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Ecologists have long sought to understand space use and mechanisms
underlying patterns observed in nature. We developed an optimality land-
scape and mechanistic territory model to understand mechanisms driving
space use and compared model predictions to empirical reality. We demon-
strate our approach using grey wolves (Canis lupus). In the model, simulated
animals selected territories to economically acquire resources by selecting
patches with greatest value, accounting for benefits, costs and trade-offs of
defending and using space on the optimality landscape. Our approach success-
fully predicted and explained first- and second-order space use of wolves,
including the population’s distribution, territories of individual packs, and
influences of prey density, competitor density, human-caused mortality risk
and seasonality. It accomplished this using simple behavioural rules and lim-
ited data to inform the optimality landscape. Results contribute evidence that
economical territory selection is a mechanistic bridge between space use and
animal distribution on the landscape. This approach and resulting gains in
knowledge enable predicting effects of a wide range of environmental con-
ditions, contributing to both basic ecological understanding of natural
systems and conservation. We expect this approach will demonstrate applica-
bility across diverse habitats and species, and that its foundation can help
continue to advance understanding of spatial behaviour.
1. Background
Ecologists have long strived to understand space use andmechanisms underlying
patterns observed in nature. This entails investigatingwhyand howanimals select
home ranges or territories, including howbenefits, costs and trade-offs affect space
use. Such knowledge would inform basic ecology and conservation efforts, as
ecologists could better predict how environmental conditions or management
decisions influence animal behaviour.

Commonly employed empirical approaches have advanced understanding of
animal space use. Utilization distributions are frequently used to summarize
space use as probabilities of where animals will be found at any time [1].
Although time spent does not explain mechanisms driving space use [2], empiri-
cal analyses can contribute, for example, extensive information about patterns
and possible underlying processes governing territory size and shape, along
with space use within home ranges (second- and third-order selection, respect-
ively; [3]). Resource selection functions have been particularly popular for
studying space use, but as ‘statistical descriptions of the distribution and use of
landscapes, … do not necessarily help us to understand why organisms are
where they are’ [4, p. 271]. Inferences from many empirical approaches are
most applicable to the time and place fromwhich datawere collected, particularly
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Figure 1. Framework of the mechanistic model for territory selection. Simulated wolf packs were added to an optimality landscape representing Montana. Packs
established territories by identifying patches of high value based on benefits and costs of ownership. Territory overlap triggered packs to reassess whether their
territories remained economical, leading to territory shifts over time.
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when research employs phenomenological models to describe
empirically observable patterns without revealing underlying
mechanisms [5].

An alternative approach seeks to understand space use
that arises from animal movements and interactions [6–8].
Mechanistic home range analysis (MHRA) often uses partial
differential equations to simulate third-order movements [3]
and resulting territory or home range structure. Space use can
bemodelled, for example, in relation to the presence of territorial
boundaries [9], distance to central place [10], memory capacity
[11] or presence of conspecifics [12]. MHRA has advanced
understanding of second- and third-order [3] animal space use
by testing hypotheses about underlying processes that lead to
territory formation. MHRA leaders note, however, that ‘a
major shortcoming’ is that MHRA ‘is typically based around
testingwhichmodel fits thedata best out of a set of hypothesized
models,without seeking tounderstandhowclose thebestmodel
is to empirical reality’ [6, p. 7] (but see, e.g. [9,13,14]). A related
approach uses mechanistic movement models to explore emer-
gent properties through simulations and has demonstrated, for
example, the influence of memory on space use [15,16].

An alternative mechanistic approach to investigating space
use [8] was presented [17] and recently advanced [18] in the
form of mechanistic, spatially explicit, agent-based models
that seek to reveal fitness-driven mechanisms underlying
space use. These models are founded on optimal foraging
theory and thus employ an evolutionary approach to under-
standing mechanisms driving behaviour [8]. The approach
simulates spatial behaviour on an ‘optimality landscape’ of
grid cells that explicitly represents benefits and costs of defend-
ing any particular cell for inclusion in a territory. As
demonstrated in [18], simulated animals select territories to
include grid cells with the greatest net value, accounting for
food resources and costs of defending and using a territory
(figure 1). This leads to ‘economical territories’ that maximize
benefits over costs of territorial defence [18]. Importantly, simu-
lated animals continually adapt to decisions of neighbouring
animals as each attempts to defend the most economical terri-
tory possible. This approach represents and tests mechanisms
hypothesized to underly first-order extent of a species’ range
and second-order territory selection [3] by predicting what
should be observed empirically if themodel suitably represents
mechanisms underlying territory selection. Subsequent tests of
these predictions yielded statistical evidence that grey wolves
(Canis lupus) select economical territories [19].

The strongest test of this mechanistic approach’s hypo-
theses, predictive capacity and utility would be to extend the
model to make quantitative, spatially explicit predictions of
space use and further test howwell the model predicts empiri-
cal reality. Accordingly, here we extend the [18] model to make
spatially explicit predictions using an empirically derived
optimality landscape, and determine how well the model
predicts empirical reality.

An optimality landscape provides a fitness-based currency
for studying and understanding mechanisms driving
spatial behaviour. Animals almost certainly do not select
home ranges (areas for foraging, mating and raising young)
or territories (defended portions of a home range) [20] at
random or by settling on the first option presented. Instead,
animals should be adapted through natural selection [21] to
select economical home ranges that maximize benefits and
minimize costs of ownership [22–24]. Economical space
use should accordingly reflect the distribution of limiting
resources [17,25]. These resources are often presumed to be
food (the food defence hypothesis) [26]. Researchers have
further hypothesized that territorial species are either primar-
ily intrinsically regulated (i.e. numbers are limited by
territoriality or strife) [27], or extrinsically regulated (e.g. food
limits population growth) [28]. Defence of food would, how-
ever, mean that populations are regulated by both extrinsic
and intrinsic factors (i.e. through the exclusion of conspecifics
from territories selected to defend food resources). An optimal-
ity landscape can test these hypotheses of space use and reveal
the economic value of selecting different areas for inclusion in a
home range, based on benefits and costs of ownership.

Our objective was to demonstrate our approach and
test hypotheses about space use on grey wolves in
Montana, USA. Wolves are strongly territorial, and wolf
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Figure 2. The optimality landscape represented Montana. Various ecoregions characterized Montana (inset map). Model predictions for territory distribution for
2014–2019 are shown on a 1 km2 grid (grey shading) alongside observed locations of wolves during this period. (Figure for 2008–2009 provided in electronic
supplementary material, p. 31.) (Online version in colour.)
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packs cooperatively defend their full home range [29]. We
hypothesized that wolves are adapted to select territories
economically, and that exclusive access to food resources is
the primary benefit of defending and using space [28].
Accordingly, our model represents the food defence hypoth-
esis while incorporating realistic components of the
ecosystem and wolf space use. Wolves in North America pri-
marily prey on ungulates [30]. The strongly territorial nature
of wolves [29] should make defence (e.g. patrolling, marking,
competition for resources) a primary cost of space use. As
coursing predators [30], costs associated with traversing the
territory (e.g. distance to resources, rugged terrain) are
likely also important [19]. Mortality risk may also shape
space use, especially if territorial behaviours increase risk of
mortality (e.g. via increased movement, vocalizations or visi-
bility). Humans present a primary source of mortality risk for
wolves [31] and human presence likely influences costs of
mortality risk.

We expected that mechanistically modelling economical
territory selection using an optimality landscape to represent
these benefits and costs would enable predicting wolf space
use. If food is not the primary benefit of wolf space use (as
opposed, e.g. to defence of mates, i.e. the mate defence hypoth-
esis [32], or offspring, i.e. the offspring defence hypothesis
[33]), we expected themodel to perform poorly.We parameter-
ized the optimality landscapewith simple indices representing
benefits and costs of using and defending space. We applied
the model to predict first-order selection (the geographic
range of wolves in our study area) and second-order selection
(territories of individual packs) [3], and compared the predic-
tions to empirical observations of wolf territories from recent
years (2014–2019).We also evaluated themodel’s ability to pre-
dict spatial requirements from an earlier period (2008–2009)
when pack densities were lower.
2. Study area
Our study area comprised Montana, USA (figure 2), where
elevations were 554 to 3938 m [34] and ecoregions described
regionally similar landscapes (epa.gov). Dense forests and a
maritime-influenced climate characterized rugged, mountai-
nous terrain of the Northern Rockies Ecoregion. The
Canadian Rockies Ecoregion had higher elevation, glaciated ter-
rain. The Northwestern Glaciated Plains Ecoregion had level
and rolling terrain with seasonal ponds and wetlands. The
Idaho Batholith Ecoregion was mountainous, granitic, and par-
tially glaciated. The Middle Rockies Ecoregion had rolling
foothills where shrubs and grasses transitioned to rugged
mountains with conifers and alpine vegetation. Grasses and
shrubs dominated the xeric Wyoming Basin Ecoregion.
Breaks and forested highlands interspersed semiarid, rolling
plains of the Northwestern Great Plains Ecoregion.

After extirpation in the twentieth century, wolves success-
fully recolonized western Montana through natural
immigration and reintroductions in the 1980s and 1990s. By
2008, wolf densities in western Montana were estimated at
4–8 wolves/1000 km2, and this increased to 11–13 wolves/
1000 km2 in the 2010s (fwp.mt.gov). Densities in eastern Mon-
tana have remained low at less than 2 wolves/1000 km2. Food
resources included white-tailed deer (Odocoileus virginianus),
mule deer (O. hemionus), elk (Cervus canadensis) and moose
(Alces alces). White-tailed deer were the numerically predomi-
nant species in the Northern Rockies, whereas mule deer and
elk generally comprised greater proportions of ungulate popu-
lations elsewhere in western Montana. Mule deer were the
most common ungulate in eastern Montana, and moose were
generally uncommon throughout the state. Most humans
lived in western Montana, with a statewide population of
just over 1 million in 2018 (census.gov).

https://epa.gov
https://fwp.mt.gov
https://census.gov
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3. Methods
We present a general overview of our approach; full details are in
the electronic supplementary material.

(a) Optimality landscape and mechanistic model
We developed the model and optimality landscape in NetLogo
6.1.1 [35]. We designed the optimality landscape as a grid of
929 × 540, 1 km2 patches representing Montana (electronic sup-
plementary material, p. 2,5,7). Raster data (1 km2 resolution)
were loaded into NetLogo to inform each patch’s benefits (B)
of food and costs (C ) for defending and using patches (details
electronic supplementary material, p. 5, values electronic sup-
plementary material, p. 19). Because ungulates in Montana
are largely migratory, we represented each patch’s seasonal B
using ungulate density indices in summer (mid-Apr–mid-Oct)
and winter (mid-Oct–mid-Apr). Each patch’s C arose as simu-
lated wolf packs selected and competed for patches, but also
included raster inputs for terrain ruggedness and human density
(electronic supplementary material, p. 6).

The model’s individual agents each represented a wolf pack.
During simulations (figure 1), a simulated focal pack was added
to the optimality landscape at a random patch that served as an
initial annual territory centre (electronic supplementary material,
p. 8). Possible initial centre patches were at least 5 km from Mon-
tana’s boundary (to avoid slow simulation speeds due to edge
effects as B and C inputs were constrained to the state), unoccu-
pied by other packs, and within 15 km of western Montana
ecoregions to simulate realistic dispersal (Northern Rockies,
Canadian Rockies, Idaho Batholith and Middle Rockies; figure 2).
However, in subsequent model steps, territory centres could be
shifted to any location on the Montana landscape (electronic sup-
plementary material, p. 11).

The focal pack next assessed summer and winter values (V ) of
patches within 45 km of the initial annual territory centre as B–C for
each season (electronic supplementarymaterial, p. 9) [18]. Patches of
highest V had high B (high summer or winter prey densities) and
lowC, i.e. were closer to the territory centre andof lower terrain rug-
gedness (thereby reducing travel costs), not occupied byother packs
(reducing competition costs), and had low human densities (redu-
cing mortality risk costs). Conversely, patches more costly to use
and own were occupied by other packs, further from the territory
centre, or had greater ruggedness or human densities. The pack
established a summer territory by selecting patches in order of
summer V (patch with highest V, next highest V, etc.) until it
acquired sufficient resources for summer (R, i.e. total resources
required for survival and reproduction, assumed to be equivalent
across packs; electronic supplementary material, p. 10). This was
repeated for a winter territory, based on winter V and winter R.
The summer and winter territories together comprised the annual
territory.

We next needed to determine if the simulated pack should shift
its annual territory to maximize its economic value. This was an
iterative process until the annual territory centre and the geo-
graphic centre aligned, and a simulation requirement to identify
a territory with maximal economic value since costs and benefits
of patches were determined by testing out possible territory
formations. In real life, we expect wolves to explore and learn
about their environments in order to ultimately settle in areas of
maximal value. For simulations, the pack’s territory centre was
compared to the simulated territory’s geographic centre (as
measured by combined extents of summer and winter territories;
electronic supplementary material, p. 11). Mismatches of at least
1 kmbetween a selected and geographic territory centre often indi-
catedV could bemaximized by shifting that direction. Therefore, if
mismatched, the pack discarded its territory, repositioned to this
new centre, recalculated V and again selected territory patches.
This was repeated until centres aligned.
Next, a new pack was added and the territory selection steps
were repeated (figure 1; electronic supplementary material, p. 8).
If a pack chose a territory partially overlapping existing packs
(thereby increasing costs of competition and reducing V for
packs claiming the patch; electronic supplementary material,
p. 9), each affected pack reassessed whether their territories
remained economical, leading to territory shifts and dynamic,
density-dependent competition among packs (electronic sup-
plementary material, p. 13).

During simulations, density thresholds (density) specified
per-ecoregion densities of packs per 1000 km2 to be modelled
(electronic supplementary material, p. 8,15). After density was
reached and all packs were settled, each pack’s final territory
was recorded as patches selected based on V plus any crossed
to reach selected patches from the territory centre (electronic sup-
plementary material, p. 13,23). Territory size was the number of
1 km2 patches in the territory and overlap was percentage of the
territory overlapping other territories. The model recorded each
pack’s number of nearby competitors (number of other territory
centres≤ 25 patches from the territory border) [19] and mean
human density per territory patch. Summer and winter seasonal
territories selected to meet R in the respective season were like-
wise summarized. Patches recorded the size of the annual
territory claiming them (shared patches were assigned the
mean territory size of packs claiming them), and final results
were saved as 1 km2-resolution rasters.
(b) Model application
We completed a series of simulations (electronic supplementary
material, p. 15). We first calibrated the optimality landscape to
identify applicable parameter values for wolves in our system.
For this step, we used 26 empirical estimates of territory bound-
aries [19] derived from global positioning system (GPS) collars
deployed on wolves from 2014 to 2019 (figure 2; electronic sup-
plementary material, p. 6). Territories were summarized as 95%
volume-adaptive kernel density estimates [1] with a smoothing
parameter of 100% of the reference bandwidth. Ecoregions con-
tained five (Northern Rockies), seven (Canadian Rockies), three
(Idaho Batholith), nine (Middle Rockies), one (Glaciated Plains)
and one (Great Plains) empirically observed territories (figure 2).

Calibration swept across a wide range of parameter values
(i.e. low–high weights for C and settings for R; electronic sup-
plementary material, p. 14). This iteratively minimized and
maximized R and importance of each C (competition, travel
and mortality risk) to test a wide swath of model formulations and
associated hypotheses (e.g. competition very important while
travel and mortality less so, etc.). Whereas simulated packs nor-
mally had no information about locations of real territories,
during calibration, we manually placed a pack at each empirically
observed territory centre and had them select optimal territories
(electronic supplementary material, p. 14). We repeated this
while systematically varying the parameters to identify values
that minimized average mean squared error in size of predicted
versus observed territories. We used the identified values for the
remaining model applications.

For our primary simulations, we simulated recent (2014–
2019) wolf densities in Montana (electronic supplementary
material, p. 15). Because competition among packs influences
spatial behaviour [18,19], an approximation of density helped
simulate a specific period of space use. To set density, we used
empirical data to estimate mean densities of packs that occurred
in each ecoregion (electronic supplementary material, p. 6).
The population was largely stable in these years with a mean
of 127 packs per year and pack densities per 1000 km2 of
1.6 (Northern Rockies), 1.4 (Canadian Rockies), 1.9 (Idaho
Batholith), 0.5 (Middle Rockies), 0.02 (Glaciated Plains) and
0.03 (Great Plains). Once these densities were reached, the
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simulation ended. We repeated 50 simulation iterations to cap-
ture variability in results (electronic supplementary material,
p. 15).

We used the model’s simulation results to test our hypotheses
and the model’s predictive capacity (electronic supplementary
material, p. 15). To assess first-order selection, we overlaid raster
datasets from the 50 iterations to identify where predicted terri-
tories occurred. We overlaid this with an empirically observed
distribution of wolves from monitoring data (territory centroids,
harvest locations of wolves and resident wolf GPS locations; for
2014–2019, n = 628; 915; and 50,601, respectively; electronic
supplementarymaterial, p. 6). For second-order selection, we aver-
aged the 50 rasters at each 1 km2 cell, measuredmean territory size
predicted within each real territory boundary for 2014–2019 and
compared this to the empirically observed size. We also compared
sizes of simulated territories versus the 26 real territories in relation
to prey density, competition and human density.

To externally test the model (using data omitted from cali-
bration), we simulated an earlier period when pack densities
were lower (2008–2009) and GPS data were available (electronic
supplementary material, p. 6,15). We set per-ecoregion density
to that which occurred in these years (electronic supplementary
material, p. 7), ran 50 iterations of the model and measured
predicted territory sizes for 10 GPS-collared wolves living
in nine packs in these years. We plotted first-order selection
against the empirically observed wolf distribution in these
years and compared simulated territories versus the nine
observed territories in relation to prey density, competition and
human density (electronic supplementary material, p. 31–34).

Finally, we applied the model across a range of density
and variable prey B to demonstrate their effects on space use
(electronic supplementary material, p. 15,35).
4. Results
Model calibration steps testedmodel variations that reduced or
strengthened importance of the hypothesized primary costs of
space use (competition, travel and mortality risk) and settings
for R. All C were important for accurate prediction (electronic
supplementary material, p. 15).

Themodel successfully predictedwolf distribution, i.e. first-
order space use (figure 2; electronic supplementary material,
p. 24–31). Observed and predicted distributions for 2014–2019
were extensive in northwestern Montana and noticeably
patchy in southwesternMontana. Themodel likewise predicted
wolf distribution in 2008–2009 (electronic supplementary
material, p. 31). Simulated packs largely avoided areas appar-
ently also avoided by real wolves. The model occasionally
predicted territories in central Montana (electronic supplemen-
tary material, p. 25,26). These areas include island mountain
ranges surrounded by ranchlands where human–wolf conflicts
can be high, potentially decreasing the odds of packs persisting.
The public has reported wolf sightings and harvests in these
areas, however (electronic supplementary material, p. 28–30),
indicating that wolves indeed use them.

The model demonstrated predictive capacity for second-
order selection, despite large variability in real territory sizes
(mean 568 km2, s.d. 420 km2, median 441 km2, range 188–
2207 km2). Median differences in predicted versus observed
territory sizes was 129 km2 for 26 packs from 2014 to 2019
(figure 3; mean = 212 km2, or 158 km2 omitting one large
observed outlier territory.) Specifically, 42.3% of predicted ter-
ritory sizes were within 100 km2 of the observed size, 73.1%
were within 200 km2, and 80.8% were within 300 km2.
Additionally, for five of seven observed territories with
predictions differing by greater than 200 km2, concentrated
space use was predicted and observed (based on the density
of GPS fixes) to be smaller than full territory boundaries esti-
mated empirically (figure 2), an outcome of empirical
uncertainty measured by kernel density estimation. The
remaining twowolves from this subsetwere probable breeding
females, who tend to use less space than the rest of the pack
while raising pups; unsurprisingly, their predicted space use
was greater than observed.

Despite highly variable real territory sizes observed for
2008–2009 (mean 696 km2, s.d. 467 km2, median 477 km2,
range 251–1835 km2), median difference in predicted versus
observed territory size was 82 km2 (figure 3). (Mean differ-
ence was 240 km2, or 112 km2 omitting one large observed
outlier territory.) Of the nine territories, 55.6% were within
100 km2 of observed sizes, 66.7% were within 200 km2, and
only the outlier differed by greater than 300 km2.

The model predicted empirically observed patterns in
space use. As demonstrated for 2014–2019 densities, the
model predicted spatial variation by ecoregion (figure 4) and
for responses to food abundance, competitor density and
human density (figure 5). Territory size declined with increas-
ing food abundance and more neighbouring packs, during
which territory overlap was predicted to increase. Territory
size was predicted to increase and then decrease curvilinearly
with greater human-caused mortality risk (figure 5). The
model predicted seasonal territories to be smaller and have
less overlap in summer than winter (figure 6). Predictions for
2008–2009 likewise matched empirically observed patterns in
space use (electronic supplementary material, p. 31–34).
5. Discussion
We demonstrate how an optimality landscape and mechanis-
tic model centred on optimal foraging theory can advance
scientific understanding of mechanisms driving spatial
behaviour. Our approach contributes evidence that
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economical space use is a mechanistic bridge to animal distri-
bution and density on the landscape. Wolf territories were
economical with respect to benefits of food and costs of
defending and using space, consistent with the food defence
hypothesis [26] and expectation that wolves are regulated by
both intrinsic [27] and extrinsic [28] factors. Simple rules for
economical selection of patches for inclusion in territories
yielded first- and second-order predictions of space use [3]
that mirrored reality, including of the distribution of animals
(figure 2), their spatial requirements (figure 3), and how these
are influenced by prey density, competitor density, human-
caused mortality risk and seasonality (figures 4–6). Appli-
cation of this knowledge can predict behaviour under a
wide range of ecological and social conditions (electronic
supplementary material, p. 35–38).

Our approach to mechanistic models of space use centres
on simple behavioural rules to simulate first- and second-
order space use [3] in an effort to understand how and why
animals select territories [17,18]. Contrasting MHRA’s focus
on second- and third-order animal movements and partial
differential equations [6], our approach’s foundation is in
optimal foraging theory [8] and simultaneously integrates
dynamic competition among territory holders to account
for how competitors influence economics of defending
space [6,18]. Building on this foundation, we incorporated
an optimality landscape for producing spatially explicit pre-
dictions of space use. Importantly, we not only found
which model formulation fit the data best but assessed the
extent to which emergent properties of the best model
matched empirical reality, for an entire population across an
area of greater than 380 000 km2.

Our model for animal space use predicted the population’s
distribution and territory sizes of individual packs, absent
extensive data for movements and resource availability. It
accomplished this for recent (2014–2019) space use by real
wolves (whose training data were used during model cali-
bration), and for an earlier, lower density period of wolf
recovery (representing new data omitted from model cali-
bration; figure 3). Per-pack predictive accuracy varied but
predictions strongly improved on estimates that could be
derived from the population’s observed territory sizes, which
in recent years averaged 568 km2 and ranged over a greater
than 2000 km2 spread (188–2207 km2; s.d. = 420 km2).

Our approach was designed to enable testing hypotheses
about carnivore space use. This work contributes evidence
that carnivore territories are economical with respect to
benefits and costs of space use. In this system, space use
appears to be particularly influenced by prey and competition
(figure 5; electronic supplementary material, p. 36–37), con-
sistent with the food defence hypothesis [26] and expectation
that both extrinsic and intrinsic factors regulate carnivore
spatial behaviour and resulting densities. Researchers pre-
viously hypothesized that carnivore populations are
primarily driven by extrinsic factors (prey) [28] or intrinsic fac-
tors (competition) [27]. Support for the extrinsic hypothesis
would have been found if model calibration identified mini-
mal or no importance of competition, versus support for the
intrinsic hypothesis had predictions mismatched reality (as
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Figure 5. Predicted spatial requirements for 2014–2019 aligned with empirical observations in relation to seasonal densities of ungulates (a,b; ungulates/km2),
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depict smoothed conditional means for predictions. (Figure for 2008–2009 provided in the electronic supplementary material, p. 33.) Observations of per cent
overlap were unavailable as this would require simultaneously deploying collars in every pack in Montana.) (Online version in colour.)
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prey comprised the primary benefit for defending space on the
landscape). Logically, plentiful food resources reduce spatial
requirements when animals select territories to economically
meet resource needs; however, these high-value areas attract
competitors. Escalating competition imposes added costs of
territory defence, which generally causes territories to com-
press as their peripheries become uneconomical. Overlap
among territories simultaneously increases where retaining
access to areas relatively rich in food remains economical
despite costs of defending these sites. Economical space use
leading to numerous, highly compressed territories will
encourage continued jockeying for space and fluctuations in
territory boundaries as animals interact to defend food
and respond to competitors. These complex dynamics likely
underlie spatial drifts of territories over time as observed for
wolves [36] and other species [37]. The overall distribution
of territories may however appear relatively stable even as ter-
ritory boundaries shift within (electronic supplementary
material, p. 38). Importantly for conservation, this means
that a population’s distribution is likely to be strongly
decoupled from and a poor gauge of population size,
growth rate and long-term viability.
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Figure 6. Density plots show that seasonally defended areas were predicted to be smaller and have less overlap in summer than winter. (Figure for 2008–2009
provided in the electronic supplementary material, p. 34.) (Online version in colour.)
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Because this work contributes evidence that food defence
drives space use in our study system, it offers evidence against
mate or offspring defence as sole primary drivers of territorial-
ity, as proposed by themate defence [32] and offspring defence
[33] hypotheses. Because we explicitly modelled defence of
food resources, our model’s predictive ability would have
been low if mate or offspring defence was instead the primary
benefit of territoriality. Including mates or offspring in the
optimality landscape could strengthen predictive capacity,
and our approach provides a foundation for future tests. Inter-
estingly, however, the mate defence hypothesis would predict
less territory overlap during winter to protect mating opportu-
nities [32], whereas the model predicted overlap should be
greater in winter (figure 6), as has been reported empirically
[38]. Additionally, whereas a key prediction of the offspring
defence hypothesis was that food should not affect territory
size [33], we show that food influences territory size and
that our optimality landscape accounting for food resources
predicts wolf spatial behaviour (figures 2–5).

Spatial requirements and resulting animal densities are
highly variable because local conditions are rarely stable
over space and time (figures 4–6; electronic supplementary
material, p. 36–38); however, what spatial requirements
reveal can be counterintuitive. We may assume that large ter-
ritories indicate greater success in defending space, but small
territories tend to reveal a landscape’s most desirable areas
when animals economically defend space to satisfy resource
requirements. For example, northwestern Montana is densely
populated by white-tailed deer that use small home ranges
and often have short-distance elevational migrations from
winter to summer. This stable resource base enables wolf ter-
ritories to consistently be relatively small (figure 5; electronic
supplementary material, p. 37). Notably, wolves naturally
recolonized these same areas first in the 1980s. By contrast,
dispersed, fluctuating resources cause relatively large terri-
tories, such as observed elsewhere in Montana where
migratory elk and mule deer predominate. Large territories
reveal economical trade-offs are gained despite paying
greater costs to maintain and use more space. A widely dis-
persed, low-density territory mosaic produced by large
territories may have lower costs of defence given fewer neigh-
bouring competitors. Such conditions evidently occurred in
southwestern Montana and along the Continental Divide,
where some of the largest territories (figure 4) occurred in
dispersed, patchily distributed territory mosaics (figure 2).

Territorial behaviours carry costs of mortality risk (e.g.
through increased movement and defensive signalling) that
influence the optimality landscape and trade-offs in space
use (figure 5). We assumed that data for human densities
suitably represented how costs of human-caused mortality
risk affect economic values of space, and other data repre-
senting these costs may be informative. However, reducing
costs of mortality risk on the optimality landscape led simu-
lated animals to settle in valley bottoms densely populated
by humans and avoided by real wolves. Such areas were
likely economical for wolves prior to exploitation by
humans. Extensive range overlap among wolves and
humans elsewhere (e.g. Italy, where wolves enter human
settlements to forage at night) [30] demonstrates how carni-
vores adapt to variable costs of mortality risk. We expect
this cost is reduced in areas with lower human-caused mor-
tality risk (e.g. national parks). However, reduced mortality
risk alone will not make areas economically valuable for
defending territories.

Economical space use may affect important dynamics like
dispersal and may thus have contributed to the evolution of
group living and cooperative behaviour [39]. Tightly packed,
highly competitive territory mosaics may make dispersal less
economical if not deadly by increasing risks of intraspecific
encounters and failure to find vacant space. By contrast,
sparse territory mosaics may allow dispersers to capitalize
on travel corridors provided by undefended interstitial
space. Larger territories may also be less risky for trespassing
while occupants are patrolling elsewhere. Accordingly, for
territorial species, less economically desirable areas could
contribute more dispersers within a population or emigrants
to nearby ones. Highly competitive territory mosaics may see
more delayed dispersal, reduced dispersal success, or more
intraspecific mortality and turnover in territory ownership.
Such possibilities provide areas for future research. Delayed
dispersal in response to competition for space has been
hypothesized to underly the evolution of group living [39],
which may well have been the case for animals like wolves.
This evolution may have continued through a feedback
loop such that delayed dispersal brought added benefits of
cooperatively defending space and raising young.
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Economical space use has broad implications for the
greater ecosystem. The same spatial dynamics affecting dis-
persal may affect pathogen spread within a population
and spillover to other species. Prey and predators also
likely structure their own space use in response to that of
an intermediate predator. For example, prey populations
may take refuge where territory boundaries meet, as hypoth-
esized and observed for deer living among wolf territories
[40,41]. Areas with densely packed territory mosaics yield
increased densities of predators and prey refuge zones at
closer proximity to territory owners. However, extensive
boundaries formed by numerous small territories could
create plentiful refuge zones for prey to exploit.

As with all models, ours carries various assumptions and
provides areas for future work. We assumed that resource
requirements did not vary with pack size, based on the
hypothesis that wolf packs carve out territories to accommo-
date large packs [29]; this could be modified in future model
iterations. We assumed that natural selection has shaped
wolves to instinctively perceive relative costs and benefits of
selecting different areas for a territory within the general vicin-
ity. This assumption could likewise be relaxed, but should be
reasonable for highly mobile species that appear to explore
areas before settling into territories [29]. Other costs or benefits
may be informative in future model iterations (e.g. areas for
den or rendezvous sites, or alternative prey bases). This
would increase the calibration iterations required (electronic
supplementarymaterial, p. 14) and data inputs nearly identical
in both magnitude and spatial extent would challenge discern-
ment of importance to overall patch values. Application of our
model to predict space use for specific years of wolf recovery
relied on a means to approximate the degree of competition
encountered (electronic supplementary material, p. 6), because
competition strongly influences space use [18]. We approxi-
mated competition by estimating the density of packs from
monitoring effort; alternatives could include modifying
the model to simulate selection near estimated territory
centroids of observed packs, or developing empirical models
of approximate pack densities.
6. Conclusion
Scientific understanding of mechanisms driving spatial behav-
iour can be advanced using an optimality landscape and
mechanistic model centred on optimal foraging theory. Our
approach can be applied to systems where extensive monitor-
ing data are impossible or impractical to collect. Knowledge
gained from our approach can enhance conservation efforts
and predict effects of conservation actions.

The foundation provided by this research can be applied to
any species. The approach can be easily adapted to different
contexts by modifying model rules or data inputs. Sub-
models, such as for food resources, dispersal and group size,
may increase predictive precision and provide additional ave-
nues for research. Further adaptations may also enable
predicting third-order movements within a territory and inte-
gration with other mechanistic approaches like MHRA. The
approach is not limited to territorial species; minor changes to
costs of competition would extend the model to home ranges
in general, further expanding the opportunity to study and
understand animal spatial behaviour.
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