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ABSTRACT

Modern statistics provides an ever-expanding toolkit for estimating unknown parameters. Consequently,
applied statisticians frequently face a di�cult decision: retain a parameter estimate from a familiar method
or replace it with an estimate from a newer ormore complex one.While it is traditional to compare estimates
using risk, such comparisons are rarely conclusive in realistic settings.
In response, we propose the “c-value”as a measure of con�dence that a new estimate achieves smaller loss
than an old estimate on a given dataset. We show that it is unlikely that a large c-value coincides with a
larger loss for the new estimate. Therefore, just as a small p-value supports rejecting a null hypothesis, a
large c-value supports using a new estimate in place of the old. For a wide class of problems and estimates,
we show how to compute a c-value by �rst constructing a data-dependent high-probability lower bound
on the di�erence in loss. The c-value is frequentist in nature, but we show that it can provide validation of
shrinkage estimates derived from Bayesian models in real data applications involving hierarchical models
and Gaussian processes. Supplementary materials for this article are available online.
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1. Introduction

Modern statistics provides an expansive toolkit of sophisticated
methodology for estimating unknown parameters. However, the
abundance of di�erent estimators o�en presents practitioners
with a di�cult challenge: choosing between the output of a
familiar method (e.g., a maximum likelihood estimate (MLE))
and that of amore complicatedmethod (e.g., the posteriormean
of a hierarchical Bayesian model). From a practical perspective,
abandoning a familiar approach in favor of a newer alternative
is unreasonable without some assurance that the latter provides
a more accurate estimate. Our goal is to determine whether it is
safe to abandon a default estimate in favor of an alternative, and
to provide an assessment of the degree of con�dence we should
have in this decision.

Traditionally decisions between estimators are based on
risk, the loss averaged over all possible realizations of the data
with respect to a pre-speci�ed likelihood model (Lehmann and
Casella 2006, chap. 4–5). We note two limitations of using risk.
First, it is rare that one estimator within a given pair will have
smaller risk across all possible parameter values. Instead, it is
more o�en the case that one estimator will have smaller risk
for some unknown parameter values but larger risk for other
parameter values. Second, one estimator may have lower risk
than another but incur higher loss on a majority of datasets; see
Appendix S2 for an example in which an estimator with smaller
risk has larger loss on nearly 70% of simulated datasets.

In this work we propose a framework for choosing between
estimators based on their performance on the observed dataset
rather than their risk. Speci�cally, we introduce the “c-value”
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(“c” for con�dence in the new estimate), which we construct
using a data-dependent high-probability lower bound on the
di�erence in loss.We show that it is unlikely that simultaneously
the c-value is large and the alternative estimate has larger loss
than the default. For the c-value to be useful, it must meet two
desiderata:

1. The c-value must not frequently guide practitioners to incor-
rectly report the alternative estimate when the default esti-
mate has smaller loss.

2. The c-value must, in some cases, allow one to correctly iden-
tify that the alternative estimate has smaller loss.

We demonstrate that the c-value meets the �rst desideratum
with theory showing how to use the c-value to select between
two estimates in a principled, data-driven way. Critically, the
c-value requires no assumptions on the unknown parameter;
our guarantees hold uniformly across the parameter space. We
demonstrate that the c-value can meet the second desideratum
with case studies; we provide an overview of these next as
motivating examples, and then proceed to present our general
methodology.

Shrinkage estimates on educational testing data. We revisit
Ho�’s (2021) estimates of average student reading ability at
several schools in the 2002 Educational Longitudinal Study.
These estimates are obtained from a hierarchical Bayesian
model that “shares strength” by partially pooling data across
similar schools.Ho�’s (2021) analysis relied on a simplifying and
subjectively chosen prior. A practitioner might wonder whether
the resulting estimates are more accurate than theMLE in terms
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of squared error loss. As we will see, a large c-value provides
con�dence that Ho� ’s estimate is indeed more accurate. We
additionally consider a clearly inappropriate prior and verify
that our methodology does not always favor more complex
alternative estimators. Although these estimates have a Bayesian
provenance, the use of the c-value to justify these estimates does
not require subjective belief in the prior.

Estimating violent crime density at the neighborhood level.
Considerable empirical evidence links a community’s exposure
to violent crime and adverse behavioral, mental, and physical
health outcomes among its residents (Buka et al. 2001; Kondo
et al. 2018). Although overall violent crimes rates in the
United States have decreased over the last two decades, there is
considerable variation in time trends at the neighborhood level
(Balocchi and Jensen 2019; Balocchi et al. 2022). A critical �rst
step in understanding what drives neighborhood-level variation
is accurate estimation of the actual amount of violent crime that
occurs in each neighborhood.

Typically, researchers rely on the reported counts of violent
crime aggregated at small spatial resolutions (e.g., at the census
tract level). However, in light of sampling variability due to the
relative infrequency of certain crime types in small areas, it is
natural to wonder if auxiliary data could be used to improve
estimates of violent crime incidence.

As a second application of our framework, we analyze the
number of violent crimes reported per square mile in several
neighborhoods in the city of Philadelphia. Our analysis suggests
that one can obtain improved estimates of the violent crime
density by using a shrinkage estimate that incorporates informa-
tion about nonviolent crime incidence. Further c-value analysis
reveals that leveraging spatial information on top of nonviolent
incidence does not provide additional improvement.

Gaussian process kernel choice: Modeling ocean currents. Accu-
rate estimation of ocean current dynamics is critical for forecast-
ing the dispersion of oceanic contaminations (Poje et al. 2014).
While it is commonplace to model ocean �ow dynamics at or
above the mesoscale (roughly 10 km), Lodise et al. (2020) have
recently advocated modeling dynamics at both the mesoscale
and the submesoscale (roughly 0.1–10 km). They speci�cally
proposed a Gaussian process model that accounts for variation
across multiple resolutions to estimate ocean currents from
positional data taken from hundreds of free-�oating buoys.

In a third application of our framework, we �nd that the
multi-resolution procedure produces a large c-value, indicating
that accounting for variation acrossmultiple scales enablesmore
accurate estimates than are obtained when accounting only for
mesoscale variation.

1.1. Organization of the Article and Contributions

We formally present our general framework and de�ne the
c-value in Section 2. In Section 2.1 we highlight similarities
and di�erences between our framework and existing work on
preliminary testing and post-selection inference. Our approach
to computing c-values depends on the availability of high-
con�dence lower bounds on the di�erence in the losses of
the two estimates that holds uniformly across the parameter

space. Sections 3–5 provide these bounds for several models
and classes of estimators for squared error loss. In Section 3, we
illustrate our general strategy in the canonical normal means
problem. Then, in Section 4, we generalize this strategy to
compare a�ne estimates of normal means with correlated
observations. Section 5 shows how to extend the framework
to cover two nonlinear cases: a nonlinear shrinkage estimator
and regularized logistic regression. We provide simulations
validating our approach in these settings. We apply our
framework to the aforementioned motivating examples in
Section 6. In our discussion in Section 7, we outline ways to
extend our framework beyond the estimates considered here.
So�ware that implements the c-value computation, and code
that reproduces our analyses is available at: https://github.com/
blt2114/c_values.

2. Introducing the c-value

We now describe our approach for quantifying con�dence in
the statement that one estimate of an unknown parameter is
superior to another.We begin by introducing some notation and
building up to a de�nition of the c-value, before stating ourmain
results. This development is very general, and we defer practical
considerations to the subsequent sections. We include proofs of
the results of this section in Appendix.

Suppose thatwe observe data y drawn from somedistribution
that depends on an unknownparameter θ .We consider deciding
between two estimates, θ̂ (y) and θ∗(y), of θ on the basis of a
loss function L(θ , ·). Our focus is on asymmetric situations in
which θ̂ (·) is a standard or more familiar estimator while θ∗(·)
is a less familiar estimator. For simplicity, we will refer to θ̂ (·) as
the default estimator and θ∗(·) as the alternative estimator.

We next de�ne the “win” obtained by using θ∗(y) rather than
θ̂ (y) as the di�erence in loss,W(θ , y) := L(θ , θ̂ (y))−L(θ , θ∗(y)).
While a typical comparison based on risk would proceed by tak-
ing the expectation of W(θ , y) over all possible datasets drawn
for �xed θ , we maintain focus on the single observed dataset.
Notably, the win is positive whenever the alternative estimate
achieves a smaller loss than the default estimate. As such, if we
knew that W(θ , y) > 0 for the given dataset y and unknown
parameter θ , then we would prefer to use the alternative θ∗(y)
instead of the default θ̂ (y).

Since θ is unknown, determining whether W(θ , y) > 0 is
impossible. Nevertheless, for a broad class of estimators, we can
determine whether the win is positive with high probability. To
start, we construct a lower bound, b(y,α), depending only on the
data and a pre-speci�ed level α ∈ [0, 1], that satis�es for all θ

Pθ

[

W(θ , y) ≥ b(y,α)
]

≥ α. (1)

For values of α close to 1, b(y,α) is a high-probability lower
bound on the win that holds uniformly across all possible values
of the unknownparameter θ . Loosely speaking, if b(y,α) > 0 for
some α close to 1, then we can be con�dent that the alternative
estimate has smaller loss than the default estimate.

To make this intuition more precise, we de�ne a measure of
con�dence that θ∗(y) is superior to θ̂ (y). We call our measure
the c-value c(y):

c(y) := inf
α∈[0,1]

{

α|b(y,α) ≤ 0
}

. (2)
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The c-value marks a meaningful boundary in the space of con-
�dence levels; it is the largest value such that for every α < c(y),
we have con�dence α that the win is positive.

Remark 2.1. An alternative de�nition for the c-value is c+(y) =
supα∈[0,1]{α|b(y,α) ≥ 0}. Although c+(y) = c(y)when b(y, ·) is
continuous and strictly decreasing in α, c+(·)may be overcon�-
dent otherwise. We detail a particularly pathological example in
Appendix S3.

Our �rst main result formalizes the interpretation of c(y) as
a measure of con�dence.

Theorem 2.2. Let b(·, ·) be any function satisfying the condition
in Equation (1). Then for any θ andα ∈ [0, 1] and c(y) as de�ned
in Equation (2),

Pθ

[

W(θ , y) ≤ 0 and c(y) > α
]

≤ 1 − α. (3)

The result follows directly from the de�nition of c(·) and
the condition on b(·, ·). Informally, Theorem 2.2 assures us that
it is unlikely that simultaneously (A) the c-value is large and
(B) θ∗(y) does not provide smaller loss than θ̂ (y). Just as a
small p-value supports rejecting a null hypothesis, a large c-
value supports abandoning the default estimate in favor of the
alternative.

The strategy described above necessarily uses the data twice,
once to compute the two estimates and once more to compute
the c-value to choose between them. Accordingly, one might
justly ask how such double use of the data a�ects the quality of
the resulting procedure. To address this question, we formalize
this two-step procedure with a single estimator,

θ†(y,α) := 1[c(y) ≤ α]θ̂ (y) + 1[c(y) > α]θ∗(y). (4)

θ†(y,α) picks between the two estimates θ̂ (y) and θ∗(y) based
on the value c(y) and a pre-speci�ed level α ∈ [0, 1]. We can
characterize the possible outcomes when using θ†(·,α) with
a contingency table (Table 1), where rows correspond to the
estimate with smaller loss, and the columns correspond to the
reported estimate.

Recall thatwe are interested in an asymmetric situationwhere
the alternative estimator is less familiar than the default esti-
mator. This asymmetry makes desirable the reassurance that
θ†(·,α) does not incur greater loss than θ̂ (·). As such, we focus
on the upper right hand entry of the table. Our second main
result formalizes that when we use θ†(·,α) with α close to 1, the
probability of the event represented by this table entry is small.

Theorem 2.3. Let b(·, ·) be any function that satis�es the condi-
tion in Equation (1). Then for any θ and α ∈ [0, 1],

Pθ

[

L
(

θ , θ†(y,α)
)

> L
(

θ , θ̂ (y)
)]

≤ 1 − α. (5)

Overview of the remainder of the article. The c-value is useful
insofar as the lower bound b(y,α) is su�ciently tight and readily
computable. It remains to show that such practical bounds exist.
A primary contribution of this work is the explicit construction
of these bounds in settings of practical interest. In what follows,
we (A) illustrate one approach for constructing and computing

Table 1. Contingency tablewith possible outcomeswhen using the two-stage esti-

mator θ†(·,α). θ†(·,α) controls the probability of the boldface event (Theorem2.3).

Default reported Alternative reported

Default has lower loss Correct Incorrect

Alternative has lower loss Incorrect Correct

b(y,α), (B) explore our proposed bounds’ empirical properties
on simulated data, and (C) demonstrate their practical utility on
real-world data.

2.1. RelatedWork

Hypothesis testing, p-values, and pretest estimation. Our pro-
posed c-value bears a resemblance to the p-value in hypothesis
testing, but with a few key di�erences. Indeed, just as a small p-
value can support rejecting a simple null hypothesis in favor of a
possibly more complex alternative, a large c-value can support
rejecting a familiar default estimate in favor of a less famil-
iar alternative. Furthermore both tools provide a frequentist
notion of con�dence based on the idea of repeated sampling.
From this perspective, the two-step estimator θ†(·,α) resembles
a preliminary testing estimator. Preliminary testing links the
choice between estimators to the outcome of a hypothesis test
for the null hypothesis that θ lies in some pre-speci�ed subspace
(Wallace 1977).

The similarities to hypothesis testing go only so far. Notably,
we consider decisions made about a random quantity, W(θ , y).
Hypothesis tests, in contrast, concern only �xed statements
about parameters, with nulls and alternatives corresponding to
disjoint subsets of an underlying parameter space (Casella and
Berger 2002, De�nition 8.1.3). Our approach does not admit an
interpretation as testing a �xed hypothesis.

Nevertheless, the connection to p-values can help us under-
stand some limitations of the c-value. First, just as hypothesis
tests may incur Type II errors (i.e., failures to reject a false
null), for certain models and estimators there may be no bound
b(·, ·) that consistently detects improvements by the alternative
estimate. Accordingly, the two stage estimator θ†(·,α) does
not control the probability that we report the default estimate
when the alternative in fact has smaller loss. In such situations,
our approach may consistently report the default estimate even
though it has larger loss. Second, even if good choices of b(·, ·)
exist, it could be challenging to derive them analytically. This
analytical challenge is reminiscent of di�culties for hypothesis
testing in many models, wherein conservative p-values that are
stochastically larger than uniform under the null are used when
analytic quantile functions are unavailable. Third, we note that
it may be tempting to interpret a c-value as the conditional
probability that an alternative estimate is superior to a default;
however, just as it is incorrect to interpret a p-value as a proba-
bility that the null hypothesis is true, such an interpretation for
a c-value is also incorrect.

Post-selection inference. In recent years, there has been
considerable progress on understanding the behavior of
inferential procedures that, like θ†(·,α), use the data twice,
�rst to select amongst di�erent models and then again to
�t the selected model. Important recent work has focused
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on computing p-values and con�dence intervals for linear
regression parameters that are valid a�er selection with the lasso
(Lockhart et al. 2014; Lee et al. 2016; Taylor and Tibshirani
2018) and arbitrary selection procedures (Berk et al. 2013).
Somewhat more closely related to our focus on estimation are
Tibshirani and Rosset (2019) and Tian (2020), which both
bound prediction error a�er model selection. Unlike these
papers, which study the e�ects of selection on downstream
inference, we e�ectively perform inference on the selection itself.

3. Special Case: c-values for Estimating Normal Means

In this section, we derive a bound b(y,α) and compute the c-
value in a simple case: we compare a certain class of shrinkage
estimators tomaximum likelihood estimates (MLE) of themean
of a multivariate normal from a single vector observation (i.e.,
the normal means problem). Our goal is to illustrate a simple
strategy for lower bounding the win that we will later gener-
alize to more complex estimators and models. In Section 3.1,
we de�ne the model and the estimators that we consider. In
Section 3.2, we introduce our lower bound b(·, ·) and present a
theorem that guarantees this bound satis�es Equation (1). Then,
in Section 3.3, we examine the resulting c-value empirically and
study the performance of the estimator θ†(·,α) that chooses
between the default and alternative estimators based on the
c-value (Equation (4)). Several details, including the proof of
Theorem 3.1, are le� to Appendix S4.

3.1. NormalMeans: Notation and Estimates

Let θ ∈ R
N be an unknown vector and consider estimating θ

from a noisy vector observation y = θ + ε where ε ∼ N (0, IN)

under squared error loss L(θ , θ̂ ) := ‖θ̂ − θ‖2. For simplicity,
we focus on the case of isotropic noise with variance one; we
remove this restriction in Section 4. For our demonstration,
we take the MLE θ̂ (y) = y to be the default estimate. As the
alternative estimator, we consider a shrinkage estimator that was
�rst studied extensively by Lindley and Smith (1972),

θ∗(y) = y + τ−2ȳ1N

1 + τ−2
,

where 1N is the vector of all ones, τ > 0 is a �xed positive
constant, and ȳ := N−1

1
�
Ny is the mean of the observed yn’s.

Operationally, θ∗(y) shrinks each coordinate of theMLE toward
the grand mean ȳ.

3.2. Construction of the Lower Bound

To lower bound the win, we �rst rewrite θ∗(y) = θ̂ (y) − Gy
where G := (1 + τ 2)−1P⊥

1 and P⊥
1 := IN − N−1

1N1
�
N is

the projection onto the subspace orthogonal to 1N . The win in
squared error loss may then be written as

W(θ , y) := ‖θ̂ (y)−θ‖2−‖θ∗(y)−θ‖2 = 2ε�Gy−‖Gy‖2. (6)

Observe that we can compute ‖Gy‖ directly from our data.
As a result, in order to lower bound the win W(θ , y), it suf-
�ces to lower bound 2ε�Gy. As we detail in Appendix S4.1,
2ε�Gy follows a scaled and shi�ed noncentral Chi-squared
distribution,

2ε�Gy ∼ 2

1 + τ 2

[

χ2
N−1(

1

4
‖P⊥

1 θ‖2) − 1

4
‖P⊥

1 θ‖2
]

,

whereχ2
N−1(λ)denotes the noncentral Chi-squared distribution

with N − 1 degrees of freedom and non-centrality parameter λ.
Thus, for any α ∈ (0, 1) and any �xed value of ‖P⊥

1 θ‖2,

W(θ , y) ≥ 2

1 + τ2
F−1
N−1(1 − α;

1

4
‖P⊥

1 θ‖2) −
‖P⊥

1 θ‖2
2(1 + τ2)

− ‖Gy‖2

(7)

with probability α, where F−1
N−1(1 − α; λ) denotes the inverse

cumulative distribution function of χ2
N−1(λ) evaluated at 1−α.

Were ‖P⊥
1 θ‖2 known, the right hand side of Equation (7) would

immediately provide a valid bound. However, since ‖P⊥
1 θ‖2 is

not typically known, we use the data to address our uncertainty
in this quantity. We obtain our bound by forming a one-sided
con�dence interval for ‖P⊥

1 θ‖2 that holds simultaneously with
Equation (7).

Bound 3.1 (Normal means: Lindley and Smith estimate vs. MLE).
Observe y = θ + ε with ε ∼ N (0, IN) and consider θ̂ (y) = y
versus θ∗(y) = (y + τ−2ȳ1N)/(1 + τ−2). We propose

b(y,α) := inf
λ∈[0,U(y, 1−α

2 )]

{

2

1 + τ 2
F−1
N−1

(

1 − α

2
;
λ

4

)

− λ

2(1 + τ 2)
− ‖P⊥

1 y‖2
(1 + τ 2)2

}

(8)

as an α-con�dence lower bound on the win, where

U

(

y,
1 − α

2

)

:= inf
δ>0

{

δ

∣

∣

∣
‖P⊥

1 y‖2 ≤ F−1
N−1

(

1 − α

2
; δ

)}

(9)

is a high-con�dence upper bound on ‖P⊥
1 θ‖2.

Bound 3.1 relies on a high-con�dence upper bound on
‖P⊥

1 θ‖2, but a two-sided interval could in principle provide
a valid bound as well. In Appendix S4.3 we provide an intuitive
justi�cation for the choice of an upper bound. Theorem 3.1
justi�es the use of Bound 3.1 for computing c-values.

Theorem 3.1. De�ne c(y) := infα∈[0,1]{α|b(y,α) ≤ 0} for
b(·, ·) in Bound 3.1. Then c(y) is a valid c-value, satisfying the
guarantees of Theorems 2.2 and 2.3.

Remark 3.2 (Computability of the bound). Equation (8) in
Bound 3.1 can be readily computed. Notably, many standard
statistical so�ware packages provide numerical approximation
to noncentral χ2 quantiles. Further, the one-dimensional
optimization problems in Equations (8) and (9) can be solved
numerically.

Remark 3.3 (Unknown variance). For cases when the noise
variance σ 2 is unknown but a con�dence interval is available,
one can adapt the procedure above by replacing b(y,α) with its
in�mum with respect to σ 2 over the con�dence interval and
reducing the con�dence level α accordingly.
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Figure 1. Bound calibration and the two-stage estimator for a hierarchical normal model in simulation. (a) Empirical coverage of the lower bound b(·,α) across di�erent
levelsα. Coverage is nearly identical across the parameter space. (b) Probability that the default has smaller loss but the alternative estimate is selected across the parameter
space, with dashed lines re�ecting nominal coverage. (c) Probability of selecting the alternative estimate. Selection probability is higher for lower thresholds α. (d) Risk

pro�les of the two-stage estimators for di�erent choices of α, as well as the MLE θ̂ (·) and the shrinkage estimator θ∗(·). Each data point is computed from 500 replicates
with N = 50.

Remark 3.4. The alternative estimator θ∗(y) considered in this
section is the posterior mean of θ corresponding to the hierar-
chical prior θ |μ ∼ N (μ1N , τ 2IN)with further improper hyper-
prior onμ. This prior encodes a belief that θ lies close to the one-
dimensional subspace spanned by 1N . Using a similar approach
to the one above, we can derive lower bounds on the win for
a more general class of estimators that shrink the MLE toward
a pre-speci�ed D-dimensional subspace. See Appendix S4.4 for
details and an application to a real dataset on which a large
computed c-value indicates an improved estimate.

3.3. Empirical Veri�cation

To explore the empirical properties of Bound 3.1, we simulated
500 datasets with N = 50 as y ∼ N (θ , IN) for each of
several values of θ . For each simulated dataset y, we computed
the win W(θ , y), the proposed lower bound b(y,α), and the c-
value c(y). Conveniently, for this likelihood, the distributions

of W(θ , y) and b(y,α) depend on θ only through N− 1
2 ‖P⊥

1 θ‖.
Consequently, we can exhaustively assess how our procedure
behaves for di�erent θ by varying this norm. Throughout our

simulation study, we �xed τ = 1. With larger τ , the alternative
θ∗ behaves more similarly to the default θ̂ , but the qualitative
properties of the c-value and estimators remain similar.

We �rst checked that the empirical probability that the win
W(θ , y) exceeded the bound b(y,α) in Bound 3.1 was at least as
large as the nominal probability α (Figure 1(a)). Across various

choices of N− 1
2 ‖P⊥

1 θ‖, we see that b(·,α) is conservative, typi-
cally providing higher than nominal coverage. Surprisingly, the
gap between the actual and nominal coverages does not seem to
depend heavily on θ , suggesting we could potentially obtain a
tighter bound by calibrating b(y,α) to its actual coverage.

We next examined the probability that the alternative esti-
mate is selected on the basis of a large c-value but obtains higher
loss than the default estimate. Theorem 2.3 upper bounds this
probability, and in Figure 1(b) we con�rm this bound holds
in practice across di�erent thresholds α. Figure 1(b) addition-
ally compares our proposed approach to using Stein’s unbiased
estimate of the risk (Stein 1981) of θ∗(·) to select between the
estimates. This approach, which we label “SURE”, returns θ̂ (·) if
the risk estimate exceeds N and returns θ∗(·) otherwise, and is
akin to the focused information criterion (Claeskens and Hjort
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Table 2. Contingency tables of simulation outcomeswith ‖P⊥
1 θ‖/

√
N = 1.7 when

using Stein’s unbiased risk estimate (SURE), θ†(·,α = 0.95), or θ†(·,α = 0.5) to
choose between the default and alternative estimates.

SURE θ†(·,α = 0.95) θ†(·,α = 0.5)

DR AR DR AR DR AR

DLL 2% 44% 46% 0% 37% 9%
ALL 36% 18% 54% 0% 54% 0.1%

NOTE: DLL: default has lower loss, ALL: alternative has lower loss, DR: default
reported, AR: alternative reported.

2003). However, in contrast to the two-stage estimator θ†(·,α),
SURE does not provide tunable control over the probability that
the alternative estimator θ∗(·) is mistakenly returned.

In the case that ‖P⊥
1 θ‖/

√
N = 1.7, choosing based on SURE

gives the wrong estimate 80% of the time. Moreover, in the
majority of these cases it is the alternative that is incorrectly
returned (Table 2, Figure 1(b)). By contrast, the estimator that
chooses based on the c-value (with a threshold α = 0.95)
conservatively returns the default estimate in every replicate for
this ‖P⊥

1 θ‖/
√
N (Figure 1(c)). While this approach provides the

estimate with greater loss in 54% of cases, it incorrectly reports
the alternative in 0% of cases (Table 2). This behavior is expected
as Theorem2.3 provides an upper boundof 100∗(1−α)% = 5%.
An estimator using the unbiased risk estimate satis�es no such
guarantee.

We next checked that our computed c-values successfully
detected improvements by the alternative estimate. Recall that
the alternative estimate θ∗(y) shrinks all components of y toward
the globalmean y. Further, recall that by construction θ†(y,α) =
θ∗(y) if and only if c(y) > α. Intuitively, then, we would expect
the alternative estimator to improve over the MLE and for the
two-stage θ†(·,α) to select θ∗(·) when θ is close to the subspace

spanned by 1N and N− 1
2 ‖P⊥

1 θ‖ is small. Figure 1c, which plots
the probability that θ†(·,α) selects θ∗(·) across di�erent values
of θ and α, con�rms this intuition; when N− 1

2 ‖P⊥
1 θ‖ is small,

we very o�en obtain large c-values and select the alternative
estimator.

For completeness, we also considered the risk pro�le of the
two-stage estimator θ†(·,α) (Figure 1(d)). Speci�cally, for dif-
ferent choices of θ we computed a Monte Carlo estimate of the
expected squared error loss. For themost part, the risk of θ†(·,α)

lies between the risks of θ̂ (·) and θ∗(·). However, the risk of the
two-stage estimator appears to exceed the risks of the default
and alternative estimators for a narrow range of values of ‖P⊥

1 θ‖.
While it is tempting to characterize this excess risk as the price
wemust pay for “double-dipping” into our data, we note that the
bump in risk appears to be nontrivial only for very small values
of α. Recall again that we recommend choosing θ∗(y) in place of
θ̂ (y) only when c(y) is close to 1. As such, we do not expect this
type of risk increase to be much of a concern in practice.

Interpreted together, Figure 1(c) and (d), illustrate the con-
servatism of the two stage approach with α = 0.95. For ‖P⊥

1 θ‖
between 1 and 1.5, θ†(·,α) only rarely evaluates to θ∗(·) even
though this estimator has lower risk and typically has smaller
loss.

Unlike conventional p-values under a null hypothesis, we
should not expect the distribution of informative c-values to

be uniform; indeed for parameters such that the win is consis-
tently positive or negative, c-values can concentrate near 1 or 0,
respectively.

4. Comparing A�ne Estimates with Correlated Noise

We now generalize the situation described in the previous sec-
tion in two ways. First, we consider correlated Gaussian noise
with covariance 
, where 
 is any N × N positive de�nite
covariance matrix rather than restricting to 
 = IN . Second,
we let our default and alternative estimates, θ̂ (y) and θ∗(y),
be arbitrary a�ne transformations of the data y. Though these
two estimates take similar functional forms in this section, we
remain concerned with asymmetric comparisons wherein θ∗(y)
is less familiar than θ̂ (y).

Although such generalization introduces considerable ana-
lytical challenges beyond those encountered in Section 3, we
nevertheless can construct an approximate lower bound on the
win that works well in practice. Speci�cally, for Bound 3.1, we
used the tractable quantile function of the noncentralχ2 to guar-
antee exact coverage in Theorem 3.1. Now we encounter sums
of di�erently scaled noncentral χ2 random variables, which do
not admit analytically tractable quantiles. However, by approx-
imating these sums with Gaussians with matched means and
variances, we can proceed in essentially the same manner as in
Section 3 to derive an approximate lower bound on the win.
A�er introducing the bound, we comment on the key steps
in its derivation to highlight the approximations involved, but
leave details of intermediate steps to Appendix S5. We conclude
with a non-asymptotic bound on the error introduced by these
approximations on the coverage of the proposed bound on the
win.

Approximate Bound 4.1 (Correlated Gaussian likelihood: arbi-
trary a�ne estimates). Observe y = θ + ε with ε ∼ N (0,
)

and consider θ̂ (y) = Ay + k versus θ∗(y) = Cy + �, where
A,C ∈ R

N×N are matrices and k, � ∈ R
N are N-vectors. We

propose

b(y,α) = ‖θ̂ − y‖2 − ‖θ∗ − y‖2 + 2tr[(A − C)
]

+2z 1−α
2

√

U(‖G(y)‖2
 , 1−α
2 )

+ 1
2‖


1
2 (A + A� − C − C�)


1
2 ‖2F

(10)

as an approximate high-probability lower bound for the win.
In this expression, tr[·] denotes the trace of a matrix, G(y) :=
(A − C)y + (k − �), ‖ · ‖
 denotes the 
 quadratic norm of a

vector (‖v‖
 :=
√
v�
v), ‖ · ‖F denotes the Frobenius norm of

a matrix, and zα denotes the α-quantile of the standard normal.

U(‖G(y)‖2
 , 1 − α)

:= infδ>0

{

δ

∣

∣

∣

∣

‖G(y)‖2
 ≤ (δ + ‖
 1
2 (A − C)


1
2 ‖2F)

+z1−α

√

2‖
 1
2 (A − C)
(A − C)�


1
2 ‖2F

+4‖
 1
2 (A − C)


1
2 ‖2OPδ

}

(11)

is an approximate high-con�dence upper bound on ‖G(θ)‖2

where ‖·‖OP denotes the L2 operator norm of a matrix.
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To derive Approximate Bound 4.1 we again start by rewriting
the alternative estimate as θ∗(y) = θ̂ (y)−G(y), where nowG(·)
is an a�ne transformation of y, G(y) := (A − C)y + (k − �).
We next write the squared error win of using θ∗(y) in place of
θ̂ (y) as

W(θ , y) = 2ε�G(y) +
(

‖θ̂ (y) − y‖2 − ‖θ∗(y) − y‖2
)

(12)

and observe that it su�ces to obtain a high-probability lower
bound for this �rst term. For tractability, we approximate the
distribution of ε�G(y) by a normal with matched mean and
variance. As we will soon see, this approximation is accurate
whenN is large andA−C is well conditioned; in this case ε�G(y)
may be written as the sum of many of uncorrelated terms of
similar size. The mean and variance may be expressed as

E[ε�G(y)] = tr[(A − C)
],

var[ε�G(y)] = ‖G(θ)‖2
 + ‖
 1
2 (A + A� − C − C�)


1
2 ‖2F

2
.

(13)

With these moments in hand, we form a probability α lower
bound approximately as

W(θ , y) ≥ ‖θ̂ (y) − y‖2 − ‖θ∗(y) − y‖2 + 2tr[(A − C)
]

+ 2z1−α

√

‖G(θ)‖2
 + 1

2
‖
 1

2 (A + A� − C − C�)

1
2 ‖2F .
(14)

However, as before, in order to use this approximate bound
we require a simultaneous upper bound on a norm of a trans-
formation of the unknown parameter, in this case ‖G(θ)‖2
 .
We compute one by considering the test statistic ‖G(y)‖2
 and
again appealing to approximate normality. In particular we char-
acterize the dependence of the distribution of this statistic on
‖G(θ)‖2
 through its mean and variance. We �nd its mean as

E[‖G(y)‖2
] = ‖G(θ)‖2
 + ‖
 1
2 (A − C)


1
2 ‖2F (15)

and upper bound its variance by

var[‖G(y)‖2
] ≤ 2‖
 1
2 (A − C)
(A − C)�


1
2 ‖2F

+ 4‖
 1
2 (A − C)


1
2 ‖2OP‖G(θ)‖2
 . (16)

Using the two quantities above and an appeal to approximate
normality, we propose the approximate high-con�dence upper
bound, U(‖G(y)‖2
 , 1 − α), in Equation (11). As before, by
splitting our α across these two bounds we obtain the desired
expression, Equation (10) in Approximate Bound 4.1.

Approximation Quality. Due to the two Gaussian approxima-
tions, Approximate Bound 4.1 does not provide nominal cov-
erage by construction. Our next result shows that little error
is introduced when N is large enough and the problem is well
conditioned.

Theorem 4.1 (Berry–Esseen bound). Let α ∈ (0, 1) and consider
b(·,α) in Approximate Bound 4.1. If both A and C are symmet-
ric, then

Pθ

[

W(θ , y) ≥ b(y,α)
]

≥ α − 10
√
2√

N
C1 · κ(


1
2 (A − C)


1
2 )2

(17)

where κ(·)denotes the condition number of itsmatrix argument
(i.e., the ratio of its largest to smallest singular values) and C1 ≤
1.88 is a universal constant (Berry 1941, Theorem 1).

Remark 4.2. Theorem 4.1 is a special case of a more general
result that we provide in Appendix S5.4, which does not require
A and C to be symmetric. We highlight this special case here
because the bound takes a simpler form from which the depen-
dence on the conditioning of A–C is clearer, and because this
condition is satis�ed for many important estimates. Notably A
and C are symmetric in all applications discussed in this article.

Though Theorem 4.1 provides an expected O(N− 1
2 ) drop

in approximation error, the bound itself may be too loose to
be useful in practice. In Section 6.1 we show in simulation
that Approximate Bound 4.1 provides su�cient coverage even
without this correction. This conservatism likely owes to slack
from (A) the operator norm bound in Equation (16) and (B) the
union bound ensuring that the con�dence interval for ‖G(θ)‖2

and the quantile in Equation (14) hold simultaneously.

Remark 4.3 (Fast computation of b(y,α)). A naive approach to
computing b(y,α) in Equation (10) involves �ndingU(‖G(y)‖2
 ,
1−α
2 ) with a binary search. For more rapid computation, we can

recognize U(‖G(y)‖2
 , 1−α
2 ) as the root of a quadratic. Speci�-

cally, de�ne γ := ‖G(y)‖2
 − ‖
 1
2 (A− C)


1
2 ‖2F , η := z α

2
, ρ :=

2‖
 1
2 (A−C)
(A−C)�


1
2 ‖2F , and ν := 4‖
 1

2 (A − C)

1
2 ‖2OP;

then from Equation (11) we have that the δ that achieves the
supremum satis�es γ = δ + η

√
ρ + νδ. Rearranging, we �nd

that U(‖G(y)‖2
 , 1−α
2 ) is the larger root of x2 − (2γ + η2ν)x +

(γ 2 − η2ρ) = 0.

5. Extending the Reach of the c-value

Up to this point, we focused on estimating normal means with
�xed a�ne estimators. Now we extend our c-value framework
in two important directions, which we support with both theo-
retical and empirical results. In Section 5.1, we derive c-values
for a nonlinear shrinkage estimator of normal means. We then
move beyond Gaussian likelihoods in Section 5.2 and derive
c-values for regularized logistic regression. In contrast to the
earlier cases, these settings introduce nonlinear estimates and
non-Gaussianmodels. To gain analytical tractability, we approx-
imate the estimates by linear transformations of a statistic that
is asymptotically Gaussian. This approximation allows us to
derive bounds b(y,α) that we show have the correct coverage
in an asymptotic regime. Our approach provides a template that
can be followed for other nonlinear estimates and models for
which the MLE is asymptotically Gaussian. We defer all proofs
and details of synthetic data experiments to Appendices S6
and S7.



8 B. L. TRIPPE, S. K. DESHPANDE, AND T. BRODERICK

5.1. Empirical Bayes Shrinkage Estimates

Many Bayesian estimates are a�ne in the data for �xed settings
of prior parameters. But when prior parameters are chosen using
the data, the resulting empirical Bayesian estimates are not a�ne
in general. We next explore computation of approximate high-
con�dence lower bounds on the win of empirical Bayesian esti-
mators. In particular, we consider an approach that essentially
amounts to ignoring the randomness in estimated prior param-
eters and computing the bound as if the prior were �xed. For
simplicity, we focus on a particularly simple empirical Bayesian
estimator for the normal means problem that coincides with the
James–Stein estimator (Efron and Morris 1973). We �nd that,
in the high-dimensional limit, bounds obtained with this naive
approach achieve at least the desired nominal coverage. Finally,
we show in simulation that the approximate bound has favorable
�nite sample coverage properties.

Empirical Bayes for estimation of normal means. Consider a
sequence of real-valued parameters θ1, θ2, . . . , and correspond-

ing observations yn
indep
∼ N (θn, 1). For each N ∈ N, let �N :=

[θ1, θ2, . . . , θN]� and YN := [y1, y2, . . . , yN]� denote the �rst N
parameters and observations, respectively.

We consider the MLE for �N (i.e., YN) as our default, which
we denote by �̂N(YN) = YN , and we take the James–Stein
estimate as our alternative; we compare on the basis of squared
error loss. We write the James–Stein estimate on the �rst N
data points as �∗

N(YN) :=
(

1 − (1 + τ̂ 2N(YN))−1
)

YN , where
τ̂ 2N(YN) := ‖YN‖2/(N − 2) − 1. �∗

N(YN) corresponds to the

Bayes estimate under the prior θn
iid∼ N (0, τ̂ 2N) (Efron and

Morris 1973). For this comparison, the win is WN(YN ,�N) :=
‖�̂N(YN)−�N‖2−‖�∗

N(YN)−�N‖2, and Appendix S6 details
the associated bound bN(YN ,α) obtained with Bound S4.1. In
the following theorem, we lower bound the win by applying our
earlier machinery for Bayes rules with �xed priors. We �nd that
the desired coverage is obtained in the high-dimensional limit.

Theorem 5.1. For each N ∈ N, let τ 2N := N−1 ∑N
n=1 θ2n .

If the sequence τ1, τ2, . . . is bounded, then for any α ∈
[0, 1], limN→∞ P [WN(YN ,�N) ≥ bN(YN ,α)] ≥ α.

The key step in the proof of Theorem 5.1 is establishing an

Op(N
− 1

2 ) rate of convergence of τ̂ 2N − τ 2N to zero; under this
condition the empirical Bayes estimate and bound converge to
the analogous estimates and bounds computed with the prior
variance �xed to τ 2N . Accordingly, we expect similar results to
hold for other models and empirical Bayes estimates when the
standard deviations of the empirical Bayes estimates of the prior

parameters drop as Op(N
− 1

2 ).

Remark 5.2. Theorem 5.1 easily extends to cover the case in
which we consider a sequence of random (rather than �xed)
parameters drawn iid from a Bayesian prior, which is a more
classical setup for guarantees of empirical Bayesian methods;
see, for example, Robbins (1964). Speci�cally, our proof
goes through in this Bayesian setting so long as the sequence
τ 21 , τ

2
2 , . . . is bounded in probability. This condition is satis�ed,

for example, when the θn are iid from any prior with a �nite
second moment.

To check �nite sample coverage, we performed a simulation
and evaluated calibration of the associated c-values (Figure S4
in Appendix S6). Despite the empirical Bayes step, the c-values
appear to be similarly conservative to those computed with the
exact bound in Figure 1(a). Furthermore, this calibration pro�le
does not appear to be sensitive to themagnitude of the unknown
parameter.

5.2. Logistic Regression

In this section we illustrate how to compute an approximate
high-con�dence lower bound on the win in squared error
loss with a logistic regression likelihood. Our key insight is
that by appealing to limiting behavior, we can tackle the non-
Gaussianity using the machinery developed in Section 4.

Notation and estimates. Consider a collection ofM data points
with random covariates XM := [x1, x2, . . . , xM]� ∈ R

M×N and
responses YM := [y1, y2, . . . , yM]� ∈ {1,−1}M . For the mth
data point, assume

ym
indep
∼ p(·|xm; θ) := (1 + exp{−x�

mθ})−1δ1

+ (1 + exp{x�
mθ})−1δ−1, (18)

where θ ∈ R
N is an unknown parameter of covariate e�ects and

δ1 and δ−1 denote Dirac masses on 1 and −1, respectively.
In this section,we choose theMLEas our default, θ̂ (XM ,YM) :=

argmaxθ log p(YM|XM ; θ). And we choose our alternative to
be a Bayesian maximum a posteriori (MAP) estimate under a
standard normal prior (θ ∼ N (0, IN)):

θ∗(XM ,YM) := argmaxθ

{

log p(YM|XM ; θ) − 1

2
‖θ‖2

}

.

While a �rst choice for a Bayesian estimate might be the poste-
riormean, theMAP is an e�ective and widely used alternative to
theMLE in practice. Furthermore, θ∗(XM ,YM) is also of interest
as an L2 regularized logistic regression estimate.

Approximating θ∗ by an a�ne transformation. In moving
away from a Gaussian likelihood we forfeit prior-to-likelihood
conjugacy. In previous sections, conjugacy provided analyt-
ically convenient expressions for Bayes estimates. In order
to regain analytical tractability, we appeal to a Gaussian
approximation of the likelihood, de�ned with a second order
Taylor approximation of the log-likelihood around the MLE.
Under this approximation, θ̂ (XM ,YM) ∼ N (θ , 
̃M), where

̃M := −∇2

θ log p(YM|XM ; θ)
∣

∣

θ=θ̂ (XM ,YM)
. As such, we regain

conjugacy, and we obtain an approximate Bayes estimate as an
a�ne transformation of the MLE,

θ̃∗(XM ,YM) =
[

IN + 
̃M

]−1
θ̂ (XM ,YM). (19)

As we show in Appendix S7, θ̃∗(XM ,YM) is a very close approx-
imation of θ∗(XM ,YM), with distance decreasing at anOp(M

−2)

rate.

An approximate bound and an asymptotic guarantee. We
leverage the form in Equation (19) to compute Approximate
Bound 4.1 as a lower bound on the win in squared error of
using the MAP estimate in place of the MLE. In particular, we
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take y := θ̂ (XM ,YM) as the data in Approximate Bound 4.1
(this corresponds to A = IN and k = 0) and approximate
the distribution of ε := θ̂ (XM ,YM) − θ as N (0, 
̃M).
Further, to compute the bound, we approximate θ∗(XM ,YM)

by θ̃∗(XM ,YM) as in Equation (19), corresponding to C =
[

IN + 
̃M

]−1
and � = 0.

While the precise coverage of this bound is di�cult to ana-
lyze, our next result reveals favorable properties in the large
sample limit.

Theorem 5.3. Consider a sequence of random covariates
x1, x2, . . . and responses y1, y2, . . . distributed as in Equa-
tion (18). For each M ∈ N, let WM := ‖θ̂ (XM ,YM) − θ‖2 −
‖θ∗(XM ,YM) − θ‖2 be the win of using the MAP estimate in
place of the MLE. Finally, let bM(α) be the level-α approximate
bound on WM described above. If x1, x2, . . . are iid with �nite
third moment and with positive de�nite covariance, then for
any α ∈ (0, 1), limM→∞ Pθ [WM ≥ bM(α)] ≥ α.

Theorem 5.3 guarantees that in the large sample limit, bM(·)
has at least nominal coverage.We provide a proof of the theorem
and demonstrate its favorable empirical properties in simulation
in Appendix S7.

6. Applications

We now demonstrate our approach on the three applications
introduced in Section 1. Our goal in this section is to demon-
strate how one can compute and interpret c-values in realistic
work�ows. In analogy to hypothesis testing, where a p-value
cuto� of 0.05 is standard for rejecting a null, we require a c-
value of at least 0.95 to accept the alternative estimate; with this
threshold, we expect to incorrectly reject the default estimate
in at most 5% of our decisions. This choice, instead of 0.5 for
example, re�ects the presumed asymmetry of the comparisons;
we demand strong support to adopt the alternative over the
default. For all applications, we provide substantial additional
details in Appendix S8.

6.1. Estimation from Educational Testing Data and

Empirical Bayes

In this section we apply ourmethodology to amodel and dataset
considered by (Ho� 2021, sec. 3.2), in which the goal is to
estimate the average student reading ability at di�erent schools
in the 2002 Educational Longitudinal Study. At each ofN = 676
schools, between 5 and 50 tenth grade students were given a
standardized test of reading ability. We let y = [y1, y2, . . . , yN]�
denote the average scores, and for each school, indexed by n,

model yn
indep
∼ N (θn, σ 2

n ), where θ = [θ1, θ2, . . . , θN]� denotes
the school-level means and each σn is the school-level standard
error; speci�cally σn := σ/

√
Nn where σ denotes a student-level

standard deviation and Nn is the number of students tested at
school Nn. For convenience, we let 
 := diag([σ 2

1 , σ
2
2 , . . . , σ

2
N])

so that we may write y ∼ N (θ ,
). The goal is to estimate the
school-level performances θ .

Following Ho� (2021), we perform small area inference with
the Fay-Herriot model (Fay and Herriot 1979) to estimate θ

under the assumption that similar schools may have similar
student performances. Speci�cally, we consider a vector of
D = 8 attributes of each school X = [x1, x2, . . . , xN]�;
these include participation levels in a free lunch program,
enrollment, and other characteristics such as region and school
type. We model the school-level mean as a priori distributed as
θ ∼ N (Xβ , τ 2IN) where β is an unknown D-vector of �xed
e�ects and τ 2 is an unknown scalar that describes variation
in θ not captured by the covariates. Following Ho� (2021),
we take an empirical Bayesian approach and estimate β , τ ,
and σ with lme4 (Bates et al. 2015). We then compare the
posterior mean—which is a�ne in y for �xed β , τ , and σ—
as an alternative to the MLE as a default; we use Approximate
Bound 4.1. Speci�cally, we take θ∗(y) := E[θ |y;β , τ , σ ] =
[IN + τ−2
]−1y + [IN + τ 2
−1]−1Xβ and θ̂ (y) = y. We

compute a large c-value (c = 0.9926); its closeness to one
strongly suggests that θ∗(y) is more accurate than θ̂ (y).

We should not always expect to obtain a large c-value for
any alternative estimate, however.We next describe a case where
we expect the alternative estimate to be less accurate than the
default, and we check that we obtain a small c-value. In par-
ticular, we now let our alternative estimate be the posterior
mean under the same model as above but with the covariates,
X, randomly permuted across schools. In this situation, the
responses y have no relation to the covariates, and we should
not expect an improvement. Indeed, on this dataset we compute
a c-value of exactly zero. However, we recall that just as a large p-
value in hypothesis testing does not provide support that a null
hypothesis is true, a small c-value does not provide direct sup-
port that the alternative estimate is less accurate than the default.

We provide additional details for all parts of this application
in Appendix S8.1 . There, we demonstrate in a simulation study
that our bounds remain substantially conservative for these
estimators and model even with an empirical Bayes step.

6.2. Estimating Violent Crime Density in Philadelphia

As a second application, we consider estimating the areal den-
sity of violent crimes (i.e., counts per square mile) reported
in each of Philadelphia’s N = 384 census tracts. Following
Balocchi et al. (2022), we work with the inverse hyperbolic sine
transformed density. Letting yn be the observed transformed
density of reported violent crimes in census tract n, we model

yn
indep
∼ N (θn, σ 2

y ) where θn represents the underlying trans-

formed density and σ 2
y is the noise variance. While one might

interpret θn as the true density of violent crime in census tract
n, we note that the implicit assumption of zero-mean error in
each tract may not be realistic. Namely, systematic biases may
impact the rates at which police receive and respond to calls and
�le incident reports in di�erent parts of the city. Unfortunately,
we are unable to probe this possibility with the available data.
Nevertheless, our goal is to estimate the vector of unknown
rates, θ = [θ1, θ2, . . . , θN]� from y = [y1, y2, . . . , yN]�. The
observations y are a simple proxy of transformed violent crime
density, but they are noisy. So it is natural to wonder if we might
obtain a more accurate estimate of θ .

Figure 2 plots the transformed densities of both violent and
nonviolent crimes reported inOctober 2018 in each census tract.
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Figure 2. Transformed densities of reported (a) violent and (b) nonviolent crimes in each census tract in Philadelphia in October 2018.

Immediately, we see that, for any particular census tract, the
observed densities of the two types of crime are similar. Further,
we observe considerable spatial correlation in each plot. It is
tempting to use a Bayesian hierarchical model that exploits this
structure in order to produce more accurate estimates of θ .
In this application, we consider iteratively re�ning an estimate
of θ by (A) incorporating the observed nonviolent crime data
and then by (B) carefully accounting for the observed spatial
correlation. At each step of our re�nement, we use a c-value
to decide whether to continue. Before proceeding, we make a
remark about our sequential approach.

Remark 6.1. Consider using c-values and a chosen level α to
choose one of three estimates (say θ̂ (y), θ∗(y), and θ◦(y)) in
two stages. Suppose we �rst choose θ∗(y) over θ̂ (y) only if the
associated c-value is greater than α. Second, only if we chose
θ∗(y), we next choose θ◦(y) over θ∗(y) only if the new c-value
associated with those estimates exceeds α. Then a union bound
guarantees that θ◦(y)will be incorrectly chosen with probability
at most 2(1 − α).

We begin by seeing if we can improve upon the MLE, θ̂ (y) =
y, by leveraging the auxiliary dataset of transformed nonvio-
lent crimes in each tract, z1, z2, . . . , zN . To this end, we model
these auxiliary data analogously to y; in each tract n, we let
ηn be the unknown transformed density and independently

model zn
indep
∼ N (ηn, σ 2

z ). We next introduce a hierarchical
prior that captures the apparent similarity between θ and η

within each tract. Speci�cally, for each tract n we decompose
θn = μn + δ

y
n and ηn = μn + δzn, where μn is a shared

mean for the transformed densities of violent and nonviolent
reports and δ

y
n and δzn represent deviations from the sharedmean

speci�c to each crime type. Rather than encode explicit prior
beliefs about μn, we express ignorance in these quantities with

an improper uniform prior. Additionally, we model δ
y
n, δ

z
n

iid∼
N (0, σ 2

δ ). We �x the values of σy, σz, and σδ using historical
data. We then compute the posterior mean of θ as an alterna-
tive estimate, θ∗(y). Thanks to the Gaussian conjugacy of this
model, θ∗(y) is a�ne in the data y, and a closed form expres-
sion is available. See Appendix S8.2 for additional details. The
resulting c-value exceeded 0.999, suggesting that we should be
highly con�dent that θ∗(y) is a more accurate estimate of θ than
θ̂ (y).

We next consider additionally sharing strength amongst spa-
tially adjacent census tracts. To this end, consider a second
model with spatially correlated variance components: θn =
μn + δ

y
n + κ

y
n and ηn = μn + δzn + κz

n. The additional terms
κy = [κy

1 , κ
y
2 , . . . , κ

y
N]� and κz = [κz

1 , κ
z
2 , . . . , κ

z
N]� capture a

priori spatial correlations; we model κy, κz iid∼ N (0,K), where K
is anN×N covariancematrix determined by a squared exponen-
tial covariance function (Rasmussen and Williams 2006, chap.
4) that depends on the distance between the centroids of the
census tracts. Once again, we exploit conjugacy in this second
hierarchical model to derive the posterior mean θ◦(y) in closed
form. As θ◦(y) is also an a�ne transformation of y, we can use
Approximate Bound 4.1 to compute the c-value for comparing
θ◦(y) to θ∗(y). The c-value for this comparison is only 0.843,
providing much weaker support for using θ◦(y) over θ∗(y).
Because this c-value is less than 0.95, we conclude our analysis
content with θ∗(y) as our �nal estimate.

6.3. Gaussian Process Kernel Choice: Modeling Ocean

Currents

Accurate understanding of ocean current dynamics is impor-
tant for forecasting the dispersion of oceanic contaminations,
such as a�er the Deepwater Horizon oil spill (Poje et al. 2014).
Lodise et al. (2020) have recently advocated for a statistical
approach to inferring ocean currents from observations of free-
�oating, GPS-trackable buoys. Their approach seeks to provide
improved estimates by incorporating variation at the subme-
soscale (roughly 0.1–10 km) in addition to more commonly
considered mesoscale variation (roughly 10 km and above). In
this section we apply our methodology to assess if this approach
provides improved estimates relative to a baseline including only
mesoscale variation.

In our analysis, we consider a segment of the Carthe Grand
Lagrangian Dri�er (GLAD) deployment dataset (Özgökmen
2013). Speci�cally, we model a set of 50 buoys with velocities
estimated at 3 hr intervals over one day (N = 400 observations
total). Each observationn consists of latitudinal and longitudinal

ocean current velocity measurements yn = [y(1)
n , y(2)

n ]� ∈
R
2 and associated spatio-temporal coordinates [latn, lonn, tn].

Following Lodise et al. (2020), we model each measurement as
a noisy observation of an underlying time varying vector-�eld

distributed independently as yn
indep
∼ N

(

F(latn, lonn, tn), σ 2
ε I2

)

,
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where F : R
3 → R

2 denotes the time evolving vector-�eld
of ocean currents and σ 2

ε is the error variance. Our goal is to
estimate F at the observation points θ := [θ1, θ2, . . . , θN]�,
where for each n, θn = [θ (1)

n , θ (2)
n ]� = F(latn, lonn, tn).

Following Lodise et al. (2020), we place a Gaussian process
prior on F to encode expected spatio-temporal structure while
allowing for variation at multiple scales. Speci�cally, we model
F ∼ GP (0, k(·, ·)) , where

k(θ (i)
n , θ (i)

n′ ) = k1(θ
(i)
n , θ (i)

n′ ) + k2(θ
(i)
n , θ (i)

n′ ), i ∈ {1, 2}. (20)

Here k1 and k2 are squared exponential kernels with spatial and
temporal length-scales that re�ect mesoscale and submesoscale
variations, respectively; see Appendix S8.3 for details. For sim-
plicity, we model the latitudinal and longitudinal components
of F independently. We take the posterior mean of θ under this
model as the alternative estimate, θ∗(y).

As a baseline, we consider an analogous estimate with covari-

ance function k(θ
(i)
n , θ (i)

n′ ) = k1(θ
(i)
n , θ (i)

n′ ) + k2(θ
(i)
n , θ (i)

n′ )1[n =
n′], which maintains the same marginal variance but excludes
submesoscale covariances. We take the posterior mean under
this model as the default estimate θ̂ (y). Both θ∗(y) and θ̂ (y)may
be written as a�ne transformations of y.

Using Approximate Bound 4.1, we compute a c-value of
0.99981. This large c-value allows us to con�dently conclude
that modeling both mesoscale and submesocale variation can
yield more accurate estimates of ocean currents than mesocale
modeling alone.

7. Discussion

We have provided a simple method for quantifying con�dence
in improvements provided by a wide class of shrinkage estimates
without relying on subjective assumptions about the parameter
of interest. Our approach has compelling theoretical properties,
and we have demonstrated its utility on several data analyses
of recent interest. However, the scope of the current work has
several limitations. The present article has explored the use of
the c-value only for problems of moderate dimensionality (N
between 20 and 700). Loosely speaking, we suspect c-valuesmay
be underpowered to robustly identify substantial improvements
provided by estimates in lower dimensional problems. Further
investigation into such dimension dependence is an important
direction for future work. In addition, our approach depends
crucially on a high-probability lower bound that is inherently
speci�c to the underlying model of the data, a loss function,
and the pair of estimators. In the present work, we have shown
how to derive and compute this bound for models with gen-
eral Gaussian likelihoods, when accuracy may be measured in
terms of squared error loss, and when both estimates are a�ne
transformations of the data. We have provided a �rst step to
extending beyond simple Gaussian models with the application
to logistic regression; while we have not yet explored the e�cacy
of this extension on real data, we view our work as an important
starting point for generalizing to broader model classes and
estimation problems. We believe that further extensions to the
classes of models, estimates, and losses for which c-values can
be computed provide fertile ground for future work.

One direction we believe is promising is to construct the
bound b(y,α) in a model and loss agnostic manner using, for

example, the parametric bootstrap. Constructing an informative
c-value is possible because in some cases the distribution of
the win depends on the unknown parameter only through
some low-dimensional projection (or at least approximately
so). We suspect that this phenomenon may extend to more
complex models and estimates. In such cases, when this low-
dimensional characteristic su�ciently captures the distribution
of the win and is estimated well enough, a parametric bootstrap
may present a powerful solution. In particular, one would begin
by forming an initial estimate of the parameter, and simulate
a collection of bootstrap datasets by sampling data from the
likelihood parameterized by the initial estimate, compute the
win for each simulated dataset, and return for each b(y,α)

the 1 − α quantile of this distribution. We expect that this
method may work in many important settings; indeed, much
of modern statistics and nonlinear methods are predicated on
the assumption that low-dimensional structure (e.g., sparsity)
exists and may be inferred. We leave further development of
this more �exible approach, including an investigation of the
theoretical properties, to follow-up work.

Appendix

Proof of Theorem 2.2

Proof. The result follows directly from the de�nition of c(y) and the
conditions on b(·, ·). More explicitly,

Pθ

[

W(θ , y) ≤ 0 and c(y) > α
]

≤ Pθ

[

W(θ , y) ≤ 0 and b(y,α) > 0
]

≤ Pθ

[

W(θ , y) < b(y,α)
]

≤ 1 − α,

where the �rst line follows from the de�nition of the c-value and the
�nal line follows from Equation (1).

Proof of Theorem 2.3

Proof. The condition L(θ , θ†(y,α)) > L(θ , θ̂ (y)) can occur only when
both (A) 0 > W(θ , y) and (B) θ†(·,α) evaluates to θ∗(·) rather than
θ̂ (·). Event (B) implies c(y) > α and therefore b(y,α) > 0. By
transitivity, b(y,α) > 0 and 0 > W(θ , y) �⇒ b(y,α) > W(θ , y).
By assumption, the event b(y,α) > W(θ , y) occurs with probability at
most 1 − α.

Supplementary Materials

The readme in the github provides a list of the computational resources and
experimental code. And the supplementary text includes a table of contents.
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SUPPLEMENTARY MATERIAL

S2 Pitfalls of risk when choosing between estimators

Before proceeding, we require some additional notation and definitions. We denote the risk

of an arbitrary estimator θ
0(·) by R(θ, θ0) = Eθ

h

L
�

θ, θ0(y)
�

i

. Given two estimators θ
0(·)

and θ
†(·) we say that θ

0(·) dominates θ
†(·) if, for all values of θ, R(θ, θ0)  R(θ, θ†) and

R(θ, θ0) < R(θ, θ†) for at least one value of θ.

If we were able to show that one of θ̂(·) or θ
⇤(·) dominates the other, it would be

tempting to always select the dominating estimator. Unfortunately, it is very often the

case that neither estimator dominates the other. In other words, it may be the case

that R(θ, θ⇤) < R(θ, θ̂) for all values of θ in some non-trivial subset of the space Θ0 but

R(θ, θ⇤) > R(θ, θ̂) for some θ /2 Θ0. Lindley & Smith (1972) provide a simple illustration of

this dilemma in the following normal means problem. Suppose that we observe an N -vector

normally distributed about its mean and with identity covariance, IN , as y ⇠ N (θ, IN ), and

wish to compare the default estimate θ̂(y) = y of θ and the alternative estimate

θ
⇤(y) =

y + y1N/τ
2

1 + 1/τ 2

for a fixed value of τ > 0, where y := N�1
P

N

n=1
yn and 1N is the N -vector of ones. Lindley

& Smith (1972) showed that R(θ, θ⇤) < R(θ, θ̂) if and only if

kθ � θ1Nk2 <
p

(N � 1)(2 + τ 2), (S21)

where θ := N�1
P

N

n=1
θn. Without strong assumptions about the value of θ, which we may

be unable or unwilling to make, a simple comparison of risk functions can prove inconclusive.

Interestingly, in the setting considered by Lindley & Smith (1972), it is possible to construct

θ so that (A) R(θ, θ⇤) < R(θ, θ̂) but (B) Pθ[L(θ, θ
⇤(y)) > L(θ, θ̂(y))] > 0.5. In particular,

for N = 2, τ = 1, and kθ � θ1Nk
2 = 2.999, θ⇤(·) has slightly smaller risk than the MLE, but

the MLE has smaller loss in 3397 out of 5000 simulated datasets, or about 68% of the time.
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In other words, even if we were to assume that ✓ satisfied Equation (S21), for the majority

of datasets y that we might observe, the alternative estimator incurs higher loss than the

default. The situation above highlights an important, but in our mind under-discussed,

limitation of risk: the loss averaged over all possible unrealized datasets may not be close

to the loss incurred on an observed dataset.

This disagreement between risk and the probability of having smaller loss can be especially

pronounced when the distribution of the loss of one of the estimators is heavy-tailed. For

example, consider a scalar parameter ✓ = 0, a deterministic default estimate ✓̂ = 1, and an

alternative estimate distributed as ✓∗ ∼ 1
↵
�√

↵(1+✏)
+ (1− 1

↵
)�0, where �x denotes a Dirac

mass on x and ✏ > 0. Then ✓
∗(·) has larger risk than ✓̂(·) (1 + ✏ rather than 1), but has

smaller loss with probability 1− 1
↵
. By taking ↵ → ∞, we see that ✓∗(·) may have smaller

loss than ✓̂(·) with arbitrarily high probability. This example is particularly extreme; our

intent is merely to illustrate that large disagreements could, at least in principal, arise in

practical settings.

S3 Defining c-values as a supremum vs. infimum

In this section we describe a pathological model and construction of a lower bound function

for which the two possible definitions of the c-value described in Remark 2.1 lead to notably

different behaviours.

Consider a variant of the normal means problem. Let ✓ ∈ R be an unknown mean and

observe

y :=







✓ + ✏

u






,

where ✏ ∼ N (0, 1) and u ∼ U([0, 1]) is a uniform random variable on [0, 1]. Note that u is

ancillary to ✓ (i.e. its distribution does not depend on ✓). We will construct a pathological

b(y,↵) that depends on y only through u and will therefore be ancillary to ✓ as well.

We begin by constructing a countably infinite collection of independent uniform random
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variables from u, indexed by the rationals Q, S(u) := {ur}r∈Q. Such a countably infinite

collection may be obtained by segmenting the decimal expansion of u; for example, if we

let di denote the ith digit of u, we could obtain this sequence by defining uniform random

variables with decimal expansions

u1 : = [d1, d2, d4, d7, d11 . . . ],

u2 : = [d3, d5, d8, d12 . . . ],

u3 : = [d6, d9, d13 . . . ],

u4 : = [d10, d14, . . . ],

u5 : = [d15, . . . ],

and so on, and then mapping from {ui}i∈N to S(u).

Next, define

b(y,α) :=















(−1) [uα<α]∞ if α ∈ Q

−∞ otherwise.

For any bounded default and alternative estimators, the win will be finite and the bound

b(y,α) holds if an only if it evaluates to −∞. Because b(y,α) = −∞ with probability at

least α, even though b(y,α) is ancillary to θ, it still satisfies the condition in Equation (1)

for every θ and α ∈ [0, 1]. However, consider two possible definitions of the c-value,

c+(y) := sup
α∈[0,1]

{α|b(y,α) ≥ 0} vs. c−(y) := inf
α∈[0,1]

{α|b(y,α) ≤ 0},

where c−(y) = c(y) is the definition we have chosen in Section 2. Note that c−(y) ≤ c+(y),

and that if b(y,α) is continuous and strictly decreasing in α for every y, then c−(y) = c+(y).

In this almost surely discontinuous case, however, we have that c+(y)
a.s.
= 1. and c−(y)

a.s.
= 0.

Since estimators exist for which W (θ, y) < 0 with positive probability, the guarantees of

Theorems 2.2 and 2.3 are not met by c+(y).

In the present paper, c−(y) = c+(y) for all bounds considered. Our preference for

defining the c-value as c−(y) derives from simplicity; we may disregard edge cases like the
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one above, which would complicate our proofs. However for the reason described in this

section, we emphasize that using c�(y) rather than c+(y) may have practical implications

when these quantities differ.

S4 Additional details related to Section 3

S4.1 Distribution of win term

We here provide a derivation of the distributional form of 2✏>Gy given in Section 3.2. In

Section 3.2 we found that

2✏>Gy ⇠
2

1 + ⌧ 2



�2

N�1(
1

4
kP?

1 ✓k2)�
1

4
kP?

1 ✓k2
�

,

where �2
N�1(�) denotes the non-central chi-squared distribution with N � 1 degrees of

freedom and non-centrality parameter �.

Recall that Gy = (1 + ⌧ 2)�1P?

1 (✓ + ✏). As such we can rewrite

2✏>Gy =
2

1 + ⌧ 2

h

✏>P?

1 ✏+ ✏>P?

1 ✓
i

=
2

1 + ⌧ 2

h

(P?

1 ✏)>(P?

1 ✏) + (P?

1 ✏)>(P?

1 ✓)
i

// since P?

1 = P?

1 P?

1

=
2

1 + ⌧ 2



kP?

1 ✏+
1

2
P?

1 ✓k2 �
1

4
kP?

1 ✓k2
�

// by completing the square

=
2

1 + ⌧ 2



�2

N�1(
1

4
kP?

1 ✓k2)�
1

4
kP?

1 ✓k2
�

,

as desired, where in the last line the degrees of freedom parameter is N � 1 because P?

1

projects into an N � 1 dimensional subspace of RN .

S4.2 Proof of Theorem 3.1

We here provide a proof of Theorem 3.1.
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Proof. The proof amounts to showing that b(·, ·) achieves at least nominal coverage, i.e. for

any ✓ and ↵ 2 [0, 1], P
⇥

W (y, ✓) � b(y,↵)
⇤

� ↵. By construction, W (✓, y) � b(y,↵) may be

violated only if either (A) kP?
1 ✓k2 62 [0, U(y, 1�α

2
)] or (B)W (✓, y) < 2

1+τ2
F�1
N�1(

1�α

2
;
kP⊥

1
θk2

4
)�

kP⊥

1
θk2

2(1+τ2)
�

kP⊥

1
yk2

(1+τ2)2
. Noticing that kP?

1 yk2 ⇠ �2
N�1(kP

?
1 ✓k2), we can recognize [0, U(1�α

2
)] as

valid confidence interval for kP?
1 ✓k2 and see that (A) occurs with probability at most

1�α

2
. Next, comparing to Equation (7), we see that (B) represents 2✏>Gy falling below its

1�α

2
quantile and thus occurs with probability at most 1�α

2
. Therefore the union bound

guarantees that b(y,↵) obtains at least nominal coverage.

S4.3 Why an upper bound on kP?
1
✓k2?

We here provide justification for the use of a high-confidence upper bound on kP?
1 ✓k2 in

Bound 3.1. Recall that Equation (7) provides a lower bound on W (✓, y) if we can control

kP?
1 ✓k2. However, it is not immediately obvious what sort of control on kP?

1 ✓k2 will yield

the tightest bound; should we have derived a two-sided interval or a lower bound instead of

an upper bound? We answer this question by appealing to a normal approximation of the

non-central �2 for intuition. This approximation will be close when the degrees of freedom

parameter is large. Specifically, by replacing the non-central �2 quantile with that of a

normal with matched first and second moments we may approximate the lower bound as

W (✓, y)
⇠

�
2

1 + ⌧ 2

h

N � 1� (kP?
1 ✓k2 + 2N � 2)

1

2 zα

i

�
kP?

1 yk2

(1 + ⌧ 2)2
, (S22)

where zα is the ↵ quantile of the standard normal.

Equation (S22) is monotone decreasing in kP?
1 ✓k2 for any ↵ > 1

2
. As such, we can expect

this quantile to be smallest for large values of kP?
1 ✓k2, and for this reason seek to find a

high-confidence upper bound on kP?
1 ✓k2. Indeed, in agreement with Equation (S22) we

have found empirically that the infimum in Equation (8) is always achieved at this upper

bound, and conjecture that this is true in general.
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S4.4 Shrinking towards an arbitrary subspace

We now show how the approach developed in Section 3 immediately extends to a broader

class of models in the spirit of those considered by Morris (1983). In particular, let ✓

again be an unknown N -vector and X 2 R
N⇥D be a design matrix where for each n, Xn

is a D-vector of covariates associated with ✓n. If we believe that the parameters can be

roughly described as scattered around a linear function of these covariates with variance

⌧ 2, we might consider trying to improve our estimates by estimating the linear dependence

and interpolating between the sample estimate and the associated linear approximation.

Following Morris (1983), we obtain this type of shrinkage with the estimate

✓⇤(y) :=
y + ⌧�2X(X>X)�1X>y

1 + ⌧�2
,

which is the posterior mean of the Bayesian model that assumes for each n, ✓n ⇠ N (X>
n �, ⌧

2)

a priori. Here � is an unknown D-vector of coefficients that is given an improper uniform

prior.

For this setting, we propose the following bound.

Bound S4.1 (Normal Means: Flexible shrinkage estimate vs. MLE). Observe y = ✓ + ✏

with ✏ ⇠ N (0, IN) and consider estimates

✓̂(y) = y and ✓⇤(y) :=
y + ⌧�2X(X>X)�1X>y

1 + ⌧�2
,

where ⌧ is a scalar and X is an N by D matrix of covariates. We propose

b(y,↵) = inf
λ2[0,U(y, 1−α

2
)]

2

1 + ⌧ 2
F�1
N�D

✓

1� ↵

2
,
�

4

◆

�
�

2(1 + ⌧ 2)
�

kP?
X yk2

(1 + ⌧ 2)2
(S23)

as a high-probability lower bound on the win. In this expression, F�1
N�D(1� ↵,�) denotes

the inverse cumulative distribution function of the non-central �2 with N �D degrees of

freedom and non-centrality parameter � evaluated at 1� ↵. P?
X := IN �X(X>X)�1X> is

the projection onto the subspace orthogonal to the column-space of X.

U(y, 1� ↵) := inf
δ>0

⇢

�

�

�

�
kP?

X yk2  F�1
N�D(1� ↵, �)

�

(S24)

is a high-confidence upper bound on kP?
X ✓k2.
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Figure S3 demonstrates an application to Ty Cobb’s season batting averages, an example

adapted from Morris (1983). In this analysis, our approach indicates that we should be

highly confident (c = 0.953) that the alternative estimate, which shrinks the observations

towards a quadratic fit of the data, outperforms the MLE . While Morris (1983) provides

an argument for estimators of this style based on risk, the present analysis goes a step

further by providing a measure of confidence that the estimator improves on this particular

dataset. Even though the risk of the estimator ✓⇤(·) may be greater than that of ✓̂(·) for

many possible ✓, this analysis supports the conclusion that for the true unknown ✓ and

observed y, ✓⇤(y) is superior.

S5 Affine estimators supplementary information

S5.1 Step by step derivation of Equation (12)

The win of using ✓
⇤(y) in place of ✓̂(y) may be expressed as

W (✓, y) = k✓̂(y)� ✓k2 � k✓⇤(y)� ✓k2

=
⇣

k✓̂(y)k2 + k✓k2 � 2✓>✓̂(y)
⌘

�
⇣

k✓⇤(y)k2 + k✓k2 � 2✓>✓⇤(y)
⌘

= �2✓>G(y) +
⇣

k✓̂(y)k2 � k✓⇤(y)k2
⌘

// where G(y) := ✓̂(y)� ✓
⇤(y)

= 2✏>G(y)� 2y>G(y) +
⇣

k✓̂(y)k2 � k✓⇤(y)k2
⌘

= 2✏>G(y) +
⇣

k✓̂(y)� yk2 � k✓⇤(y)� yk2
⌘

.

(S25)

42



S5.2 Derivation of Equation (13)

Observe that

E[✏>G(y)] = E[✏>G(✓) + ✏
>(A� C)✏]

= E[✏]>G(✓) + E[tr[(A� C)✏✏>]]

= tr[(A� C)Σ]

and

Var[✏>G(y)] = Var[✏>G(✓)] + Var[✏>(A� C)✏]

// since ✏
>G(✓) and ✏

>(A� C)✏ are uncorrelated

= (G(✓))>Σ(G(✓)) + 2tr[
A+ A> � C � C>

2
Σ
A+ A> � C � C>

2
Σ]

= kG(✓)k2
Σ
+

1

2
tr[((A+ A> � C � C>)Σ)2]

= kG(✓)k2
Σ
+

1

2
kΣ

1

2 (A+ A> � C � C>)Σ
1

2k2
F
,

where k · kΣ and k · kF denote the Σ quadratic norm and Frobenius norm, respectively. The

third line of the derivation above obtains from recognizing Var[✏>(A� C)✏] as a quadratic

form (Mathai & Provost 1992, Chapter 2).

S5.3 Derivations of Equations (15) and (16)

Equations (15) and (16) characterize the dependence of the distribution of kG(y)k2
Σ
on

kG(✓)k2
Σ
through its mean and variance. Recognizing kG(y)k2

Σ
as a quadratic form (Mathai

& Provost 1992, Chapter 2), with G(y) ⇠ N
�

G(✓), (A� C)Σ(A� C)>
�

, we find its mean

as

E[kG(y)k2
Σ
] = G(✓)>ΣG(✓) + tr[Σ((A� C)Σ(A� C)>)]

= kG(✓)k2
Σ
+ tr[Σ

1

2 (A� C)Σ(A� C)>Σ
1

2 ]

= kG(✓)k2
Σ
+ kΣ

1

2 (A� C)Σ
1

2k2
F
.
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For the variance, we similarly rely on the known variance of a quadratic form. Starting

from that expression, we upper bound the variance as

Var[kG(y)k2
Σ
] = 2tr



Σ

⇣

(A� C)Σ(A� C)>
⌘

Σ

⇣

(A� C)Σ(A� C)>
⌘

�

+

4G(✓)>Σ
⇣

(A� C)Σ(A� C)>
⌘

ΣG(✓)

= 2kΣ
1

2 (A� C)Σ(A� C)>Σ
1

2k2F + 4k
⇣

Σ
1

2 (A� C)>Σ
1

2

⌘

Σ
1

2G(✓)k2
2

 2kΣ
1

2 (A� C)Σ(A� C)>Σ
1

2k2F + 4kΣ
1

2 (A� C)Σ
1

2k2
OP

kG(✓)k2
Σ
,

(S26)

where k · kOP denotes the L2 operator norm.

S5.4 The Berry–Esseen bound: Theorem 4.1

We here prove Theorem 4.1, a non-asymptotic upper bound on the error introduced by

the two Gaussian approximations in Approximate Bound 4.1. We begin by restating key

notation for convenience. We then state a more general variant of the bound that removes

the restriction that the operators A and C be symmetric, and we show how it reduces to

the simpler quantity stated in Theorem 4.1. Finally, we present a proof of the theorem as

well as several supporting lemmas.

Notation and statement of the theorem its more general form. Recall that we

are concerned with the coverage of Approximate Bound 4.1

b(y,↵) = k✓̂ � yk2 � k✓⇤ � yk2 + 2tr[(A� C)Σ] +

2z 1−α

2

r

U(kG(y)k2
Σ
,
1� ↵

2
) +

1

2
kΣ

1

2 (A+ A> � C � C>)Σ
1

2k2
F
.

In this equation, G(y) := (A � C)y + (k � `), zα denotes the ↵-quantile of the standard

normal, and

U
�

kG(y)k2
Σ
,
1� ↵

2

�

= inf
δ>0

⇢

�

�

�

�

�

kG(y)k2
Σ
 (� + kΣ

1

2 (A� C)Σ
1

2k2F ) +

z 1−α

2

q

2kΣ
1

2 (A� C)Σ(A� C)>Σ
1

2k2
F
+ 4kΣ

1

2 (A� C)Σ
1

2k2
OP

�

�
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is a high-confidence upper bound on kG(✓)k2
Σ
.

For convenience, we introduce

F̃�1(kG(✓)k2
Σ
,↵) := 2tr[(A� C)Σ] + 2zα

r

kG(✓)k2
Σ
+

1

2
kΣ 1

2 (A+ A> � C � C>)Σ
1

2k2
F
,

(S27)

to denote the inverse CDF of our normal approximation to the distribution of 2✏>G(y)

evaluated at ↵. As such, we may write

b(y,↵) = k✓̂ � yk2 � k✓⇤ � yk2 + F̃�1

✓

U(kG(y)k2
Σ
,
1� ↵

2
),
1� ↵

2

◆

.

Finally, recall that to prove the theorem we desire to show

Pθ

⇥

W (✓, y) � b(y,↵)
⇤

� ↵� 10
p
2p

N
C1 · (Σ

1

2 (A� C)Σ
1

2 )2

for any ✓ and ↵ 2 [0, 1], where C1 < 1.88 is a universal constant, in the case when both A

and C are symmetric. We accomplish this by first proving a more general bound holds even

in the non-symmetric case,

Pθ

⇥

W (✓, y) � b(y,↵)
⇤

� ↵� 5
p
2p
N

C1

h

(Σ
1

2 (A� C)Σ
1

2 )2 + (Σ
1

2 (A+ A> � C � C>)Σ
1

2 )
i

.

(S28)

The special case obtains by replacing A> and C> with A and C, respectively, and noting

that (M)2 � (M) for any matrix, M.

A key tool in this proof is the classic result of Berry (1941), which we restate below.

Theorem S5.1 (Berry, 1941, Theorem 1). Let X1, X2, . . . , XN be random variables. For

each n 2 {1, 2, . . . , N}, let �2

n
and ⇢n denote the variance and third central moment of Xn,

respectively. Define �n := ρn
σ2
n

if �2

n
> 0 and �n = 0 otherwise. Define �2 :=

P

N

n=1
�2

n
and

X := N�1
P

N

n=1
Xn. Then

sup
x

�

�

�

�

�

FX(x)� Φ

✓

x� E[X]

�

◆

�

�

�

�

�

< C1

maxn �n

�
,

where C1  1.88 is a universal constant and FX(·) is the cumulative distribution function

of X.
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Proof of Theorem 4.1 The desired bound may be stated equivalently as, for any

↵ 2 [0, 1],

Pθ

⇥

W (✓, y) < b(y,↵)
⇤

< (1� ↵) +
5
p
2p
N

C1

h

(Σ
1

2 (A� C)Σ
1

2 )2 + (Σ
1

2 (A+ A> � C � C>)Σ
1

2 )
i

.

(S29)

We first rewrite the condition W (✓, y) < b(y,↵) as 2✏>G(y) < F̃�1
�

U(kG(y)k2
Σ
, 1�α

2
), 1�α

2

�

(recall Equation (S25)). Since F̃�1 is monotonically decreasing in its first argument,

this condition may occur only if either 2✏>G(y) < F̃�1
�

kG(✓)k2
Σ
, 1�α

2

�

or kG(✓)k2
Σ

>

U(kG(y)k2
Σ
, 1�α

2
).

Therefore, by the union bound, we have that

Pθ

⇥

W (✓, y) < b(y,↵)
⇤

< Pθ

"

2✏>G(y) < F̃�1

✓

kG(✓)k2
Σ
,
1� ↵

2

◆

#

+ Pθ



kG(✓)k2
Σ
> U(kG(y)k2

Σ
,
1� ↵

2
)

�

.

(S30)

Lemmas S5.1 and S5.2 provide that Pθ

h

2✏>G(y) < F̃�1
�

kG(✓)k2
Σ
, 1�α

2

�

i

< 1�α

2
+5

p
2p
N
C1(Σ

1

2 (A+

A> �C �C>)Σ
1

2 ) and Pθ

⇥

kG(✓)k2
Σ
> U(kG(y)k2

Σ
, 1�α

2
)
⇤

< 1�α

2
+ 5

p
2p
N
C1(Σ

1

2 (A�C)Σ
1

2 )2,

respectively. Substituting these two bounds into Equation (S30) we obtain Equation (S29)

as desired.

Lemma S5.1. Let y = ✓+✏ be a random N -vector with ✏ ⇠ N (0,Σ). Let F̃�1 be the normal

approximation to the inverse CDF of 2✏>G(y) in Equation (S27). Then for any ↵ 2 [0, 1],

Pθ

h

2✏>G(y) < F̃�1
�

kG(✓)k2
Σ
,↵

�

i

< ↵ +
5
p
2p
N

C1(Σ
1

2 (A+ A> � C � C>)Σ
1

2 ).

Proof. Note first that for any ↵ we may rewrite

Pθ

h

2✏>G(y) < F̃�1
�

kG(✓)k2
Σ
,↵

�

i

= F
h

F̃�1
�

kG(✓)k2
Σ
,↵

�

i

= ↵ +

⇢

F
h

F̃�1
�

kG(✓)k2
Σ
,↵

�

i

� F̃
h

F̃�1
�

kG(✓)k2
Σ
,↵

�

i

�

,

where F and F̃ are the exact and approximate CDFs of 2✏>G(y), respectively. Recalling

that the normal approximation comes from matching moments to 2✏>G(y), we have that
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for any v, F̃ (v) = Φ( v�E[2✏>G(y)]p
Var[2✏>G(y)]

). Therefore, it will suffice to obtain that for every v,

�

�

�
F̃ (v)� F (v)

�

�

�
=

�

�

�

�

�

�

F (v)� Φ

 

v � E[2✏>G(y)]
p

Var[2✏>G(y)]

!

�

�

�

�

�

�

 5
p
2p
N

C1(Σ
1

2 (A+ A> � C � C>)Σ
1

2 ).

We will obtain this result by writing 2✏>G(y) a sum of independent random variables

and using a Berry–Esseen Theorem (Theorem S5.1) to bound the error of this normal

approximation.

Lemma S5.3 allows us to write 2✏>G(y) = 2✏>(A� C)✏+ 2
⇥

(A� C)✓ + (k � `)
⇤>

✏ as

a shifted sum of N differently-scaled, independent non-central �2 random variables. We

denote these N random variables by X1, X2, . . . , XN . Lemma S5.3 additionally tells us that

the scaling parameters of these non-central �2 random variables will be the eigenvalues of

Σ
1

2 (A+ A> � C> � C)Σ
1

2 , which we denote by �1 � �2 � · · · � �N � 0.

To use Theorem S5.1 we require the ratios of the third to second central moments of

these random variables, as well as the variance of the sum. Specifically,

sup
v2R

�

�

�

�

�

Φ(
v � E[2✏>G(y)]
p

Var[2✏>G(y)]
)� F (v))

�

�

�

�

�

< C1

maxn
⇢(Xn)
Var[Xn]

p

Var[2✏>G(y)]
,

where for each index n, ⇢(Xn) := E[(Xn � E[Xn])
3] is the third central moment of Xn, and

C1 < 1.88 is a universal constant.

Conveniently, as we show in Lemma S5.4, for each n,
⇢(Xn)
Var[Xn]

 10�n. Further, since
p

Var[2✏>G(y)] >
q

2
PN

n=1 �
2
n >

p
2N�N (recall that Equation (13) provides that Var[2✏>G(y)] =

4kG(✓)k2
Σ
+ 2kΣ 1

2 (A+ A> � C � C>)Σ
1

2k2F ) we may additionally see that

sup
v2R

�

�

�

�

�

�

Φ

 

v � E[2✏>G(y)]
p

Var[2✏>G(y)]

!

� F (v))

�

�

�

�

�

�

< C1
10p
2N

maxn �n

minn �n

= C1
5
p
2p
N


⇣

Σ
1

2 (A+ A> � C � C>)Σ
1

2

⌘

where (·) denotes the condition number of its matrix argument, as desired.
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Lemma S5.2. Let y = ✓ + ✏ be a random N-vector with ✏ ⇠ N (0,Σ). Let U(kG(y)k2
Σ
,↵)

be the approximate high-confidence upper bound on kG(✓)k2
Σ
. Then for any ↵ 2 [1

2
, 1],

Pθ

⇥

kG(✓)k2
Σ
> U(kG(y)k2

Σ
, 1� ↵)

⇤

< 1� ↵ + 5
p
2p
N
C1(Σ

1

2 (A� C)Σ
1

2 )2.

Proof. Our proof of the lemma follows roughly the same approach taken to prove Lemma S5.1.

First note that the condition that kG(✓)k2
Σ
> U(kG(y)k2

Σ
, 1� ↵) implies that

kG(y)k2
Σ
 (kG(✓)k2

Σ
+ kΣ 1

2 (A� C)Σ
1

2k2
F
) +

z1�α

q

2kΣ 1

2 (A� C)Σ(A� C)>Σ
1

2k2
F
+ 4kΣ 1

2 (A� C)Σ
1

2k2
OP

kG(✓)k2
Σ

 E[G(y)k2
Σ
] + z1�α

p

Var[G(y)]

for any ↵ 2 [1
2
, 1], where the first line follows from the definition of U(kG(y)k2

Σ
, 1� ↵). The

second line follows from the observations that (A) z1�α < 0 and (B) the second term in the

first line uses an upper bound on the variance of kG(y)k2
Σ
(Equation (16)).

We now proceed to upper bound the probability of the event in the display equation

above. First consider a normal approximation to the distribution of kG(y)kΣ with matched

moments, and denote its inverse CDF by F †�1(✓,↵). We may then write the probability of

the event above as

P

h

kG(y)k2
Σ
 E[G(y)k2

Σ
] + zα

p

Var[G(y)]
i

= F
h

F †�1(✓,↵)
i

= ↵ +

⇢

F
⇥

F̄�1(✓,↵)
⇤

� F †
h

F †�1(✓,↵)
i

�

,

where F (·) and F †(·) denote the exact and approximate CDFs of kG(y)k2
Σ
. It will suffice to

show that for any v,

|F (v)� F †(v)|  5
p
2p
N

(Σ
1

2 (A� C)Σ
1

2 )2.

As in Lemma S5.1 we obtain this result through the Berry–Esseen theorem. In this case,

the variable of interest is kG(y)k2
Σ
= ✏>(A � C)>Σ(A � C)✏ + 2✏>

⇥

(A� C)✓ + (k � `)
⇤

.

As in this previous lemma, we use Lemma S5.3 to write this variable as a shifted sum of

independent, scaled non-central �2 random variables, this time with scaling parameters
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equal to the eigenvalues Σ
1

2 (A� C)>Σ(A� C)Σ
1

2 . Recognizing that the eigenvalues of the

matrix M>M are the squares of the singular values of M for any matrix M, we obtain the

desired result.

Lemma S5.3. Let X be a random N-vector distributed as X ⇠ 2✏>A✏ + b>✏ where

A 2 R
N⇥N , b 2 R

N , and ✏ ⇠ N (0,Σ). Then X is distributed as a shifted sum of

differently scaled, independent non-central �2 random variables. In particular, if we

let Udiag(�)U> be the eigen-decomposition of Σ
1

2 (A + A>)Σ
1

2 , then we can write X
d
=

PN

n=1
Yn �

1

4
kdiag(�)�1U>

Σ
1

2 bk2, where each Yn

indep
⇠ �n�

2
1(

1

2
��1
n e>nU

>
Σ

1

2 b), where en is the

nth basis vector.

Proof. The proof of the lemma proceeds through a long algebraic rearrangement. In

particular we rewrite X as

X = 2✏>A✏+ b>✏

= �>Σ
1

2 (A+ A>)Σ
1

2 � + b>Σ
1

2 �

// defining � := Σ
�

1

2 ✏ so that � ⇠ N (0, IN).

= �>Udiag(�)U>� + b>Σ
1

2Udiag(�)�
1

2diag(�)
1

2U>�

// Letting Udiag(�)U> := Σ
1

2 (A+ A>)Σ
1

2 be an eigen-decomposition,

// with U>U = IN and � 2 R
N
+

d
= �>diag(�)� + b>Σ

1

2Udiag(�)�
1

2diag(�)
1

2 �

=
NX

n=1

(�
1

2

n�n +
1

2
�
�

1

2

n e>nU
>
Σ

1

2 b)2 �
1

4
b>Σ

1

2Udiag(�)�1U>
Σ

1

2 b

d
=

�b>(A+ A>)�1b

4
+

NX

n=1

�n�
2

1(
1

2
��1

n e>nU
>
Σ

1

2 b),

where each en denotes the nth basis vector and each of the scaled non-central �2 random

variables in the last line are independent.

Lemma S5.4. Consider a scaled non-central chi-squared random variable, X ⇠ s�2
1(�),

where s and � are scaling and non-centrality parameters, respectively. Denote the second
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and third central moments of X by σ2 = Var[X] and ρ = E
⇥

(X − E[X])3
⇤

. Then ρ

σ2 ≤ 10s.

Proof. Recall that the second and third central moments of the scaled non-central χ2 have

known forms, σ2 = 2s2(1 + 2λ) and ρ = 8s3(1 + 3λ). Therefore we may write

ρ

σ2
=

8s3(1 + 3λ)

2s2(1 + 2λ)

≤ 4s

✓

1

1
+

3λ

2λ

◆

=
4 · 5

2
s

= 10s,

as desired.

S6 Empirical Bayes supplementary details

S6.1 Additional figure

Figure S4 shows the calibration in the simulation experiment described in Section 5.1.
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Figure S4: Calibration of approximate high-confidence bounds on the win of an empirical

Bayes estimate over the MLE in simulation. Each series depicts calibration for a different

choice of the parameter θ (N = 50).

S6.2 Asymptotic coverage of the empirical Bayes estimate

Theorem 5.1 shows that we can apply the machinery developed for Bayes rules with fixed

priors to lower bound the win with at least the desired coverage asymptotically. We here

consider a scaling of win,

WN(ΘN , YN) :=
1p
N

⇥

kYN �ΘNk2 � kΘ∗

N(YN)�ΘNk2
⇤

.

We use a special case of Bound S4.1 in Appendix S4.4 with no covariates (i.e. D = 0), and

we treat the estimate τ̂ 2N(YN) as if it were fixed rather than estimated from the data. For

each N , this bound is

bN(YN ,α) :=
1p
N

inf
λ∈[0,U(YN , 1−α

2
)]

2

1 + τ̂ 2N
F−1



χ2
N(

λ

4
),
1� α

2

�

� λ

2(1 + τ̂ 2N)
� kYNk2

(1 + τ̂ 2N)
2

where F−1
⇥

χ2
N(λ), 1� α

⇤

denotes the inverse cumulative distribution function of the non-

central χ2 with N degrees of freedom and non-centrality parameter λ, evaluated at 1� α

51



and U(YN , 1 � α) := infδ�0

⇢

δ

�

�

�
kYNk

2  F�1
⇥

χ2
N(δ), 1� α

⇤

�

is a high-confidence upper

bound on kθk2.

For our theorem and its proof, a key quantity is, for each N , the sample second moment

for the first N parameters, which we denote by τ 2N := N�1
PN

n=1 θ
2
n. We emphasize, however,

that while it may be convenient to describe τ 2N as a sample moment, θ is fixed in Theorem 5.1

and throughout this analysis.

Proof of Theorem 5.1. We prove the theorem by showing that for any α, the gap

between the win WN(ΘN , YN) and the bound bN(YN ,α) computed for the empirical Bayes

estimate converges in distribution to the gap between the analogous win and bound

computed for the same estimates but with prior variance fixed as τ 2 = τ 2N . We denote

these latter quantities by W ⇤
N(ΘN , YN) and b⇤N(YN ,α), and note that since τ 2N is fixed

P[W ⇤
N(ΘN , YN) � b⇤(YN ,α)] � α by construction (Proposition S4.1). For convenience, we

denote WN(ΘN , YN) by WN , bN(YN ,α) by bN , W
⇤
N(ΘN , YN) by W ⇤

N , and b⇤N(YN ,α) by b⇤N .

Observe that we can write

WN � bN =
WN � bN

W ⇤
N � b⇤N

(W ⇤
N � b⇤N).

By Lemma S6.4, W ⇤
N � b⇤N is asymptotically Gaussian, and by Lemma S6.2 WN�bN

W ∗

N
�b∗

N

p
! 1. As

a result, the distribution of WN � bN approaches the distribution of W ⇤
N � b⇤N in supremum

norm. Since b⇤N obtains the desired coverage by construction, the result follows.

Supporting lemmas.

Lemma S6.1. If the sequence τ 2N is bounded, then τ 2N � τ̂ 2N is Op(N
� 1

2 ), where Op(·) denotes

stochastic convergence in probability.

Proof. Note that for each N , kYNk
2 ⇠ χ2

N(Nτ 2N). Therefore we have that E[kYNk
2] =

N +Nτ 2N and Var[kYNk
2] = 2(N +2Nτ 2N ). So, recalling that τ̂ 2N := kYNk2

N�2
� 1 = kYNk2�(N�2)

N�2
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we may write

⌧̂ 2N =
kYNk2 � E[kYNk2]

N � 2
+

(N +N⌧ 2N)� (N � 2)

N � 2

=
kYNk2 � E[kYNk2]

N
+ ⌧ 2N +O(

1

N
).

And so

|⌧̂ 2N � ⌧ 2N | 
�

�

�

kYNk2 � E[kYNk2]
N

�

�

�
+O(

1

N
)

=

 

p

2 + 4⌧ 2Np
N

!

�

�

�

kYNk2 � E[kYNk2]
p

Var[kYNk2]

�

�

�
+O(

1

N
).

By Chebyshev’s inequality, kYNk2�E[kYNk2]p
Var[kYNk2]

is bounded in probability and we can see that

|⌧̂ 2N � ⌧ 2N | is Op(N
� 1

2 ).

Lemma S6.2. Let W ⇤
N and b⇤N denote the win and its bound evaluated for ⌧ 2 = ⌧ 2N , rather

than the empirical Bayes estimate. Then

WN � bN

W ⇤
N � b⇤N

= 1 +
⌧ 2N � ⌧̂ 2N
1 + ⌧̂ 2N

= 1 +Op(
1p
N
).

Proof. Recall that we may decompose WN as

WN(ΘN , YN) =
1p
N

"

2

1 + ⌧̂ 2N
✏>NYN � 1

(1 + ⌧̂ 2N)
2
kYNk2

#

and that our bound is

bN(YN ,↵) =
1p
N

(

inf
λ2[0,U(YN , 1−α

2
)]

2

1 + ⌧̂ 2N
F�1



�2
N(

�

4
),
1� ↵

2

�

� �

2(1 + ⌧̂ 2N)
� kYNk2

(1 + ⌧̂ 2N)
2

)

,

where U(YN ,↵) does not depend on ⌧̂ 2N .

As such,

WN � bN =
2p

N(1 + ⌧̂ 2N)

(

✏>NYN � inf
λ2[0,U(YN , 1−α

2
)]
F�1



�2
N(

�

4
),
1� ↵

2

�

+
�

4

)

,

and we can see that

WN � bN

W ⇤
N � b⇤N

=
1 + ⌧ 2N
1 + ⌧̂ 2N

= 1 +
⌧ 2N � ⌧̂ 2N
1 + ⌧̂ 2N

.

By Lemma S6.1 the second term is Op(N
� 1

2 ), as desired.
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Lemma S6.3. Let λ1,λ2, . . . be a sequence of reals satisfying, for each N , N−1λN < κ

for some constant κ. Let F−1
χ2

N

(λN ,α) denote the inverse CDF of a non-central χ2 with N

degrees of freedom and non-centrality parameter λN . Then for any α ∈ (0, 1),

1
√
N

h

F−1
χ2

N

(λN ,α)− (N + λN)
i

=

r

2 + 4
λN

N
zα +O(

1
√
N
),

where zα is the α-quantile of the standard normal.

Proof. Note that a χ2
N
(λN) random variable is equal in distribution to a sum of N i.i.d.

χ2
1(N

−1λN) random variables. Let σ2
N

:= Var[χ2
1(N

−1λN)] = 2 + 4N−1λN and note that

each σ2
N
≥ 2. Let ρN := 8 + 24N−1λN be third central moment of these variates and note

that each ρN ≤ 8 + 24κ.

Let Fχ2

N
(λN )(x) denote the CDF of a non-central χ2 random variable with N degrees of

freedom and non-centrality parameter λN evaluated at x. By the Berry–Esseen theorem

(Berry 1941, Theorem 1), for all x

�

�

�

�

�

Fχ2

N
(λN )(x)− Φ



x− (N + λN)√
2N + 4λN

�

�

�

�

�

�

≤
C1ρ

σ3
√
N

≤
C1(8 + 24κ)

2
3

2

√
N

= O(
1

√
N
),

where C1 ≤ 1.88 is a universal constant. Since Φ(·) is continuously differentiable and

invertible, we obtain the same convergence rate for the inverse CDFs. That is, for any

α ∈ (0, 1),
F−1
χ2

N

(λN ,α)− (N + λN)
√
2N + 4λN

− zα = O(
1

√
N
).

Rescaling these terms by N−

1

2

√
2N + 4λN and rearranging, we find

1
√
N

h

F−1
χ2

N

(λN ,α)− (N + λN)
i

=

r

2 + 4
λN

N
zα +O(

1
√
N
)

as desired.
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Lemma S6.4. Let b⇤N and W ⇤
N again denote the win and bounds evaluated for the variance

⌧ 2 = ⌧ 2N rather than the empirical Bayes estimate. If the sequence ⌧ 2N is bounded, then

(W ⇤
N − b⇤N)− cN

dN
→ N (0, 1)

for some sequences of constants c1, c2, . . . and d1, d2, . . . .

Proof. Let  be such that for all N , ⌧ 2N < .

Recall that we may write

W ⇤

N − b⇤N =
2

√
N(1 + ⌧ 2N)

(

✏>NYN − inf
λ2[0,U(YN , 1−α

2
)]
F�1



�2
N(

�

4
),
1− ↵

2

�

+
�

4

)

. (S31)

To prove the lemma, we build off of the normal approximation described in Appendix S4.1.

Note first that an application of Chebyshev’s inequality provides that N�1U(YN ,
1�α

2
) −

⌧ 2N is Op(N
�

1

2 ), so that N�1U(YN ,
1�α

2
) <  with probability approaching 1. Next, by

Lemma S6.3,

1
√
N

(

F�1



�2
N(

�N

4
),
1− ↵

2

�

−



�N

4
+N

�

)

=

r

2 +
�N

N
z 1−α

2

+O(
1

√
N
),

for any sequence �1,�2, . . . that satisfies, for each N , N�1�N < .

Notably, since any sequence of �N ’s achieving the infima in Equation (S31) will satisfy

this condition, we may substitute this expression in and rewrite W ⇤
N − b⇤N as

W ⇤

N − b⇤N =
2

1 + ⌧N

2

4

✏>NYN√
N

−
√
N

(

inf
λN2[0,U(YN , 1−α

2
)]
F�1



�2
N(

�N

4
),
1− ↵

2

�

−



�N

4
+N

�

)

−
√
N

3

5

=
2

1 + ⌧N

"

✏>NYN −N
√
N

− inf
λN2[0,U(YN , 1−α

2
)]
z 1−α

2

r

2 +
�N

N
+Op(

1
√
N
)

#

=
2

1 + ⌧N

2

6

4

✏>NYN −N
√
N

− z 1−α

2

s

2 +
U(YN ,

1�α

2
)

N
+Op(

1
√
N
)

3

7

5

=
2

1 + ⌧N

"

✏>NYN −N
√
N

− z 1−α

2

q

2 + ⌧ 2N +Op(
1

√
N
)

#

// Since ⌧ 2N −
U(YN ,

1�α

2
)

N
is Op(

1
√
N
).
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Finally, note that ✏>YN is approximately normal with mean N and variance N(2 + ⌧
2

N ).

Furthermore, the distribution of this quantity approaches that of a normal at the same

O(N�
1

2 ) rate in the supremum norm (one may make this precise with a Berry–Esseen

bound). This allows us to write

W ⇤

N − b⇤N ∼
2

1 + ⌧ 2N



q

2 + ⌧ 2Nx−
q

2 + ⌧ 2Nz 1−α

2

�

+Op(
1

√
N
)

∼
2
p

2 + ⌧ 2N

1 + ⌧ 2N

(x− z 1−α

2

) +Op(
1

√
N
)

for x ∼ N (0, 1). The result obtains by taking dN := (2
p

2 + ⌧ 2N)/(1 + ⌧
2

N) and cN :=

−dNz 1−α

2

, and noting that the lower order term does not influence the limiting distribution

of d�1

N

⇥

(W ⇤

N − b⇤N)− cN
⇤

.

S7 Logistic regression supplementary material

This section provides supplementary information related to Section 5.2. We begin by

reviewing notation for convenience in Appendix S7.1. In Appendix S7.2 we then provide

a proposition demonstrating the asymptotic rate of convergence of the approximation of

the MAP estimate to the exact MAP estimate, as well a proof and supporting lemmas.

Appendix S7.3 then provides a proof of Theorem 5.3. Appendix S7.4 gives additional details

on the simulation experiments.

S7.1 Preliminaries and notation

Consider logistic regression with random N -vector covariates x1, x2, . . . and responses

y1, y2, . . . , where for each data point m, ym | xm, ✓ ∼ (1 + exp{−x>

m✓})
�1
�1 + (1 +

exp{x>

m✓})
�1
��1 for some unknown parameter ✓ ∈ R

N . We use XM = [x1, x2, . . . , xM ]> and

YM = [y1, y2, . . . , yM ]> to denote the first M data points.

One choice of an estimate for ✓ after observing M observations is the MLE,

✓̂M := argmax
θ

log p(YM | XM , ✓).
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Another possibility is the MAP estimate under a standard normal prior

θ
⇤

M
:= argmax

θ

log p(YM | XM , θ)�
1

2
kθk2.

The approach in Section 5.2 involves an approximation to this estimate involving a

Gaussian approximation to the likelihood, defined by a 2nd order Taylor approximation of

the log posterior formed at θ̂M . In particular, by Bayes’ rule, the log posterior is, up to an

additive constant,

log pM(θ) := log p(YM | XM , θ)�
1

2
kθk2

and we use the approximation

log p̃M(θ) := log p(YM | XM , θ̂M)�
1

2
kθk2 �

1

2
(θ � θ̂M)>HM(θ̂M)(θ � θ̂M), (S32)

where HM (θ̂M ) = r2

θ
� log p(YM | XM , θ)

�

�

θ=θ̂M
is the Hessian of the negative log likelihood,

computed at the MLE.

The approximation we use for computing our proposed bound is then the maximizer of

this approximation

θ̃
⇤

M
:= argmax

θ

log p̃M(θ).

In Section 5.2 we found that we could express θ̃⇤
M

as

θ̃
⇤

M
=

h

IN + Σ̃M

i�1

θ̂M ,

where Σ̃M := HM (θ̂M )�1 is an approximation to the covariance of θ̂M . This solution may be

seen by considering the first order optimality condition (i.e. setting the gradient of log p̃M (θ)

to zero).

S7.2 Asymptotic approximation quality

We here show that, in the large sample limit, θ̃⇤ provides a very close approximation of the

MAP estimate, θ⇤.
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Proposition S7.1 (Asymptotic approximation quality). Consider Bayesian logistic re-

gression with a Gaussian prior ✓ ⇠ N (0, IN). Let x1, x2, . . . be a sequence of random

i.i.d. covariates satisfying E[xmx
>

m] � 0 and with bounded third moment, and let y1, y2, . . .

be responses distributed as in Equation (18). Denote by XM := [x1, x2, . . . , xM ]> and

YM := [y1, y2, . . . , yM ]> the covariates and labels of the first M data points. Consider the

MAP estimate of ✓ after observing M data points,

✓
⇤

M := argmax
✓

p(✓|YM , XM) and the approximation ✓̃
⇤

M :=
h

IN + Σ̃M

i�1

✓̂M , (S33)

where ✓̂M := argmax✓ p(YM |XM ; ✓) and Σ̃M :=
h

�r2

✓
log p(YM |XM ; ✓)

�

�

✓=✓̂M

i�1

. Then

k✓̃⇤M � ✓
⇤

Mk 2 Op(M
�2), where Op denotes stochastic convergence in probability.

The Op(M
�2) convergence rate established in Proposition S7.1 is very fast in comparison

to the Op(M
�

1

2 ) convergence rate of the MLE, as well as to the Op(M
�1) rate of convergence

of the MAP to the posterior mean. Notably, this asymptotic rate is consistent with rates

observed in simulation (Figure S5a).

Proof. We here show that k✓⇤M � ✓̃
⇤

Mk is Op(M
�2). Our route to proving this relies on

Lemma S7.1 (Trippe et al. 2019, Lemma E.1), which will provide a sequence of bounds

on k✓⇤M � ✓̃
⇤

Mk that depend on the norms of the gradients of log pM(·) at ✓̃
⇤

M , cM :=

kr✓ log pM(✓̃⇤M)k, and a sequence of strong log-concavity constants ↵M for log pM(·) which

hold on the interval {t✓⇤M + (1� t)✓̃⇤M |t 2 [0, 1]}. In particular, Lemma S7.1 provides that

k✓⇤M � ✓̃
⇤

Mk  cM
↵M

and we obtain the result by showing that ↵M grows as Ωp(M) and cM

drops as Op(M
�1).

We first use Lemma S7.3 to show that the strong log-concavity constants of log pM

in a neighborhood of radius ✏ of ✓, B✏(✓) grow as Ωp(M). This allows us to establish

that k✓̃⇤M � ✓̂Mk is Op(M
�1) (Lemma S7.4). Since both ✓̂M and ✓

⇤

M converge strongly to

✓ under these conditions (see e.g. Van der Vaart (2000, Theorem 10.10)), the interval

{t✓⇤M + (1 � t)✓̃⇤M |t 2 [0, 1]} is then contained within B✏(✓) with probability approaching

1. Consequently, the constants of strong log concavity of log pM on this interval, which we

take as ↵1,↵2, . . . , must grow as Ωp(M) as well.
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Now all that remains is to show that cM drops as Op(M
�1). Recall from above that

kθ̃⇤M � θ̂Mk is O(M�1). This fact and the boundedness of the higher derivatives of r log pM

will allow us to use Taylor’s theorem to obtain the desired rate.

However, before proceeding to a more detailed derivation of this rate, we introduce some

additional notation. Let φ(y, a) denote the GLM mapping function, such that

φ(y, a = x>θ) = log p(y|x, θ)

= � log(1 + exp{�yx>θ})

and note that all higher derivatives with respect to a are bounded. In particular, third

derivative satisfies

φ000(a) :=
d3

da3
φ(y, a)  1

6
p
3
,

where we have dropped y as an argument, because these higher derivatives do not depend

on y.

We now proceed to derive a stochastic rate of convergence of krθ log pM(θ̃⇤M)k. We
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obtain this through a long derivation involving a series of upper bounds.

krθ log pM(θ̃⇤M)k = krθ(log pM � log p̃M)(θ̃⇤M)k

= krθ(log pM � log p̃M)(θ̂M) + (θ̃⇤M � θ̂M)>r2
θ
(log pM � log p̃M)(θ0M)k

// By Taylor’s theorem, for some θ0M 2 {tθ̂M + (1� t)θ̃⇤M |t 2 [0, 1]}

= k(θ̃⇤M � θ̂M)>r2
θ
(log pM(θ0M)� log p̃M(θ0M))k

// Since rθ log p̃M(θ̂) = rθ log pM(θ̂)

= k(θ̃⇤M � θ̂M)>
h

r2
θ
log p(YM |XM , θ0M)�r2

θ
log p(YM |XM , θ̂M)

i

k

// Since log p̃M is a second degree approximation defined at θ̂M

 kθ̃⇤M � θ̂Mk

2

4

M
X

m=1

kr2
θ
log p(ym|xm, θ

0

M)�r2
θ
log p(ym|xm, θ̂M)kOP

3

5

= kθ̃⇤M � θ̂Mk

2

4

M
X

m=1

kθ0M � θ̂Mk · k
Z 1

t=0

∂

∂t
r2

θ
log p(ym|xm, θ)

�

�

θ=tθ̂M+(1�t)θ0
M

kOP

3

5

// By the fundamental theorem of calculus

 kθ̃⇤M � θ̂Mk2
2

4

M
X

m=1

k
Z 1

t=0

∂

∂t
r2

θ
log p(ym|xm, θ)

�

�

θ=tθ̂M+(1�t)θ0
M

kOP

3

5

 kθ̃⇤M � θ̂Mk

2

4

M
X

m=1

kxmk3(maxaφ
000(a))

3

5

=
1

6
p
3
kθ̃⇤M � θ̂Mk2

2

4

M
X

m=1

kxmk3
3

5

 Op(
1

M2
)Op(M) = Op(

1

M
),

where the final line requires that the covariates have bounded third moment.

Supporting Lemmas

Lemma S7.1 (Trippe et al., 2019, Lemma E.1). Let f, g be twice differentiable functions

mapping R
N ! R and attaining minima at θf = argminθ f(θ) and θg = argminθ g(θ),

60



respectively. Additionally, assume that f is ↵–strongly convex for some ↵ > 0 on the set

{t✓f + (1� t)✓g|t 2 [0, 1]} and that kr✓f(✓g)�r✓g(✓g)k2 = kr✓f(✓g)k2  c. Then

k✓f � ✓gk2 
c

↵
. (S34)

Lemma S7.2 (uniform law of large numbers). Let HM(✓) be as defined in Equation (S32)

and define H(✓) := E[r2
✓
log p(y1|x1; ✓)], where the expectation is taken under the true ✓. If

E[x1x
>
1 ] exists and is positive definite then

sup
✓02B✏(✓)

k
1

M
HM(✓0)�H(✓0)k2

a.s.
! 0.

according to p, where B✏(✓) is a closed neighborhood of ✓ of radius ✏, for any ✏ > 0.

Proof. Since the each of the M data points {(xm, ym)}
1
m=1 are i.i.d. by assumption, M�1HM

converges point-wise by the law of large numbers. However, we are additionally interested

in uniform convergence; a number of different uniform laws of large numbers suffice for this.

Because H is continuously differentiable in ✓ (recall that for any xm,
d3

d✓3
log p(ym|xm, ✓) is

bounded) it is therefore Lipschitz continuous on the bounded set B✏(✓). As such one can

construct a bounded envelope for H on this set, which amounts to a sufficient condition for

uniform convergence on B✏, see Van der Vaart (2000, Theorem 19.4 - Glivenko-Cantelli).

We refer the reader to Van der Vaart (2000, Chapter 19) for technical background, and in

particular to Van der Vaart (2000, Example 19.8) which walks through an example closely

related to the present case.

Lemma S7.3. Consider logistic regression with random covariates, x1, x2, . . . . Let B✏(✓) be

a closed neighborhood of radius ✏ > 0 around ✓ and for each M define

↵M := inf
✓02B✏(✓)

�min

⇥

r2
✓
log pM(✓0)

⇤

to be the constant of strong log-concavity constant of log pM(·) on B✏(✓), where �min(·)

denotes the smallest eigenvalue of its matrix argument. If the covariates are i.i.d. and satisfy

E[x1x
>
1 ] � 0, then ↵M is Ωp(M).
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Proof. Consider the scaled Hessians of log pM(·), M�1HM(·). By Lemma S7.2, M�1HM(·)

converges uniformly to its expectation, H(θ) := E[r2
✓
log p(y1|x1, θ)] on B✏(θ). Since H(θ) �

0 on B✏(θ), we have that

inf
✓02B✏(✓)

λmin(
1

M
HM(θ))

a.s.
! inf

✓02B✏(✓)
λmin(HM(θ)) > 0.

Therefore αM := inf✓02B✏(✓) λmin

⇥

r2
✓
log pM(θ0)

⇤

is Ωp(M).

Lemma S7.4. Let θ̂ and θ̃
⇤ be the MLE and the approximation to the MAP defined in

Equation (19), respectively. If the covariates, x1, x2, . . . are i.i.d. and satisfy E[x1x
>
1 ] � 0,

then kθ̂M � θ̃
⇤
Mk is Op(M

�1).

Proof. Recall that

θ̃
⇤

M =
h

IN + Σ̃M

i�1

θ̂M ,

where Σ̃M := HM(θ̂M)�1. Lemma S7.3 provides that the constants of strong log-concavity

for log pM grow as Ωp(M) in a neighborhood of θ. Therefore, since θ̂M converges strongly

to θ, we can see that λmin(HM(θ̂M)) is Ωp(M). Next, we rewrite

kθ̃⇤M � θ̂Mk = k
h

IN + Σ̃M

i�1

θ̂M � θ̂Mk

= k
h

IN +HM(θ̂M)
i�1

θ̂Mk

 k
h

IN +HM(θ̂M)
i�1

kOPkθ̂Mk


kθ̂Mk

λmin

⇣

HM(θ̂M)
⌘ .

which one can see is Op(M
�1) since kθ̂Mk is bounded in probability.

S7.3 Proof of Theorem 5.3

Before proving the theorem we begin by explicitly writing out the win and our proposed

bound defined in Section 5.2. For clarity, we introduce a subscript M to index the size of

the dataset on which these quantities are computed. Specifically, recalling that in this case
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we have A = IN and C = (IN + Σ̃M)�1, and noting that therefore A� C = (IN + Σ̃
�1

M )�1,

we have

bM(↵) = 2tr[(IN + Σ̃
�1

M )�1
Σ̃M ] +

2z 1−α

2

r

UM(kGM(✓̂M)k2
Σ̃M

,
1� ↵

2
) + 2kΣ̃

1

2

M(IN + Σ̃
�1

M )�1Σ̃

1

2

Mk2F � k✓̃⇤M � ✓̂Mk2

where GM(✓̂M) := (IN + Σ̃
�1

M )�1
✓̂M and

UM(kGM(✓̂M)k2
Σ̃M

, 1� ↵) := inf
δ>0

⇢

�

�

�

�

�

kGM(✓̂M)k2
Σ̃M

 (� + kΣ̃
1

2

M(IN + Σ̃
�1

M )�1
Σ̃

1

2

Mk2F ) +

(S35)

z1�α

q

2kΣ̃
1

2

M(IN + Σ̃
�1

M )�1Σ̃M(IN + Σ̃
�1

M )�1Σ̃

1

2

Mk2F + 4kΣ̃
1

2

M(IN + Σ̃
�1

M )�1Σ̃

1

2

Mk2
OP

�

�

(S36)

is an approximate high-confidence upper bound on kGM(✓̂M)k2
Σ̃M

. For convenience, we

abbreviate UM(kGM(✓̂M)k2
Σ̃M

, 1� ↵) by UM .

Next, we recall that we may decompose the win in squared error loss for using ✓
⇤

M in

place of ✓̂M as

WM(✓) = 2✏>M(IN + Σ̃
�1

M )�1
✓̂ � k✓⇤M � ✓̂Mk2,

where ✏M := ✓̂M � ✓.

Proof. Proving the theorem amounts to showing that for any ✓ and ↵ 2 (0, 1),

lim
M!1

Pθ

⇥

WM(✓) � bM(↵)
⇤

� ↵.

Lemma S7.6 provides thatM1.5(WM (✓)�bM (↵)) converges in distribution to 2
p

✓>H(✓)�3✓(��

z 1−α

2

), for � ⇠ N (0, 1). Thus for any ✓, Pθ

⇥

WM(✓)� bM(↵) > 0
⇤

! (1 � Φ(z 1−α

1

)) =

1 � 1�α

2
> ↵. This establishes that bM(·) has above nominal coverage asymptotically, as

desired.

Lemma S7.5. |UM � kΣ̃M✓k2
Σ̃M

| is Op(M
�3.5).
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Proof. Recall that we can rearrange Equation (S35) to see that UM satisfies

k(I + Σ̃
�1

M )�1
✓̂Mk2

Σ̃M

= UM + 2kΣ̃2

M(IN + Σ̃M)�1k2F +
q

kΣ̃4

M(IN + Σ̃M)2k2F + 4kΣ̃2

M(IN + Σ̃M)�1k2
OP

UM

where we have simplified Σ̃

1

2

M(IN + Σ̃
�1

M )�1
Σ̃

1

2

M to Σ̃
2

M(IN + Σ̃M)�1.

We next further simplify the condition above by replacing two quantities with simplifying

approximations plus lower order terms. First note that we may write

k(I + Σ̃
�1

M )�1
✓̂Mk2

Σ̃M

= kΣ̃M ✓̂M � Σ̃
2

M(IN + Σ̃M)�1
✓̂Mk2

Σ̃M

= kΣ̃M ✓̂Mk2
Σ̃M

+ kΣ̃2

M(IN + Σ̃M)�1
✓̂Mk2

Σ̃M

� 2✓̂>M Σ̃
4

M(IN + Σ̃M)�1
✓̂M

= kΣ̃M(✓ + ✏M)k2
Σ̃M

+Op(M
�4)

= kΣ̃M✓k2
Σ̃M

+ kΣ̃M✏Mk2
Σ̃M

+ 2✏>M Σ̃
3

M✓ +Op(M
�4)

= kΣ̃M✓k2
Σ̃M

+Op(M
�3.5).

Second, we write
q

kΣ̃4

M(IN + Σ̃M)2k2F + 4kΣ̃2

M(IN + Σ̃M)�1k2
OP

UM =

q

Op(M�8) + 4kΣ̃2

M(IN + Σ̃M)�1k2
OP

UM

= 2kΣ̃2

M(IN + Σ̃M)�1kOP

p

UM +Op(M
�4).

As such, we may see that UM satisfies

kΣ̃M✓Mk2
Σ̃M

� UM = 2kΣ̃2

M(IN + Σ̃M)�1k2F + 2kΣ̃2

M(IN + Σ̃M)�1kOP
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UM +Op(M
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UM +Op(M
�3.5)
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where we have dropped 2kΣ̃2

M(IN + Σ̃M)�1k2F since it is Op(M
�4).

We next observe that UM must be Op(M
�3). Otherwise, the event that kΣ̃M✓Mk2

Σ̃M

�
UM < 0 must occur infinitely often (since kΣ̃M✓k2

Σ̃M

is Op(M
�3)); in turn, this condition

would imply that kΣ̃2

M(IN + Σ̃M)�1kOP

p
UM < 0 occurs infinitely often, which provides a

contradiction.

Finally, in tangent with Equation (S37), that UM is Op(M
�3) allows us to see that

�

�

�
UM � kΣ✓k2

Σ̃M

�

�

�
is Op(M

�3.5), as desired.
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Lemma S7.6. Let ↵ 2 (0, 1) and ✓ 2 R
N . Consider the sequence of wins, WM(✓), and

bounds, bM(↵), computed for logistic regression. Then

M1.5(WM(✓)� bM(↵))
d
! 2

p

✓>H(✓)�3✓(� � z 1−α

2

),

where � ⇠ N (0, 1).

Proof. We prove the lemma by first writing WM and bM using simplifying approximations

and lower order terms. The result is obtained by manipulating a scaling of the difference

between the two expressions and considering the limit in M.

Note first that we may write

WM(✓) : = 2✏>(✓⇤M � ✓̂M)� k✓⇤M � ✓̂Mk2

= 2✏>(✓̃⇤M � ✓̂M)� k✓̃⇤M � ✓̂Mk2 +Op(M
�2)

= 2✏>(IN + Σ̃
�1

M )�1
✓̂M � k✓̃⇤M � ✓̂Mk2 +Op(M

�2)

= 2✏>Σ̃M ✓̂M � k✓̃⇤M � ✓̂Mk2 +Op(M
�2)

= 2✏>Σ̃M✓ � k✓̃⇤M � ✓̂Mk2 +Op(M
�2).

Next we write

bM(↵) = 2tr
h

(IN + Σ̃
�1

M )�1
Σ̃M

i

+ 2z 1−α

2

q

UM + 2kΣ̃2

M(IN + Σ̃M)�1k2F � k✓̃⇤M � ✓̂Mk2

= 2z 1−α

2

q

kΣ̃M✓k2
Σ̃M

+Op(M�3.5)� k✓̃⇤M � ✓̂Mk2 +Op(M
�2)

= 2z 1−α

2

kΣ̃M✓k
Σ̃M

� k✓̃⇤M � ✓̂Mk2 +Op(M
�2).

where the second line uses Lemma S7.5.

By considering a scaled difference between these two terms we find,

M1.5(WM(✓)� bM(↵)) = 2M1.5
✏
>
Σ̃M✓ � 2M1.5z 1−α

2

kΣ̃M✓k
Σ̃M

+Op(M
�

1

2 )

d
! 2M1.5kΣ̃M✓k

Σ̃M
(� � z 1−α

2

)

for � ⇠ N (0, 1), by recognizing that ✏M is asymptotically normal with mean zero and

covariance ΣM , and therefore that 2✏>Σ̃M✓ is asymptotically normal with variance kΣ̃M✓k2
Σ̃M

.
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Finally, the result obtains by noting that Lemma S7.2 implies that

M1.5kΣ̃Mθk
Σ̃M

=

q

θ>(HM(θ̂)/M)�3θ
a.s.
!

p

θ>H(θ)�3θ.

S7.4 Empirical validation of logistic regression bound in simula-

tion

(a) (b) (c)

Figure S5: c-values for logistic regression in two sets of simulations. With N = 2, (a)

empirical rates of convergence of distances amongst various estimates and the true parameter.

With N = 25 and M = 1000 (b) c-values are able to detect improvements, sometimes with

high confidence, and (c) the approximate bound has greater than nominal coverage. See

Appendix S7.4 for details.

We here demonstrate the fast convergence of our approximation to the MAP in logistic

regression on simulated data. We also include supplementary results illustrating the favorable

performance of c-values in this setting, which is made possible by this fast convergence.

Figure S5a shows the distance between various estimates and the true parameter for a

range of sample sizes in simulation. Due to the log-log scale, the slopes of the series in this

plot reflect the polynomial rates of convergence. Notably we see the fast Op(M
�2) rate of
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convergence of our approximation to the MAP estimate, θ̃∗
M
, to the exact MAP estimate,

θ∗
M
.

Figure S5b demonstrates that our approach is able to detect improvements (i.e. we can

obtain high c-values). Furthermore, our proposed bound has similar coverage properties

as in the Gaussian case (Figure S5c). In the experiments for Figures S5b and S5c, we

simulated the parameter as θ ∼ N (0, 1
2
IN) and, in each replicate, simulated the covariates

for each data point, indexed by m, as xm

i.i.d.
∼ N (0, N−2IN).

Two of the series in Figure S5a are distances between the posterior mean of θ and

other estimates, E[θ|X, Y ] =
R
p(θ|X, Y )θdθ. Because this model is non-conjugate, the

estimate does not have an analytic form. As such we approximated these quantities with

Gauss-Hermite quadrature. For each sample size M, we performed 25 replicate simulations.

In the experiments that went into Figures S5b and S5c, we used N = 25 and M = 1000.

See logistic regression approximations.ipynb and

logistic regression c values and operating characteristics.ipynb for details.

S8 Additional details on applications

In this section, we provide additional details associated with the applications in Section 6.

S8.1 Estimation from educational testing data

Conservatism of c-values with the empirical Bayes step. The application in

Section 6.1 diverges from the scenarios covered by our theory in Sections 3 and 4 in its use

of the empirical Bayes step to estimate β, τ, and σ. As a result, our theory does provide

that c(y) satisfies the guarantee of Theorem 2.2. However, given the favorable asymptotic

and empirical properties of the empirical Bayes procedure established in Section 5.1, we

conjectured that the looseness in the lower bound b(y,α) would be sufficiently large to

compensate for any error introduced by these departures from the assumptions of our theory.

To investigate this, we performed a simulation study in which we used this empirical Bayes
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Figure S6: Calibration of the lower bounds b(y,α) in small area inference with an empirical

Bayes step (5000 replicates). The coverage on the y-axis is a Monte Carlo estimate of

Pθ

⇥

W (θ, y) ≥ b(y,α)
⇤

. Each series corresponds to a set of simulations within which we

excluded a different subset of schools based on a minimum number of students tested.

step and confirmed that the c-values retained at least nominal coverage (Figure S6). To

ensure that the simulated data had similar characteristics to the real data, we simulated

5000 datasets by drawing hypothetical school level means according the assumed generative

model with the parameters (β, τ and σ) fit on the real dataset. In each simulation, we

re-estimated the fixed effects and variances (again using lme4), and computed the associated

MLE, Bayes estimates, and bounds across a range of confidence levels. We then computed

the empirical coverage of these bounds and found them to be conservative across all tested

levels.

Additional preprocessing and calibration details. Hoff (2021) considered only

schools at which 2 or more students took the reading test. We excluded an additional 8

schools with fewer than 5 students tested because we expected that the high variance in

these observations could introduce too much slack into our bound as result of the poor

conditioning of Σ
1

2 (A− C)Σ
1

2 (recall the operator norm bound in Equation (11), derived in
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Equation (S26)). Consistent with this hypothesis we computed a c-value of 0.88 when we

included these additional schools, and when we further restricted to the 657 schools with at

least 10 students tested we computed a c-value 0.999992. To further validate this hypothesis

of increased conservatism we simulated additional datasets with these different thresholds

on school size and evaluated the calibration of computed bounds (Figure S6). We observed

the coverage for the simulations with smallest threshold was noticeably higher at large α,

in agreement with this hypothesis.

S8.2 Estimation of violent crime rates in Philadelphia

Dependence on the order in which estimates are compared. In Section 6.2 we

chose to report one among three estimates as described in Remark 6.1. We note however

that this paradigm is sensitive to the order in which the different estimates are considered.

For this set of three models, if we had first compared θ
�(y) as the alternative to θ̂(y) as

the default we would have rejected θ̂(y) (with c = 0.99942), and then again sided against

updating our estimate a second time with a low c-value (c = 0.0) for comparing θ
⇤(y) as

the alternative against θ�(y) as the default. The potential cost of ending up with a worse

estimate as a result of considering these estimates in sequence may be understood as a cost

of looking at the data an additional time.

Selection of prior parameters from historical data. The parameters σ2

δ
, σ

2

z
, σ

2

y
were

selected based on historical data. Specifically, we estimated σ
2

y
and σ

2

z
as the averages of the

sample variances of the violent and non-violent report rates, respectively, computed within

each census block in the preceding years. For the first model described in Section 6.2, we

then estimated σ
2

δ
using these same historical data to reflect the prior belief that half of the

variability across the unknown rates is common across the two response types.

For the second model considered, we selected the signal variance and length scale of this

covariance function by drawing hypothetical datasets of crime levels from the prior predictive

distributions and selecting those which produced the most reasonable looking patterns. In
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particular, we chose the length scale to be one sixth of the maximum distance between the

centroids of census blocks, and the signal variance to reflect the prior belief that one third of

the variability in the unknown rates was explained by the spatial component. In addition, we

choose a smaller value for �2

δ
in this second model, so that the total implied variance would

be the same. See supplementary code in Philly reported crime estimation.ipynb for

additional details.

Derivation of ✓∗ (posterior mean in the first model). As mentioned in the main

text, since the prior and likelihoods for this model are independent across each census block

we can compute the posterior mean for each block independently.

Let ⇡(·) denote the joint density of all variables. Then, since zn |= yn
�

�✓n, we have that

⇡(✓n|yn, zn) ∝ ⇡(✓n|zn)⇡(yn|✓n, zn)

= ⇡(✓n|zn)⇡(yn|✓n).

Next observe that by construction, zn − ✓n = ✏
z

n
+ �

z

n
− �

y

n
∼ N (0, 2�2

δ
+ �

2

z
) and so

✓n|zn ∼ N (zn, 2�
2

δ
+ �

2

z
). Since again by construction we have that yn|✓n ∼ N (✓n, �

2

y
),

Gaussian conjugacy provides that

✓n|yn, zn ∼ N (E[✓n|yn, zn],Var[✓n|yn, zn]),

where

Var[✓n|yn, zn] =
1

�−2
y

+ (2�2

δ
+ �2

z
)−1

=
�
2

y
(2�2

δ
+ �

2

z
)

�2
y
+ 2�2

δ
+ �2

z

and

E[✓n|yn, zn] = Var[✓n|yn, zn](Var[✓n|zn]
−1
E[✓n|zn] + Var[yn|✓n]

−1
yn)

=
�
2

y
(2�2

δ
+ �

2

z
)

�2
y
+ 2�2

δ
+ �2

z

⇥

(2�2

δ
+ �

2
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)−1
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−2
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⇤

=
2�2

δ
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2
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δ
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yn +
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2
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2�2

δ
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as desired.

Analogously, for the second model considered in Section 6.2 we find the posterior mean

as

θ
�(y) =

h

IN + σ
2
y(2K + 2σ2

δ
IN + σ

2
zIN)

�1
i

�1

y +
h

IN + σ
�2
y (2K + 2σ2

δ
IN + σ

2
zIN)

i

�1

z.

Additional dataset details. The data considered in this application are counts of police

responses categorized as associated with violent crimes and violent crimes in October 2018.

These were obtained from opendataphilly.org. The observed data we model are the inverse

hyperbolic sine transform of the number of recorded police responses per square mile. For

all practical purposes, these values can be interpreted as log densities (see, e.g., Burbidge

et al. (1988)).

S8.3 Gaussian process kernel selection for estimation of ocean

currents

We here provide additional details of the Gaussian process covariance functions used in

Section 6.3. The first covariance function described, which incorporated covariation at two

scale is defined, for both the longitudinal and latitudinal components (i in {1, 2}) and for

each pair of buoys n and n0, as

k(θ(i)n , θ
(i)
n0 ) =σ

2
1 exp

8

<

:

−

1

2

"

(latn − latn0)2

r21,lat
+

(lonn − lonn0)2

r21,lon
+

(tn − tn0)2

r21,t

#

9

=

;

+σ
2
2 exp

8

<

:

−

1

2

"

(latn − latn0)2

r22,lat
+

(lonn − lonn0)2

r22,lon
+

(tn − tn0)2

r22,t

#

9

=

;

,

where σ
2
1, r1,lat, r1,lon and r1,t parameterize the mesoscale variation in currents whereas

σ
2
2, r2,lat, r2,lon and r2,t parameterize the submesoscale variation. As in Lodise et al. (2020),

the latitudinal and longitudinal components of F are modeled as a priori independent. We

choose these parameters by maximal marginal likelihood (Rasmussen & Williams 2006,
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Chapter 5) on an independent subset of the GLAD dataset. Estimates of the underlying

currents are obtained as the posterior mean of F under this model, which we take as the

alternative, θ⇤(y).

The second covariance function captures covariation among observations only at the

mesoscale. In this case, the Gaussian process prior has covariance function

k(θ(i)n , θ
(i)
n0 ) = σ

2
1 exp

8

<

:

−

1

2

"

(latn − latn0)2

r21,lat
+

(lonn − lonn0)2

r21,lon
+

(tn − tn0)2

r21,t

#

9

=

;

+σ
2
2 [n = n0],

which maintains the same marginal variance but excludes submesoscale covariances. We take

the posterior mean under this model as the default estimate θ̂(y). See

submesoscale GP c value.ipynb for further implementation details.
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