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Large-Scale Multiple Sequence Alignment and
the Maximum Weight Trace Alignment Merging
Problem

Paul Zaharias, Vladimir Smirnov, and Tandy Warnow

Abstract—MAGUS is a recent multiple sequence alignment method that provides excellent accuracy on large challenging datasets.
MAGUS uses divide-and-conquer: it divides the sequences into disjoint sets, computes alignments on the disjoint sets, and then
merges the alignments using a technique it calls the Graph Clustering Method (GCM). To understand why MAGUS is so accurate, we
show that GCM is a good heuristic for the NP-hard MWT-AM problem (Maximum Weight Trace, adapted to the Alignment Merging
problem). Our study, using both biological and simulated data, establishes that MWT-AM scores correlate very well with alignment
accuracy and presents improvements to GCM that are even better heuristics for MWT-AM. This study suggests a new direction for
large-scale MSA estimation based on improved divide-and-conquer strategies, with the merging step based on optimizing MWT-AM.
MAGUS and its enhanced versions are available at https://github.com/vlasmirnov/MAGUS.

Index Terms—multiple sequence alignment, maximum weight trace, Markov clustering

1 INTRODUCTION

ULTIPLE sequence alignment is a basic step in many

bioinformatics pipelines, including phylogenetic esti-
mation, protein structure prediction, the detection of selec-
tion, etc. Yet accurate alignment estimation is very challeng-
ing under some circumstances (e.g., when datasets evolve
with high rates of evolution) [1]. Furthermore, only a few
methods have been able to run on datasets with 1000 or
more sequences [2], [3], [4], and many of the methods that
can run on large datasets degrade in accuracy under those
conditions [1], [4]. Thus, accurate alighment estimation on
large datasets, especially ones that have evolved under
high rates of evolution (and so have low pairwise sequence
identity) is very challenging.

Divide-and-conquer strategies have been designed to
enable highly accurate alignment methods to scale to large
datasets while maintaining high accuracy. These methods
operate in three stages: first the sequence dataset is divided
into disjoint subsets, then alignments are computed for
each of the subsets, and finally the subset alignments are
merged into an alignment on the entire dataset. Examples
of these methods include SATCHMO-JS [5], SATé [1], [6],
and PASTA [2]. Of these, PASTA provides the best accuracy
on datasets with many thousands of sequences and high
rates of evolution, and has been shown to scale to 1,000,000
sequences. MAGUS [7] is a recent MSA method that uses
this strategy, and it provides a substantial accuracy advan-
tage over PASTA, especially on datasets with high rates of
evolution. Yet MAGUS is essentially identical to PASTA for
the first two stages, and only differs significantly in how it
performs the third stage (where the disjoint subset align-
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ments are merged into an alignment on the full dataset).
Specifically, PASTA merges the set of £ disjoint alignments
by first merging k — 1 pairs of alignments (using either
OPAL [8] or Muscle [9]), and then uses the overlap between
the merged pairs to define the final merged alignment on
the basis of transitivity. In contrast, MAGUS uses a method
called the Graph Clustering Method (GCM) to merge the k
disjoint alignments all at once, rather than pairwise. Thus,
the advantage MAGUS has over PASTA is due to the use of
GCM instead of PASTA’s technique.

This study aims to understand why the use of GCM
produces highly accurate merged alignments. To do this,
we formulate an optimization problem for merging disjoint
alignments, which we called the Maximum Weight Trace
Alignment Merging (MWT-AM) problem. The Maximum
Weight Trace problem itself is a classical problem in bioinfor-
matics, introduced by Kececioglu nearly 30 years ago [10].

The input to the MWT problem is a set of sequences
(e.g., DNA sequences) and weights on pairs of letters from
the different sequences, and the objective is an MSA that
has the maximum total possible weight (defined to be the
sum of the weights of aligned letters in the output MSA).
Kececioglu [10] showed that MWT is NP-hard and can be
exactly solved in O(25 LP B?) time for B sequences of total
length L using dynamic programming. Kececioglu [10] also
proposed a more practical branch-and-bound refinement
of this algorithm, but the reduction in time is still not
sufficient to analyze more than relatively small datasets
(e.g., at most 20 sequences). Subsequent studies provided
some additional techniques, both for exact solutions [11],
[12] or heuristic solutions [13], [14]. Regrettably, not even the
heuristics are able to run on even moderate-sized datasets,
and the methods of Moreno and Karp [14] and Koller and
Raidl [13] are not publicly available.

In this study, we define the Maximum Weight Trace
for Alignment Merger Problem, or MWT-AM. We then
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show how GCM can be seen as a heuristic for this problem,
applied to a particular input that is constructed by MAGUS,
and we explore the optimization criterion scores it obtains.
We then modify the GCM strategy to try to improve the
MWT-AM scores, and we evaluate the correlation between
MWT-AM scores and alignment accuracy. We prove that
MWT-AM is NP-hard, and explore variants of GCM to
improve the MWT-AM criterion scores.

Our study shows that the GCM technique and its
variants are better solutions to MWT-AM than MAFFT-
merge [15] and T-Coffee [16], which are the only other
methods currently available that can merge disjoint align-
ments. Our study also shows that MWT-AM scores correlate
well with alignment accuracy, suggesting that MWT-AM
is a desirable optimization problem for use within divide-
and-conquer alignment estimation. Finally, we show that
using GCM and its variants within a divide-and-conquer
pipeline enables analyses of datasets with thousands of
sequences and produces highly accurate alignments. GCM
and MAGUS are freely available at https://github.com/
vlasmirnov/MAGUS.

2 METHODS
2.1 Maximum Weight Trace Alignment Merging

The input to the Maximum Weight Trace (MWT) problem is
a set S of sequences and a weight on selected pairs of letters
from the sequences; the objective is a multiple sequence
alignment of the sequences that maximizes the total weight
of the pairs of letters that appear together in a column. The
output alignment is also referred to as a “trace”, which has
a graph-theoretic description in [10] but can be more simply
described as follows. A trace is a partition of the letters of
the input sequences into an ordered set of pairwise disjoint
subsets X1, Xo,..., X\ so that (1) each set has at most one
letter from each sequence and (2) if letters x and y from
the same sequence s appear in X; and X; respectively
with ¢ < j, then = appears before y in s. By treating the
subsets as defining columns, these two properties ensure
that the provided ordering of the subsets defines a multiple
sequence alignment of the sequences. The weight of the
trace is the sum of the weights of those pairs of letters that
appear in the same subset, and hence in the same column in
the alignment defined by the trace.

We generalize the MWT problem to allow the input to be
a collection of disjoint alignments instead of a collection of
individual sequences, and we refer to this as the Maximum
Weight Trace Alignment Merging problem, or MWT-AM.
We begin with some basic definitions.

Definition 1. Given an alignment A on sequence set S and
a proper subset S’ C S, the restriction of A to the
sequences in S’ is the sub-alignment of A induced by
S’. In this restriction, if a site is entirely gapped in the
sub-alignment, then it is removed (i.e., masked). Thus,
the induced alignment contains no all-gap sites. Letting
A" denote the induced alignment on S’, we will say
that A induces A’. Given a collection A of alignments
Ay, Ay, ..., Ay, where A; is an alignment of set S;, we
say that A is a merger of the alignments in 4 if and only
if A is an MSA of the sequences in set S = U;S; and A

induces A; for each i = 1,2,..., k. We will also refer to
the alignments in 4 as constraint alignments.

Definition 2. Given an alignment A that is a merger of
alignments in A and given columns ¢ and ¢ drawn
from different alignments, we let A, be the indicator
function that returns 1 if c and ¢’ are in the same column
in A and otherwise returns 0. Then, given a non-negative
weight function w(c, ¢’), where ¢ and ¢ are columns in
different alignments in .A, we define the weight of A to
be weight(A) = >, . [w(c, ') x Acc]. In other words,
the weight of the merged alignment A is the sum of the
weights of column pairs, where the two columns come
from different alignments in A.

We now define the MWT-AM problem, using these def-
initions. The input to MWT-AM is a set A of alignments as
well as a set of weights on selected pairs of columns from
different alignments in 4. The output will be an alignment
A that is a merger of the alignments in A (see Definition 1)
that maximizes the total weight (see Definition 2).

The MWT-AM problem can also be described in terms
of the MWT problem, as we now show. A trace is a par-
tition of the columns of the input constraint alignments
into an ordered list of clusters, so that (1) each cluster
contains at most one column from each alignment and (2)
the ordering of the clusters is “valid”: if columns z and y
from the same constraint alignment A appear in clusters
C; and C}, respectively, with ¢ < j, then = appears before
y in A. Such a trace trivially gives us a multiple sequence
alignment that induces each of our constraint alignments
(i.e, the trace defines a merged alignment). Then, given
a weighting w(z,y) for every pair of columns z,y from
different constraint alignments, we can define the weight
of a trace T to be Zzy w(x,y), where the sum is taken over
all pairs of columns z, y belonging to the same cluster in 7.
It is easy to see that this is exactly the same as the weight
of the merged alignment defined by the trace according to
Definition 2.

We now formally define the MWT-AM problem:

Input: Multiple sequence alignments Ay, As, ..., Ay,
with A; an MSA on set S; of sequences with S; N
S; = 0 for i # j, and a weight function w(z,y) > 0
for every pair of columns z,y with z and y from
different MSAs.

Output: a trace 7' on Ay, As, ..., A of maximum
weight (i.e., a merged alignment of the input align-
ments that maximizes the total weight).

It is easy to see that if each MSA A; is a single sequence,
then MWT-AM is identical to MWT. It is also easy to see that
finding a trace with the largest MWT-AM score is identical
to finding a merged alignment with the total maximum
weight (Definition 2).

Theorem 1. MWT-AM is NP-hard but can be solved in
O(2P LB B?) for B alignments of total length L.

The proof follows easily from the corresponding theorems
for MWT in [12].
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Fig. 1: The GCM algorithm design. (Modified version of
figure from [7].) The input to GCM is a set of constraint
alignments. Optionally, we also supply weights on pairs of
columns (sites) from different constraint alignments. Step
0: If the weights are not provided, this step constructs
the backbone alignments, and uses these to compute the
weights on pairs of columns. Step 1: We build an align-
ment graph, where each node represents a column from a
constraint alignment and the weight of the edge between
two nodes is the weight for the corresponding pair of
columns. Thicker lines represent edges with higher weight.
Step 2: We cluster the alignment graph with our method
of choice. Step 3: We find a valid trace, where each cluster
represents a column in our final alignment. Our example
shows two common problems: the orange-outlined cluster
contains columns from the same constraint alignment, and
there is no valid ordering between the green-outlined cluster
and the three other clusters that it “crosses”. Step 4: We
optionally run our trace through the optimizer, which will
greedily move nodes between clusters to increase the MWT-
AM score.

2.2 Graph Clustering Merger (GCM)

The Graph Clustering Merger (GCM) is an algorithm that
was developed for use in MAGUS to merge the constraint
alignments it produces in a divide-and-conquer setting. In
this original formulation, GCM constructs a set of backbone
alignments (i.e.,, a library graph) in order to weight the
pairs of sites from different constraint alignments, but it
can also be used to merge a set of disjoint alignments if
the weights are provided by the user. In what follows, we
describe GCM for use in both cases, noting that without user
provided weights it will perform an initial step (referred
to as Step 0 below) to compute the weights. The Graph
Clustering Merger (GCM) then uses the weights it computes
(or that it is given) to construct a merged alignment, which
is referred to as a “trace” [10], using a sequence of steps.
We explore variants of the original GCM algorithm from
[7] in an attempt to improve the MWT-AM scores. Hence,
the final general design for these GCM variants has several
stages (Figure 1), some of which allow for variants. If the
input includes weights on the pairs of sites from different
constraint alignments, then GCM skips Step 0. Figure 1
presents a description of the stages of the algorithm.

2.2.1 Variants on Step 2: Clustering

The original technique for this step used in MAGUS is the
Markov Clustering Algorithm (MCL) from [17]. Here we
compare MCL to other approaches (for details, see Supple-
mentary Materials, Section S1). Furthermore, within MCL,
we vary the inflation factor to evaluate its impact.

Multi-level Regularized MCL (MRL-MCL) is a modi-
fication of MCL [18] and offers two extensions. The first is
to improve MCL's scalability with a hierarchical structure:
the input graph is coarsened to a more tractable size [19],
clustered with MCL, uncoarsened, and the coarse cluster-
ing is refined. The second extension is a “regularization”
operator, which is meant to smooth the flow distributions
of neighboring nodes and reduce MCL's perceived over-
clustering.

Region Growing (RG) is inspired by the heuristic in
[13] and reminiscent of Kruskal’s algorithm for finding
minimum spanning trees. We initialize our clustering with
every node in its own cluster. Each pair of clusters is added
to a max heap, weighted by the weight of the edge between
them. We then proceed to take pairs of clusters off the heap,
merging the pair together if they don’t contain any nodes
from the same subalignment (i.e. the new cluster would be
a valid MSA column). When we merge cluster B into cluster
A, we update A’s weight to all of B’s neighbors (we call clus-
ters “neighbors” if any of their elements have edges between
them) as follows: for each cluster C among B’s neighbors, we
let Weight(A,C) = Weight(A, C)+Weight(B,C) and put
the pair (A,C) on the max heap. We continue merging pairs
off the heap until we can’t merge anything else.

2.2.2 \Variants for Step 3: Computing a trace

We compare the original technique in GCM (which we will
refer to as “minclusters”) to two new techniques.

We explore the Fiduccia-Mattheyses (FM) algorithm
[20], previously applied to the realm of multiple sequence
alignment by MSARC [21]. FM is a heuristic for finding a
minimum-weight split in a graph, constrained by a balanc-
ing requirement (the sizes of the two parts can differ by at
most some value). Like MSARC, we use FM to recursively
cut our graph in half, looking for bipartitions that minimize
the weight of the split. Notably, the FM trace does not re-
quire a prior clustering, meaning that Step 2 can be skipped.

The MWTgreedy algorithm is basically a simple version
of the first step of the algorithm described in the Moreno
and Karp [14] paper. MWTgreedy takes the alignment graph
(with or without clustering), and performs a breadth-first-
search on the graph, starting from the “left”; when it finds a
cycle, it breaks the lowest-weight edge in the cycle.

In MWTSEARCH, we combine mwtgreedy with the
look ahead ability of the minclusters search algorithm used
in MAGUS. Instead of just greedily breaking the smallest
edge in every cycle, we consider every edge in the cycle as
a possible move, and we try to find a path of such moves
with the smallest weight.

The RG-FAST method is nearly the same as the Region
Growing (RG) clustering method described earlier, but we
constrain the algorithm to produce a valid trace, rather than
just a clustering.
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TABLE 1: Empirical Statistics of the Nucleotide Alignments. For the simulated datasets, the statistics are averaged across
all replicates. We report the number of sites in the true (simulated) or reference (biological) alignment, the proportion of
gaps, the alignment average gap length, the average normalized Hamming distance (ANHD), the maximum normalized
Hamming distance (MNHD), and the number of replicate datasets.

Dataset #seq #sites % gaps Gaplength ANHD MNHD #reps.
RNASIim 1000 4841.05 67.9 32 0.41 0.61 20
RNASim2 1000 4373.6 64.4 29 0.38 0.45 20
1000L1 1000 3817.5 73.2 13.6 0.70 0.77 20
1000L2 1000  2406.95 57.7 11.6 0.70 0.77 20
1000L3 1000 7042.75 85.2 20.0 0.69 0.76 20
1000L4 1000 2446.15 58.6 11.4 0.50 0.61 20
1000M1 1000 3965 74.4 10.1 0.70 0.77 20
1000M2 1000 3972.35 74.2 10.3 0.68 0.76 20
1000M3 1000 2722.55 62.8 7.6 0.66 0.74 20
1000M4 1000 2570.6 60.5 7.6 0.50 0.61 20
1000S1 1000 2141.15  53.0 4.0 0.69 0.77 20
100052 1000 1546 35.0 2.9 0.69 0.77 20
1000S3 1000 1595.25 37.0 29 0.69 0.76 20
100054 1000 1328.1 24.6 2.5 0.50 0.61 20
165.M 740 2390 60.4 8.1 0.29 0.69 1
165.3 5489 6646 77 4 74 0.29 0.70 1
165.T 5548 8804 83 9.4 0.29 0.84 1
165.B.ALL 24246 5328 72.9 3.5 0.21 0.46 1

2.2.3 \Variants for Step 4: Optimizer.

This is an optional step, which uses a greedy strategy
to improve the MWT-AM score, moving nodes between
columns in our trace, and stopping when no additional
gains can be made. A “move” entails transferring a node X
from one cluster (column) to another, in such a way that the
trace remains valid. In each iteration, we identify all valid
moves (as defined above) with a positive improvement to
the MWT-AM score. We perform these moves in descending
order of gain, updating the gains of subsequent moves as
needed. We stop when we no longer see any gainful moves.

2.3 Experimental Study
2.3.1

We explored GCM variants, T-Coffee [16], and MAFFT-
merge [15]; to the best of our knowledge, T-Coffee and
MAFFT-merge are the only other methods that are de-
signed to merge three or more disjoint alignments. We
used simulated and biological datasets from prior studies
to explore these methods. The simulated datasets are nu-
cleotide datasets that evolve down phylogenetic trees and
so have true alignments, and the biological datasets are
either nucleotide datasets from the Comparative Ribosomal
Website [22] or protein datasets from the Homfam collection
[23], which have curated reference alignments based on
structure. We evaluated methods with respect to alignment
accuracy and MWT-AM scores. For alignment accuracy,
we used the number of shared homologies (i.e., the total
number of true pairwise homologies recovered in the esti-
mated alignment), SP-score (i.e., recall, or the fraction of true
pairwise homologies recovered in the estimated alignment)
and Modeler Score (i.e., precision, or fraction of the pairwise
homologies in the estimated alignment that appear in the
true or reference alignment), computed using FASTSP [24].
We also noted wallclock running times.

Overview

The analyses of simulated datasets and some of the
smaller biological datasets were run on a single node with
16 CPUs and 64 GB of memory on the Campus Cluster at
UIUC, and hence were limited to 4 hours. Those biological
datasets that did not complete within 4 hours on the campus
cluster were then run on the tallis cluster (which has 256 GB
of memory) and allowed more time to complete (50 hours
for the larger CRW datasets and 168 hours for the larger
Homfam datasets).

For a given sequence dataset, we produce a collection
of disjoint alignments and weights on the pairs of sites, as
follows. Given a sequence dataset, we have two ways of
producing inputs to GCM and other methods for MWT-AM:
(1) We randomly decompose the dataset into disjoint subsets
of approximately the same size (varying from 50 to 500) and
(2) We use the default PASTA decomposition (mincluster) to
produce the decomposition (i.e., PASTA computes an initial
alignment and tree, and then decomposes the dataset into
subsets using the tree by deleting edges until the subsets
are of size at most 200). We then compute alignments on
each subset using an existing method (default: MAFFT -1-
ins-i [15]), thus producing a set of disjoint alignments. To
define the weights on pairs of sites, we proceed as follows.
We compute a set of 10 “backbone alignments”, each of
which contains 200 sequences that are obtained by selecting
sequences randomly from the constraint alignments. These
sequences are then aligned using existing methods (default:
MAFFT -l-ins-i). These backbone alignments are then used
to define the input to GCM, so that the weight on a pair
of sites from different alignments is the weighted number
of pairs of letters (one from each site) that appear in one
or more of the backbone alignments (i.e., if  and y are
two letters that are aligned in ¢ backbone alignments, then
this particular pair (z,y) contributes ¢ to the total weight).
As shown in Figure 2 in [7], this is one of the ways of
defining the weights on pairs of sites that provide good final
alignment accuracy (e.g., in general, accuracy is improved
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by using several backbones rather than just one, and by
using larger backbones rather than smaller backbones).

2.3.2 Experiments

We performed three experiments.

e Experiment 0 explores the correlation between MWT-
AM scores and alignment accuracy.

o Experiment 1 explores variants of the GCM-MWT
algorithm in order to optimize MWT-AM scores.

o Experiment 2 compares the best variants of GCM-
MWT in comparison to T-Coffee and MAFFT-merge,
the other methods that can merge disjoint align-
ments.

Experiments 0 and 1 use the training datasets (1000M1 and
1000M4), and Experiment 2 uses the remaining datasets (i.e.,
"testing datasets”).

2.3.3 Datasets

We studied performance on both biological nucleotide and
proteins) and simulated datasets, all from prior studies (and
available online). In total, we analyzed 304 datasets (284
nucleotide datasets and 20 protein datasets), and performed
multiple analyses on each.

Simulated data We use a total of 14 model conditions, each
with 1000 sequences. 12 of these were used in the papers
introducing SATé and PASTA [1], [2], [6]: we use 1000M1
and 1000M4 for the training phase, and then 1000L3, 100051,
1000M2, 1000L1, 1000S2, 100S3, 1000M3, 10000L2, 1000L4,
and 100054 for the testing phase. These sequences were
evolved using the ROSE [25] software, and evolve under
iid. evolution with substitutions and indels, and under
three indel lengths —long (L), short (S), and medium (M).
The integer at the end of the model condition roughly with
respect to the rate of evolution, with 1 indicating the highest
rate of evolution. Each model condition has 20 replicates.
We also use two subsets of the RNASim [2] simulated
datasets, named RNASim1 and RNASim2, each with 1000
sequences. The RNASim datasets evolve under a model that
includes selection and takes RNA secondary structure into
consideration. We provide the empirical statistics for these
simulated nucleotide datasets in Table 1.

CRW (nucleotide) datasets We use four nucleotide datasets
developed by Robin Gutell for the Comparative RNA Web-
site [22], and which were used in previous studies to eval-
uate alignment accuracy [2], [3], [6], [7]. Specifically, we
used versions of the 165.M, 16S.3, 165.T, and 165.B.ALL
datasets from [7], which were used to evaluate MAGUS,
and obtained by taking the corresponding datasets from
[6] and then pruning them to remove sequences that are
more than 20% from the median sequence length. Three of
the four CRW datasets have at least 5000 sequences and
the remaining one has only 740 sequences. We provide the
empirical statistics for these CRW datasets in Table 1.
HomFam (protein) datasets We also used 20 protein
datasets from the Homfam [23] collection. These range in
size from about 10,000 sequences to nearly 94,000 sequences,
and each has a reference alignment based on protein struc-
ture for a small subset of its sequences.

2.3.4 Evaluation criterion

For alignment accuracy, we report number of shared ho-
mologies (i.e., the total number of true pairwise homologies
recovered in the estimated alignment), SP-score (i.e., recall,
or the proportion of pairwise homologies in the reference
alignment that appear in the estimated alignment) and
Modeler score (i.e., precision, or the proportion of pairwise
homologies in the estimated alignment that appear in the
reference alignment). We also report the MWT-AM score,
using the backbone alignments to define the weights on
pairs of columns from the constraint alignments.

3 RESULTS
3.1 Results for Experiment 0: Correlation analyses

We explored the correlations between MWT-AM criterion
and alignment accuracy using the default version of GCM
on 1000M1 and 1000M4, and under two ways of decom-
posing the dataset: random decompositions and decompo-
sitions obtained during the first iteration of a default PASTA
alignment.

Correlations using GCM with random subset decompo-
sitions. We ran default GCM on the 1000M1 and 1000M4
datasets using random subset decomposition with subsets
of size 50, 100, 200 and 500. The number of backbones was
set to 1 and 10, with sizes of 20, 40, 100, 200 and 500. For
each model condition, we reported MWT-AM scores and the
number of shared homologies between the estimated and
the true alignment, and then Spearman’s p was computed
on all 20 replicates (Supplementary Table S1). These results
show correlations ranging from 0.851 to 0.997 for 1000M1
and from 0.241 to 0.971 for 1000M4. Conditions for which
1000M4 returned low correlations correspond to ‘extreme’
conditions with only 1 backbone and 20 sequences. Thus,
the correlation is very strong for 1000M1, a model condition
where alignment is challenging so that SP-scores are not
very high, and lower (but moderately strong) for 1000M4, a
model condition where alignment is easier and SP-scores are
high. Furthermore, the correlations are statistically signifi-
cant (p < 0.005) for all conditions except for one "extreme’
condition.

Correlations using GCM with default PASTA decomposi-
tion. We ran default version of GCM from [7] within the
standard divide-and-conquer pipeline described above (10
backbones each containing 200 sequences). Results (Figure
2) show that the correlations between MWT-AM scores and
alignment accuracy (using the number of shared homolo-
gies) are very strong for the 1000M1 model condition (p=0.9)
and null (p = -0.048) on the 1000M4 model condition. For
1000M1, the Spearman rank correlation is statistically sig-
nificant (Figure 2) but not for 1000M4. Increasing the size or
number of the backbone alignments also improves accuracy
and strengthens the correlation, as shown in Supplementary
Table S1 (for random decompositions) and Supplementary
Figure S2 (for PASTA decompositions).

Thus, for most model conditions (1000M1 and 1000M4)
using random decomposition and specifically for a hard
condition (1000M1) using a default PASTA decomposition,
the Spearman rank correlation coefficient between MWT-
AM scores and alignment accuracy (measured using the
number of shared homologies) is at least moderately high
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Fig. 2: Correlation analysis of default GCM MWT-AM scores and number of shared homologies on (a) 1000M1 and (b)
1000M4. For each analysis, the subsets are obtained using a first iteration PASTA decomposition. We show Spearman’s p.
The x-axis corresponds to the MWT-AM score and the y-axis corresponds to the number of shared homologies of GCM’s

output alignment with respect to the true alignments.

and statistically significant. This suggests strongly that
optimizing MWT-AM scores is a valuable approach to align-
ment estimation.

3.2 Results for Experiment 1: Designing GCM-MWT

Impact of varying MCL inflation factor within MCL. We
explored variants of GCM when using MCL for Step 2 in
which we varied the inflation factor (IF) parameter within
MCL, which controls the granularity of the clustering. We
ran GCM varying IF between 1.1, 1.4, 2, 3, 4, 6, 8 and 10,
and recorded the MWT-AM scores (supp. Fig. S1). These
experiments reveal that selecting any IF in the range 2-
10 produce equivalently good results, and lower IF values
produce worse MWT-AM scores. We select IF=4.0 for the
default setting.

Exploring other aspects of GCM. We explore all the vari-
ants of GCM described on our training datasets, 1000M1
and 1000M4. Four different methods are available for step 2
(MCL, MLR-MCL, RG), six options for step 3 (minclusters,
FM, mwtgreedy, mwtsearch, RG, RG-FAST) and step 4 has
two possibilites (using or not using the optimizer). In addi-
tion, some steps are not mandatory for some combinations;
step 4 is optional, and step 2 can be omitted if FM, mwt-
greedy, mwtsearch, RG and RG-FAST are used in step 3. In
all, there are currently 34 possible combinations of steps 2—4
for the complete GCM pipeline.

A comparison between these variants with respect to
MWT-AM score on the 1000M1 condition (Table 2) re-
veals three main outcomes. First, very few combinations
on the default combination implemented in GCM (step 2:
MCL, step 3: minclusters, step 4: nothing) resulted in an
improvement in MWT-AM scores, and any improvement
that resulted was very small. Second, some combinations
showed much less accurate results than default mode (e.g.,
RG+MWTGREEDY), but all combinations are more or less
even (and very slightly better than the default combination)
in terms of average accuracy when step 4 (the optimizer) is
added. This is not surprising, since the optimizer is designed
to increase the MWT-AM score. Results on the 1000M4

condition show very little difference between variants, in-
dicating that this model condition is generally too easy to
distinguish between variants (Supp. Table S2).

We note that improvements in the MWT-AM score tend
to also result in an improvement in alignment accuracy
using SP-score, a trend that is consistent with our earlier
observations. Interestingly, improvements in SP-score re-
sulting from using the optimizer tend to result in decreases
in the Modeler score, but the average of these two alignment
accuracy measures either stays the same or improves.

Among the variants that do not use the optimizer
step, we picked the default setting from MAGUS (ie.,
MCL+minclusters) as one of the GCM variants to explore
further in our testing phase: it ties for best for both MWT-
AM score and alignment accuracy (average of SP-score and
Modeler score) of all the methods that complete on all the
datasets. There is essentially no difference between meth-
ods that use the optimizer score (except for running time,
where some methods are more computationally intensive);
therefore, we picked FM+OPTIMIZER as a second variant to
pick, in the hope that the substantial difference in approach
might reveal some benefits during the testing phase. In sum,
we selected two variants for GCM to explore in the testing
phase:

e MCL+minclusters (ie., no optimizer step at the
end); note that this is the default setting used in MA-
GUS [7], and so we also refer to this as GCM(default).

e FM+OPTIMIZER; we refer to this as GCM(fm-opt).

3.2.1 Results for Experiment 2: Comparing GCM-MWT to
other methods

We compare the GCM variants to MAFFT-merge (two vari-
ants) and T-Coffee with respect to alignment accuracy (SP-
score, Modeler score, and the average of these two) and
running time when applied to a set of disjoint alignments.
For GCM, the weights are computed from the backbone
alignments it computes. In these experiments, T-Coffee is

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see hitps://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3191848

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 7

TABLE 2: Results of Experiment 1 on 1000M1. Median scores and running times where computed on 19 replicates. Stars
(*) indicate a step for which one or more replicates didn’t finish within 4 hours of running time on campus cluster (nodes
with 16 cores, 64GB of memory); in these cases, we report median across the replicates that completed.

Algorithms Scores (Accuracy %) Running time (sec)

Step 2 Step 3 Opt. MWT SP Modeler Avg (SPMod) Step2 Step3 Opt. Total
mcl minclusters 99,812,063 83.6 86.5 85 8 0 27
mcl fm 91,014,447 749 85.5 80.2 6 5 21
mcl mwtgreedy 99,052,955 83 86.7 84.9 6 0 17
mcl mwtsearch 99,052,955 83 86.7 84.9 6 0 17

mlrmcl fm 90,471,403  74.6 85.4 80 7 9 33

mlrmcl  minclusters 99,454,384 83.3 86.7 85 8 0 22

mlrmcl  mwtgreedy 99,215451  82.7 86.7 84.7 8 0 25

mlrmcl  mwtsearch 99,215,793 82.7 86.7 84.7 8 0 24

fm 94,057,633  76.3 85.9 81.1 0 26 36
mwtgreedy 100,135,039  83.7 86.6 85.2 0 945 957
mwtsearch* 101,576,296  83.8 86.9 85.3 0 2198 2210
rg 92,466,287  79.7 85.9 82.8 0 13 24
rgfast 84,047,187 703 86.3 78.3 0 5 16
rg fm 91,372,117 76 85.7 80.8 18 11 45
rg minclusters 90,993,911 759 86.7 81.3 14 131 159
rg mwtgreedy 67,580,556 59.3 87.7 73.5 18 1 37
rg mwtsearch 68,047,192  58.7 87.7 73.2 15 95 115
mcl minclusters opt 100,245,267 83.7 86.4 85 6 0 17 33
mcl fm opt 100,254,633 83.6 86.4 85 6 6 31 54
mcl mwtgreedy  opt 100,246,504 83.7 86.4 85.1 6 0 24 39
mcl mwtsearch opt 100,246,504 83.7 86.4 85.1 6 0 28 46
mlrmcl fm opt 100,208,349  83.6 86.3 85 5 5 26 46
mlrmcl  minclusters  opt 100,210,334  83.6 86.3 85 5 0 14 30
mlrmecl  mwtgreedy opt 100,210,967  83.6 86.4 85 5 0 21 37
mlrmcl  mwtsearch opt 100,210,967 83.6 86.4 85 5 0 19 36
fm opt 100,179,905 83.8 86.5 85.1 0 25 35 71
mwtgreedy  opt 100,207,425 83.8 86.5 85.1 0 947 25 984
mwtsearch  opt* 103,371,769 84 86.8 85.4 0 2112 22 2135
rg opt* 101,807,628 82.9 85.6 84.2 0 12 20 46
rgfast opt 100,201,843 83.7 86.4 85 0 6 48 65
rg fm opt 100,199,665 83.6 86.3 85 11 8 28 59
rg minclusters  opt 100,159,588  83.7 86.4 85 11 121 29 182
rg mwtgreedy  opt 100,221,006 83.6 86.3 85 11 1 114 144
rg mwtsearch opt 100,219,555 83.6 86.3 85 11 107 122 203

much less accurate than the other methods (supp. Fig-
ure S3). Based on a discussion with the developer, Cedric
Notredame, T-Coffee is not designed for datasets of this
size and has also not been tested sufficiently on nucleotide
datasets. Hence the use of T-Coffee for merging large nu-
cleotide alignments may not be appropriate.

The rest of this section focuses on the comparison be-

tween the GCM variants and MAFFT-merge, using default
decompositions (which are phylogeny-based) or random
decompositions.
Results on random subset decompositions. We selected
three simulated datasets—1000L3, RNASim and 100054—
and tested the performance of GCM(default) and MAFFI-
merge (using the most accurate version based on L-ins-
i) when the constraint alignments are obtained through
random decomposition rather than the phylogeny-based
mincluster decomposition.

We compared the default GCM (MCL+minclusters) and
MAFFT-merge on random decompositions, using subsets of
size 50, 100, 200 and 500. The number of backbones was set
to 1 and 10, with sizes of 20, 40, 100, 200 and 500. For each
model condition, we report SP-scores.

Results for alignment accuracy (Figure 4) show that
MAFFT-merge and GCM(default) have close accuracy for
slowly evolving sequences (100054 and RNASim) but
GCM(default) is more accurate on fast-evolving sequences

(1000L3). This is similar to what we observed on the
PASTA decompositions in Figure 3. Surprisingly, MAFFI-
merge performed relatively well despite not having the
advantage of using alignments on local subsets as con-
straints (see recommendations for using MAFFT-merge at
https:/ /mafft.cbrc.jp/alignment/software/merge html).
However, a comparison between these results and the
same methods with the default phylogeny-based decom-
position in Figure 3 shows that random decompositions
produce worse alignments. This underlies the importance of
the subset decomposition step in pipelines that use divide-
and-conquer to estimate alignments.
Results using default decompositions on simulated
datasets. In Figure 3, we compare the two variants of
MAFFT-merge to GCM(default) and GCM(FM-+opt) on all
the testing model conditions with default decompositions.
This comparison shows the following trends. The two ways
of running MAFFT-merge are clearly distinguished, with
the L-ins-i version much more accurate than the default
version. Both ways of running GCM are approximately
equal in accuracy, and both are almost always more accurate
than MAFFT-merge using L-ins-i, with the only exceptions
being the easiest datasets (1000L4 and 100054) that have the
lowest rate of evolution.
Running time on simulated datasets using default de-
compositions. MAFFI-merge in default mode is the
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Fig. 3: Experiment 2: Results on the simulated datasets using default decompositions (phylogeny-based), without T-Coffee.
Accuracy refers to the average of SP-score (i.e., recall) and Modeler score (i.e., precision) in the estimated alignments.
Running time is based on wallclock time, using the Campus Cluster at the University of Illinois constrained to machines
with the same amount of memory. All analyses here were performed on datasets produced in the first iteration of a default

PASTA analysis.

fastest method, followed by both GCM(default) and
GCM(FM+opt), and then by MAFFT-merge using L-ins-i
(Figure 3). Both ways of running GCM are often twice as
fast as running MAFFI-merge using L-ins-i, and finish on
all these datasets in at most 30 minutes.
Results on biological nucleotide (CRW) datasets. Table 3
shows results on the CRW datasets. Although the methods
are very similar on the smallest dataset, the methods are
clearly distinguishable on the larger datasets. Most im-
portantly, MAFFT-merge is less accurate than both GCM
variants, obtaining SP-scores that are 10-13% lower and
Modeler scores that are 4-6% lower than GCM(default). It
is important to realize that the L-ins-i option for MAFFT-
merge is unable to complete in 4 hours on these larger
datasets, and so we used the default setting for MAFFT-
merge, which is less accurate. A comparison between the
two GCM variants shows that they have the same average
alignment accuracy (where we average SP-score and Mod-
eler score), but GCM(default) has somewhat better Modeler
score and GCM(fm+opt) has somewhat better SP-score.

A comparison of running times (Table 3) shows the
following trends. On the 165.M dataset (with 740 sequences)

we used MAFFT-merge with the L-ins-i setting, which is
more accurate but also more expensive; as a result, the three
methods have nearly identical running times (6 minutes).
The other three datasets are larger, requiring that we use
the default version of MAFFT-merge instead of the L-ins-
i version. On these three larger datasets, MAFFT-merge is
much faster, finishing in under a minute on 165.3 and 16S.T
(each with about 5500 sequences), and in 7 minutes on the
16S.B.ALL dataset (with 24,246 sequences); in contrast, the
two GCM variants take longer. As expected, GCM(default)
is faster, with 12-15 minutes on all three datasets, but
GCM(fm+opt) is slower: 31-38 minutes on 16S.3 and 165.T,
and then unable to complete on the 16S.B.ALL dataset
within the allowed time (48 hours).

Results on biological protein (Homfam) datasets.

We also compared GCM-default, GCM(fm+opt), and
MAFFT-merge on several large Homfam datasets with up
to nearly 94,000 sequences.. MAGUS and recursive MAGUS
were evaluated on these datasets in comparison to many es-
tablished protein alignment methods (e.g., MAFFT, Clustal-
Omega, and Muscle) as well as more recently developed
alignment methods (UPP and PASTA) in [26], and shown

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3191848

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 9
TABLE 3: Experiment 2: Results on the CRW datasets; the best results are boldfaced (ties are for methods within 1% of the

best found result). N.A. means “not applicable”

Dataset (# seqs) Method MWT score SP-Score Modeler Avg. Time
(mins.)
gem (default) 137,370,948 88.4 86.9 87.7 5.8
16S.M gem (fm+opt) 137,487,088 88.4 86.7 87.6 59
(740) mafftmerge (l-ins-i) N.A. 88.5 87.0 87.7 6.0
mafftmerge (default) N.A. 85.9 86.7 86.3 0.02
165.3 gem (default) 247,066,576 92.1 86.5 89.3 12.4
G 4.89) gem (fm+opt) 249,384,030 92.8 85.9 89.3 31.6
! mafftmerge (l-ins-i) N.A. 91.6 85.8 88.8 2926.5
mafftmerge (default) N.A. 81.7 81.4 81.5 0.5
16S.T gem (default) 244,923,269 92.4 87.7 90.1 15.0
G 5'48) gem (fm+opt) 246,839,091 92.7 86.4 89.5 37.7
! mafftmerge (l-ins-i) N.A. 91.4 86.2 88.8 2607.1
mafftmerge (default) N.A. 81.7 82.3 82.0 0.6
16S.B.ALL gem (default) 139,531,511 95.8 95.7 95.7 13.8
(24,246) mafftmerge (default) N.A. 83.4 90.5 87.0 7.0
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Fig. 4: Experiment 2: Comparison between MAFFT-merge
and GCM(default) on random decompositions on three
simulated model conditions. Random subsets of size 50, 100
and 200 were constructed. Accuracy refers to the average
of SP-score (i.e., recall) and Modeler score (i.e., precision) in
the estimated alignments.

to be more accurate (meaning, having lower average of
SPFN and SPFP) than all of them, with MAGUS more
accurate than recursive MAGUS. Given the dominance of
MAGUS in that study, here we focus the comparison on
variants of MAGUS where we modify the merger step (i.e.,
replacing GCM-default, as used in MAGUS, with GCM+opt
and MAFFT-merge(default)). We allowed all methods to
run up for a a full week (168 hours) on the tallis cluster,
which has 256 GB of memory.

These results show the following clear trends. First,
in every dataset, GCM(fm+opt) produces better MWT-AM
scores and also better SP-scores than GCM-default (Ta-
ble 4), showing that optimizing MWT-AM scores corre-
lates with improved SP-scores on these datasets as well.
Second, both GCM-default and GCM(fm+opt) complete
on every dataset, whereas mafftmerge(default) fails to re-
turn alignments on the two largest datasets (zf~CCHH
with 88,345 sequences and rvp with 93,681 sequences).

For those two cases, MAFFT returns a warning that some
groups are forced to be a monophyletic cluster and then
uses a huge computational time reallocating sequences
into sub-MSAs. Third, when restricted to the remaining
18 datasets where MAFFT-merge(default) could run, we
see that GCM(fm+opt) came had the best SP-scores in 11
datasets and MAFFT-merge(default) had the best SP-scores
in 7 datasets. The average across the 18 datasets also show
an advantage for SP-score to GCM(fm-+opt).

4 DISCUSSION

This study showed that the MWT-AM optimization criterion
(as computed in this study, using backbone alignments
to define the weights) is generally highly correlated with
alignment accuracy measured using the number of shared
homologies. This trend shows that optimizing the criterion
is desirable. This study also showed that the default usage of
GCM within MAGUS is an effective heuristic for MWT-AM,
explaining why MAGUS produces highly accurate merged
alignments. In other words, by posing and studying MWT-
AM, we are able to explain why MAGUS is a highly accurate
alignment method.

On the other hand, we also saw that some modifica-
tions to the GCM heuristic, largely through the use of a
final “optimizer” stage, can improve the MWT-AM scores
compared to GCM-default (the use of the technique as
performed in MAGUS). Furthermore, both GCM(default)
and GCM(FM+opt) are sufficiently fast that they can be
used to merge a large number of alignments; hence, both
ways of using GCM are effective within divide-and-conquer
pipelines for large-scale multiple sequence alignment.

A comparison to other methods that can merge disjoint
alignments reveals some significant differences. As we have
noted, T-Coffee did not produce satisfactory results in these
experiments, but the explanation is that T-Coffee has been
designed primarily for amino acid alignments rather than
nucleotide alignments, and has not been tested in this set-
ting. Given the outstanding accuracy of T-Coffee that has
been observed for amino acid alignments (e.g., [27]), there
is an opportunity for future work to provide a version of
T-Coffee explicitly for merging large nucleotide alignments.

The comparison to MAFFI-merge is also informa-
tive, and shows that MAFFT-merge using L-ins-i per-
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TABLE 4: Experiment 2: Results on the Homfam datasets; the best results are boldfaced (ties are for methods within 1% of
the best found result). Average shown without the rvp and zf-CCHH datasets, because mafftmerge did not finish on these
datasets (indicated by NaN). N.A. means “not applicable”.

Dataset (# seqs) Method MWT score SP-Score Modeler  Avg. Time
(min.)
aat gem (default) 29,664,610 78.1 89.5 83.8 13.2
(25,100) gem (fm+opt) 30,096,177 82.8 86.6 84.7 674.5
! mafftmerge (default) N.A. 61.6 73.9 67.8 2.1
Acetyltransf gem (default) 20,487,572 51.8 87.3 69.5 554.5
(46,285) gem (fm+opt) 24,717,427 56.6 65.4 61.0 608.0
4 mafftmerge (default) N.A. 51.1 62.0 56.5 6.4
adh gem (default) 7,933,894 58.6 96.5 775 3.4
(21,331) gem (fm+opt) 8,029,439 60.9 98.6 79.7 113.7
4 mafftmerge (default) N.A. 93.7 96.1 94.9 1.3
aldosered gem (default) 26,234,848 88.8 95.6 92.2 45
(13,277 gem (fm+opt) 26,783,951 91.2 94.3 92.7 101.0
g mafftmerge (default) N.A. 82.9 88.3 85.6 0.7
biotin Lipovl gem (default) 6,875,466 90.4 95.9 93.1 0.1
(11.833) poy gem (fm-+opt) 6,942,195 92,5 93.1 92.8 41
’ mafftmerge (default) N.A. 95.5 94.2 94.9 0.3
blmb gem (default) 5,181,458 55.1 81.2 68.1 12.9
(17,200) gem (fm+opt) 5,774,807 68.2 74.0 71.1 184.9
! mafftmerge (default) N.A. 55.4 69.7 62.5 0.8
¢hfl3 gem (default) 13,803,396 58.4 88.7 73.6 13.8
(12,607) gem (fm+opt) 14,823,697 61.2 80.6 70.9 123.8
’ mafftmerge (default) N.A. 49.8 70.2 60.0 0.6
eluts gem (default) 10,717,250 60.1 91.4 75.8 2.6
(10,099) gem (fm+opt) 11,195,201 61.5 83.0 722 20.4
! mafftmerge (default) N.A. 70.8 79.8 75.3 0.2
hla gem (default) 17,099,545 99.8 100 99.9 0.3
(13,465) gem (fm+opt) 17,106,544 100 100 100 26.8
4 mafftmerge (default) N.A. 99.3 100 99.7 0.5
hom gem (default) 5,080,252 94.1 97.9 96.0 0.1
(12,037) gem (fm+opt) 5,092,477 94.5 96.8 95.6 53
’ mafftmerge (default) N.A. 95.3 96.0 95.6 0.2
- gem (default) 7,080,357 89.0 96.5 92.7 0.2
E‘l‘g’gégNA‘bmdmg gem (Fm+opt) 7,273,310 90.2 932 917 38
4 mafftmerge (default) N.A. 92.8 92.8 92.8 0.2
450 gem (default) 14,229,615 41.7 85.4 63.6 762.5
}()21 013) gem (fm+opt) 16,186,172 58.9 78.7 68.8 937.4
! mafftmerge (default) N.A. 53.5 70.6 62.1 2.2
PDZ gem (default) 9,354,085 80.2 90.0 85.1 1.2
(14,950) gem (fm+opt) 9,732,891 83.4 88.8 86.1 30.3
! mafftmerge (default) N.A. 74.1 81.3 77.7 0.5
Rhodanese gem (default) 10,128,517 66.2 88.5 77.3 1.7
(14,049) gem (fm+opt) 10,683,589 71.9 79.1 75.5 334
! mafftmerge (default) N.A. 48.0 60.1 54.1 0.5
hy gem (default) 4,142,652 25.3 89.5 57.4 4.2
(17,976) gem (fm+opt) 4,315,175 26.2 43.0 34.6 76.5
! mafftmerge (default) N.A. 32.1 57.2 44.6 0.9
m gem (default) 7,713,839 76.0 86.7 814 1.5
(27,610) gem (fm+opt) 7,751,988 78.3 81.4 79.9 45.6
’ mafftmerge (default) N.A. 72.0 78.8 75.4 1.8
v gem (default) 146,105,340 82.5 86.0 84.2 3982.0
(9%)681) gem (fm+opt) 146,115,355 85.7 86.2 86.0 862.8
’ mafftmerge (default) N.A. NaN NaN NaN NaN
odr gem (default) 63,658,307 62.4 90.5 76.5 26.1
(50,157) gem (fm+opt) 65,182,563 63.3 88.0 75.6 3428.7
’ mafftmerge (default) N.A. 64.9 76.7 70.8 10.4
gem (default) 12,936,532 48.8 77.8 63.3 1.1
Em‘;és)ym—% gem (fm+opt) 13236030  52.0 611 56.6 380
, mafftmerge (default) N.A. 43.4 53.7 48.6 0.3
cm (default) 32,422,598 79.9 93.8 86.8 3.8
(Zéé%i?)H ﬁcm (fm-+opt) 32,551,838 86.8 89.4 88.1 51.9
4 mafftmerge (default) N.A. NaN NaN NaN NaN
gem (default) 22,542,507 68.0 90.5 79.3 78.0
Average gem (fm+opt) 23,179,541 71.9 82.5 77.2 358.7
mafftmerge (default) N.A. 68.7 77.9 73.3 1.7
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forms relatively well, generally as accurate as GCM. How-
ever, MAFFT-merge with L-ins-i is more computation-
ally intensive than GCM, making GCM more appealing
on large datasets. Furthermore, we note that we used
MAFFT-merge in a way that is not recommended (see the
MAFFT-merge website at https:/ /mafft.cbrc.jp/alignment/
software/merge.html, which recommends that MAFFI-
merge use monophyletic clusters as entries). Although
monophyly is not ensured in PASTA decompositions, it is
definitely violated in random decompositions, showing that
MAFFT-merge (using L-ins-i) is a valuable approach for
merging non-monophyletic clusters, even though it wasn’t
designed for it initially.

5 CONCLUSIONS

This study was motivated by the desire to understand why
MAGUS, a recent method for multiple sequence alignment,
produced more accurate alignments than its immediate
predecessor, PASTA. Both MAGUS and PASTA operate by
dividing a sequence dataset into disjoint sets, compute
alignments on the subsets using MAFFT -linsi, and then
merge these disjoint alignments together; essentially the
only important difference between the two methods is how
each merges the disjoint alignments. MAGUS computed
a set of extra alignments in order to merge the disjoint
alignments, defined an edge-weighted “alignment graph”
from these extra alignments, and then computed a “trace”
(i.e., merged alignment) using the Graph Clustering Merger
(GCM) applied to the alignment graph. In contrast, to merge
the set of disjoint alignments, PASTA used a much sim-
pler strategy: it merged pairs of the constraint alignments
and then followed this by transitivity. Thus, GCM uses a
more complex approach than PASTA’s merger strategy, but
neither is based on an explicit optimization criterion. In
exploring the GCM method further, we hypothesized that
its approach might be an effective technique with respect
to maximizing the support implied by the alignment graph,
which we defined to be the total weight of the edges in the
alignment graph that appear in the output alignment. We
formulated this objective as a new optimization problem,
which we termed the Maximum Weight Trace Alignment
Merging (MWT-AM) problem. Thus, the MWT-AM problem
is a generalization of a classical problem in bioinformatics
called the Maximum Weight Trace problem [12]. Our study
shows that the Graph Clustering Merger (GCM) method
provides good accuracy for the MWT-AM problem. Further,
our study shows that using default GCM or its improved
variant, GCM(FM+opt), within the MAGUS pipeline pro-
duces alignments with excellent accuracy, and can be used
on very large datasets (up to 93,681 sequences in this study).

This study suggests multiple directions for future re-
search. The first and most obvious direction is to develop
new methods for merging a set of disjoint alignments.
Currently, there are only a few methods that are able to
merge disjoint alignments, and so there is clear opportu-
nity for advances. To begin with, future research could
explore modifying how GCM defines the weights on the
pairs of columns, as the heuristic it uses to solve MWT-AM
might work well with other techniques. Also of interest is
the theoretical approximability of MWT and MWT-AM; to

the best of our knowledge, there are no results regarding
polynomial-time constant-factor approximations for these
problems.

Given the high accuracy of MAGUS, which depends on
GCM, another direction for future work is to investigate
changes to the ways the constraint alignments and backbone
alignments are computed within MAGUS. In this study
we relied on MAFFT for these computations, and MAFFT
has been shown to generally provide very good results
for alignment estimation, especially when used in its most
accurate settings [1], [2], [6], [7]. Yet other methods could
also be considered and could be computationally feasible.
Based on results shown in [27], when used with methods
for aligning amino acid sequences, such as PROMALS [28]
and ProbCons [29], the MAGUS pipeline could potentially
be even more accurate. Another interesting direction is
to consider the use of computationally intensive Bayesian
methods for the constraint alignments. For example, meth-
ods such as BAli-Phy [30] can have outstanding accuracy,
but are generally limited to very small datasets (perhaps 50
sequences). As noted in [31], BAli-Phy can be used within
the PASTA divide-and-conquer strategy, where it is only
used on small datasets; similarly, we conjecture that the
MAGUS pipeline could be used with BAli-Phy on subsets
to improve accuracy.

Finally, alignment estimation is used in many applica-
tions, including computational linguistics [32], [33], [34],
[35], [36], [37], [38], [39], [40], speech processing [41], [42],
[43], biological networks [44], [45], [46], [47], and problems
involving process models [48], [49], [50], [51]. It is likely
that techniques and approaches for alignment estimation in
these and other disciplines may be relevant to the MWT-
AM problem we present here, and future work should
investigate this.

APPENDIX
Data availability

All datasets studied in this paper are from prior publica-
tions, and are available online:

e RNASim2: available at https://doi.org/10.5061/
dryad.95x69p8h8 and https:/ /databank.illinois.edu/
datasets/IDB-6955387

e HomFam datasets available at https://databank.
illinois.edu/datasets /IDB-1048258

o Everything else: available at https://databank.
illinois.edu/datasets /IDB-2643961

Decomposition into subsets with PASTA

We used the set of subsets decomposed by PASTA during
the first iteration, using the following command:

python run_pasta.py —-i <set of unaligned
sequences> —-keeptemp —--keepalignmenttemps
——temporaries=<temporary folder>

By default the maximum subset size is set to 200.

MAFFT v7.453 (constraint alignments)

Mafft was run on constraint and backbone alignments using
the 1-ins-1i algorithm:
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mafft —--localpair —--maxiterate 1000 —--ep [4] E Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li,
0.123 ——quiet —--thread <available number of R. Lopez, H-, M(':Willlliam, M. Remmert, J. Sﬁdin%, ].- D. Thqmpson,
threads> —-anysymbol input > results and D. G. Higgins, “Fast, scalable generation of high-quality pro-

MAFFT v7.453 (merger) using l-ins-i

mafft —--localpair —--maxiterate 1000 —--ep
0.123 —-—quiet —--anysymbol --merge <list of
constraint alignments> > result

MAFFT v7.453 (merger) using default

mafft —--merge <list of constraint
alignments> > result

T-Coffee 13.41.0

t-coffee -profile <list of constraint
alignments> —-output fasta -outfile
result.txt

GCM (within MAGUS)

To run GCM, download and install MAGUS from the
github site https://github.com/vlasmirnov/MAGUS, and
then use the commands provided here:

python3 magus.py -d <working directory>
-s <list of constraint alignments> -r
<number of backbone alignments> -m <backbone
alignment size> -o result.txt

GCM: additional flags in the magus.py script
Clustering:

—-—graphclustermethod mcl|mlrmcl|rg|none

Trace:

—-—graphtracemethod
minclusters|fm|mwtgreedy |mwtsearch|rg|rgfast

Optimizer:

——graphtraceoptimize truelfalse
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