;<)\N’Q) — <N+ )\N) 1

Ve v R

Rescaling these terms by N ~2/2N + 4\y and rearranging, we find

\/—1_ 2 0w.a) - (N+AN)]:,/2+4%NZQ+0<

as desired. O

2=
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Lemma S6.4. Let by, and W}, again denote the win and bounds evaluated for the variance

72 = 7% rather than the empirical Bayes estimate. If the sequence 7% is bounded, then

(Wx —by) —cn

— N(0,1)
dn

for some sequences of constants cy,cy,... and dy,ds, . ...
Proof. Let k be such that for all N, 73 < k.

Recall that we may write

2 A 1 —a A
Wy —by=——— < exYn— inf F_l[z—, ]4—— . S31
YN VN { GO I U 1 (531)

To prove the lemma, we build off of the normal approximation described in Appendix S4.1.
Note first that an application of Chebyshev’s inequality provides that N~'U(Yy, I_Ta) —
72 is O,(N~2), so that N-'U(Yy, 15%) < k with probability approaching 1. Next, by
Lemma S6.3,

— {F—1 {;@V(%N), 1;()‘} - RTN +N} } =2+ Fee + 0,

for any sequence A, A\, ... that satisfies, for each N, N~*\y < k.

Notably, since any sequence of A\y’s achieving the infima in Equation (S31) will satisfy

this condition, we may substitute this expression in and rewrite Wy — by as

T _
W — by = — GNYN—W{ inf Fl[x?v(%v),l a}_[A—N—FN]}—\/N

1 + 7N \/N )\NE[O,U(YN71%)] 2 4

2 [elyy—N - o
1+ 7N VN ANE[O,U(Yy, 1;* N \/_

2 exYn — N U(Yy, 52) 1
p— - 11—« 2 —2 O —
T+ | VN Z\/ - TOR)

2 |eNYn—N 1
= — 21y /2472 + Op(—=
I+ | VN =V OIS

_ U(YNal_Ta) . 1
T 18 Op(\/_N

95

// Since 73 —

).



Finally, note that €'Yy is approximately normal with mean N and variance N (2 + 7%).
Furthermore, the distribution of this quantity approaches that of a normal at the same
O(N~2) rate in the supremum norm (one may make this precise with a Berry-Esseen

bound). This allows us to write

. . 2 / / 1
2\/2+ 1% 1 )

for z ~ N(0,1). The result obtains by taking dy := (24/2+ 7%)/(1 + 7%) and cy =
—dnz 1oa, and noting that the lower order term does not influence the limiting distribution

of dyt [(Wh —by) —en] - O

S7 Logistic regression supplementary material

This section provides supplementary information related to Section 5.2. We begin by
reviewing notation for convenience in Appendix S7.1. In Appendix S7.2 we then provide
a proposition demonstrating the asymptotic rate of convergence of the approximation of
the MAP estimate to the exact MAP estimate, as well a proof and supporting lemmas.
Appendix S7.3 then provides a proof of Theorem 5.3. Appendix S7.4 gives additional details

on the simulation experiments.

S7.1 Preliminaries and notation

Consider logistic regression with random N-vector covariates xi,x»,... and responses
Y1,%s, ..., where for each data point m, ¥, | @m0 ~ (1 + exp{—=]0})716; + (1 +
exp{x,} 0})710_, for some unknown parameter § € RY. We use Xy, = [z1,72,...,7y]" and

Yar = [y1,%2, - -, yn) | to denote the first M data points.
One choice of an estimate for 6 after observing M observations is the MLE,

~

Oy = argmaxlogp(Yas | X, 0).
9
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Another possibility is the MAP estimate under a standard normal prior
* 1 2
M= argénaxlogp(YM | Xar 6) = S1611%

The approach in Section 5.2 involves an approximation to this estimate involving a
Gaussian approximation to the likelihood, defined by a 2nd order Taylor approximation of
the log posterior formed at 0y In particular, by Bayes’ rule, the log posterior is, up to an

additive constant,
1
log par(6) := log p(Yar | Xar,0) — 5 [10]I°

and we use the approximation
. - 1,5 1 AT ~ .
log pas (0) := log p(Yar | Xar, Onr) = SN0 = 50 = Oar) " Har (Oar)(0 — ), (532)

where Hy;(0h) = V2 —log p(Yas | X, 0)}9:6}/1 is the Hessian of the negative log likelihood,
computed at the MLE.

The approximation we use for computing our proposed bound is then the maximizer of
this approximation

0%, := arg maxlog pas(6).
o

In Section 5.2 we found that we could express 6%, as

A~

g, = [IN + EM] o

where . M= Hy (é M)_1 is an approximation to the covariance of 0 - This solution may be
seen by considering the first order optimality condition (i.e. setting the gradient of log pys(0)

to zero).

S7.2 Asymptotic approximation quality

We here show that, in the large sample limit, 6* provides a very close approximation of the

MAP estimate, 0*.
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Proposition S7.1 (Asymptotic approximation quality). Consider Bayesian logistic re-
gression with a Gaussian prior 0 ~ N(0,1y). Let x1,22,... be a sequence of random
i.i.d. covariates satisfying E[z,,x] = 0 and with bounded third moment, and let yi,yo, . . .

T and

be responses distributed as in Equation (18). Denote by Xy = [x1,22,...,20M]
Yar == [y1, 90, ..., yum)' the covariates and labels of the first M data points. Consider the

MAP estimate of 0 after observing M data points,

0%, := argmax p(0|Yas, Xar) and the approzimation 0%, := [IN + EM} - Our, (S33)
0
. . -1
where Oy = argmax, p(Yar|Xar; 0) and Xy = [—Vglogp(YM|XM;9)‘€:éM] . Then

||9~j/1 — 03,1l € O,(M~2), where O, denotes stochastic convergence in probability.

The O,(M~?) convergence rate established in Proposition S7.1 is very fast in comparison
to the Op(M_%) convergence rate of the MLE, as well as to the O,(M ') rate of convergence
of the MAP to the posterior mean. Notably, this asymptotic rate is consistent with rates

observed in simulation (Figure S5a).

Proof. We here show that ||6%, — 6%,]| is O,(M~2). Our route to proving this relies on
Lemma S7.1 (Trippe et al. 2019, Lemma E.1), which will provide a sequence of bounds
on ||6%, — 0%,]| that depend on the norms of the gradients of logpy(-) at 6%, ca =
IV log pM(9~7\4)|], and a sequence of strong log-concavity constants ayy for log pas(+) which
hold on the interval {t6%, + (1 — ¢)6%,|t € [0,1]}. In particular, Lemma S7.1 provides that
6%, — 6%, < 2L and we obtain the result by showing that ay grows as ,(M) and cy
drops as O,(M™1).

We first use Lemma S7.3 to show that the strong log-concavity constants of log pas
in a neighborhood of radius € of 6, B.(f) grow as §,(M). This allows us to establish
that [|6%, — O] is Op(M ') (Lemma S7.4). Since both 0r and 0%, converge strongly to
@ under these conditions (see e.g. Van der Vaart (2000, Theorem 10.10)), the interval
{t0%, + (1 — t)0%,|t € [0,1]} is then contained within B,(6) with probability approaching
1. Consequently, the constants of strong log concavity of logpy; on this interval, which we

take as ay, oo, ..., must grow as €,(M) as well.
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Now all that remains is to show that ¢y drops as O,(M~1). Recall from above that
16%, — Orr|| is O(M~1). This fact and the boundedness of the higher derivatives of V log pas
will allow us to use Taylor’s theorem to obtain the desired rate.

However, before proceeding to a more detailed derivation of this rate, we introduce some

additional notation. Let ¢(y,a) denote the GLM mapping function, such that

o(y,a = x'0) = log p(y|z, 0)

= —log(1 + exp{—yz'6})

and note that all higher derivatives with respect to a are bounded. In particular, third
derivative satisfies
(@) = o) < —
da® """ 7 63
where we have dropped y as an argument, because these higher derivatives do not depend
on y.

We now proceed to derive a stochastic rate of convergence of ||Vglogp (03,)||. We
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obtain this through a long derivation involving a series of upper bounds.

1V 1og par(03)|| = 1|V (log par — log pnr) (63,) |
= | Vo(log par — log par)(Bar) + (B — Oar) "V 2(log par — log par) () |

// By Taylor’s theorem, for some 6, € {6, + (1 — t)0%,]t € [0,1]}

= [1(83; — 0a1) "V (log par(63) — log par (63)|

// Since Vglog par(0) = Vg logpar(6)
= (1B — Bar) T [V log p(Yar| Xar, 04,) — V3 logp(Var| Xar, Oar)| |

// Since log pys is a second degree approximation defined at Our

M
<03 = Onrll | D V3108 p(yml T, Orp) — V108 p(yim| T, ) llop

m=1

M 1
- . . )
= 1030 = Onell | D210k = Ol -1l | V108 pGmlrin, Do i 1o, 0w

m=1

// By the fundamental theorem of calculus

M 1
~ A 0
< ||6M - QMHQ E ” avg 1ng<ym|xm79)|9:téM+(1_t)9§w||0P
m=1 t=0

M
< NG5 = Oarll | D NP (maxag™ ()

m=1

1 M
_ é* _é 2 Tm 3
73 = 0wl | 3

1 1
< OP(W)OP<M) = OP(M)’
where the final line requires that the covariates have bounded third moment. O

Supporting Lemmas

Lemma S7.1 (Trippe et al., 2019, Lemma E.1). Let f, g be twice differentiable functions

mapping RN — R and attaining minima at §; = argmin, f(0) and 0, = argmin, g(f),
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respectively. Additionally, assume that f is a—strongly convex for some o > 0 on the set

{t07 + (1 — 1)0,[t € [0,1]} and that |Vef(6y) — Veg(0y)ll2 = | Vaf ()2 < c. Then
C
165 = gll> < —. (534)

Lemma S7.2 (uniform law of large numbers). Let Hy/(0) be as defined in Equation (S32)
and define H(0) := E[VZlog p(y1|71;0)], where the expectation is taken under the true 6. If
E[zy2] ] exists and is positive definite then

1 a.s.
sup || Hu(6) = H(®')[}2 =5 0.
0'€B.(0)

according to p, where B.(0) is a closed neighborhood of 6 of radius €, for any e > 0.

Proof. Since the each of the M data points {(Zm, ym) }>_; are i.i.d. by assumption, M1 Hy,
converges point-wise by the law of large numbers. However, we are additionally interested
in uniform convergence; a number of different uniform laws of large numbers suffice for this.
Because H is continuously differentiable in 6 (recall that for any z,,, ;‘% log p(Ym|Tm, 0) is
bounded) it is therefore Lipschitz continuous on the bounded set B.(#). As such one can
construct a bounded envelope for H on this set, which amounts to a sufficient condition for
uniform convergence on B, see Van der Vaart (2000, Theorem 19.4 - Glivenko-Cantelli).
We refer the reader to Van der Vaart (2000, Chapter 19) for technical background, and in
particular to Van der Vaart (2000, Example 19.8) which walks through an example closely

related to the present case. O

Lemma S7.3. Consider logistic regression with random covariates, xy,Za, . ... Let B.(6) be

a closed neighborhood of radius € > 0 around 6 and for each M define

ap = exeigsf(e) Amin [V5 108 par(6))]

to be the constant of strong log-concavity constant of logpy(-) on B.(0), where Ay ()

denotes the smallest eigenvalue of its matriz argument. If the covariates are i.i.d. and satisfy

Elziz{] = 0, then ays is Q,(M).

61



Proof. Consider the scaled Hessians of log pys(+), M~ Hy(-). By Lemma S7.2, M~ Hy(-)
converges uniformly to its expectation, H(0) := E[V2 log p(y1|z1,0)] on B.(6). Since H () =
0 on B.(#), we have that

. 1 a.s. .
0 A (G Hu(0) 5 inf N (Hi(9)) > 0.

Therefore s == infyrep, (9) Amin [V log par(0)] is Q,(M). ]

Lemma S7.4. Let 0 and 6* be the MLE and the approximation to the MAP defined in
Equation (19), respectively. If the covariates, x1, 2o, ... are i.i.d. and satisfy E[z,x{] = 0,

then |0y — 03| is Op(M™1).

Proof. Recall that
~ ~ -1 .
O = [In+ Su| .
where ¥, := H M(éM)_l. Lemma S7.3 provides that the constants of strong log-concavity

for log par grow as €2,(M) in a neighborhood of 6. Therefore, since Orr converges strongly

to 6, we can see that Ay, (Har(0a7)) is Q,(M). Next, we rewrite

~ ~ r ~ -1 . ~
103 = Ol = Il I + Zaa ] Or = O]

- N _1 N
= || _1N+HM(9M)] Ol

< | [1x + HuOrn)| loplldu]
DY

which one can see is O, (M) since ||| is bounded in probability. O

S7.3 Proof of Theorem 5.3

Before proving the theorem we begin by explicitly writing out the win and our proposed
bound defined in Section 5.2. For clarity, we introduce a subscript M to index the size of

the dataset on which these quantities are computed. Specifically, recalling that in this case
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we have A = Iy and C' = (Iy + iM)*l, and noting that therefore A — C' = (I + i]}[l)*l

we have

bM(CL’) = ZtT[([N + iﬁ)iliﬂ/j] +

11—«
2

~ ~ 1 ~ ~ 1 ~ ~
2210 [ Un([|Gae(On) 15, - )+ 21153, (v + 23) 783, 1E — 1103, — Ol

where Gy (0h) == (In + X3;) ') and
Un(IGu (@), 1 —a) = lnf{ ’ IGMOa)IIZ,, < O+ IS5 (v + £3) " S5 017) +

(935)

~ 1 ~ ~ ~ ~ 1 ~ 1 ~ ~ 1
21— a\/2|2]2w IN—i—ij)—lZM(IN—i—Z ) j/IHF—i-élH ]2\/[(IN+2]\41>_1212\/[H%)P5}
(S36)

is an approximate high-confidence upper bound on [|G/(0a)[|Z . For convenience, we
M

abbreviate Un(|Gar(Oar) |3 1 — @) by U

Next, we recall that we may decompose the win in squared error loss for using 63, in

place of Oy as
War(0) = 2¢3,(Iy + £37) 70 = (105, — 0w,

where €7 1= éM — 0.

Proof. Proving the theorem amounts to showing that for any 6 and « € (0, 1),
lim Py [W(6) > by(a)] > a.
M—o0

Lemma S7.6 provides that M (W, (0)—bys(cr)) converges in distribution to 24/0 T H(0)=360(6—
Zl—Ta)7 for 6 ~ N(0,1). Thus for any 6, Py [Wy () — by(a) > 0] — (1 — (I)(Zl—Ta>) =

1- I_Ta > «. This establishes that by/(-) has above nominal coverage asymptotically, as

desired.

Lemma S7.5. |Uy — ||2~]M0||22M| is Op(M—3%).
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Proof. Recall that we can rearrange Equation (S35) to see that Uy, satisfies

I+ E3) 7 0nll3,, = Uns + 20125, (I + )77 +

VIS Iy + a2 + 4152, (I + Sar) 12U
L1 - 1 - .
where we have simplified 33, (I + %3,) 7123, to 32,(Iy + Spr)t
We next further simplify the condition above by replacing two quantities with simplifying
approximations plus lower order terms. First note that we may write
10+ S5 a3, = [Earbs — 53Ty + Ea0) " "uall%,
= |Z00ull3,, + 155 (In + Sa) " 0u )1 — 205,55 (In + Sar) 0
= IS0 + enn)lI3,, + Op(M ™)
= 1Sabl3,, + [ Sarenlly,, + 263, 25,0 + Op (M)

= |En0l2, + O, (M),

Second, we write

VIS I + a2+ 4153 Uy + Sa0) 7 BpUse =y O,(M=) + 41 (I + Ear) e Une
= 2|55 (In + Ea) Hlorv/Unr + Op(M ).
As such, we may see that U), satisfies
ISa0a 113, — Unr = 21153, (In + San) 73 + 20153, (I + 2ar) "M lopv/Uns + Op(M~59)
= 2|85 (In + Ea) Hlorv/Uns + Op(M3?)
(S37)
where we have dropped 2|33, (Inx + Xa7) 1|3 since it is O, (M ~%).

We next observe that Uy must be O,(M~2). Otherwise, the event that HiMGMH%M —
Upr < 0 must occur infinitely often (since |3 MGHQiM is O,(M~2)); in turn, this condition
would imply that ||¥2,(Iy 4+ Xu) oy T < 0 occurs infinitely often, which provides a
contradiction.

Finally, in tangent with Equation (S37), that Uy is O,(M~3) allows us to see that
_ 2 | -3.5 -
Un ||28||2M is O,(M~%°), as desired. O

64



Lemma S7.6. Let o € (0,1) and 0 € RN. Consider the sequence of wins, Wy (0), and

bounds, byr(«), computed for logistic regression. Then

M (W (0) — bar(@)) % 20/0TH(0)30(6 — 21-0),

2

where § ~ N(0,1).

Proof. We prove the lemma by first writing W, and by, using simplifying approximations
and lower order terms. The result is obtained by manipulating a scaling of the difference
between the two expressions and considering the limit in M.

Note first that we may write

War(6) - = 2¢7 (83 — Oar) — 165 — Oua|?
= 26" (0%, — Our) — 110 — Or]® + Op(M~?)
= 2" (In +X3/) 00 — 103, — Ourl® + Op(M2)
= 2¢"Snby — 103 — O] + Op(M )

= 2" S0 — |0, — Our|? + O, (M72).

Next we write

bM(Oé> = 2tr [([N -+ iij)iliM} —+ 221_Ta \/UM + 2”2%\4(11\7 —+ SM)_I”% — ”é}k\/l — é]\/[H2

= 2z1a\[IISaBI,, + Op(M=3%) — |3, — B> + Op(M )
=210 |Sasblls,, — 103 — Our[* + Op(M2).

where the second line uses Lemma S7.5.

By considering a scaled difference between these two terms we find,

1

M (War(0) = bar(@) = 2M' 2 Spif — 2M 21 e |[Sil5,,, + Op(M~2)

5 2M"| b5, (5 — 212

for 6 ~ N(0,1), by recognizing that ey, is asymptotically normal with mean zero and

covariance ¥y, and therefore that 2¢' 3,6 is asymptotically normal with variance |3 MQH%M'
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Finally, the result obtains by noting that Lemma S7.2 implies that

MY [Sbls,,, = /07 (Har(8)/M) =20 =5 /BT H(9) 0.

S7.4 Empirical validation of logistic regression bound in simula-

tion

Approximation Errors Histogram of c-values Calibration

1 eTOS

1e-01

[0 [0)
8 1e] A 8
T 2 9]
B N 3
[a) — le-ol ®)
oy A
=2 IIE[6IX,Y] -6l
—| — e -E[6IX,Y]l > —— Observed
o — 18 -0 Nominal
o T T .
T1e400 16402 1e+04 16406 00 02 04 06 08
Sample size (M) c-value

(a)

Figure S5: c-values for logistic regression in two sets of simulations. With N = 2, (a)
empirical rates of convergence of distances amongst various estimates and the true parameter.
With N =25 and M = 1000 (b) c-values are able to detect improvements, sometimes with
high confidence, and (c) the approximate bound has greater than nominal coverage. See

Appendix S7.4 for details.

We here demonstrate the fast convergence of our approximation to the MAP in logistic
regression on simulated data. We also include supplementary results illustrating the favorable
performance of c-values in this setting, which is made possible by this fast convergence.
Figure Sba shows the distance between various estimates and the true parameter for a
range of sample sizes in simulation. Due to the log-log scale, the slopes of the series in this

plot reflect the polynomial rates of convergence. Notably we see the fast O,(M~?) rate of
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convergence of our approximation to the MAP estimate, QN}*\/[, to the exact MAP estimate,

*

0% -

Figure S5b demonstrates that our approach is able to detect improvements (i.e. we can
obtain high c-values). Furthermore, our proposed bound has similar coverage properties
as in the Gaussian case (Figure S5c). In the experiments for Figures S5b and Shc, we
simulated the parameter as 6 ~ N (0, %I ~) and, in each replicate, simulated the covariates
for each data point, indexed by m, as z,, "< N(0, N~21y).

Two of the series in Figure Sba are distances between the posterior mean of § and
other estimates, E[0|X,Y] = [ p(0|X,Y)0df. Because this model is non-conjugate, the
estimate does not have an analytic form. As such we approximated these quantities with
Gauss-Hermite quadrature. For each sample size M, we performed 25 replicate simulations.

In the experiments that went into Figures Shb and Shc, we used N = 25 and M = 1000.
See logistic_regression_approximations.ipynb and

logistic_regression_c_values_and operating characteristics.ipynb for details.

S8 Additional details on applications

In this section, we provide additional details associated with the applications in Section 6.

S8.1 Estimation from educational testing data

Conservatism of c-values with the empirical Bayes step. The application in
Section 6.1 diverges from the scenarios covered by our theory in Sections 3 and 4 in its use
of the empirical Bayes step to estimate 5,7, and o. As a result, our theory does provide
that c(y) satisfies the guarantee of Theorem 2.2. However, given the favorable asymptotic
and empirical properties of the empirical Bayes procedure established in Section 5.1, we
conjectured that the looseness in the lower bound b(y, «) would be sufficiently large to
compensate for any error introduced by these departures from the assumptions of our theory.

To investigate this, we performed a simulation study in which we used this empirical Bayes
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o Educational Testing Calibration
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Figure S6: Calibration of the lower bounds b(y, ) in small area inference with an empirical
Bayes step (5000 replicates). The coverage on the y-axis is a Monte Carlo estimate of
Py [W(8,y) > b(y, )] . Each series corresponds to a set of simulations within which we

excluded a different subset of schools based on a minimum number of students tested.

step and confirmed that the c-values retained at least nominal coverage (Figure S6). To
ensure that the simulated data had similar characteristics to the real data, we simulated
5000 datasets by drawing hypothetical school level means according the assumed generative
model with the parameters (8,7 and o) fit on the real dataset. In each simulation, we
re-estimated the fixed effects and variances (again using 1me4), and computed the associated
MLE, Bayes estimates, and bounds across a range of confidence levels. We then computed
the empirical coverage of these bounds and found them to be conservative across all tested

levels.

Additional preprocessing and calibration details. Hoff (2021) considered only
schools at which 2 or more students took the reading test. We excluded an additional 8
schools with fewer than 5 students tested because we expected that the high variance in

these observations could introduce too much slack into our bound as result of the poor

conditioning of £z (A — €)Xz (recall the operator norm bound in Equation (11), derived in
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Equation (S26)). Consistent with this hypothesis we computed a c-value of 0.88 when we
included these additional schools, and when we further restricted to the 657 schools with at
least 10 students tested we computed a c-value 0.999992. To further validate this hypothesis
of increased conservatism we simulated additional datasets with these different thresholds
on school size and evaluated the calibration of computed bounds (Figure S6). We observed
the coverage for the simulations with smallest threshold was noticeably higher at large «,

in agreement with this hypothesis.

S8.2 Estimation of violent crime rates in Philadelphia

Dependence on the order in which estimates are compared. In Section 6.2 we
chose to report one among three estimates as described in Remark 6.1. We note however
that this paradigm is sensitive to the order in which the different estimates are considered.
For this set of three models, if we had first compared 6°(y) as the alternative to 8(y) as
the default we would have rejected é(y) (with ¢ = 0.99942), and then again sided against
updating our estimate a second time with a low c-value (¢ = 0.0) for comparing 6*(y) as
the alternative against 6°(y) as the default. The potential cost of ending up with a worse
estimate as a result of considering these estimates in sequence may be understood as a cost

of looking at the data an additional time.

2

z)

Selection of prior parameters from historical data. The parameters o3, 05 were
selected based on historical data. Specifically, we estimated 05 and o2 as the averages of the
sample variances of the violent and non-violent report rates, respectively, computed within
each census block in the preceding years. For the first model described in Section 6.2, we
then estimated o2 using these same historical data to reflect the prior belief that half of the
variability across the unknown rates is common across the two response types.

For the second model considered, we selected the signal variance and length scale of this

covariance function by drawing hypothetical datasets of crime levels from the prior predictive

distributions and selecting those which produced the most reasonable looking patterns. In

69



particular, we chose the length scale to be one sixth of the maximum distance between the
centroids of census blocks, and the signal variance to reflect the prior belief that one third of
the variability in the unknown rates was explained by the spatial component. In addition, we
choose a smaller value for o2 in this second model, so that the total implied variance would
be the same. See supplementary code in Philly reported_crime_estimation.ipynb for

additional details.

Derivation of * (posterior mean in the first model). As mentioned in the main
text, since the prior and likelihoods for this model are independent across each census block
we can compute the posterior mean for each block independently.

Let 7(-) denote the joint density of all variables. Then, since znil_yn|9n, we have that
T(On|Yns 2n) o< 7T(0n|20) 7 (Yn|On, 20)
= 7(0n|20) 7 (Yn|On)-
Next observe that by construction, z, — 6, = €2 + 62 — 6Y ~ N(0,202% + ¢2) and so

On)2zn ~ N (2,202 + 02). Since again by construction we have that y,|0, ~ N (0,,02%),

ns Yy

Gaussian conjugacy provides that

9n|yn7 Zn ™ N(]E[‘gn’yn7 Zn]a Var[enwn, Zn])7

where
Var([On|yn, 2n] = —— 12 —
0,2+ (205 +02)7!
B 0 (205 + 0?)
02+ 2035 + o?
and

E[0[yn: 2] = Var[On|yn, 2u] (Var(0n| 2] Elfn] 0] + Var(y,|0n] " yn)

]
02(20% + o?)
Yy g z 2 2\—1 -2
=— 1|20 o Zn + 0 %y,
054—20?—1—03 [< 5+ 02) + y]
2U§ + af 05

= n + Zn
2a§+0§+a§y 205 + 02 4 o2
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as desired.
Analogously, for the second model considered in Section 6.2 we find the posterior mean

as

-1 -1
0°(y) = [[N + 02K + 2051y + aﬁ]N)‘l] Y+ [IN +0,°(2K + 2051y + aﬁIN)] z.

Additional dataset details. The data considered in this application are counts of police
responses categorized as associated with violent crimes and violent crimes in October 2018.
These were obtained from opendataphilly.org. The observed data we model are the inverse
hyperbolic sine transform of the number of recorded police responses per square mile. For

all practical purposes, these values can be interpreted as log densities (see, e.g., Burbidge

et al. (1988)).

S8.3 Gaussian process kernel selection for estimation of ocean

currents

We here provide additional details of the Gaussian process covariance functions used in
Section 6.3. The first covariance function described, which incorporated covariation at two
scale is defined, for both the longitudinal and latitudinal components (i in {1,2}) and for

each pair of buoys n and n’, as

. i 1 ltn—ltn/2 lon,, — 1 n/2 tn—tn/2
k(gﬁ;)ﬁfﬂ)) —o2exp{ —= (la ~ atn) (lon _ ony) i ( _ )
2 L rl,lat Tl,lon rl,t i
1 [ (at, —lat,)?  (lon, —lon,)?  (t, — t,y)? ]
P N L 0 L R T
2 L r2,1at T2,lon r?,t i

where U%yrl,latqu,lon and 7, parameterize the mesoscale variation in currents whereas
o3, T21at, '2,lon ald 794 parameterize the submesoscale variation. As in Lodise et al. (2020),
the latitudinal and longitudinal components of F' are modeled as a priori independent. We

choose these parameters by maximal marginal likelihood (Rasmussen & Williams 2006,

71



Chapter 5) on an independent subset of the GLAD dataset. Estimates of the underlying
currents are obtained as the posterior mean of F' under this model, which we take as the
alternative, 6*(y).

The second covariance function captures covariation among observations only at the

mesoscale. In this case, the Gaussian process prior has covariance function

; 1 | (lat, —lat,)?  (lon, —lon,)?  (t, — tn)?
k(0D 0%)) = g2 exp { —= (la atw) +(on otl) —l—( ) +02l[n =],

2 2 2
2 rl,lat Tl,lon Tl,t

which maintains the same marginal variance but excludes submesoscale covariances. We take
the posterior mean under this model as the default estimate 9(3/) See

submesoscale GP_c_value.ipynb for further implementation details.
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