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Quorum sensing is a widespread process in bacteria that controls collective
behaviours in response to cell density. Populations of cells coordinate gene
expression through the perception of self-produced chemical signals.
Although this process is well-characterized genetically and biochemically,
quantitative information about network properties, including induction
dynamics and steady-state behaviour, is scarce. Here we integrate experiments
with mathematical modelling to quantitatively analyse the LasI/LasR quorum
sensing pathway in the opportunistic pathogen Pseudomonas aeruginosa. We
determine key kinetic parameters of the pathway and, using the parametrized
model, show that quorum sensing behaves as a bistable hysteretic switch,
with stable on and off states. We investigate the significance of feedback archi-
tecture and find that positive feedback on signal production is critical for
induction dynamics and bistability, whereas positive feedback on receptor
expression and negative feedback on signal production play a minor role.
Taken together, our data-based modelling approach reveals fundamental
and emergent properties of a bacterial quorum sensing circuit, and provides
evidence that native quorum sensing can indeed function as the gene
expression switch it is commonly perceived to be.

1. Introduction
Cell–cell communication, termed quorum sensing (QS), is a common process in
bacteria that regulates collective behaviours according to population cell den-
sity by producing and sensing diffusible autoinducer (AI) molecules [1,2].
QS-controlled behaviours range from interactions with eukaryotic hosts and
microbial warfare to protein secretion and biofilm formation. In Gram-negative
bacteria, the basic QS circuitry consists of a LuxI-type synthase that produces an
acyl-homoserine lactone (AHL) signal, and a cognate LuxR-type signal receptor
[3,4]. The diffusible AHL signal accumulates during growth, binds to the LuxR-
type receptor and activates the expression of target genes, as well as the
expression of the synthase itself.

QS has been extensively characterized genetically and biochemically, reveal-
ing important information about the function and regulation of individual
components, target genes, induction kinetics, and signal specificity [4–6]. QS
via AHL is particularly well understood in the Gram-negative model organism
and opportunistic human pathogen Pseudomonas aeruginosa [5,6]. In P. aerugi-
nosa, QS controls hundreds of genes, including extracellular enzymes, toxins,
metabolites and biofilm components [7–9]. The major AHL system (termed
‘las’) consists of the LuxI-type synthase LasI that produces 3-oxo-dodecanoyl-
homoserine lactone (3OC12-HSL) and the LuxR-type intracellular receptor
LasR that binds the signal and dimerizes to activate transcription of target
genes (figure 1). One of these target genes is lasI, creating a positive feedback
loop [10]. For lasR, evidence of positive feedback-control is less clear [7,11,12].
In addition, the transcription of lasI is subject to negative regulation by the
repressor RsaL, which is itself induced by LasR-3OC12-HSL, dampening

© 2023 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 M

ar
ch

 2
02

3 

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2022.0825&domain=pdf&date_stamp=2023-03-15
mailto:martin.schuster@oregonstate.edu
https://doi.org/10.6084/m9.figshare.c.6451363
https://doi.org/10.6084/m9.figshare.c.6451363
http://orcid.org/
http://orcid.org/0000-0002-7674-0887
http://orcid.org/0000-0002-5521-4159


signal accumulation during culture growth [13,14]. Move-
ment of 3OC12-HSL across the cell envelope is probably by
a combination of diffusion and active transport [15,16]. In
this study, we will focus our analysis on the las QS system,
acknowledging that there are other, subordinate QS systems
(rhl, PQS) in P. aeruginosa [6].

As described, the P. aeruginosa las system enables coordi-
nated gene expression control at the population level, where
the accumulation of extracellular 3OC12-HSL produced by all
cells triggers a concerted response [17,18]. This behaviour is con-
sistent with the general perception of QS as a population switch
[19–21], although some systems also exhibit heterogeneous
responses with considerable cell-to-cell variation [22–26].

In addition to experimental inquiry, QS has been
investigated from a theoretical perspective. Mechanistic
mathematical modelling studies have revealed important
insights into architecture and emergent properties of the sig-
nalling network [27–36]. Theory predicts that the P. aeruginosa
las QS system, with positive feedback and receptor dimeriza-
tion as two key elements, may constitute a bistable system
with two stable states, on and off [30]. Bistability has been
considered a hallmark of the canonical QS circuitry, yet it
has rarely been demonstrated experimentally [27–29]. The
only two cases we are aware of employ a non-native heter-
ologous host system [26,37]. An important accompanying
property of bistability is hysteresis, the dependency of the
steady-state response on the direction of the parameter
change. Hysteresis has functional implications by increasing
the robustness of the QS response to fluctuations in
environmental signal levels [26].

In this study, we have combined experimental and
theoretical approaches for a data-centred analysis of the
P. aeruginosa las QS system. We collected extensive exper-
imental data, built a mechanistic mathematical model, and
fit the model to the data. Using the parametrized model,
we investigated emergent properties including bistability
and hysteresis, as well as the role of positive and negative
feedback. Our findings help define the design principles
and functional capacity of QS systems.

2. Methods
2.1. Bacterial strains, plasmids and growth conditions
We used the P. aeruginosa PAO1 wild-type strain (WT, Iglewski
lineage) [38], and an isogenic mutant containing a markerless in-
frame deletion in lasI [18]. We used the promoter-probe vector
pPROBE.AT [39] with lasI’-gfp, lasR’-gfp and rsaL’-gfp transcrip-
tional fusions, respectively. The encoded green fluorescent
protein (GFP) variant is the stable and fast-folding gfpmut1 [40].
The lasI’-gfp and rsaL’-gfp fusion constructs were described pre-
viously [18], whereas the lasR’-gfp fusion was constructed for the
present study, using routine molecular cloning techniques. A
333 bp lasR promoter region was PCR-amplified from the PAO1
genome using forward primer 50-N6AAGCTTGCGATGGGCC
GACAGTGAAC-30 and reverse primer 50-N6GAATTCTCTTAAA
CTATTAACCAATCAGCCAAATATGGATT-30. The PCR product
was digested with HindIII and EcoRI (restriction sites underlined)
and ligated with equally digested pProbe-AT. The resulting con-
struct was confirmed by sequencing. Plasmids were introduced
into chemically competent P. aeruginosa strains according to stan-
dard procedures [41]. Strains were grown at 37°C with shaking in
Lennox Lysogeny Broth (LB) liquid cultures buffered with 50 mM
3-(N-morpholino)-propanesulfonic acid (MOPS), pH 7.0, or on LB
agar plates. The antibiotic carbenicillin was added at a final con-
centration of 200 µg ml−1 for plasmid selection and maintenance.
Growth was measured as optical density at 600 nm (OD600) in a
photometer (Eppendorf Biophotometer), and as colony-forming
units (CFU) per ml by dilution-plating. The conversion factor
between OD600 and CFU ml−1 was determined by linear
regression (electronic supplementary material, figure S1).

2.2. Gene expression and AHL measurements
We conducted gene expression and AHL quantitation of
P. aeruginosa strains in LB-MOPS liquid cultures. We employed
a pre-culturing scheme as described previously to dilute pre-
existing GFP in cells to background levels [18]. In short, we
inoculated pre-cultures with freshly streaked P. aeruginosa colo-
nies, and grew them to an OD600 of 0.1 to 0.2. Using these pre-
cultures, we inoculated experimental cultures to an initial
OD600 of 0.001. Cultures were grown for 3 h before the first
sampling. Subsequent samples were taken every 0.5 to 1 h, for
up to 12h of total cultivation time. For gene expression analysis,
P. aeruginosa WT and lasI mutant strains contained lasI’-gfp, lasR’-
gfp or rsaL’-gfp reporter fusions. At each time point, aliquots were
transferred to a black-walled microtiter plate to quantify GFP
intensity in a fluorescence plate reader (Tecan M200) at 480 nm
excitation and 535 nm emission wavelengths. The fluorescence
of LB-MOPS medium was subtracted as a blank. The net fluor-
escence values were divided by the OD600 at the respective
time point to attain relative fluorescence intensities.

For AHL analysis, at each time point a 5 ml culture aliquot
was extracted twice with acidified ethyl acetate as described in
[42,43]. Extracts were concentrated to dryness by evaporation
and resuspended in fresh ethyl acetate. The 3OC12-HSL content
in these extracts was determined by an established Escherichia
coli bioassay containing lasR and a lasB’-lacZ reporter [42,43].
ß-galactosidase activity of bioassay cultures was measured
using the Galacto Light Plus Reporter Gene Assay (Thermo
Fisher). 3OC12-HSL concentrations in the experimental samples
were determined by comparison with a standard curve
generated with synthetic 3OC12-HSL (RTI International).

2.3. Mathematical model
Mathematical modelling was based on a previously described
quantitative model of QS [28,44]. This model consists of a
system of ordinary differential equations (ODEs) that describes

Se

Si

Si

LasI

lasIrsaL

RsaL LasR LasR

lasRtarget

Figure 1. Pseudomonas aeruginosa las QS circuit. Red symbols indicate
genes, blue symbols indicate proteins, and green symbols indicate small mol-
ecules. Se and Si denote extracellular and intracellular 3OC12-HSL signal,
respectively; target represents one of many target genes in the LasR regulon.
Shown are signal exchange, receptor dimerization upon signal binding, posi-
tive feedback on lasI and lasR, as well as negative feedback on lasI and rsaL.
Black boxes indicate LasR binding sites, and the open box in the lasI-rsaL
bidirectional promoter indicates an RsaL binding site.
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the change in signal and protein components, as well as cell
growth, over time. Parameters are described in table 1. We con-
sidered the cellular signalling dynamics with two different
versions of this model: (i) a minimal model with positive feed-
back on lasI expression only, and (ii) an extended model with
positive feedback on both lasI and lasR expression, as well as
negative feedback on lasI and rsaL expression via RsaL. The
minimal model is described as follows:

extracellular 3OC12-HSL, Se
dSe
dt

¼ rv csec (Si " Se)" gex Se,

intracellular 3OC12-HSL, Si
dSi
dt

¼ csec (Se " Si)þ Asyn I

and LasI synthase, I

dI
dt

¼ ðVI max " VI minÞ
Sim

Sim þ Km
S
þ VI min " gI I :

The minimal model is virtually identical to that by Fujimoto and
Sawai [28]. It makes several assumptions and simplifications. It
models the positive feedback of 3OC12-HSL on lasI expression
directly through the Hill function Smi =ðSmi þ Km

S Þ and does not
explicitly model LasR. However, it considers positive coopera-
tivity (expressed by the Hill coefficient m), which primarily
manifests through receptor dimerization [49]. The binding of
one signal molecule to a receptor monomer, which then drives
dimerization, is assumed to be non-cooperative, as is the binding
of LasR-3OC12-HSL to target promoters [53,54]. The model omits
the concentrations of mRNA species, as they are assumed to be in
quasi-steady state with the respective protein concentrations [27].
It considers extracellular but not intracellular signal degradation,
because the contribution of intracellular degradation is negligible,
given the extremely small intracellular volume fraction. The model
also does not distinguish between contributions of diffusion and
active transport to the movement of signal in and out of the cell
[16], and does not explicitly consider potential effects of growth
rate on the concentrations of intracellular species [55]. These sim-
plifications reduce the complexity of the model such that
parameter estimation is computationally feasible. The cellular
volume fraction (rv) affects the extracellular 3OC12-HSL concen-
tration (Se) through population growth, as described below.

In addition to the minimal model, we built the following
extended model that incorporates additional protein components
and feedback regulation:

extracellular 3OC12-HSL, Se

dSe
dt

¼ rv csec (Si " Se)" gex Se,

intracellular 3OC12-HSL, Si
dSi
dt

¼ csec (Se " Si)þ Asyn I,

LasI synthase, I
dI
dt

¼ ðVI max " VI minÞ
ðRSiÞm

ðRSiÞm þ Km
S

Kn
L1

Ln þ Kn
L1

þ VI min " gI I ,

LasR receptor, R

dR
dt

¼ ðVR max " VR minÞ
ðRSiÞm

ðRSiÞm þ Km
S
þ VR min " gR R

and RsaL repressor, L

dL
dt

¼ ðVL max " VL minÞ
ðRSiÞm

ðRSiÞm þ Km
S

Kn
L2

Ln þ Kn
L2

þ VL min " gL L :

The full model includes LasR and RsaL, assuming separate basal
and maximum synthesis rates (Vmin and Vmax) for each protein.
Here, the Hill function models the dual positive feedback of
signal–receptor complex formation on both signal synthase and
receptor expression, following a previously proposed notation
[28,44]. It considers positive cooperativity through receptor
dimerization as above, and the same induction threshold (KS)
for all three proteins, which is consistent with our experimental
data (see below). The repression of lasI and rsaL by RsaL is mod-
elled by the term Kn

L=ðLn þ Kn
LÞ, with separate repression

constants (KL1 and KL2), respectively. This distinction in repres-
sion strength is again motivated by our experimental data and
is consistent with the asymmetric promoter architecture (even
though there is only a single RsaL binding site in the lasI-rsaL
bidirectional promoter, it is positioned such that disproportionate
repression is conceivable) [13]. A Hill coefficient (n) allows for
cooperativity in the form of RsaL dimerization [50].

Further, the ODE for extracellular 3OC12-HSL is simplified in
both models by assuming a quasi-steady state between intra-
cellular and extracellular signal. Hence, Se can be expressed
through Si

dSe
dt

¼ r v csec (Si " Se)" gex Se ¼ 0

) Se ¼
csec

csec þ gex=rv
Si:

Each cellular model is connected to a growing population as
follows.
population density, P

dP
dt

¼ mP
(K " P)

K

and volume fraction, ρv
rv ¼ N

Vcell

Vtot
¼ P Vcell:

Population density P is modelled with a logistic growth
equation. P is defined as cell number N (in colony-forming
units, CFU) per total culture volume Vtot (normalized to 1 l).
The volume fraction rv links population growth to the single-
cell model through a change in Se. Strictly speaking, the
volume fraction rv is a volume ratio N ðVcellÞ=ðVtot " VcellÞ,
which can be readily shown by mass conservation law. However,
because Vcell is very small compared with Vtot, Vtot ≅Vtot –Vcell.

Finally, we explicitly model GFP intensities to relate our
measurements of lasI’-gfp, lasR’-gfp and rsaL’-gfp reporter expression
to the actual protein components in the cell (only lasI’-gfp in the
reduced model, and all three reporters in the full model).

GFPlasI , GI

dGI

dt
¼ t ðVI max " VI minÞ

ðRSiÞm

ðRSiÞm þ Km
S

Kn
L1

Ln þ Kn
L1

þ VI min

! "
" gG GI ,

GFPlasR, GR

dGR

dt
¼ t ðVR max " VR minÞ

ðRSiÞm

ðRSiÞm þ Km
S
þ VR min

! "
" gG GR

and GFPrsaL, GL

dGL

dt
¼ t ðVL max " VL minÞ

ðRSiÞm

ðRSiÞm þ Km
S

Kn
L2

Ln þ Kn
L2

þ VL min

! "
" gG GL :

The factor τ relates the rate of GFP synthesis to that of the respective
protein. We assume here that promoter activity is proportional to
protein concentration. We believe this assumption is appropriate
given that QS is a transcriptional regulatory pathway, but of
course it neglects possible post-transcriptional effects. The apparent
degradation rate of GFP (gG) is the same in all equations.
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2.4. Model analysis and parameter estimation
The model was built, simulated and analysed with the complex
pathway simulator software package (COPASI 4.29) [56,57]. Par-
ameters were estimated with the parameter estimation function
(method Levenberg-Marquardt), using the experimental data in
figure 1 and the guessed initial parameter values shown in
table 1. Parameter fitting was done in iterations, starting with
the initial parameter set and then again with the parameter set
obtained after the initial step. The fitting algorithm calculates
the following objective function, to which each experiment
contributes with a weighted sum of squares [57]:

E(P) ¼
X

i:j
vj ðxi,j " yi,j (P)Þ2,

where P is the tested parameter set, xi.j is a point in the dataset,
and yi.j is the corresponding simulated value. The indices i and j

denote rows and columns in the dataset, corresponding to the
measured time points and quantities, respectively. The weight
for each data column is given by vj. Weights were calculated
using the mean squares method.

The Akaike information criterion (AIC) as an estimator of the
prediction error was calculated as

AIC ¼ n ln
SSE
n

! "
þ 2k,

where n is the number of data points in the dataset, k is the
number of parameters fitted plus one and SSE is the least-squares
error, i.e. the sum of the objective function in table 2 [58].

A steady-state analysis was conducted with the parameter scan
function in Copasi. The GFPlasI level at steady state was determined
with cell density as the control variable. To maintain a constant cell
density, the growth rate was set to zero, and time courses were run
for 1000 h at 1000 different cell density values within a given range.

Table 1. Model parameters.

quantity name start valuea unit reference

estimated valuec

minimal

model

extended

model

fittable parameters

VI max maximum LasI synthase expression rate 1.9 μmol (l h)−1 [31] 4.2 2.7

VI min minimum LasI synthase expression rate 0.022 μmol (l h)−1 [31] 0.020 0.017

VR max maximum LasR receptor expression rate 1 μmol (l h)−1 this study — 1.3

VR min minimum LasR receptor expression rate 0.1 μmol (l h)−1 this study — 0.27

VL max maximum RsaL repressor expression rate 1 μmol (l h)−1 this study — 1.0

VL min minimum RsaL repressor expression rate 0.1 μmol (l h)−1 this study — 0.0025

KS QS induction threshold 0.1 μmol l−1;

μmol2 l−2 b

[17,18] 0.13 0.11

KL1 repression threshold for lasI 1 μmol l−1 this study — 2.2

KL2 repression threshold for rsaL 1 μmol l−1 this study — 2.8

γex extracellular signal degradation rate 0.0174 h−1 [45] 0.0029 0.0014

csec AI transport rate across cell envelope 12 h−1 [16,28] 88 78

Asyn synthesis rate of autoinducer 1.6 h−1 [46,47] 5.5 4.3

γI degradation rate of synthase 0.36 h−1 [31] 1.6 0.78

γR degradation rate of receptor 0.36 h−1 [31] — 0.42

γL degradation rate of repressor 0.36 h−1 [31] — 0.093

γG degradation rate of GFP 0.029 h−1 [48] 0.79 0.12

μ growth rate constant 1.5 h−1 this study 1.3 1.2

K carrying capacity 3 × 1012 CFU l−1 this study 2.3 × 1012 2.4 × 1012

τ scaling factor for GFP expression 10 000 Rel. GFP intensity/

(μmol l−1)

this study 10 000 10 000

m Hill coefficient for induction 2 none [28,49] 2.3 2.2

n Hill coefficient for repression 2 none [50] — 6.8

other parameters

Vcell volume of a single cell 6 × 10−16 l [51,52] n/a n/a

Vtot total culture volume 1 l this study n/a n/a

ρv volume fraction of cells assigned none none n/a n/a

aStart values denote the initial parameter values used in the fitting attempt. In addition to these start values, we defined the initial conditions for the variables in the ODE

system at time zero. These were 0.01 µmol l−1 for I, R, L and Si, 100 relative fluorescence intensity units for GI, GL, and GR, and 10
9 CFU l−1 for P.

bUnits are μmol l−1 for the minimal model, and μmol2 l−2 for the extended model.
cRounded to two significant figures.
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Each cell density value was held constant throughout each time
course. Two different initial LasI and GFPlasI concentrations were
set to separately investigate the off-to-on transition (I0= 0.01,
GI 0= 100) and the on-to-off transition (I0 = 1, GI 0 = 10 000).

2.5. Feedback analysis
To investigate the significance of feedback in the model, we
employed the parametrized extended QS model. In addition to
Si, we evaluated effects on the actual circuitry components I, R
and L directly, rather than on GI, GR and GL. To essentially elim-
inate each one of the three feedback loops individually, we set the
equilibrium constants in the respective Hill and repression func-
tions to very large values (1 × 106), namely: Ks in the equation for
I to eliminate positive feedback on I, Ks in the equation for R to
eliminate positive feedback on R, and KL1 and KL2 in the
equations for I and L to eliminate negative feedback on I and L
via RsaL. Further, we added a hypothetical QS-controlled protein
T to the model to evaluate induction kinetics and steady-state be-
haviour independent of individual feedback manipulations that
alter the kinetics of I, R and L. It follows I induction kinetics
but does not include negative influence from RsaL, and the
value for Ks remains at 0.11 µmol2 l−2 (table 1).

dT
dt

¼ ðVI max " VI minÞ
ðRSiÞm

ðRSiÞm þ Km
S
þ VI min " gI T :

3. Results
3.1. Measurement of gene expression and signal

production
As a first step, we collected the experimental data required to
describe the las QS circuit. We focused on species relevant to
our mathematical model, and on experimental methods that
are feasible and quantitative. We measured the expression
of lasI, lasR and rsaL in P. aeruginosa via GFP reporter fusions,
and we measured the concentration of extracellular 3OC12-
HSL by bioassay (figure 2). We used a standard growth
medium, buffered Lysogeny broth, that is most commonly
used in the field and allows comparison with other studies.
We collected time courses across the full range of QS induc-
tion dynamics, from basal expression in the off state to
maximal expression in the on state.

Consistent with previous studies, we observed a sharp cell
density-dependent increase in GFPlasI and GFPrsaL from
initially very low, basal levels in the WT strain. The expression

of GFPlasR increased concurrently, although basal expression
levels were higher. For comparison, the expression of all GFP
reporter fusions was much lower in the lasI deletion mutant,
confirming that their induction is QS-dependent. By contrast
to GFPlasI and GFPrsaL, GFPlasR showed a modest, partially
QS-independent increase throughout growth, the implications
of which are discussed below. As expected, the observed con-
centrations of 3OC12-HSL during culture growth of the WT
correlated well with the expression levels of GFPlasI.

3.2. Mathematical modelling and parameter estimation
Next, we sought to fit our experimental data to a mechanistic
mathematical model of QS. To establish a baseline, we first
considered a minimal QS model with single feedback, intro-
duced by Fujimoto & Sawai [28]. This ODE model includes
four species, cell density, LasI concentration, extracellular
3OC12-HSL concentration and intracellular 3OC12-HSL con-
centration. It models positive feedback on lasI directly via
changes in signal concentration (figure 3 top left; see
Methods), with an underlying quasi-steady-state assumption.
We amended the model with a GFP equation that directly
relates gene expression measured by lasI’-gfp fusion to the con-
centration of LasI in the cell. Hence, three model variables, cell
density, extracellular 3OC12-HSL and GFPlasI, could be directly
fit to experimental data. We asked whether this model is suffi-
ciently complex to describe the experimentally observed
induction dynamics. We used the modelling software Copasi
[56] to implement the model and estimate parameters using
a least-squares method. To guide parameter estimation, start
values were taken from our own experimental data when
available, or taken from the literature (table 1). In addition to
the cell growth data, the minimal model was able to fit the
timing of induction well, but failed to accurately capture the
subsequent decrease in both 3OC12-HSL and GFPlasI levels
(figure 3 and table 2). We reasoned that the negative feedback
on lasI by RsaL could largely account for the discrepancy.

As a second step, we conducted a parameter estimation
with the extended QS model, which incorporates repression
of both lasI and rsaL by RsaL (figure 3 top right). The repres-
sion of both genes works by the binding of an RsaL dimer
to a conserved sequence element in the lasI-rsaL bidirectional
promoter [13,14,50]. The extended model also incorporates
LasR and its regulation by a second, positive feedback loop,
which is supported by our experimental data. We performed
a parameter estimation with the extended model as described

Table 2. Parameter estimation statistics.

fitted value data points

minimal model extended model

objective function RMSEa objective function RMSEa

CFU l−1 15 0.024 0.040 0.014 0.031

[3OC12-HSL] 8 0.80 0.32 0.053 0.082

GFPlasI 15 0.080 0.073 0.034 0.048

GFPlasR 15 — — 0.092 0.078

GFPrsaL 17 — — 0.038 0.048

sum 70 0.91 — 0.23 —
aRMSE, root mean square error.
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above and obtained a greatly improved fit that captured the
decline in 3OC12-HSL and GFPlasI levels late in growth. Com-
pared with the minimal model, the extended model showed
decreased RMSE values for 3OC12-HSL and GFPlasI (table 2).
The RMSE for the newly fit GFPrsaL was equally low, while
that for GFPlasR was somewhat higher, possibly indicating
additional layers of regulation not captured with our model
(see Discussion). Many estimated parameters were remarkably
close to the start values used to seed the model (table 1).

To estimate the relative quality of each model, we deter-
mined the Akaike information criterion (AIC), which
weighs the goodness of fit against the number of parameters
used to achieve that fit. The AIC is −116 for the minimal
model, and −181 for the extended model (electronic sup-
plementary material, table S1). Because a smaller number
indicates higher model quality, we conclude that the
extended model performs better, even when considering the
larger parameter space.

3.3. Bistability and hysteresis
Having parametrized the extended model, we sought to inves-
tigate two important and related emergent properties of the
QS network. We asked whether the extended model, as fit to
experimental data, can function as a bistable switch with
two stable states (on and off), and whether this switch exhibits
hysteresis. To answer these questions, we modelled signal
synthase expression, GFPlasI, at cellular steady state, as a func-
tion of different cell densities (figure 4). In support of
bistability and hysteresis, we observed two distinct on and
off states without a graded transition in between, and we
observed sharp transitions at different cell densities, depend-
ing on the direction of the change. The cell density range
between the low→ high and the high→ low transition is size-
able, suggesting that hysteresis could significantly improve the
stability of the QS response in a fluctuating environment.

Of note, the state switchingmodelledhere is so-called group-
level bistability triggered by the accumulation of extracellular
signal in a growing population of cells [28]. A concerted
group-level response is supported by recent single-cell gene
expression data showing unimodal distribution of GFPlasI
under culture conditions identical to those used here [17,18].

3.4. The role of positive and negative feedback
Next, we employed the parametrized extended model to ana-
lyse the significance of feedback architecture on the QS
response. There are two positive feedback loops (LasR-
3OC12-HSL activating lasI and lasR, respectively), and a nega-
tive feedback loop (RsaL activated by LasR-3OC12-HSL
repressing lasI and rsaL). We removed one of the respective
feedback loops in silico, as explained in Methods, and we simu-
lated time courses for the concentrations of the actual QS
circuitry components Se, I, R and L in the modified models
(figure 5). To also evaluate these effects on a QS-controlled
component that is not itself involved in positive or negative
feedback, we added a separate, hypothetical target protein T
to the model, and we simulated its behaviour under dynamic
and steady-state conditions. In the P. aeruginosa LasR regulon,
such a target protein candidate would be, for example, the
Type VI secretion effector PAAR4, the alkaline protease
AprA, or the nucleoside hydrolase Nuh [7,14,59,60].

The omission of positive feedback on I had a large effect.
Compared with WT conditions, it delayed the timing of
induction, greatly decreased the concentrations of I and Se
and more modestly those of the other components, and
resulted in rheostat-like rather than bistable behaviour. Of
note, basal expression of I still resulted in the gradual
accumulation of Se to concentrations near the Ks (0.1 µM),
such that R, L and T were induced to substantial levels.

By contrast, the omission of positive feedback on R had a
much smaller effect. It did not change the magnitude or
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timing of induction (except for R, of course) and still pro-
duced bistable behaviour, albeit with a narrower margin for
hysteresis. The observation that positive feedback on I is
essential for bistability is consistent with previous theoretical
work [30], as is the observation that positive feedback on R
enhances hysteresis [26].

The omission of negative feedback on I and L via L had
the expected effect on the magnitude of I, L and Se, but it
did not affect the timing of induction, nor bistability in gen-
eral. The increase in the levels of I, L and Se is in agreement
with experimental data on lasI, rsaL and 3OC12-HSL
expression in a P. aeruginosa rsaL mutant [14].

4. Discussion
This study brings to bear experimental and mathematical
approaches for an integrative understanding of bacterial
QS. Experimental and mathematical inquiry has largely co-
existed in this field, arguably without much cross-fertiliza-
tion. Consequently, a systems-level analysis of the functions
of native AHL-QS systems in a variety of experimental
model species such as Vibrio fischeri, P. aeruginosa, and
Agrobacterium tumefaciens remains scarce, and important func-
tional assumptions remain unproven. In this study, we
mechanistically modelled the native LasI-LasR (las) QS
system in P. aeruginosa. We fit the model to experimental
time series data, and used the parametrized model to inves-
tigate feedback architecture and steady-state behaviour,
linking network design to function. We found that the par-
ametrized model constitutes a bistable switch with distinct
on and off states, as well as hysteretic memory. We also
found that positive feedback on signal production is critical
in maintaining bistability.

Our chosen modelling approach is one of many [35], but
it was guided by the objective to mechanistically describe QS,
and to reduce parameter space as much as possible while
retaining the ability to explicitly model all experimentally
measured variables. Indeed, we found that our extended
model is sufficiently complex to accurately describe the
experimentally observed QS dynamics. This is remarkable

given that the QS circuitry in P. aeruginosa is embedded in
global cellular regulation [5,6,61]. However, our focus was
exclusively on the las system, and there is evidence that this
system is more autonomous than the two other, intercon-
nected QS systems, termed rhl and pqs. The las system is
considered to be atop the QS hierarchy, and it is influenced
less by environmental cues than the rhl system [62]. This
does not mean that there are no other factors that influence
the las system [5]. For example, the partially QS-independent
increase in lasR expression observed experimentally (figure 2)
[7,12] is not fully captured by the model. Implementing a
clear mechanistic basis for this pattern is not straightforward,
as the underlying pathway and level of regulation under the
specific culture conditions is not clear. However, it is evident
from our feedback analysis that positive feedback on LasR
itself is not a critical component of the QS circuitry in P. aer-
uginosa, such that the molecular details of LasR expression are
of lesser importance.

Instead, we find that positive signal feedback on lasI is
required for bistability. This result is consistent with theoreti-
cal work by Goryachev et al. [29,30]. Goryachev et al. also
reasoned that a second network element in addition to the
classical positive signal feedback is necessary for bistable
behaviour. In our network, this second element probably is
LasR receptor dimerization. Receptor multimerization is
one molecular interaction that contributes to positive coop-
erativity with a Hill coefficient greater than 1 as estimated
in our model. By contrast, experimental and theoretical
work by Haseltine and Arnold found that a synthetic QS cir-
cuitry with V. fischeri components in E. coli only exhibits
bistability if both I and R are under positive feedback control
[37]. Accordingly, they estimated the Hill coefficient to be 1 in
their model (no cooperativity), which neglects V. fischeri
LuxR receptor dimerization [63], but is consistent with the
experimentally determined binding characteristics of LuxR
to target DNA [64].

Finally, the omission of negative feedback via RsaL had
no major effect on induction dynamics and bistable behav-
iour. This result indicates that RsaL-mediated repression
could mainly function to dampen excessively high signal
production, possibly as a cost-saving mechanism, although
it is known that RsaL represses many other genes in
P. aeruginosa besides lasI and rsaL [14].

It will be interesting to test some of the modelling predic-
tions made here with specific gene deletions, promoter
mutations, or target gene-reporter fusions, under dynamic
or steady-state growth conditions. It will also be of interest
to apply a similar data-based modelling approach to other
native QS systems. Individual parameters will differ, and
emergent properties may as well, given that a combination
of factors (kinetic constants, positive and negative feedback,
receptor dimerization and molecular noise) can all affect
network behaviour [26,30]. In the case of individual target
genes as well as complete QS systems, potential regulatory
complexities will need to be considered.

Taken together, our work estimates parameter values and
rate constants, and defines design principles and emergent
properties of a native QS system. This knowledge can help
us quantify the performance of QS in various contexts: in bac-
terial communities and in association with a host, in the
design of synthetic QS circuits with desired functions, and
in the development of new therapeutic (quorum-quenching)
drugs that target QS in bacterial pathogens.
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Figure 4. Bistability and hysteresis. Steady-state GFPlasI expression at varying
cell densities according to the extended model. This plot represents stable
equilibrium conditions, with dGI=dt ¼ 0 and dP=dt ¼ 0, respectively. Bi-
stability is apparent as two distinct expression states (low or high), lacking
a graded transition. Hysteresis is apparent as distinct cell density thresholds
(arrows) in the low-to-high and the high-to-low transition.
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