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Abstract

While much progress has been made in understanding the minimax sample complexity of
reinforcement learning (RL)—the complexity of learning on the “worst-case” instance—such
measures of complexity often do not capture the true difficulty of learning. In practice, on an
“easy” instance, we might hope to achieve a complexity far better than that achievable on the
worst-case instance. In this work we seek to understand the “instance-dependent” complexity of
learning near-optimal policies (PAC RL) in the setting of RL with linear function approximation.
We propose an algorithm, PEDEL, which achieves a fine-grained instance-dependent measure of
complexity, the first of its kind in the RL with function approximation setting, thereby capturing
the difficulty of learning on each particular problem instance. Through an explicit example, we
show that PEDEL yields provable gains over low-regret, minimax-optimal algorithms and that
such algorithms are unable to hit the instance-optimal rate. Our approach relies on a novel online
experiment design-based procedure which focuses the exploration budget on the “directions”
most relevant to learning a near-optimal policy, and may be of independent interest.

1 Introduction

In the PAC (Probably Approximately Correct) reinforcement learning (RL) setting, an agent is
tasked with exploring an unknown environment in order to learn a policy which maximizes the
amount of reward collected. In general, we are interested in learning such a policy using as few
interactions with the environment (as small sample complexity) as possible. We might hope that
the number of samples needed would scale with the difficulty of identifying a near-optimal policy in
our particular environment. For example, in a “hard” environment, we would expect that more
samples might be required, while in an “easy” environment, fewer samples may be needed.

The RL community has tended to focus on developing algorithms which have near-optimal
worst-case sample complexity—sample complexities that are only guaranteed to be optimal on “hard”
instances. Such algorithms typically have complexities which scale, for example, as O(poly(d, H)/€?),
for d the dimensionality of the environment, H the horizon, and e the desired level of optimality.
While we may be able to show this complexity is optimal on a hard instance, it is unable to
distinguish between “hard” and “easy” problems. The scaling is identical for two environments
as long as the dimensionality and horizon of each are the same—no consideration is given to the
actual difficulty of the problem—and we therefore have no guarantee that our algorithm is solving
the problem with complexity scaling as the actual difficulty. Indeed, as recent work has shown
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(Wagenmaker et al., 2021b), this is not simply an analysis issue: worst-case optimal algorithms can
be very suboptimal on “easy” instances.

Towards developing algorithms which overcome this, we might instead consider the instance-
dependent difficulty—the hardness of solving a particular problem instance—and hope to obtain a
sample complexity scaling with this instance-dependent difficulty, thereby guaranteeing that we solve
“easy” problems using only a small number of samples, but still obtain the worst-case optimal rate on
“hard” problems. While progress has been made in understanding the instance-dependent complexity
of learning in RL, the results are largely limited to environments with a finite number of states and
actions. In practice, real-world RL problems often involve large (even infinite) state-spaces and, in
order to solve such problems, we must generalize across states. To handle such settings, the RL
community has turned to function approximation-based methods, which allow for provable learning
in large state-space environments. However, while worst-case optimal results have been shown, little
is understood on the instance-dependent complexity of learning in these settings.

In this work we aim to bridge this gap. We consider, in particular, the linear MDP setting, and
develop an algorithm which provably learns a near-optimal policy with sample complexity scaling
as the difficulty of each individual instance. Furthermore, by comparing to our instance-dependent
measure of complexity, we show that low-regret algorithms are provably suboptimal for PAC RL in
function approximation settings. Our algorithm relies on a novel online experiment design-based
procedure—adapting classical techniques from linear experiment design to settings where navigation
is required to measure a particular covariate—which may be of independent interest.

1.1 Contributions

Our contributions are as follows:

e We propose an algorithm, PEDEL, which learns an e-optimal policy with instance-dependent
sample complexity scaling as (up to H factors):
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for ¢ 5 the “average feature vector” of policy m, Ar,  n the expected covariance of the policy
Texp, and Vg — V7 the “policy gap”. We show that PEDEL also has worst-case optimal dimension-
dependence—its sample complexity never exceeds (5(d2H 7 /€?)—but that on “easy” instances it
achieves complexity much smaller than the worst-case optimal rate.

e It is well-known that low-regret algorithms achieve the worst-case optimal rate for PAC RL.
We construct an explicit example, however, where the instance-dependent complexity of PEDEL
improves on the complexity of any low-regret algorithm by a factor of the dimensionality, providing
the first evidence that low-regret algorithms are provably suboptimal on “easy” instances for PAC
RL in function approximation settings.

e We develop a general experiment design-based approach to exploration in MDPs, which allows
us to focus our exploration in the directions most relevant to learning near-optimal policies.
Our approach is based on the key observation that, while solving an experiment design in an
MDP would require knowledge of the MDP dynamics, we can approximately solve one without
knowledge of the dynamics by running a regret minimization algorithm on a carefully chosen
reward function, inducing the correct exploration. We apply our experiment design approach to



efficiently explore our MDP so as to identify near-optimal policies, but show that it can also be
used to collect observations minimizing much more general experiment design objective functions.

2 Related Work

The sample complexity of RL has been studied for decades (Kearns & Singh, 1998; Brafman &
Tennenholtz, 2002; Kakade, 2003). The two primary problems considered are the regret minimization
problem (where the goal is to obtain large online reward) and the PAC policy identification problem
(where the goal is to find a near-optimal policy using as few samples as possible), which is the focus
of this work. In the tabular RL setting, the question of obtaining worst-case optimal algorithms
is nearly closed (Dann & Brunskill, 2015; Dann et al., 2019; Ménard et al., 2020; Zhang et al.,
2020). As such, in this section we focus primarily on results in the RL with function approximation
literature, as well as results on instance-dependent RL.

Sample-Efficient RL with Linear Function Approximation. To generalize beyond MDPs
with a finite number of states and acions, the RL community has considered function approximation,
replacing the tabular model with more powerful settings that allow for generalization across states.
Such settings have been considered in classical works (Baird, 1995; Bradtke & Barto, 1996; Sutton
et al., 1999; Melo & Ribeiro, 2007), yet these works do not provide polynomial sample complexities.
More recently, there has been intense interest in obtaining polynomial complexities for general
function classes (Jiang et al., 2017; Du et al., 2021; Jin et al., 2021; Foster et al., 2021), and, in
particular, linear function classes (Yang & Wang, 2019; Jin et al., 2020; Wang et al., 2019; Du et al.,
2019; Zanette et al., 2020a,b; Ayoub et al., 2020; Jia et al., 2020; Weisz et al., 2021; Zhou et al.,
2020, 2021; Zhang et al., 2021; Wang et al., 2021).

In the linear MDP setting, the state-of-the-art in PAC RL is the work of Wagenmaker et al.
(2022), which proposes a computationally efficient algorithm achieving a complexity of O(d?H? /?)
for the more general reward-free RL problem, and shows a matching lower bound of Q(d?H?/?) for
the PAC RL problem. While this result obtains tight dimension-dependence, it is still worst-case,
and offers no insight on the instance-dependent complexity. Other works of note in this category are
(Jin et al., 2020; Zanette et al., 2020b; Zhou et al., 2020), which establish regret guarantees in the
setting of linear MDPs and the related setting of linear mixture MDPs. Jin et al. (2020) and Zanette
et al. (2020b) obtain regret guarantees of O(Vd3H*K) and O(Vd?H*K), respectively, though the
approach of Zanette et al. (2020b) is computationally inefficient. Via an online-to-batch conversion
(Jin et al., 2018), these algorithms achieve PAC complexities of O(d*H*/e?) and O(d?H*/e?). In
the setting of linear mixture MDPs, Zhou et al. (2020) show a regret bound of O(Vd?H3K) and a
matching lower bound, yielding the first provably tight and computationally efficient algorithms for
RL with function approximation.

Instance-Dependent RL. Much of the recent work on instance-dependent RL has focused on
the tabular setting. Ok et al. (2018) provide an algorithm which achieves asymptotically optimal
instance-dependent regret, yet it is computationally inefficient. Simchowitz & Jamieson (2019)
show that standard optimistic algorithms achieve regret bounded as O(_, , 5, %), for Ap(s,a)
the value-function gap, a result later refined by (Xu et al., 2021; Dann et al., 2021). Obtaining
instance-dependent guarantees for policy identification has proved more difficult, yet a variety of
results do exist (Zanette et al., 2019; Jonsson et al., 2020; Marjani & Proutiere, 2020; Marjani
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et al. (2021b), which propose a refined instance-dependent measure of complexity, the gap-visitation
complexity, and show that it is possible to learn an e-optimal policy with complexity scaling as
the gap-visitation complexity. While the gap-visitation is shown to be tight in certain settings,
no general lower-bounds exist. Towards obtaining sharp guarantees, Tirinzoni et al. (2022) show
that in the simpler setting of deterministic MDPs, a quantity similar in spirit to the gap-visitation
complexity is tight, providing matching upper and lower bounds.

In the setting of RL with function approximation, to our knowledge, only two existing works
obtain guarantees that would be considered “instance-dependent”. Wagenmaker et al. (2021a) show
a “first-order” regret bound of O(\/d®H3V K), where V| is the value of the optimal policy on the
particular MDP under consideration. He et al. (2020) show that standard optimistic algorithms
achieve regret guarantees of (’)(dﬁfﬂ) and (’)(d%ﬁﬂ) in the settings of linear MDPs and linear
mixture MDPs, respectively, for A;n“; the minimum value-function gap. While both these works do
obtain instance-dependent results, the instance-dependence is rather coarse, depending on only a
single parameter (Vj" or Ap,)—our goal will instead be to obtain more refined instance-dependent

guarantees.

Experiment Design in Sequential Environments. FExperiment design is a well-developed
subfield of statistics, and a full survey is beyond the scope of this work (see Pukelsheim (2006) for
an overview). We highlight several works on experiment design in sequential environments that
are particularly relevant. First, the work of Fiez et al. (2019) achieves the instance-optimal rate
for best-arm identification in linear bandits and relies on an adaptive experiment design-based.
Their approach, as well as the related work of Soare et al. (2014), provides inspiration for our
algorithm—in some sense PEDEL can be seen as a generalization of the RAGE algorithm to problems
with horizon greater than 1. Second, the work of Wagenmaker et al. (2021c) provides an experiment
design-based algorithm in the setting of linear dynamical systems, and show that it hits the optimal
instance-dependent rate for learning in such systems. While their results are somewhat more general,
they specialize to the problem of identifying a near-optimal controller for the LQR problem—thereby
solving the PAC RL problem optimally in the special case of quadratic losses and linear dynamical
systems. It is not clear, however, if their approach generalizes beyond linear dynamical systems.
Finally, while the current work was in preparation, Mutny et al. (2022) proposed an approach to
solving experiment design problems in MDPs. To our knowledge, this is the only existing work that
directly considers the problem of experiment design in MDPs. However, they make the simplifying
assumption that the transition dynamics are known, which essentially reduces their problem to a
computational one—in contrast, our approach handles the much more difficult setting of unknown
dynamics, and shows that efficient experiment design is possible even in this more difficult setting.

3 Preliminaries

We let [|[@]|A = @TA@, || - |lop denote the matrix operator norm (matrix 2-norm), and || - ||p denote
the Frobenius norm. Given some norm || - ||, || - ||« denotes the dual norm. S% denotes the set of
PSD matrices in R?¥4, (5() hides absolute constants and log factors of the arguments. < denotes
inequality up to constants. E, and P, denote the expectation and probability measure induced by
playing some policy 7 in our MDP. We let ¢y, - := ¢(Sh.r, an ) denote the feature vector encountered
at step h of episode 7 (and similarly define 7y, ;).



Markov Decision Processes. In this work, we study episodic, finite-horizon, time inhomogeneous
Markov Decision Processes (MDPs), denoted by a tuple, M = (S, A, H,{P,}L |, {vp}iL ). We
let S denote the state space, A the action space, H the horizon, {Ph}hH:1 the transition kernel,
and {vj,}L | the reward distribution, where P,(:|s,a) € As denotes the distribution over the next
state when playing action a in state s at step h, and v(s,a) € AJp,1) denotes the corresponding
distribution over reward. We overload notation and let v, (s, a) also refer to the expected reward. We
assume that every episode starts in state s;, and that {Ph}hH:1 and {Vh}thl are initially unknown.

Let m = {ﬂ'h}thl denote a policy mapping states to distributions over actions, 75, : S = A 4.
When 7 is deterministic, we let 7 (s) denote the action policy 7 takes at (s, h). An episode begins
at state s;. The agent takes action a; ~ m1(s1), transitions to state sy ~ P;(+|s1,a1), and receives
reward 71 (s1,a1) ~ v1(s1,a1). In sg, the agent chooses a new action as ~ ma(s2), and the process
repeats. After H steps, the episode terminates, and the agent restarts at si.

In general, we are interested in learning policies that collect a large amount of reward. We
can quantify the performance of a policy in terms of the value function. In particular, the Q-
value function, Q7 (s,a), denotes the expected reward that will be obtained if we are in state
s at step h, play action a, and then play policy 7 for the remainder of the episode. Formally,
Qr(s,a) = Eﬁ[zg:hrh/(sh/,ah/ﬂsh = s,ap = a]. The value function is similarly defined as
Vii(s) = B[S0, w81, ap)|sn = s]. For deterministic policies, Vii(s) = Qf(s,mh(s)). We
denote the optimal Q-value function by Q7 (s,a) = sup, Q7 (s,a) and the optimal value function by
V7 (s) = sup, V;7(s), where the suprema is taken over all policies, both deterministic and stochastic.
We define the wvalue of a policy as VJ7 = V["(s1)—the expected reward policy 7 achieves over an
entire episode—and say a policy 7 is optimal if V{7 = V/f". For some set of policies II (which may
not contain an optimal policy), we let Vi (II) := sup e V-

PAC Reinforcement Learning. In PAC RL, the goal is to identify some policy 7 using as few
episodes as possible, such that, with probability at least 1 — 4,

V-V <e
We say that such a policy is e-optimal, and an algorithm with such a guarantee on every environment
and reward function is (e, d)-PAC. We will also refer to this problem as “policy identification”.
3.1 Linear MDPs

In this work, we are interested in the setting where the state space could be infinite, and the learner
must generalize across states. In particular, we consider the linear MDP model defined as follows.

Definition 3.1 (Linear MDPs (Jin et al., 2020)). We say that an MDP is a d-dimensional linear
MDP, if there exists some (known) feature map ¢(s,a) : S x A — R% H (unknown) signed
vector-valued measures pj, € R? over S, and H (unknown) reward vectors 6, € R?, such that:

Ph('|5’a) = <¢(87a)7uh(')>7 E[Vh(saa)] = <¢(87a)30h>'

We will assume [¢(s,a)||2 < 1 for all 5,a; and for all h, |[|un|(S)ll2 = || [,cs |dmn(s)]]]2 < Vd and
1412 < V.

Linear MDPs encompass, for example, tabular MDPs, but can also model more complex settings,
such as feature spaces corresponding to the simplex (Jin et al., 2020), or the linear bandit problem.



Critically, linear MDPs allow for infinite state-spaces, as well as generalization across states—rather
than learning the behavior in particular states, we can learn in the d-dimensional ambient space.
Note that the standard definition of linear MDPs, for example as given in Jin et al. (2020), assumes
the rewards are deterministic, while we assume the rewards are random but that their means are
linear. We still assume, however, that the random rewards, ry(s,a), are contained in [0, 1] almost
surely.

For a given policy w, we define the feature-visitation at step h, the expected feature vector
policy 7 encounters at step h, as ¢y p := Ex[¢(sp, ar)]. Note that this is a direct generalization of
state-visitations in tabular RL—if our MDP is in fact tabular, (¢ 4]s.a = Pr[sp, = s,ar = a, so the
feature visitation vector corresponds directly to the state visitations. Note also that we can write
the value of a policy as V{7 = ZhH:1 (¢r 1, 0r). Denote the average feature vector induced by 7 in a
particular state s as ¢r () = Equn, (|5)[@(s,a)]. We also define Arj, := Ex[¢(sh, an)d(sn,an) '],
the expected covariance of policy 7 at step h, )\mm n = SuP; Amin(Ax ) the largest achievable

minimum eigenvalue at step h, and A%, = min, A} . - We will make the following assumption.

Assumption 1 (Full Rank Covariates). In our MDP, \:.

min

We remark that Assumption 1 is analogous to other explorability assumptions found in the RL with
function approximation literature (Zanette et al., 2020c; Hao et al., 2021; Agarwal et al., 2021).

To reduce uncertainty in directions of interest, we will be interested in optimizing over the set of
all realizable covariance matrices on our particular MDP. To this end, define

Q= {Erw[Arp] © we Q) (3.1)

for Q, the set of all valid distributions over Markovian policies (both deterministic and stochastic).
€, is, then, the set of all covariance matrices realizable by distributions over policies at step h.

4 Near-Optimal Policy Identification in Linear MDPs

We are now ready to state our algorithm, PEDEL.

Pedel Description. PEDEL is a policy-elimination-style algorithm. It takes as input some set of
policies, II, and proceeds in epochs, maintaining a set of active policies, II,, such that all = € I, are
guaranteed to satisfy V7 > Vg (IT) — 4ey, for ¢ = 27¢. After running for [log %] epochs, it returns
any of the remaining active policies, which will be guaranteed to have value at least V7 (II) — .

In order to ensure II; only contains 4¢,-optimal policies, sufficient exploration must be performed
at every epoch to refine the estimate of each policy’s value. While works such as Wagenmaker
et al. (2022) have demonstrated how to efficiently traverse a linear MDP and collect the necessary
observations, existing exploration procedures are unable to obtain the instance-dependent complexity
we desire. To overcome this, PEDEL relies on a novel online experiment design procedure to ensure
exploration is focused only on the directions necessary to evaluate the current set of active policies.

In particular, one can show that, if we have collected some covariates Ay, ¢, the uncertainty
in our estimate of the value of policy m at step h scales as ||¢)7rh||A_1, for ¢ o, the estimated

feature-visitation for policy 7 at epoch £. To reduce our uncertainty ‘at each round, we would
therefore like to collect covariates such that ||¢ all AL S < €. Collecting covariates which satisfy

this using the minimum number of episodes of exploratlon possible involves solving the experiment



Algorithm 1 Policy Learning via Experiment Design in Linear MDPs (PEDEL)

1: input: tolerance ¢, confidence 9§, policy set 11

3/2 ~
2: Ly < ﬂogQ dT—|, Hgo + 11, ¢71r’1 — EaNm(,‘sl)[(ﬁ(Sl,a)],Vﬂ' ell
3: for £ =4y, b+ 1,..., [log%] do

4: €p < 2_5, Be +— 64 H* log w
5: for h=1,2,...,H do
6: Solve (4.1) by running Algorithm 2, collect data {(¢p -, rp -, shH’T)}f:hf such that:

~ K
max Hd)fr,h”i;le <e/Be for Mg S bnron, +1/d- 1
£ s

7: for 7 € II; do // Estimate feature-visitations for active policies

e Kh,e T A-1)7¢
8: ¢7‘r,h+1 = (ZT:l ¢7ruh+1(8h+177—)¢h,TAh,£)d)ﬂ',h

~ 1K
9: Hf; — Ahé ZTiie DhThr // Estimate reward vectors
10: // Remove provably suboptimal policies from active policy set
= -~ 7
Ipgq %Hg\{ﬂ' ell, : Vi < sup VW —264} for = 1<¢7rh, ‘)
7' €ll,

11: if |Il;y1| =1 then return 7 € I, 4

12: return any 7 € I,

design:

(4.1)

inf max ||¢

Aexp€Q T 7rh||A—1 .

Note that this design has the form of an XY-experiment design (Soare et al., 2014). Solving (4.1)
will produce covariance Aeyp which reduces uncertainty in relevant feature directions. However, to
solve this design we require knowledge of which covariance matrices are realizable on our particular
MDP. In general we do not know the MDP’s dynamics, and therefore do not have access to this
knowledge. To overcome this and solve (4.1), in Section 5 we provide an algorithm, Algorithm 2,
that is able to solve (4.1) in an online manner without knowledge of the MDP dynamics by running
a low-regret algorithm on a carefully chosen reward function.

Estimating Feature-Visitations. We remark briefly on the estimation of the feature-visitations

on Line 8. If we assume that {¢p .}, Kn, Z is fixed and that all randomness is due to sp41,, then it is

easy to see that, using the structure present in linear MDPs as given in Definition 3.1,

B[ Gt (Sh10) 08 A s = Sm ([ b (8)dpn(s) T ) dh A L
= [Prnt1(s)dpn(s) .

By Definition 3.1, we have ¢ p11 = (f(;’)7r ht1(8)dpn(s) )¢7r,h- Comparing these, we see that our
estimator of ¢ 41 on Line 8 is (conditioned on {th,T}f:h’f) unbiased, assuming $f; h o~ brh-

4.1 Main Results

We have the following result on the performance of PEDEL.



Theorem 1. Consider running PEDEL with some set of Markovian policies 11 on any linear MDP
satisfying Definition 3.1 and Assumption 1. Then with probability at least 1 — §, PEDEL outputs a
policy m € 11 such that V7 > Vi (II) — €, and runs for at most

a [r

A

CoH* - g inf ma =P
O L g pen, el max{Vy(IT) — Vi, AL ey

min’

1
5 (log]H] —I-logg) +Cy

episodes, with Cy = log% - poly log(H, log%), Cy = poly(d, H, /\%,log%,log%,log \HD, Agin =
Vi (II) — MAX 7 [V < Vg (IT) Vi, and Qy, the set of covariance matrices realizable on our MDP, as
defined in (3.1).

The proof of Theorem 1 is given in Appendix B. Theorem 1 quantifies, in a precise instance-
dependent way, the complexity of identifying a policy 7 with value at most a factor of € from
the value of the optimal policy in II. In particular, it trades off between the difficulty of showing
a policy 7 is suboptimal—the “policy gap”, V;(II) — V—and the difficulty of exploring in the
direction necessary to reduce the uncertainty on policy 7, ||z 4| AGL: Rather than scaling with
factors such as d and €, our complexity measure scales with instance-dependent quantities—the
covariance matrices we can obtain on our particular MDP, the feature vectors we expect to observe
on our MDP, and the policy gaps on our MDP.

Theorem 1 holds for an arbitrary set of policies, yet, in general, we are interested in learning
a policy which has value within a factor of € of the value of the optimal policy on the MDP, V.
Such a guarantee is immediately attainable by applying Theorem 1 with a policy set II such that
suprem Vg > Vi — €. The following result shows that it is possible to construct such a set of policies,
and therefore learn a globally near-optimal policy.

Corollary 1. There exists a set of policies Il¢ such that log |II.| < O(dH? - log 1/€) and, for any
linear MDP satisfying Definition 3.1, sup,cr, Vo' > Vi — €. If we run PEDEL with II < Il, then
with probability at least 1 — 0, it returns a policy T such that Vi > Vi — 2¢, and runs for at most

Ol LA ; ||¢7r,h|’igx1p o I g
’ .,;Aeix?eﬂh %%x max{Vj — VJ,€e}? ' ( + log 5) +C1

episodes, for Cy = polylog(d, H, %)

While Theorem 1 and Corollary 1 quantify the instance-dependent complexity of learning, it is
natural to ask what the worst-case complexity of PEDEL is. The following result provides such a
bound.

Corollary 2. For any linear MDP satisfying Definition 3.1, infa,, e, maxX e, ||¢7T,h||i,1 <d,
exp
so the sample complexity of Algorithm 1 when run with II < Il is no larger than

~ (dH®(dH? +1og1/4
o (UL s 19) )

€

Corollary 2 shows that PEDEL has worst-case optimal dimension dependence, matching the lower
bound of Q(d?H?/e?) given in Wagenmaker et al. (2022), up to H and log factors'.

"We remark that the focus of this work is on instance-dependence and dimension-dependence, not in optimizing H
factors, and we leave improving our H dependence for future work.



Remark 4.1 (Performance on Linear Contextual Bandits). Corollary 1 applies directly to linear
contextual bandits by setting H = 1. To our knowledge, this is the first instance-dependent result
on PAC policy identification in linear contextual bandits. Furthermore, Corollary 2 shows that we
also obtain a worst-case complexity of O(d?/€?) on linear contextual bandits, which is the optimal
rate (Wagenmaker et al., 2022).

4.2 Low-Regret Algorithms are Suboptimal for PAC RL in Large State-Spaces

We next show that there are problems on which the instance-dependent complexity of PEDEL
improves on the worst-case lower bound shown in Wagenmaker et al. (2022), thereby demonstrating
that we do indeed obtain favorable complexities on “easy” instances.

Proposition 2. For any d > 2, there exists a d-dimensional linear MDP with H = 2 such that
with probability 1 — &, PEDEL identifies an e-optimal policy on this MDP after running for only
O(loi—f“ + poly(d, log %, log %)) episodes.

The complexity given in Proposition 2 is a factor of d? better than the worst-case lower bound
of Q(d?/€*). While this shows that PEDEL yields a significant improvement over existing worst-case
lower bounds on favorable instances, it is natural to ask whether the same complexity is attainable
with existing algorithms, perhaps by applying a tighter analysis. Towards answering this, we will
consider a class of low-regret algorithms and an online-to-batch learning protocol.

Definition 4.1 (Low-Regret Algorithm). We say that an algorithm is a low-regret algorithm if its
expected regret is bounded as, for all K:

E[Rk] = Y5 BV — V] < CLK® +Cy
for some constants Cq,Cs, and a € (0, 1).

Protocol 4.1 (Online-to-Batch Learning). The online-to-batch protocol proceeds as follows:
1. The learner plays a low-regret algorithm satisfying Definition 4.1 for K episodes.

2. The learner stops at a (possibly random) time K, and, using the observations it has collected in
any way it wishes, outputs a policy 7 it believes is e-optimal.

In general, by applying online-to-batch learning, one can convert a regret guarantee of C; K% + Ca
to a PAC complexity of (9((%1)ﬁ +©) (Jin et al., 2018), allowing low-regret algorithms such as
that of Zanette et al. (2020b) to obtain the minimax-optimal PAC complexity of O(d?H*/€?). The
following result shows, however, that this protocol is unable to obtain the instance-optimal rate.

Proposition 3. On the instance of Proposition 2, for small enough €, any learner that is (€,)-PAC
and follows Protocol j.1 with stopping time K must have E[K] > Q(dl%zl/d)

Together, Proposition 2 and Proposition 3 show that running a low-regret algorithm to learn a
near-optimal policy in a linear MDP is provably suboptimal—at least a factor of d worse than the
instance-dependent rate obtained by PEDEL. While a similar observation was recently made in the
setting of tabular MDPs (Wagenmaker et al., 2021b), to our knowledge, this is the first such result
in the RL with function approximation setting, implying that, in this setting, low-regret algorithms
are insufficient for obtaining optimal PAC sample complexity. As standard optimistic algorithms
are also low-regret, this result implies that all such optimistic algorithms are also suboptimal.

2We describe the exact mapping to linear contextual bandits in Appendix B.3.



4.3 Tabular and Deterministic MDPs

To relate our results to existing results on instance-dependent RL, we next turn to the setting of
tabular MDPs, where it is assumed that S := |S| < 00, A := | A| < co. Define:

Ap(s,a) =Vi(s) — Qi(s,a), wfi(s,a) =Pr[sp, = s,ap = al.

Ap (s, a) denotes the value-function gap, and quantifies the suboptimality of playing action a in state
s at step h and then playing the optimal policy, as compared to taking the optimal action in (s, h).
wj (s, a) denotes the state-action visitation distribution for policy 7, and quantifies how likely policy
7 is to reach (s, a) at step h. Note that [@r 4](s,a) = W] (s,a). We obtain the following corollary.

Corollary 3. In the setting of tabular MDPs, PEDEL outputs an e-optimal policy with probability
at least 1 — 6, and has sample complexity bounded as

5 H . H* _ 1 wp(s,a) wr(s,a) (SH +1og 1)+ C
inf max max —————— min . og 5
he1 Texp wEIl  s,a ’LU;LreXp (S, a) wZ(S, a)Ah(57 CL)Q’ Amin(H)Q’ €2 &3 H

for C1 = poly (S, A H, i, minslsupﬁ THOL log %, log %) and I the set of all deterministic policies.

For tabular MDPs, the primary comparable result on instance-dependent policy identification is
that obtained by Wagenmaker et al. (2021b), which introduces a different measure of complexity,
the gap-visitation complexity, and an algorithm, MocA, with sample complexity scaling as the
gap-visitation complexity. The following result shows that the complexity PEDEL obtains on tabular
MDPs and the gap-visitation complexity do not have a clear ordering.

Proposition 4. Fiz any € € (0,1/2) and S > logy(1/€). Then there exist tabular MDPs My and
Mo, each with H =2, S states, and O(S) actions, such that:

e On My, the complexity bound of PEDEL given in Corollary 3 scales as poly(S,log1/d), while the
gap-visitation complexity scales as Q(1/€2).

e On My, the complexity bound of PEDEL given in Corollary 3 scales as Q(1/€?), while the
gap-visitation complezity scales as poly(S,log1/d).

The lack of ordering between the two complexity measures arises because, on some problem
instances, it is easier to learn in policy-space (as PEDEL does), while on other instances, it is easier
to learn near-optimal actions on individual states directly, and then synthesize these actions into
a near-optimal policy (the approach MoOcCA takes). This difference arises because, in the former
instance, the minimum policy gap is large (Vi — V¥ = Q(1) for every deterministic policy 7 # 7*),
while in the latter instance, the minimum policy gap is small, but all value-function gaps are large,
satisfying Ap(s,a) = Q(1) for all a # argmax,c 4 Q7 (s,a) and all s and h. Thus, on the former
instance, it is much easier to learn over the space of policies, while on the latter it is much easier to
learn optimal actions in individual states. Resolving this discrepency with an algorithm able to
achieve the “best-of-both-worlds” is an interesting direction for future work.

Deterministic MDPs. Finally, we turn to the simplified setting of tabular, deterministic MDPs.
Here, for each (s, a,h), there exists some s’ such that Py (s'|s,a) = 1. We still allow the rewards to
be random, however, so the agent must still learn in order to find a near-optimal policy. Following
the same notation as the recent work of Tirinzoni et al. (2022), let I, = {7 deterministic : s} =
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s,a = a}, where s7 and aj are the state and action policy 7 will be in at step h (note that these
quantities are well-defined quantities for deterministic policies). Also define the deterministic return
gap as Ap(s,a) := Vg — maxgerr,,, VT, and let Ay, = il 4.4, (s,a)>0 Ap(s,a) in the case when
there exists a unique optimal deterministic policy, and Ap, := 0 otherwise. We obtain the following.

Corollary 4. In the setting of tabular, deterministic MDPs, PEDEL outputs an e-optimal policy
with probability at least 1 — &, and has sample complexity bounded as

<H4 ZZ max{Ah S a) A 6}2 ’ (H-i-log%) +p01y (S,A, H, log%’log i))

Up to H and log factors and lower-order terms, the rate given in Corollary 4 matches the
instance-dependent lower bound given in Tirinzoni et al. (2022). Thus, we conclude that, in the
setting of tabular, deterministic MDPs, PEDEL is (nearly) instance-optimal. While Tirinzoni et al.
(2022) also obtain instance-optimality in this setting, their algorithm and analysis are specialized
to tabular, deterministic MDPs—in contrast, PEDEL requires no modification from its standard
operation.

5 Online Experiment Design in Linear MDPs

As described in Section 4, to reduce our uncertainty and explore in a way that only targets the
relevant feature directions, we must solve an XY-experiment design problem of the form:

(5.1)

g max [l
where here ® will be some set of estimated feature-visitations. Recall that €2 denotes the set of
covariance matrices realizable on our MDP, and therefore without knowledge of the MDP dynamics
we cannot specify this set. If follows that it is not in general possible to solve (5.1) without
knowledge of the MDP dynamics. In this section we describe our approach to solving (5.1) without
this knowledge by relying on a low-regret algorithm as an optimization primitive.

Approximating Frank-Wolfe via Regret Minimization. Given knowledge of the MDP dy-
namics, we could compute €2, directly, and apply the celebrated Frank-Wolfe coordinate-descent
algorithm (Frank & Wolfe, 1956) to solve (5.1). In this setting the Frank-Wolfe update for (5.1) is:

[; = argminpeg, (Va(maxges [@l3-1)a=a,T),  Aryr = (1 —7)As + 3Ty (5.2)

for step size ;. Standard Frank-Wolfe analysis shows that this update converges to a near-optimal
solution to (5.1) at a polynomial rate. However, without knowledge of €2;,, we are unable to solve
for I'y and run the Frank-Wolfe update.

Our critical observation is that the minimization over € in (5.2) can be approximated without
knowledge of €25, by running a low-regret algorithm on a particular objective. Some calculation
shows that (except on a measure-zero set, assuming @ is finite) Va(maxges [|@l|5-1)|a=a, =

—A7 ] AT for ¢y = arg MaxX peq H(ﬁHi_l. IfT = Arp, = Ex[¢pnp] | for some 7, we have
t
-1 T -1 -1
(Va(maxges [|#3-1)|a=a,. T) = —tr(A; e Ay Arp) = —Er[(¢, Ay 1)),
3The lower bound of Tirinzoni et al. (2022) depends on a slightly different (but nearly equivalent) minimum gap

term, A", . Similar to our upper bound, the upper bound of Tirinzoni et al. (2022) scales with A, instead of Al
We offer a more in-depth discussion of this point in Appendix B.3.
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Now, if we run a low-regret algorithm on the (deterministic) reward v},(s,a) = (¢(s, a)TA; )2
for a sufficiently large number of episodes K, we will be guaranteed to collect reward at a rate close
to that of the optimal policy, which implies we will collect some data {¢h,7’}§:1 such that

K
K™ ¢ Txey =K Z(¢;TA;1$t)2 ~ sup Ex[(¢ A ' 1)?]. (5.3)

=1

However, this implies the covariates we have collected, r K, approximately minimize (5.2). In other
words, running a low-regret algorithm on u}tl allows us to obtain covariates which are approximately
the solution to the minimization in the Frank-Wolfe update—without knowledge of €25, we can
solve the Frank-Wolfe update by running a low-regret algorithm, and therefore solve (5.1). This
motivates Algorithm 2.

Algorithm 2 Online Frank-Wolfe via Regret Minimization (informal)

1: input: uncertain feature directions ®, step h, regularization Ag > 0

2: K < sufficiently large number of episodes to guarantee (5.3) holds

3: Run any policy for K episodes, collect data {¢h,r}§:01, set Ap < K;! 25:01 ¢h,T¢Z,T
4 fort=1,...,T—1do B
5: ¢r + argmaxeq Hd)H%AtJrAO)—l’ vi(s,a) + (p(s,a)" (Ay + Ag) 1py)?
6 Run low-regret algorithm on I/;; for Ko episodes, collect covariates f%o
7 Set Agy1 = (1 —v)A¢ + %Ko_lf“}(o for v = HLI

8

: return: covariates TKoAr = 3:11 I"}(O + Ay

Theorem 5 (informal). Consider running Algorithm 2 with some Ay = 0. Then with properly
chosen settings of Ky and T, we can guarantee that, with probability at least 1 — §, we will run for
at most

ianAexp 978 maX(ﬁeCI’ || ¢ | | ?Aexp+A0)71

N <20- + poly (d, H, | Ay *[|op, log |®],1og 1/5)

€exp

episodes, and return covariance Ay satisfying maxgpco |]¢||?K L NAQ-1 < €exp-
N 0

*
exp
denote the distribution over policies which minimize (5.1), then to collect covariance Ay such that

MaXped H¢H?KN+ NAg)t < €exp, in expectation, we would need to play 7 ~ wg,, for at least

Note that this rate is essentially optimal, up to constants and lower-order terms. If we let w

infp,, cq, maxgeco Hqﬁ”%Aexp—&-Ao)*l

€exp

episodes, which is the same scaling as obtained in Theorem 5.

In practice, we instead run Algorithm 2 on a smoothed version of the objective in (5.1). We
provide a full definition of Algorithm 2 with exact setting of 7" and Kg in Appendix C.

5.1 Experiment Design in MDPs with General Objective Functions

While the experiment design in (5.1) is the natural design if our goal is to identify a near-optimal
policy, in general we may be interested in collecting data to minimize some other objective; that is,
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solving an experiment design of the form:

inf  f(Aoy
Acxlfenhf( exp)

for some function f defined over the space of PSD matrices. For example, we could take f(Acxp) =
Ao llop = m, and the above experiment design would correspond to maximizing the

minimum eigenvalue of the collected covariates, or E-optimal design (Pukelsheim, 2006).

Motivated by this, in Appendix C we generalize Theorem 5 and Algorithm 2 to handle a much
broader class of experiment design problems. In particular, we consider all smooth experiment design
objectives, which we define as follows.

Definition 5.1 (Smooth Experiment Design Objectives). We say that f(A):S? — R is a smooth
experiment design objective if it satisfies the following conditions:

e [ is convex, differentiable, and 8 smooth in the norm || - ||: ||V f(A) = Vf(A)]« < B||A = A/
e fis L-lipschitz in the operator norm: |f(A) — f(A')] < L||A — A/||op-

o Let Ep, := —VAS(A)|a=A,- Then Zx, = 0 and tr(Epx,) < M for all Ag > 0 satisfying
[Aoflop < 1.

Our generalization of Algorithm 2 to handle all smooth experiment design objectives—OprPTCOV,
defined in Appendix C.3—enjoys the following guarantee.

Theorem 6. Fix h € [H|, consider some f satisfying Definition 5.1, and let fmin be some value
such that infa_eq, f(Aexp) > fmin- Then with probability at least 1 — 4, given any ¢ > 0, OPTCOV
runs for at most

. iancxpenh f(AeXp)
€

N <5 + poly (d, H, M, 8, L, f.i: ,log 1/5)

episodes, and collects covariates f]N = Zivzl ¢h77¢;T such that
FIN"'EN) < Ne.

We will often be interested in objectives f that satisfy f(aA) = a"'f(A) for a scalar a, in
which case the guarantee f(N N-IS ~N) < Ne reduces to f (E ~) < e. We note also that many typical
experiment design objectives are non-smooth. As we show in Appendix D, however, it is often
possible to derive smoothed versions of such objectives with negligible approximation error.

6 Conclusion

In this work, we have shown that it is possible to obtain instance-dependent guarantees in RL
with function approximation, and that our algorithm, PEDEL, yields provable gains over low-regret
algorithms. As the first result of its kind in this setting, it opens several directions for future work.

The computational complexity of PEDEL scales as poly(d, H, 1 =, |11}, |Al, log %) In general, to
ensure II contains an e-optimal policy, |[II| must be exponential in problem parameters, rendering
PEDEL computationally inefficient. Furthermore, the sample complexity of PEDEL scales with A} . ,
the “hardest-to-reach” direction. While this is not uncommon in the literature, we might hope that

13



if a direction is very difficult to reach, learning in that direction should not be necessary, as we are
unlikely to ever encounter it. Obtaining an algorithm with a similar instance-dependence but that
is computationally efficient and does not depend on A%, is an interesting direction for future work.

Extending our results to the setting of general function approximation is also an exciting direction.
While our results do rely on the linear structure of the MDP, we believe the online experiment-design
approach we propose could be generally applicable in more complex settings. As a first step, it
could be interesting to extend our approach to the setting of Bilinear classes (Du et al., 2021), which

also exhibits a certain linear structure.
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A Technical Results

Lemma A.1 (Vershynin (2010)). For any € > 0, the e-covering number of the Euclidean ball
BYR) := {x € R?: ||z|2 < R} with radius R > 0 in the Euclidean metric is upper bounded by
(1+2R/e)%.

Lemma A.2 (Lemma A.4 of Wagenmaker et al. (2022)). If z > C(2n)"log"(2nCB) forn,C,B > 1,
then x > C'log"(Bz).

Lemma A.3 (McSherry & Talwar (2007); Epasto et al. (2020)). Consider some (x;)?_,. Then if
n > log(n)/d, we have

neNTig.
ez
21;1730_1 > maxx; — 0.
Zi:l enri i€[n]

Lemma A.4 (Azuma-Hoeffding). et Fo C Fy C ... C Fr be a filtration and let X1, Xa, ..., X be
real random variables such that X is Fy-measurable, E[X|Fi—1] = 0, and | X¢| < b almost surely.
Then for any ¢ € (0,1), we have with probability at least 1 — 0,

T
> X
t=1

Lemma A.5 (Freedman’s Inequality (Freedman, 1975)). Let Fo C Fi; C ... C Fr be a filtration
and let X1, Xo,..., X7 be real random variables such that X; is F;-measurable, E[X;|Fi—1] = 0,
| X;| < b almost surely, and Y1 B[X?|Fi_1] <V for some fized V >0 and b > 0. Then for any
0 € (0,1), we have with probability at least 1 — ¢,

< /8b%log2/é.

T
ZXt <24/Vlogl/é+blogl/s.
t=1

A.1 Properties of Linear MDPs

Lemma A.6. For any linear MDP satisfying Definition 3.1, we must have that ||¢(s,a)||2 > 1/v/d
for all s and a, and ||¢x pll2 > 1/Vd for all © and h.

Proof. By Definition 3.1, we know that Py(-|s,a) = (¢(s,a), up(-)) forms a valid probability
distribution, and that || [q [dps(s)|[l2 < Vd. Tt follows that

= / (B(5,0), dpan(5)) < | 6(s, @)l / dun(3)lll> < Vallb(s, )
S S

from which the first result follows.
For the second result, using that 1 = [s(¢(s,a), dpn(s)), we get

/ (S dptn(s)) = / (Exldn], dpn(s))
S S

~ & | [0 dins)]
_E. 1
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=1

where we can exchange the order of integration by Fubini’s Theorem since the integrand is absolutely
integrable, by Definition 3.1. As above, we then have

_ /S (D dpsn(s)) < V|2

so the second result follows. O

A.2 Feature-Visitations in Linear MDPs

Define
G =EBrld(sn,an)l,  Gnnl(s) =D (s, a)mu(als)
acA
and
Trp = /¢7r,h(3>dlvl'h1(3)—r'
Lemma A.7. (}’)ﬂ-,h = 7;r,h¢7r,h71 =...= 7;-7]1 .. .7}’1(}')7“0.

Proof. By the linear MDP assumption, we have:

¢7r,h = [¢(8h7 ah)]
= E Sh, ah)]]:h 1]]

= E,| //(p s,a)dmy(als)dpn—1(s ) d(sh—1,an—1)]

= IEW[/ G p(5)dptn—1(5) " P(sn-1,an1)]

- /¢7r,h(3)dll'h—1(S)TEW[¢(5h—1’ah—l)]
Trh®rh—1-

This yields the first equality. Repeating this calculation A —1 more times yields the final equality. [

Lemma A.8. Fiz some h and ¢ < h, and consider the vector
v = 7;rz+17;rz+2 7:1'h 1T

Assume that either u = 0y, for some 0, which is a valid reward vector as defined in Definition 3.1,
oru € S41. In either case, we have that, for any s,a, [v' ¢(s,a)| < 1, and ||v|2 < Vd.

Proof. By the linear MDP structure (see Proposition 2.3 of Jin et al. (2020)), for any j,
Qj(s,a) = (¢(s,a), w])
e <¢(S, (Z), 0j> + / Vf—ri-l(sl)d/’l’](sl)—rﬁb(‘g’ a/)

— ($(s,a),8;) + / (W1, b 412(5))si () T b5, a)
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- <¢( ) 9 +7;’]+1wj+l>

so in general,

H N
w; = Z( H Tl B

h'=i j=i+1
T T
where we order the product H] —ir1 T =T! i1 T - - T -

Case 1: u = 6;,. We first consider the case where u = ), for some 6, which is a valid reward
satisfying Definition 3.1. Assume that the reward in our MDP is set such that for h’ # h, 6, = 0.
In this case, we then have that

™

T _
w; = 7;rz+17;rz+2 7;r,h0h =

In this case, we know that the trajectory rewards are always bounded by 1, so it follows that
Q7 (s,a) < 1. Thus,

1> Q?(S’a) = <¢(87a)7wz7'r> = <¢(Sva)7v>

and this holds for any s, a. Since Q-values are always positive, it also holds that (¢(s,a),v) > 0.
To bound the norm of v, we note that by the Bellman equation and the calculation above,

lolla = w12 = 16 + / () dpaa(s) 2
< 16ill2 + | / VL ()] dpaa(s)]2

<| / dps()ll
<Vd

where we have used that |V;7(s")| < 1 since the total episode return is at most 1 on our augmented
reward function, and the linear MDP assumption.

Case 2: u € S% 1. We can repeat the argument above in the case where we only assume u € S¢1.
Since ||@(s,a)||2 <1, it follows that with the reward vector at level h set to u, the reward will still
be bounded in [—1, 1]. Thus, essentially the same argument can be used, with the slight modification
to handle @)-values that are negative. O

Lemma A.9. The set y, is convex and compact.

Proof. Take A1, Ay € Qy,. By definition, Ay = Exy, [Ar ], A2 = Exw, [Ar p]. It follows that, for
any t € [0,1], tA1 + (1 = t) A2 = Erpes, +-(1—t)ws [Anpn)- For twy + (1 — t)wy the mixture of wy and
wa. As twy + (1 — t)we is a valid mixture over policies, it follows that tA; + (1 — t)As € Q, which
proves convexity.

Compactness follows since ||¢(s,a)||2 < 1 for all s,a, so ||Axp|lop < 1, which implies [|Allop < 1
for any A € Q. Furthermore, the set €2}, is clearly closed, which proves compactness. O
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A.3 Constructing the Policy Class

Lemma A.10 (Lemma B.1 of Jin et al. (2020)). Let w} denote the set of weights such that
Q}(5,a) = (é(s,a), w). Then |[wf|l> < 2Hd.

Lemma A.11. For any § > 0 there exists sets of actions (Ag)ses, As C A, such that A <
(1+8Hd/6) for all s and, for all a € A, s, h, and any =, there exists some @ € Ay such that

|QZ(S’Q) - QZ(S,&)’ <9, |Th(3’a) - Th(s’a)’ <.

Proof. Let N be a §/(4H+/d) cover of the unit ball. By Lemma A.1 we can bound |N| <
(1 + 8H+/d/§)?. Take any s and let A, = (. Then for each ¢ € N, choose any a at random
from the set {a € A : |¢(s,a) — ¢p|l2 < 6/2} and set A, «+ A, U {a}. With this construction,
we claim that for all a € A, there exists some a € A, such that ||¢(s, a) — ¢(s,@)|2 < §/(2HVd).
To see why this is, note that by construction of A, there always exists some ¢ € N such that
|p(s,a) — ¢z < 8/(4HVd). Since A, will contain some a such that || (s, @) — ¢|l2 < §/(AHVA),
the claim follows by the triangle inequality.

By Lemma A.10, we have that for any 7, ||w||2 < 2H/d. Take a € A and let @ € A, be the
action such that ||¢(s,a) — ¢(s,a)|2 < §/(2HV/d). Then

QR (s,0) = Qf(s,0)| = [(d(s,a) — ¢(s,a), w)| < 2HVd||¢p(s,a) — P(s,d) ]2 < 6.

The bound on |rp(s,a) — (s, a)| follows analogously, since we assume our rewards are linear, and

that |62 < Vd. O

Definition A.1 (Linear Softmax Policy). We say a policy is a linear softmaz policy with parameters
n and {wy, }L | if it can be written as

677<¢(Sva)1wh>
) = e

for some w = {wj, }1_ . We will denote such a policy as 7%.

Definition A.2 (Restricted-Action Linear Softmax Policy). We say a policy is a restricted-action
linear softmax policy with parameters 7, {wh}h 1> and (.A )ses if it can be written as

677(45(5,@)77«%) . H{a c Avs}
Sz e )

Th(als) =

for some w = {wy;, }HL . We will denote such a policy as 7%.

Lemma A.12. For any restricted-action linear softmazx policies 7 and m* with identical restricted
sets (As)ses, we can bound

H

Ve (s1) = Vi (s1)] < 2dHn Y |lwp, — o
h=1

Proof. Note that for any policy 7, the value of the policy can be expressed as

H

Vo' (s1) = Z<9h7 Drh)-

h=1
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Thus,

H
Ve (51) = V7 (s0)] <D [(On, oo sy — e ).
h=1
So it suffices to bound (0, prw , — ¢rup)|. Using the same decomposition as in the proof of
Lemma B.2, we have

h—1 h

Qrwp — Prup = Z H Trw i | (Trw h—i — Taw h—i) Prv p—i—1-

i=0 \j=h—i+1

By definition,

Trw h—i — Trw i = /(¢ww,h—i(s) — G p—i(8))dpn—i—1(s)"
where

¢7rwhz Z(bsaﬂ-hza‘)

ae.Aa
Now, for a € .,Z{S,

77¢(S, a)en<¢(sva)7wh> . Za/ej 677<¢(S7a’)7wh> — 677<¢(57a)7wh> . Za’ej nqb(s’ a/)e"7<¢(8,a’)vwh>

Ve (ale) = (Tures, eI nT)?

SO

2nen<¢(sva)7wh>
S et

IV, 7 (als) 2 <

Thus, by the Mean Value Theorem,

277€n<¢(57a) 7wh>
S e

| (als) = (als)] < lwn — w2

SO

pros —i(s) = Pru—i(s)llz < Y |mhi(als) — mh_i(als)|

aeﬂs
Z 277677 ¢(S a) wh> H ||
Wh—; — Uh—i||2
 enld(s.a)wn)
a€A, Z €As

< 2n||lwp—1 — up—1]|2

which, with Definition 3.1, implies that

[T =i = T pillop < / 1w hi(s) = @ pi(s)ll2lldpen—i—1(s)l|2 < 2Vl wh—; — wnil2.
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By Lemma A.8, we can bound ||(9,—lr (H?:h—i-i-l Trw 7j) |l2. Thus, returning to the error decomposition

given above, we have

H h—1 h
Ve (s1) =V (sl <D D100 | TT Tows | (Tew i = Trwnei) o i
h=1i=0 j=h—i+1
H h—1
< VA [ Tow i — T nillopll e j—i1l2
h=1 i=0
H h—1
<2dn > Y fwp—i — wp—illa
h=1 1=0
H
<2dHn Y |lwy — up o
h=1

O]

Lemma A.13. Let w* denote the weights such that Q% (s,a) = (¢(s,a),w}), and 7" the restricted-

action linear softmazx policy with action sets (As)ses as defined in Lemma A.11 with § = 3(3\;&)1{.

Then

Ve (s1) = Vi (s1)| < e
as long as 1 > 2dH log(1 + 16Hd/e) - VA"

Proof. We prove this by induction. Assume that at step h, for all s, we have |V} (s) — thw* ()| < op,
for some 0. Then,

\Qﬂka@—@ﬁﬂa@h{/@f*waQQMm%1@T¢@A>

w

< 10 6) = VM (el @(s. o)

where we use the linear MDP assumption in the last inequality. Thus,

Loea, "V (5, )
Zaejs eN(B(s,a),wp_y)

_ Taeq, U0 (5,0)

= Z N 6”Q271(87a)
CLGAS

Vifi"l (s) =

L Tuen OO0 s
= * - h-
Zaejs 677Qh71(87a)

By Lemma A.3, as long as n > log | A,|/(v/d6), we can lower bound

_ M@ (s:a) Ox s,a
Loc, ) > max Q4 (5,0) — 2V

Zaeﬂs eth_l(s’a) acAs
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Furthermore, by Lemma A.11 and our choice of .,Zs, we have

max QF_(s,a) — 2Vd§ >max S, a) 2\[5—7:V*, S V7 R —
aesth 1(s,a) = h @h( T 3EvaE 1(s) NI
Define recursively 6,1 = 3v/dd, and dp = W. Then 6,1 = (3\/5)%1 > (3\/%)1{, SO

Vi (s) — 2V/d0), — ———— > Vi1 (s) — 2V/dop — 0p_1/3 = Vi1 (5) — 1.

3(3vVd)H

So |V (s) — Vh”w* (s)] < dp—1 for all s, which proves the inductive step.
For the base case, we have

Zaeﬂs e (s a)VH( a)
Zaej BUQH(S#I)

> max vy (s,a) —maxvg(s,a) — 0 /2
(ZE-AS a

> —0q

VE" (s) = Vi(s) =

—max v (s,a)
a

where the first inequality holds by Lemma A.3 as long as n > 210g|~/13‘ /0m, and the second
inequality holds by Lemma A.11 and our choice of As and dy. This proves the base case, since

V" (s) < Vi(s).
Recursing this all the way back, we conclude that

*

Ve (s1) > Vi (s1) — do

for (50 = (3\/&)}1(5[{ = €.
For this argument to hold, we must choose 1 > 2log |As| /05 and n > log |Ay|/(v/d6y) for all s
and h. By Lemma A.11 and our choice of A,, we can bound

Al < (1+ 8HVA@2VA) ™ /e)? < (1 +16Hd/e) !

so it suffices that we take n > 2dH log(1 + 16Hd/e) 3‘[)

O
Lemma A.14. Let n = 2dH log(1 + 16 Hd/e) - (3@” and W an ggfp.-net of B*(2H/d). Let 11

denote the set of restricted-action linear softmaz policy with vectors w € WH | parameter n, and
action sets (As)ses as defined in Lemma A.11 with § = W. Then for any MDP and reward

function, there exists some 7 € II such that |VJ" — V| <€, and

32H*d%/?log(1 + 16Hd/e€) )dH2

H<(
1 < s

Proof. Consider some MDP and reward function, and let {w}}/1_ denote the optimal Q-function

linear representation: Q7 (s,a) = (¢(s,a),w}). Let @ denote the vector in W such that
ZhH 1 Jwy, — wpll2 is minimized. Then by Lemma A.12 and Lemma A.13, as long as n >

2dH log(1 + 16Hd/e) - 3\f) , we have
Ve (s1) = Vo (s)| < VT (s1) = Vi ()l + VG (s1) = Vi (1))
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H
< 2dHn Y ||wh — wnl2 + €/2.
h=1

The first conclusion then follows as long as we can find some w such that

"
2dHn Y |[wh — whlls < €/2.
h=1

However, by Lemma A.10, we can bound ||w}||2 < 2H+/d. Therefore, since W is a 1aiz; et of
BY(2H/d), for each h there will exist some wy, € W such that ||w} — wy |z < 17172, Which implies

that we can find w € W< such that

H

2dHn Y |[wh — whlls < €/2,
h=1

which gives the first conclusion.

To bound the size of 11, we apply Lemma A.1 and our choice of 1 to bound

16 H3d3/? 2H*d%21og(1 + 16 Hd

W< (

The bound on |II| follows since |II| = [W|H.

B Policy Elimination

Throughout this section, assuming we have run for some number of episodes K, we let (.7-"7)521 the
filtration on this, with F, the filtration up to and including episode 7. We also let F; ), denote the
filtration on all episodes 7/ < 7, and on steps b’ = 1,..., h of episode 7.

B.1 Estimating Feature-Visitations and Rewards

Lemma B.1. Assume that we have collected some data {(sp—1,7,an—17, sth)}le, where, for each
7', Shr|Fhe1, is independent of {(sh—1,r,an—1,7,Shr)}r2r. Denote ¢pp_1r = G(Sh—1,750h-1,7)
and Ap—1 = 30| dh-1,,¢)_, .+ A. Fizm and let

K
Teh = (Z ¢7r,h<3h,7‘)¢;—1,7> Ai:il'
T=1

Fiz v € R? satisfying [v" ¢ p(s)| <1 for all s and w € RE. Then with probability at least 1 — §, we
can bound
log2/6

min h—l)

0T (Toh — Tan)u| < (2 log 2/ + + \f/\IITﬂTthz) Nl
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Proof. Let ® = {(sp—1.r, ah,l,.r)}le, our data collected at step h — 1. Then by our assumption on
the independence of s, », we have that sj, -|Fj,—1, has the same distribution as sj - |(Fp—1-,9).
Conditioning on ©, the ¢, » vectors are fixed, so Aj,_; is also fixed. Note that

Ton= [ Grn(o)duns(s)”
/¢7rh )dpn—1( <Z¢h 1P n) Ay 1+)‘/¢7rh )dpn—1(s) AL,

T=1

</¢>m g1 ()b 1T> "~ hAhllH/mh Jdpn 1 (s)TACL,

K
Z ¢7rh 5h7’)|]:h 1T]¢h 1TAh11+)‘/¢7rh du/h 1( )TAh 1

|
MN I

E[prp(8hr) | Frot,r)dn_1-Ap s + ATen At

3
I
—

SO

|'UT( u\ < ‘Z'v ¢7rh 5h7’)|-7:h 17'] ¢7r h(shT)) ¢h 1TAh U

0T T .

g b
S (0)

Conditioned on ®, (a) is simply the sum of mean 0 random variables, where the 7th random variable
has magnitude bounded as

”UT (E[d)mh(sh,f)’]:h—l,‘r] - ¢ﬂ',h(5hﬂ')) ¢;7177Af_Li1u| < 2|¢;|L—*177'Af_Li1u’
< 2 nrollg sl s

<2l 1 /v N (A1)
Furthermore, the variance of each term in (a) is bounded as
Var (07 (Elgnn(sn,)1Fn17] = Srn(snr)) &1 A7l Fi o |
T T A1)
=E | (07 Elgrn(sn)1Fn 1] = brnlonr)) b1, A7 u) | Faca
< u' A dno1 P AL .

It follows that, by Bernstein’s Inequality, we can bound, with probability at least 1 — § conditioned
on ®:

) <2 ZK: TA T Al aw-log >+ 2l log >
a u —1,7 —1,7 - U0 N EE)
< h—1Ph=1,7Ph—17 h—1 &5 Amin(Ap—1) ®5
log2/6
2(/10g2/0 + ————=) " |lufly—1 -
= ( g / )\min(Ah—l)) || HAhil
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In other words,

log2/6
)\min(Ah—l)

so, by the law of total probability, for any distribution F' over ©,
P[(a)Ei2(mﬂog2/5%—nﬁn{l,A‘l}log2/5)-HuHA;iJ
= /}P’ [(a) > 2(y/log 2/6 + min{1, \"'} log 2/6) - HUHAgll‘Q] dF (D)

gé/dﬂ@
—

We can also bound

P l<a> > 2(y/log2/5 + ) ully (9] <6

(1) < Valully-1 [Tl
Combining these gives the result. O

Lemma B.2. Fiz m and let

~

¢7r h = A 7;r . ﬁr,Qﬁr,l(bﬂ,O-
Fiz uw € 8% or w a valid reward vector as defined by Definition 3.1. Then with probability at least
1-9:

~ " 2H log 2 T
|<'u'a ¢7r,h - ¢7r,h>| < Z <2 IOg 5 + ) H¢7T’L||A_1
i=1

Hlln

Proof. Note that

T h®rh—1 — ﬁ,h(/ﬁﬂ',hfl
Ten(Grh1— brn1) + (Ton — Ton)brn1-
Thus, unrolling this all the way back, we get

¢7r,h - ¢7r h —

h—1

h
G — i = Z H Toi | Tonei = Toi)Prhin

i=1 \j=h—it+1

where we order the product H?:hﬂ-ﬂ Trj = TenTeh—1--Trxh—it1. It follows that

h—1 h
~ T ~ ~
(u, e — Dri)| <D |u T 7| Tan—i = Tan—i)brpiz1|.
i=1 j=h—i+1
Denote v; := u' (]_[;-L:,HJrl 7}]) By Lemma A.8 and our assumption on u, we can bound

|vill2 < V/d and also have that for all s,a, |v, ¢(s,a)| < 1, which implies

Zv o(s,a)mp(als) <Zﬂha] =1

acA acA

‘Uz‘qu)mJ )=
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We can therefore apply Lemma B.1 to get that, with probability at least 1 — ¢, for all 4,

~ ~ 2H log 24 ~
v (Trhi — ﬁr,hfi)d)ﬂ-,hfifl‘ < <2 log — = + VAT, hvzH2> MNprh—i-illar

\/ mm Ah i— 1

By Lemma A.8, the definition of v;, and our assumption on u, we can bound |7, Willz < Vd.
Summing over ¢ proves the result.

Lemma B.3. With probability at least 1 — 6:

h—1 2Hd
~ 2Hd log =5 ~
1prn — rnlla <d Y | 24/log + VA | - prllp-r-
W =1 o rnln Ah’ h!
Proof. We have:
lfr = Prnllz < [ @np — Ddrplli =D [ drnli = [Drnlil =D |{€s rn — Prn)l.
i=1 =1

Since e; € S9!, we can apply Lemma B.2 to bound, with probability 1 —§/d,

~ h- d logQHd
(€1, Prp — D)l Z log 2 + VX | ||frwlla--

mln Ah’
Summing over ¢ gives the result. O

Lemma B.4. Assume we have collected data {¢(sp r,an+), 7h(Sh.r ah,T)}le and that for each 7,
Th(Shrrs anr)|(Shrr,y an ) is independent of {(sp.r, anr) 727 Let

K
= argemin Z(T’” — (@n,r0))* + M6l

and fir w € R that is independent of {d(shrrans), rh(shr ah,T)}le. Then with probability at least
1-96:

min( h)

~ log2/0
|<u,0h—eh>§< fog2/5 + 2204 Vi ) ;-

Proof. Let ® = {(sp r, ah,r)}le. Then by our assumption on the independence of ry, -, we have
that rp, -|(Sh,r, anr) has the same distribution as rp, |®. Conditioning on ®, the ¢y, » vectors are
fixed, so Ay, is also fixed.

By construction we have
K
) -1
0h = Ah Z (;l)hﬂ—?’hﬂ—.
=1
Furthermore:

K
0, = A, 'Anb, = A Z GnElrn | Fro1,r] + AA; 105
=1
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Thus,

[(u, 8), — 0),)] <

K
> uT A b (e — Elrnge | Fuot,r)

T=1

+ [T 6.

—_———
) (0)

Since Ry, - € [0, 1] almost surely, we can bound

T A e (e — Bl o Facr D] < leall g [ llp- < leallp-1/3/ Aovin (An).

Furthermore, we can bound

Var [uTA,:1¢h7T(Th,T — E[Th,r’]:h—lx])m}

—E |(w" A7 bnr (i — Elrn sl Fio1.4])219)

TA-1 T -1
<wu Ah ¢h,7’¢h;rAh u.

By Bernstein’s inequality, we then have, with probability at least 1 — § conditioned on ©

K . . [ullp-1 - log2/6
(@) < 4| D uTA, ' Gn ol A, u-log2/5 + L
—1 ’ )\min(Ah>

log2/4
< (Vlog2/d + ———=) - ||u]| ,-1-
< (Viog 25 + —EHL) Juily

Applying the Law of Total Probability as in Lemma B.1, we obtain

log2/6

Pl(a) > (1/log2/d + —=——=) - [|[u]|,-1 | <.
(@) 2 (Viog2/3-+ 2=y ful
By Definition 3.1, we can also bound

(b) < VAl 1118nll2 < VN[l 5 1.

Combining these proves the result.

B.2 Correctness and Sample Complexity of Pedel

Lemma B.5. Let Efég denote the event on which, for all m € 1I,:

R 4H2|TI, |02
~ AH?|TTy|¢%  log ~
Opi1, P — <> [34/lo + 0 N a1,
[(On+1, @rhy1 — Prpr1)] < - ( g 5 (ALl | |Ai,é’l
2d|T1, |02
~ AH2A[IL |2 log XAACN
ha1 — <d 3\/10 + 2 NPl A1,
[$2ae1 = brisalle < i—1 ( & 0 Amin (A ¢) #n A
2 11 ‘K2
~  a ["AH?I 2 log A .
4 4 9 4
@z On — On)| < (2 log ——>——+ ) 17l a1
Then P[(£20)] < -
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Algorithm 3 Policy Learning via Experiment Design in Linear MDPs (PEDEL, full version)

1: input: tolerance ¢, confidence 9§, policy set 11

3/2 ~
2: Ly < ﬂogQ dT—|, Hgo + 11, ¢71r’1 — EaNm(,‘sl)[(ﬁ(Sl,a)],Vﬂ' ell
3: for £ =4y, b+ 1,..., [log%] do

4: €p < 2_5, ﬁg +— 64H* log w
5: for h=1,2,...,H do
6: Run procedure described in Theorem 9 with parameters
2 2 2
€ 1) 4H |ng ~p
€exp @, 59@7 AFIng, (I)<—(I)h7g = {¢7r’h:7TEHg}

Ky
and denote returned data as {(snr,hrThrs Shitr) ooy, for Ky total number of
episodes run , and covariates

Kp e
-
Ane > d(snrans)@(snrans) +1/d- 1
=1
7: for m € II; do // Estimate feature-visitations for active policies
oV Kh,e T A-1)2¢
8: ¢7r,h+1 A (ZTZI ¢71'7h+1(Sh+177)¢h,TAh,€)¢7r,h
Y — K
9: HfL — Ah’; ZTiiZ PhThr // Estimate reward vectors
10: // Remove provably suboptimal policies from active policy set
=~ ~_
Ipyq (—H(\{TI‘ ell, : Vi < sup WV —26g} for : Zh 1<¢7Th, )
! €lly
11: if [IIy11] =1 then return 7 € 11,4,

12: return any 7 € II;4,

Proof. Note that the data collection procedure outlined in Theorem 9 collects data that satisfies
the independence requirement of Lemma B.1 and Lemma B.4, since Theorem 9 operates on the
h-truncated-horizon MDP defined with respect to our original MDP (see Definition C.1 and following
discussion), so by construction the data obtained at step h is independent of sp1q and 7,,(sp, an).
Note also that ¢e , Is independent of {rf T} T (shrsan T)}f |, since we construct ¢Z , using only
observations taken at step h — 1.

The result follows by Lemma B.2, Lemma B.3, and Lemma B.4, and setting A = 1/d. ]

Lemma B.6. Let 5 Xp denote the event on which:

e The exploration procedure on Line 6 terminates after running for at most

infAcqn, maxges, , H¢”2A(A),1 21
. i poly [ d, H,1 ,1log [II
6%/6@ o ( i 5’ )\;’un o8 ’ A)

episodes.

e The covariates returned by Line 6 for any (h,£), Ape, satisfy

9 AFT2|TT, |¢2
N H¢H2 LS o Amin(Ap,e) > log |6€‘

BED, 5
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Then P{(ESA)° N ELIT N (NPZLEES)] < i

est

Proof. By Lemma B.7, on the event £2"7' 0 (ﬂ?;llgfgfp) we can bound ||q§frh — Grplle < deg/2H.
By Lemma A.6, we can lower bound ||¢y 4/|2 > 1/ Vd. By the reverse triangle inequality,

165 nll2 > ldnnlls = B s = Prpllo > 1/Vd — deg/2H.

It follows that as long as e, < H/d*/?, that we can lower bound H(Zfrhﬂg > 1/(2V/d). Since we start
¢ at € = logy £, we will have that e, = 2~¢ < H/d3/2.

The result then follows by applying Theorem 9 with our chosen parameters and ve < 1/(2V/d).

]

Lemma B.7. On the event E4' N (ﬁ?zlgfgfb), for all m € 11,:

est

[(Bht1, et — Pri1)] < e/2H,
”¢fr,h+1 — Grptill2 < deg/2H,
(@ 1> O — On)| < e/2H.

Proof. On 8£;fp, we can lower bound

4H?|T,| ¢

Amin(Ai,Z) 2 10g 5

which implies

LHI|2  log HEMAE AL
og —————.

+ <4
0 vV )\min(Ai,f) N 4

0, i € . . 4 AH?|1T,|€? L,h
Furthermore, on Eekp, H(Z-'JMHA;; < - Since 8 = 64H" log %, on &,
bound

h 4H?|TI,|0?
- TH2M |2 log MM
Oni1, Prpit — Prnr) <D [ 31/10 + il BTN
[(Ont1, P 1 — Prpr1)| < ;( g 5 (ALl &, HAMl
AH?2|11,|¢?
< Hayflog ML e
o v Be

< €/2H.

we can then upper

The same calculation gives the bounds on Hggf; n — @xnll2 and |<<$fr b 6, — 0:)|. O

Lemma B.8. Define Eoxp = Ny M ESL and Eeg = Mg Ny ELF. Then PlEest N Eexp) = 1 — 26 and on
Eest N Eexp, for all h,l, and m € 11y,

o~

|(On+1, ¢fr,h+1 — ¢rpr1)| < €/2H,
B i1 — Prnrallz < dee/2H,
{(@h 1y O — 01| < €0/2H.

33



Proof. Clearly,

[logd/e] H
8§st U ggxp U U gees? g«fx}fl)) )

{=ly h=1

log4je'| H [logd/e| H

= U UeEhn (e o) U UeEkr

{=ly h=1 {=ly h=1

loﬁj/d[j ( glh— 1ﬁ( h— 15ez ) flong/ U 5zh
est est z 1 ¥exp exp

{=ly h=1 l=ly h=1

The first conclusion follows by Lemma B.5, Lemma B.5, and since we can bound

The second conclusion follows by Lemma B.7. 0

Lemma B.9. On the event Eest NEexp, for all £ > Ly, every policy m € 11, satisfies Vi (II) — Vi < 4e
and 7 € I, for 7 = argmax,  V{ .

Proof. The value of a policy 7 is given by

H
Z 0h> ¢7r h
h=1
By Lemma B.8, for all 7 € II; we can bound

[(Bn, &% 1) — (O D) < 1(On — O, @) + (On, Ly — )| < €0/2H + e0/2H = e/ H.
Thus,

Ho H
> 05,5 0) =D (O, brp)| < e
h=1 h=1

We will only include 7 € Ilyy; if 7 € II, and

Mm

Wh,Oe > sup Z /h,Oh — 2¢y.
h:l melle

Using the estimation error given above, this implies that for any 7= € Iy,

H

V*Oﬂ = Z<0h, d)ﬂ h> > Sup Z 6, d),r/ h> dep = sup "/Oﬂ', — de,.
il e 4
h=1 el 2y m'€ll,

Both claims then follow if we can show 7* is always contained in the active set. Assume that
7* € II;. Then

H H
D (D5, 05) = V5 —e, sup Z B 1, 01) < Sup > (e, O) + €0 = Vi + e
h=1 el oy el oy

34



Rearranging this gives

Mm

%*haeh ) = sup Z ’ha0h>_2€€
h=1 el —

so ™ € Ilp4q. O
Theorem 7. With probability at least 1 — 29, Algorithm 1 will terminate after collecting at most

Lo

. 2 1
4 infacq, MaXrcTl(4ey) ||¢7r,h||A—1 H|II(4ep)|log ¢
CH § > 2 - -log 5 <+poly | d,H, —

1 1 1
sy log 5, log 1] log 6)

min

h=1/{(= €0+1

L oH? Z infpcq, maxqer [|[@rnll3 -1 log H|II|log(1/e)

2
h=1 €y 0

episodes for 1o := min{ [log 21, log Ao } and will output a policy T such that

VO > maxVO — €,
mell

where here I1(4ey) = {m € Il : VJ > max en V' — 4e/}.

Proof. By Lemma B.8 the event et N Eexp occurs with probability at least 1 — 26. Henceforth we
assume we are on this event.

Correctness follows by Lemma B.9, since upon termination, II, will only contain policies 7
satisfying V7 > maxqen V' — € (and will contain at least 1 policy since 7 € II, for all /).
Furthermore, by Lemma B.9, if 4¢y < Apin(II), we must have that II, = {7*}, and will therefore
terminate on Line 11 since |IIy| = 1. Thus, we can bound the number of number of epochs by

tp := min{[log 1 log Amj()}

By Lemma B.06, the total number of episodes collected is bounded by

infacn, maxgcs, , [|GI2 A1 1 L
DIPILEE gt SEAN | poly (d, Hlog 5, 15— log T, log +
>y 275 5N

H ianGQh maXeped, H¢||2A A)-1 HI|II,| log(1 1 1
, ¢|10g(L/€
< E C- 2 @) -H4log“6(/)+poly (dHlog(S Pt , log |I1|, log — )

min

On st N Eexp, by Lemma B.8, for each m € II;, we have H(zAﬁfrh — ¢rnllz < deg/2H. As
Oyp = {q/b;f;ﬁ € Iy}, it follows that we can upper bound

inf max H¢H2A(A)*1 = inf max H¢7thA(A

AeQy, ¢>€<I>g,h AeQY, welly
i 2
< int max(2gnalhmys + 21655 — Sralhia)
d2

<
a8 maClonln gy A AT
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< inf max4||¢7rh||A _1 +inf

Ay, u H2/\min(A(A>)
d2e?
< nf macdldrnla- + gy
SO
infAcq, maxgpea, , Hd’”i(A)q < infAeq, Mmaxrer, 4H¢7T,hH?\—1 d?
€ N € H2X,,

Note also that, by Lemma B.9, for £ > ¢y, every policy 7w € II; will be 4¢, optimal, so we therefore
have

M C{rell : V{ >V —de} = M(4¢)).

Putting this together, we can upper bound the complexity by

L0 inf MAX - 7] (4¢ 2 H|TI(4¢e,)| log(1 1
Z Z C. A2y, 61_2[(4 ¢) ||¢7T:hHA 1 . H4 lOg ’ ( Eg)’ Og( /6 +p01y <d H lOg -
h=1/{¢=0lp+1 € 0 d’ )\mln
inf 2 H|TI| log(1
+C. mtaeq, maxg;en ”¢7T,hHA 'og4 log |’Zg(/€).
Lo

O]

Corollary 5 (Full Statement of Theorem 1). With probability at least 1 — &, the complexity of
Algorithm 1 can be bounded as

H

1 [Prnll3-1 HI|M|log £
CH*log - f A -1 €
e ZAlélnh?é‘ﬁ( VoM — VIRV EV Apm(D2 5 5

1
1 H,——log =, log |TI|,log —
+poy<d A* Oga,og\ B Ogé)

min

episodes, and Algorithm 1 will output a policy T such that

VO > max V' —e.
mell

Proof. By the definition of II(4¢y), for each 7 € II(4¢y) we have

1 s
& = = ((VF () = V)2 v (4er)?)
We can therefore upper bound

Lo

5 infaeq, maxrenae,) | Prnlli-1 log H|TI(4€/)|log

2
(=01 € 0
|1l 31 H|TI(4¢)|log
<C f ’ 1 c
Z A, ) (Ve (D) — V2 v 2 o8 5

{=0ly+1

<ol 1 ; H|log !
08 A, B (VM) — V2 v Y A2 8T 5
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Furthermore, since £y = [logy d*/?/H, using Lemma B.10 we can also bound

infAeq, maxren ||@mnl3

2
640

H|TI|log(1/€)
0

C- - H'log < poly (d, H,log 1/4,log |I1|,1og 1/€) .

The result then follows by Theorem 7. O

Proof of Corollary 1. By Lemma A.14, we can choose Il to be the restricted-action linear softmax
policy set constructed in Lemma A.14. Lemma A.14 shows that II. will contain an e-optimal policy
for any MDP and reward function, and that

445/2 dH?
| < (1+ 32H*d 1og€(21—|—16Hd/e)> ‘

Combining this with the guarantee of Corollary 5 shows that VO% > Vi — 2¢ and that Vi (II) — V7 is
within a factor of € of Vj" — V7. To bound the complexity of this procedure, we apply the bound
given in Corollary 5 with the bound on the cardinality of Il given above. O

B.3 Interpreting the Complexity

Lemma B.10. For any set of policies 11, we can bound
inf su 2, <d.
At sup [l <

Proof. By Jensen’s inequality, for any v € R?, we have
v Ao = Ex[(v" 1) > (Exo" d1])” = (v drp)”.
It follows that, for any ,
Ay = ¢7r,h¢7—|r—,h'
Take A € €y,. Then,
A=Erw [Aw,h] = Ernw [d)w,hd);h]‘
It follows that we can upper bound

inf su 2 . < inf su 2
AGQMEEH%,hHA 1 < \nf WGEHQf)thA(A) 1

where A(N) =) )\ﬁ¢7r7h¢lh. By Kiefer-Wolfowitz (Lattimore & Szepesvari, 2020), this is upper
bounded by d. O

Proof of Corollary 2. This follows directly from Lemma B.10 and Corollary 1, by upper bounding:

inf max () ‘i*l < inf max 7”(1)%’}1”%71 < i
Ay, welle max{Vy — VT, e}? ~ Aey, mell. €2 — €
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B.3.1 Linear Contextual Bandits

Since we always assume the MDP starts in some state si, to encode a linear contextual bandit,
the direct mapping of our linear MDP in Definition 3.1 would require considering an H = 2 MDP,
where we encode the “context” in the transition to state s at step h = 2. While we could run our
algorithm directly on this, in the standard contextual bandit setting, the learner has no control over
the context, and so their action before receiving that context has no effect. Thus, there is no need
for the learner to explore at stage h = 1. To account for this, we can simply run our algorithm but
ignore the exploration at stage h = 1, which will reduce the A = 1 term in the sample complexity.

B.3.2 Tabular MDPs

Lemma B.11. In the tabular MDP setting, assuming that I1 contains an optimal policy,

inf max H¢7r,h||i—1
Aey, mell (Vi — V)2 V € V Apin (1)
o L | wf (5, 0)
inf maxmax ————— min ,
T Texp well  S,a w;{e"p (57 a) w,’;(s, G)Ah<3, a)2 €2V Amin(H)2
. 1 1
< inf max

Texp 50w, <P (s, a) “emax{Ay(s,a), €, Apin (1)}

Proof. We have that [¢rplsa = wj(s,a). Furthermore, ¢(s,a) = es,, so for any A € Qp, A
is diagonal with [A]ss sa = Ex~w[w] (s,a)]. Furthermore, by the Performance-Difference Lemma,
Vo = Vim =2 s anwh(s,a)Ap(s,a). Thus,

s,a,h
wZ(s,a)Q
inf max H(Z)Tr’hn‘%rl < inf max ZS@ wy " (5,0)
Aeq, well (Vi = Vi)2V 2V Apin(I)? ~ 7exp mell (3 o Wi (8,0 ) A (8,a'))2 V €2V Apyin (T1)%
(B.1)
We have

™ 2 - -
Z%A < (ng(saa)> -maxw :maxwl
h h

s,a W, (S’ a) s,a

Thus,

B0 < it Wi (s, @)/wp™" (s,0)
. NI max max
= e 7EI 80 (30 00 W (51, @) B (57, @))2 NV @V Ay (T1)2

T Texp
< inf max max wi (s,a)/w,” (s, a)
=~ Texp well s,a (Q,Ug(g7 a/)Ah(S, a>)2 \/ 62 \/ Am1n<]:[)2

= inf maxmax —————— min ! wi(s,9) : (B.2)
mexp w€Il 50w (s, a) wi (s, a)Ap(s,a)?’ €2V Apin(I1)?

We can further upper bound

min{ 1 wi(s,a) } < 1
wg(s, G)Ah(S, a)2’ €2V Arnin(l_I)2 a Ah(37 a)(f \% Amln(H))
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SO

1 1 wy (s, a)
B.2) < inf ' Ao
(B2) S e o (o0 ™ { An(s,a)e” €V Ay (I1)? }

1 1
< inf .
- ;g(p H;,%X wze"p (3, a) € max{Ah(s, a), €, Amin (H)}

O]

Lemma B.12. If PEDEL is run with a set Il that contains an optimal policy, the complexity of
PEDEL is upper bounded as

H
~ : 1 . 1 wp (s, a) [T1(€)]
oz sup inf max max ———— mln{ , } -log
( ; e/ Zmax{e, Amin(ID)/4} Tesp 7EI(E) 507wy (s, a) wh (s,a)An(s, @) (€)? 5
forII(e') ={m €Il : VJ > V7(II) — €}.
Proof. Using an argument identical to that in Lemma B.11, we can upper bound
: 2
infacq, maxweg[(%g) ||¢7r,h||A71 < inf max C‘|¢7r,h||3\71 5
€ Ay, mell(dey) (Vi — V)2 V ¢
1 1 (s,
< inf max maxﬂmin{ Q,Mh(z a)}.
Texp w€ll(4ey) S0 w, " (s, a) wi (s, a)Ap(s,a) €
The result then follows from Theorem 7, noting that we will never run for ey < Ap;n(IT)/4. O

Proof of Corollary 3. Note that in the tabular MDP setting, we can choose II to be the set of all
deterministic policies, since this set is guaranteed to contain an optimal policy. We can then bound
ITI| < ASH. The result then follows directly from Lemma B.11 and Theorem 1. O

Proof of Proposition 4. We begin with an example where PEDEL has complexity smaller than the
Gap-Visitation Complexity, and then turn to an example where the reverse is true.

Pedel Improves on Gap-Visitation Complexity. Consider the tabular MDP with |S| = |A| =
N, and where

Pu(s1ls1,a1) =1, wvp(s1,a1) = 1,Vh € [H]
Py(s1]s1,a5) =0, wvp(s1,a5) =0,Vh € [H],j # 1
Py(s1]si,a;) =0,Vh € [H],j € [N],i #1
Pu(silsg,a) = 1,h € [H], j € [N],i # 1

rh(si,al) =¢,Vh € [H],Z 75 1, l/h(si,aj) =0,Vh € [H],] 75 1,4 75 1.

In this MDP, the optimal policy simply plays action a; H times and is always in state s;. The total
reward it collects is H. Any deterministic policy that does not play a; H consecutive times has
optimality gap of at least 1 — e. Furthermore, every other state can be reached with probability
1. In this case, then, assuming that we take Il to be the set of all deterministic policies, we have
Apin(II) = 1 — € (note that since there always exists a deterministic policy that is optimal, it suffices
to take II to be the set of all deterministic policies).
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By Corollary 3, we can therefore upper bound the complexity of the leading-order term by
6(H 552A), so PEDEL will identify the optimal policy (since IT contains an optimal policy). Thus,
the total complexity of PEDEL is O(poly(S, A, H,log1/9)).

On this example, in every state s;, i # 1, action a; still collects a reward of e. Thus, we have
that Ap(si,a;) = € for j # 1. The Gap-Visitation complexity is given by

i inf max min L Wh(8)2
fm sa wi(s,a)Ap(s,a)?’ € )

Since Wy (s) = 1 for each s, we conclude that

iy s 1 Wi(s)? >ZH 1
Inf max min 2
hzl ™ s wi(s,a)Ap(s,a)?” @ [ T e

Thus, for small €, the Gap-Visitation complexity can be arbitrarily worse than the complexity of
PEDEL.

The Gap-Visitation Complexity Improves on Pedel. To show that the Gap-Visitation
Complexity improves on the complexity of PEDEL, we consider the example in Instance Class 5.1
of Wagenmaker et al. (2021b). As shown by Proposition 6 of Wagenmaker et al. (2021b), on this
example, for any ¢, the Gap-Visitation Complexity is O(poly(S ).

To bound the complexity of PEDEL on this example, we consider the complexity given in
Theorem 7 with II the set of all deterministic policies, which is slightly tighter than the complexity
of Corollary 3. Take ¢ > 27°. Then, on this example, it follows that A, (IT) < O(e), since we can
find a policy m which is optimal on every state s; at step h = 2 for i = O(log 1/¢), which will give it
a policy gap of O(e). Furthermore, any near-optimal policy will have [¢r 2]s; o, = w3 (s1,a1) = O(1),
so we always have infacq, max crse,) ||¢7r,h||i—1 > Q(1). It follows that the complexity of PEDEL
is lower bounded by Q(1/€?).

O]

B.3.3 Deterministic, Tabular MDPs

Lemma B.13. In the deterministic MDP setting,

[ 1
inf a ’ < _—
Acq, melt (Vg —=Vi)?ve: — SZ; Ap(s,a)? Ve

Proof. Note that [¢r p]st ar = 1, and otherwise, for (s,a) # (s}, a};), [@rnlsa = 0. Furthermore,
Ar..,.,n Will always be diagonal, with diagonal elements wj (s, a). We then have | p|

2
—1
Aﬂ'cxp’h

1

“Texp, = v SO
w, P (s af)

2
inf max ”d)ﬂ',hHifl < inf max H(bmh”A;elxp,h
AeQ)y, mell (Vb* — Vbﬂ—)2 V €2 T Texp eIl (Vb* — ‘/07")2 V €2
Texp ( w7\ —1
w Sy, Q
— inf max —2% (57, 97)
Texp WGH (‘/b* - ‘/E)ﬂ—)2 \/ 62
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(a) w, ™ ( !

s s
= inf max max Sh’ah)
Texp S, wEIlgqp (% %W)Q V 62

® inf max ma whexp(s’a)—l
= X X
Texp S, wEIlgqp (‘/0 Voﬂ-)2 V 62
whe"p(s,a)_1

= inf max m
Texp $,Q (% — MaXyell

1

‘/OW)Z \Vi 62

sah
exp(

Texp sa Ah(s a)2 V €2

wh

where (a) follows since IT = UMHsah,_(b) follows since by definition, for any 7 € Iz, (s7,a}) = (s,a),
and (c) follows by the definition of Ay (s, a).

Let 7% denote any policy such that (s}, a}) = (s,a). Set
max{Ap(s,a),e} 2
Zs’,a’ maX{Ah(S/7 a,)v 6}_2 .

)\ﬂ-sa -

Note that this is a valid distribution. Let mexp = > o Arsa®®, then wzexp(s, a) = Agsa, SO

Texp —1 —

w, (s, a) A
inf max =—~—~""7 _ <max - ™%
Texp S0 Ah(s a)2 Ver ~ Tsa Ah(s a)Q\/e2

1
< _—
- Z Ap(s,a)? V€2
s,a

which proves the result. ]

Proof of Corollary 4. As in tabular MDPs, we can set II to correspond to the set of all deterministic
policies. However, since our MDP is also deterministic, at any given h, we only need to specify m(s)
for a single s—the state we will end up in at step h with probability 1. Thus, we can take II to be a
set of cardinality |TI| = A". The result then follows directly from Lemma B.13 and Theorem 1. [

Comparison to Lower Bound of Tirinzoni et al. (2022). The precise definition for A", is
Al = ming @A (s,a)>0 Dn(s, @) in the setting when every deterministic e-optimal policy will reach
the same (s,a) at step h, and A". := 0 otherwise.

The exact lower bound given in Tirinzoni et al. (2022) scales as ¢*(c) which does not have an

explicit form. However, they show that

log(1/44) log(1/49)
he[ ]ZZ 4max{A(s,a), Aﬁlm,e}2 - Z ZZ 4max{Ay(s,a), Aﬁlin,e}T

seSacA he[H] s€S acA

Up to H factors, then, this matches the complexity of our upper bound in every term but the
A?mn term. Aﬁun > Amin, so this lower bound is potentially smaller than our upper bound in this

dependence. We remark, however, that the algorithm presented in Tirinzoni et al. (2022) obtains the
same scaling as we do, depending on A, instead of Aﬁun Furthermore, in general we can think of

these quantities as scaling in a similar manner, since they each quantify the minimum policy gap.
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C Experiment Design via Online Frank-Wolfe

Through the remainder of Appendix C as well as Appendix D, we will be interested in the problem
of data collection in linear MDPs. In general, we will seek to collect data for a particular h € [H].
We will therefore consider the following truncation to our MDP.

Definition C.1 (Truncated Horizon MDPs). Given some MDP M with horizon H, we define
the h-truncated-horizon MDP My, ;, to be the MDP that is identical to M for A’ < h, but that
terminates after reaching state s; and playing action ay.

We can simulated a truncated-horizon MDP by playing in our standard MDP M, and after
taking an action at step h, ay,, taking random actions for A’ > h and ignoring all future observations.

The utility of considering truncated-horizon MDPs is that we can therefore guarantee the data
we collect, {{(sp r,an )} _, S | is uncorrelated with the true next state and reward at step h
obtained in M, {(sp+1,r, 7h.) 1 ;. While we do not allow our algorithm to use {(shg1,7+ rh7T)}f:1
in its operation, it is allowed to store this data and return it.

For the remainder of Appendix C and Appendix D, then, we assume there is some fixed h we are
interested in, and that we are running our algorithms in the h-truncated-horizon MDP defined with
respect to our original MDP. We will also drop the subscript of h from observations, so Ar = A 3,
¢r = ¢T,h7 and £ = Q.

Our main experiment design algorithm, OpPTCOV, relies on a regret-minimization algorithm
satisfying the following guarantee.

Definition C.2 (Regret Minimization Algorithm). We say REGMIN is a regret minimization
algorithm if it has regret scaling as, with probability at least 1 — &,

K
R =Y _(V§ = Vg*) < /C1 K logP' (HK /) + C logP (HK/5)
k=1

for any deterministic reward function rp(s,a) € [0, 1].

Throughout this section, we will let A refer to covariates normalized by time, and 3 unnormalized
covariates. So, for example, we might have 3 = Zfil ququT and A = % Zle qb.rqu.

The rest of this section is organized as follows. First, in Appendix C.1 we show that a variant of
the Frank-Wolfe algorithm that relies on only approximate updates enjoys a convergence rate similar
to the standard Frank-Wolfe rate. Next, in Appendix C.2 we show that for a smooth experiment
design objective, we can approximately optimize the objective in a linear MDP by approximating
the Frank-Wolfe updates via a regret minimization algorithm. Finally, in Appendix C.3 we present
our main experiment-design algorithm, OpTCoV, which relies on our online Frank-Wolfe procedure
to collect covariates that minimize an online experimental design objective up to an arbitrarily
tolerance.

C.1 Approximate Frank-Wolfe

We will consider the following approximate variant of the Frank-Wolfe algorithm:

Lemma C.1. Consider running Algorithm /J with some convex function f that is 5-smooth with
respect to some norm | - ||, and let R := supy, yex [T — yl|. Then for T > 2, we have

i BR*(log T + 1) -
f@r) = mig f(@) < 2T+1) T+ ;Et'
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Algorithm 4 Approximate Frank-Wolfe

1: input: function to optimize f, number of iterations to run 7', starting iterate x
2: fort=1,2,...,7T do

3: Set vy <+ t+1

4 Choose y; to be any point such that

Vi(ze) "y <min Vi(x) "y + e
yex

o

Tip1 < (1 — )z + iy
6: return Ty

Proof. Let &* = argmingy f(x). Using that f is -smooth, the definition of ys, and the convexity
of f, we have that for any s,

F@ain) — F(@2) < Vf() @ars — ) + 5 s —
<V (@) (s — @) + ﬁ \2R?
<YV (ws) T (@ — @4) + ve€s + B%R2
<)~ [(@) + s + AR
Letting 0, = f(s) — f(z*), this implies that
Os41 < (1= 75)0s + vs€s + Bvs R?.

Unrolling this backwards gives

O0r+1 < (1 — 7)o + yrer + é'y%RQ

<A =77)(1 —=yr-1)0r-1 + (1 = y7)(yr—1€7-1 + BWT L\ R?) + yrer + ﬁ’YTRZ

2
T T B
éZ(H 1—%) e + 51 RY).

t=1 \s=t+1

We can write

ﬁ 1= ) ﬁ 5 t+1
) = _ T
s=t+1 s=t+1 S+1 T+1

SO

(L t41 1
Z(H(l—vs)>ﬂ (R = ZlT—:—lg(t+1)2R2

t=1 s=t+1
BR2 d
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and

which proves the result.

Lemma C.2. When running Algorithm /, we have

T
1
Tr41 = Tr1 (;yt +931> .

Proof. We have:

s=1

+1 1 1
Yy +

1

T T

( ITa- ’Ys)) VYt + (H(l - %)) x
t

T

T+17

C.2 Online Frank-Wolfe via Regret Minimization

Algorithm 5 Online Frank-Wolfe via Regret Minimization (FWREGRET)

1: input: function to optimize f, number of iterates 7', episodes per iterate K

2: Play any policy for K episodes, denote collected covariates as I'g, collected data as Dy

3 A+ K71r0

4: fort=1,2,...,T do

5: Set vy <+ t%

6: Run REGMIN on reward 7t (s,a) = tr(2a, - ¢(s,a)d(s,a))/M for K episodes, denote

collected covariates as I'y, collected data as ©;
Ay (1 —y)Ae + KTy
8 return Ar,q, UtTZOCDt

=
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Lemma C.3. Consider running Algorithm 5 with a function f satisfying Definition 5.1 and a regret
minimization algorithm satisfying Definition C.2. Denote Ko(T, B, M,0) the minimum integer value
of K satisfying

2172 2712 P1 P2
K > max {72T M?log(4T/5) 8T?M?3Cy logP (2HKT/8) 3T MCylogP?(2HKT/S) }

62R4 ’ ,32R4 ’ 5R2
Then as long as K > Ko(T, 3, M, ), we have that, with probability at least 1 — 9,

BR%(log T + 3)

for R =sup, . [|Az — Ar].

Proof. Note that by Lemma C.2 and since |¢(s,a)|l2 < 1, we can bound ||A¢llopp < 1 and
& (s, a)ep(s,a) " ||op < 1. Definition 5.1 it follows that 7t (s,a) € [0,1] for all s, a, since tr(Zy, -
$(5.0)0(5,0) ) < l19(5,0)0(5,) [lop - tr(En,) < tr(En,) < M, and tx(Zn, - $(5,0)(s,a)") > 0
since Zp, ~ 0. If we run REGMIN for K episodes on reward function rz, by Definition 5.1 and
Definition C.2 we then have that, with probability at least 1 — /2T,

K
VC1K logP (2HKT/3) + Cylogh (2HKT/8) > K sup Ex[tr(En, - ¢ )/M] = > Er,[tr(Ea, - ¢ ")/ M]

k=1
K
= Ksuptr(2a,Ar)/M — Ktr(Ep, - K'Y Ar)/M
i k=1
which implies
M2Clog"' (2HKT/5)  MCylogP?(2HKT)/S) _ a e
% + % > Sgrptr(:AtAﬂ) —tr(Zy, - K1 ;Aﬂk).
Furthermore, we have that
K 1 K 1 K
tr(Zy, - K1 ;Am) —tr(Ba, - K7y)| = = ;tr(EAtAm) - kz_ltr(EAtqug) .

Note that Ey, [tr(Ea,dr] )] = tr(Ea, Ax,), t1(Ea, Qb)) € [0, M], and 7 is Fi_1-measurable. We
can therefore apply Azuma-Hoeffding (Lemma A.4) to get that, with probability at least 1 — §/2T,

K

tr(Ea, - K'Y Ar) —tr(Ea, - K'Ty)
k=1

8M?2log(4T/5)
<

Therefore,

\/ 8M2log(4T/4) \/ M?2C; logP* (2HKT/8) ~ MCologP?(2HKT/6)
+ +
K K K

> sup tr(Zp,Ar) — tr(Za, - K1TY).
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Given our condition on K, we have

\/8M2 log(4T°/6) N \/MQCl logP (2HKT/6) L MG log” (2HKT/5) _ BR®
K K K =T
which implies

BR?
T- (C.l)

sup tr(EAtAﬂ’) - tr(EAt : Kﬁlrt) <
s
Note that, for any A € Q, we have
tI‘(EAtA) = tr(EAtEWNw [Aw]) =Eiww [tr(EAtAw)]
SO

sup tr(2a,A) = sup Er,[tr(Ea,Ar)] = suptr(Za,Ar)
AeQ wWE T

By definition, Zp, = =V A f(A)|a=A,, so it follows that

— sup tr(2p,A") = inf tr(Vaf(A)|a=a, - A).
AEQ A'eQ

It follows that (C.1) is precisely the guarantee required on y; by Algorithm 4 with ¢ = ﬂTR?.
Since f is f-smooth by Definition 5.1 and since the set €2 is convex and compact by Lemma A.9,
we can apply Lemma C.1 with a union bound over t to get the result. O

C.3 Data Collection via Online Frank-Wolfe

Algorithm 6 Collect Optimal Covariates (OpTCOV)
1: input: functions to optimize (f;);, constraint tolerance €, confidence §
2: fori=1,2,3,...do
3: T; < 20, K; < 2'T?
4 if K; > Ko(T3, B;, My, 25)T? + K1 (T3, Bi, Mi, £5)T; for Ko and K as in Lemma C.5 then
5 A,D; « FWREGRET(f;, T; — 1, K;)
6: if f;(A) < K;Tic and fy(A) > ZF0ETED) thep
7 return ./AX, K, T;, ©;

Theorem 8. Let (f;); denote some sequence of functions which satisfy Definition 5.1 with constants
(B, Ly, M;) and assume B; > 1. Let (8, L, M) be some values such that 5; < B, L; < L, M; < M for
al i, and let f be some function such that f;(A) < f(A) for alli and A = 0. Denote fuin a lower
bound on all f;: min; infacq fi(A) > fuin-
Define
inf A
N*(e&; f) := w (C.2)
€
Then, if we run Algorithm 6 on (f;); with constraint tolerance € and confidence §, we have that with
probability at least 1 — ¢, it will run for at most
5N*(e; f) + poly (271772,C1,Co, M, B, R, L, f o, Jog 1/5)

min’
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episodes, and will return data {¢,} _, with covariance Sy = SN ¢, such that
F(NT'Sy) < Ne,
where i is the iteration on which OPTCOV terminates.

Corollary 6 (Theorem 6). Instantiating REGMIN with the computationally efficient version of the
FORCE algorithm of Wagenmaker et al. (2021a), we obtain a complezity of

5N*(e; f) + poly (d, H, M, B, R, L, .} . log 1/6) .

in?
Proof. This result is immediate since FORCE satisfies Definition C.2 with
Ci=cd'H*, Co=cd*H?, p1 =3, p2=7/2
for universal numerical constants c; and cs. O

~ 2 3
Proof of Theorem 8. We first show that the condition f;(A) > %gfﬁg) is sufficient to ensure a
2-approximate minimum of f;, and then show a sufficient condition on K; and T; that will guarantee
the condition on Line 6 is met.

(K) Z ,BiRQ (105 Ti+3)

(3

Guaranteeing 2-optimality. We first show that for a fixed i, the condition f;
will only be met once

fi(R) <2 inf fi(A)
and that it will take at most

L 28R*(logT; +3)
ianeQ fz(A)

iterations to do so, as long as

L2
12 S(dlog(1 1 8VTIK) +108(42/9)) - (ifaca £:(A)

The first part follows by applying Lemma C.3. Note that the if statement on Line 4 will only be
met once

K; > Ko(T;, Bi, M;, 6 /4i%).

This follows by Lemma C.5. Thus, the condition on K; required by Lemma C.3 will be met, so it
follows that with probability at least 1 — &/(4i?),

FA) — inf fiA) < D losTi+3)

AcQ 275

Therefore, if f,(l/i) > w, we have

- 1 ~ 1~
fi(A) — /ifela fi(A) < §fi(A) = ifi(A) < KIE% fi(A)
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— fi(A) < f
fi(A) < Xrelﬂ fi(A).

We will show a sufficient condition for f;(A) > %@, which implies that f;(A) >
w since 8; < 8. By Lemma C.2 and the procedure run by Algorithm 5, we have that
A= TR K ZT 1 +¢. where at episodes 7 we run some F,_j-measurable policy 7, to acquire ¢, .
Now if A = A for some A € Q, then the second part follows trivially since infacq fi(A) < fi(A), so
a sufficient condition for f;(A) > w is that infacq f-( ) > w. However, since
A is stochastic, we may not have that A€ Q. Let A= TK ZT i A, and note that A€ Q.
Applying Lemma C.4, we have that with probability at least 1 — §/(442),

\/8d log(1 + 8VTK;) + 8log(4i2/6)
TK;

<

op
for 7 the uniform mixture of {FT}z;I? By the Lipschitz condition of Definition 5.1, this implies
Ji(R) = fi(A) = Li|A ~ Aoy
> fi(A) = L|A = Allop
R L\/Sdlog(l + 8YTiK;) + 8log(4i2/9)

TK;
8dlog(1 + 8V/T; K;) + 8log(4i%/4)
= juf hA) - L\/ TK, |

Thus, a sufficient condition for f;(A) > W(lofgiﬂ%) is that

. \/8d10g( +8YTK) + 8log(4%/3) _ pR(105T; +3)

Anf, Fi(A) i) d
— T, > BR*(log T + 3)
infaeq fi(A L\/ Sdlog(HSﬁ )+8 log(4i2/8)
If
2
TK; > L

2(dlog(1 4+ 8VT; K;) + 1log(4i2/5)) - (infacq fi(A))?
it follows that a sufficient condition is

. 28R*(logT; +3)
infacq fi(A)

Union bounding over the events considered above for all ¢, we have that the total probability of

failure is bounded as

S 1) 2

VY= __45<5.
2(42 +4i2) 125_6

=1



Termination Guarantee. We next show a sufficient condition to ensure that the if statements
on Line 4 and Line 6 are met.

Assume the if statement on Line 4 has been met and that we are in the regime where
L? 26R*(log T; + 3)

T,K; > : . Ti>
2(dlog(1 + 8VT;K;) + log(4i2/68)) - f2., Jmin

By the argument above and since infacq fi(A) > fmin, these conditions are sufficient to guarantee
a 2-optimal solutions has been found, that is,

fi(A) <2 inf fi(A),

AeQ

. (C.3)

and that the condition fz(/A&) > %@ has been met. Thus, if (C.3) holds, a sufficient condition
for fi(A) < T;K;e is
2-inf fi;(A) < T;Ke.
ARG fiA) = Tikae
It follows that this condition will be met (assuming (C.3) holds) once T;K; > N*(§; f;). Since
fi < f, N*(§; fi) < N*(5; f), so a sufficient condition is that T;K; > N*(5; f).

To upper bound the total complexity, it suffices then to guarantee that we run for enough epochs
so that

S~ ) ~ )
.93 > Q. 2 \T2 -3 2 NT
Kz 2 = KO(E)/BHM’H 42.2 ),Tz +K1(T’7,7/67,7M27 4i2 )T’Z (04)
43 L2
T,K;, =2 > C.5
2(dlog(1 + SV ;) + log(42/2)) - 2, ()
. 2BR?*(logT;
T, =2 > PR (;g +3) (C.6)
LK = 2" > N*(53 /). (C.7)

Here (C.4) guarantees the if statement on Line 4 is met, and (C.5)-(C.7) guarantee the if statement
on line Line 6 is met.

By assumption, M; < M and 8; > 1, and note that IN(O(Ti,ﬁi,Mi 9.) and I?l(Ti,Bi,Mi, %) are

) 442
both increasing in M; and decreasing in ;. Thus, a sufficient condition to ensure (C.4) is met is

2% > Ko(2%,1, M, %)2% + Kq(2°,1, M, 4%)2@‘. (C.8)
Some calculation shows that
Ko(2%,1, M, i,) < (50" Ko(2,1, M, é), K1(2%,1, M, i,) < (402 K1 (2,1, M, é)
472 4 452 4

so a sufficient condition to meet (C.8) is

. ~ ) : ~ )
2 > 2(50)" Ko (2,1, M, ), 2% > 2(4i)2 K1 (2,1, M, 7

By Lemma A.2 and some calculation, this will be met once

. ~ J ~ J .
i > max {41)1 logy(2p1) + 21ogy (2(5)P* Ko(2,1, M, Z))’ 2po logy(p2) + 2logy(2(4)P2 K4 (2,1, M, 4))} =:
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To meet (C.5) it suffices to take

L1 L? ,
Z2110g2dfT:IZl

min

By Lemma A.2, a sufficient condition to meet (C.6) is that

2 4 2 4 2
Tizmax{GBR GBR 1 OR }

) 0og
fmin fmin fmin

so it suffices that

, 68 R? 4BR2) .
1 > log ( log =: i9.
2 fmin fmin 2
Finally, to meet (C.7), it suffices that
o1 . ,
i> ZlogQ N*(e/2; f) =: is.

If we terminate at epoch ?, the total sample complexity will be bounded by

0 0 6 -~

IO 43 L odi
ElTZKZ—§12 §—15 2%,
1= 1=

By the above argument, we can bound i< [max{ig, i1, %2,93}]. Furthermore, we see that

21001 = poly (27,22, M, Cy,Ca, log 1/9)
2101 = poly(L, fr)

24“2W = pOlY(B, R, f;lln)
240l < aN*(¢/2; f)

so we can bound the total sample complexity by

E . 24|'max{i0,i1,i2:i3}-| < 32

15 BN*(E/Qvf) +p01y (2P172P27B7R7L’ ., M761762710g 1/5) :

min?

This completes the proof since N*(5; f) = 2N*(¢; f) and since, by Lemma C.2, A is simply the
1 ZTiKi ¢T

average of the observed feature vectors: A = TR 2orel Prr-

O]

Lemma C.4. Let Ag denote the time-normalized covariates obtained by playing policies {wk}szl,
where w18 Fi_1-measurable. Then, with probability at least 1 — 9,

- \/Sdlog(l +8VK) +8log1/§
< % :

1 K
7 2 A~ Ax
k=1

op
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Proof. Let V denote an e-net of S¢~1, for some € to be chosen. Then,

1 & 1 &
?ZA,%—A v’ (KZAM—AK>’U
k=1 k=1

= sup
veSd-1

K
1

<supl|v' [ —= A — A |v

Bev (K; §

(a)
1 & 1 &
+ inf o' [ =) A —A 0 [ = A, —Ax | D
o o (R Ao (A )

(b)

Via a union bound over V and application of Azuma-Hoeffding, we can bound, with probability at

least 1 — 9,
2log|V|/0
<Y —.
() = |/ 20
T
v’ (K;Am —AK> (v—7)

We can bound (b) as

(b) < sup inf 2

veSI—1 VEV
| K
< sup inf2|lv—-7 — A
7ve$£1ﬁev ” I2 K; "
< 4e

where the last inequality follows since ||+ Zszl Az llop <1, and || #Axk|lop < 1, and since V is an
e-net. Setting € = 1/(4v/K), Lemma A.1 gives that [V| < (1 + 8/K)?, and we conclude that with

probability at least 1 — ¢:
/2log ]V!/(S

\/2dlog 1+8\F)+210g1/5 1
TR

1 K
x2_A

k=1

IN

\/2d10g 1+8\F)+210g1/5

| /\

Lemma C.5. We can bound
Ko(T,,B,M,(S) S [?0(T757M75)T2 +[?1(T7/87M75)T
for

I?O(T757M7 5) =

2 2 372
72M20g(4T/0) SMZCy (2917 log? 32p  HT3M2C,
ﬁ2R4 62R4 62R45

o1



3MCy
BR?

K 2
Ri(T. 3, M. ) = MTW) ,

. (2 P2 1noP2
Proof. By definition K(T, 3, M,¢) is the smallest integer value of K that satisfies:
7272 M?log(4T/8) 8T*M?>Cylogh* (2HKT/5) 3T MCologh(2HKT/S) (C.9)
,82R4 ’ B2R4 ’ 5R2 : '
By Lemma A.2, we have that if

KZmax{

8T2M?Cy 8T?M?Cy 4p1HT 3T MCs 3TMCy 4poHT
K>—— "~ .(2 P11ggPt . K > (2 P2 1goP2 .
and
2172
K> 72T M= log(4T/9)
= B32R1
then Equation (C.9) will be satisfied. Some algebra gives the result. O

D XY-Optimal Design

We are interested in optimizing the function

XYopt(A) = max [ $[3 )1 for A(A) = A+ Ag

with Ay > 0 some fixed regularizer. This objective, however, is not smooth, so we relax it to the
following:

—_— 2 1 2
XY opt (A) := LogSumExp ({e””‘j’“A(A)”}(ﬁeq»;n) = Zlog [ S Mlamr |0 (D)
n
¢ped

We first offer some properties on how well )f(popt (A) approximates XYopt(A), and then show
that we can bound the smoothness constant of XYt (A). Throughout this section, we will denote
Yo = MaXgpea ||@P[l2 and let f(A) := XYqpe(A).

D.1 Approximating Non-Smooth Optimal Design with Smooth Optimal Design

Lemma D.1.
— log |®| —
]XYopt(A) — XYOpt(A)\ < — XYopt(A) < XYopt(A).

Proof. This result is standard but we include the proof for completeness. We prove it for some
generic sequence (a;)!" . Take n > 0. Clearly,
n

exp(maxna;) < E exp(na;) < nexp(maxna;)
A 3
=1

SO
n
maxna; < log <Z exp(nai)> < logn + maxna;.
1 i—1 7
The result follows by rearranging and dividing by 7. O
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Lemma D.2. Ifn>n >0, then )&Opt(A;n) < XNYOpt(A; 7).

Proof. We will prove this for some generic sequence (a;)}, a; > 0. Note that,

d1 1 1 1
——log e | = ——log e ] + — - ¥ a;ell.
iy (Zem) s (£ ) i o

%

We are done if we can show this is non-positive. Note that,

log (Z e"‘“) > max log (e) = maxna;

)

SO
1 1 1 1 1 1
—— log el | 4+ — -y ;e < ——maxa; + —=——- ) a;e!™
n? (; ) Ny, e ; ' noa Yy e ; Z
1 1
< ——maxa; + —maxa;
n o n o
=0.
The result follows since XY opt has this form. ]
Lemma D.3. We have,
. Yo
inf XYopt(A) > ————.
A0, Aflop<1 ont(A) 2 77 [ Aollop
Proof. Note that [|A(A)]lop < 14 ||Aollop, SO
: : maxges [|P|l2
inf max 2 > inf 2 —Reed 17112
A=0,[[Aflop<1 PED I@llam- = A=0,]|Alop <1+ Aolop 19lam— =1y [ Aollop

Lemma D.4. Assume that we set n > %(1 + [|[Aollop) - log |®|. Then

N*(e; XYopt(A)) < 2N*(&; XY opt(A)).

2
Proof. Denote f(A) < LogSumExp ({enH(ﬁHA(A)_l}(j,e@;n). By Lemma D.1 and Lemma D.3, we

have

log [®| /e ‘ 1
; 2 A

a - < < < min

‘Ill X || HA(A) 1 f( )’ n 2(1 + HAOHOP) Aio,”Ii”opgl 2

- s
— f(A) < 2max [ @l3 (x)-

Let A* denote the matrix that minimizes maxgeca ||¢||i(A),1 over the constraint set: maxgecq ||¢||1(A*),1 =

infpco maxgpco Hqi)HQA(A),l. Then it follows that, by definition of N*(e; maxgea ||¢||2A(A),1):

2 *( . 2
ggguquA(A*)fl <e-N*(e; g}gngHA(A)—l)-
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However, this implies

1

5/ (M) < e N*(emax | @3 a)-0):
so (A*,2N*(e; maxgpeca Hd)HQA(A),l)) is a feasible solution to the optimization (C.2) for f. As N*(¢; f)
is the minimum solution, it follows that N*(e; f) < 2N*(€; maxgpco H¢H1(A)_1). O
D.2 Bounding the Smoothness
Lemma D.5. f(A) = )’(?Opt(A) satisfies all conditions of Definition 5.1 with

L=IAg" 3, B =21A5" 131+ nllAg lop)s M = [[Ag |13,

~1
Vaf(a) = [ S eMam-t ]S M amr A(A) 1 pp T A(A) ! = Z4.
PP Ped
Proof. Using Lemma D.6, the gradient of f(A) with respect to A;; is

-1

VA Z 77H¢||A(A) 1 Z nlld)”A(A) ld)TA( ) eie; A(A) ¢

Ped oYt

from which the expression for Va f(A) follows directly.
To bound the Lipschitz constant of f, by the Mean Value Theorem it suffices to bound

IN

-1
~ 2 2 ~
s e A < [ S M) ST A A A) T2, Ao
A N0 ||Allop <L,[|Allop<1 Ped Ped

1A 12,

IN

where the last inequality follows since A(A) = Ag for all A. This also suffices as a bound on M.

To bound the smoothness, again by the Mean Value Theorem it suffices to bound the operator
norm of the Hessian. Standard calculus gives that, using V2f(A)[A, A] to denote the Hessian of f
in direction (A, A):

-1

2 — ~ —
v?f(A)[ Z 17||¢HA(A+tA) 1 . Z en||¢||A(A+tA)_1 ¢TA(A _’_tA)flAA(A_‘_tA)fl(ﬁ
PP Ped
-2
el 4 -1 el ay-1 T —1x -1 Ml ay-1 o T Y ~1
> e aw D A g TAA)TTAAA) T | | YA g TA(A)TTAA(A)
Pcd Pcd Pped

-1

Z en||¢”2A(A)—1 Z ean)HQA(A)—l <¢TA(A)71AA(A)71¢> <¢TA(A)71KA(A)71¢>
e ded
-1
Z 677||¢||i(,\>71 Z 677H¢H2A<A)—1 ¢TA(A)_1AA(A)_1KA(A)_1¢
PP Pped

o4



-1

2 2 ~ _
Z 677||¢||A(A>—1 Z enH(ﬁHA(A)*l ¢TA(A)—1AA(A)—1AA(A)—1¢
Pcd Ped

We can bound this as

o sup_ ) IV2F(A)A, Al < 20| AgH 15, + 201 Ag 3,
AN ARO[ Allop<L|[Allop<1,||Allop<1

Convexity of f(A) follows since it is the composition of a convex function with a strictly increasing
convex function, so it is itself convex. O

Lemma D.6. For A invertible, %(A + teie;r)_l = —A_leiejTA_l.

Proof. We can compute the gradient as

d L (Attee]) - A
g (A teie]) ! = lim ¢ ‘

By the Sherman-Morrison formula,

tA_leie;-rA_l

Atteie Y '1=A1—- — T
( i) 1 —l—tejTA—lei

so as t — 0,
(A+ teiejT)*l — A - tAflel-ejTA*1
Thus,
A +teel )7 — AL Al —tAlee] A7 — AT
lim ( i) = lim i = -—Aleje] AL
t—0 t t—0 t J

D.3 Obtaining Well-Conditioned Covariates

Algorithm 7 Collect Well-Conditioned Covariates (CONDITIONEDCOV)
input: Scale N, minimum eigenvalue A, confidence §
for j=1,2,3,... do

T; < poly(27,d, H,log 1/6)

€ — 277, 42 2~ 5 6)(42
’ AN max{12544d log — 2211) 3y /(45%)

5: Run Algorithm 5 of Wagenmaker et al. (2022) with parameters (ej,fyj ,05), obtain covariates

> and store pohcles run as 11

6 if Amin(A) > max{12544d log M ,A} then

7: break

8: Rerun every policy 7 € II [N/|II|] times, collect covariates 3
9: return ¥ 4+ 3
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Lemma D.7. Consider running policies (n,)_,, for m, Fr_1-measurable, and collecting covariance

Y= 23:1 o-¢] . Then as long as

=1’

24 32T
Ain(£7) > 12544d log 21221

with probability at least 1 — &, if we rerun each (m,)I_,, we will collect covariates S such that

=1

)\min(z ) Z 2)\m1n(2T)

Proof. Let N be an %—net of S¥1. Let ¥ > 0 be any matrix with |X|lop < T and let v be the
minimum eigenvalue of ¥. Let ¥ € A be the element of A/ closest to v in the 5 norm. Then:

Anin(B) =v Zv =720+ (v'Zv -0 X0)

>0 %0 —|v Zv—0v Z0|—|v 0 -0 X7
020 2| Bop| — vl
By the construction of N and since ||X||op < T, we can bound 2||X||op||v — v|]2 < 1/4, so
' - 2||Z|opllT — |2 >0 2V~ 1/4

which implies

Amin(2)+1/4> 029 > mino' Tv. (D.2)
veN
By Lemma A.1, we can bound |N| < (1 + 167)<.
Note that Var[v! ¢,|F, 1] < Er [(v ¢,)?] so S.1_, Varfw ¢, |F,1] < v E[Sr|m, ..., 700
for E[Xp|m,...,m7] = ZZZI E, [¢;¢]]. By Freedman’s Inequality (Lemma A.5), for all v € N/
simultaneously, we will have, with probability at least 1 — 4,

)’UTET’U — UTE[ET]m, . ,ﬂ'T]’U’ < 2\/vTE[ET]7T1, .., 7rjvlog 2|5M + log 2’(5/\/" (D.3)
)'vaJT'U — v E[Sp|m,. .. ,WT]U‘ < 2\/'vTIE[ET]771, ..., 7r]vlog 2|5M + log 2|5M (D.4)
Rearranging (D.3), some algebra shows that
E[Xr|m, ..., v < UTETU+3log \/ TET'ulog il —|—2log22|5M
< v Zpv+ 6log \/ = vlog ’
< 3v"Spv + 8log ‘g\”

where the last inequality uses vab < max{a,b}. Thus, if (D.3) and (D.4) hold, we have

2|V 2|V
2V g 2V

—2lo 5
2|V

J

v S > v Srv — 4\/UTIE[ET\W1, ...,mr]vlog
2|V
1)

— 14log

>0 v — 4\/3'UT2T’U log
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Therefore, as long as

2
v Zpv > 12544 log ’?/'
we can lower bound
2 2 3 3
v Brv— 4\/3'UTET'U log |6M — 14 1log |'(/5\/’| > Z'UTET'U > Z)\min(zT)

so, for all v € NV,
e 3
v Xrv > ZAmin(ET)-

By assumption, Amin(E7) > 12544dlog 2t32L which implies, since [N| < (1 + 167)%, that for all
ve ST v v > 12544 log 2|TN|, so the above condition will be met.
Since |’§T”0p < T, we can apply (D.2) to then get that

= 3 1 1
)\min(ET) Z zAmin(ET) - 1/4 Z iAmin(ET) + Z(Amin(ET) - 1)

Since we have already establishes that Apin(X7) > 12544d log %, we have A\pin(X7) — 1 >0, so
we can lower bound

)\min(ET) Z )\min(ZT)‘

DN

Lemma D.8. With probability at least 1 — §, Algorithm 7 will terminate after at most

N) ‘ <dmax{dlog NA}  d*H3log"? 1 )

N + poly log (

———— d,H, )\, log —
Sup, Amin(zw)’ ’ 2108 (5 Sup, Amin(zw)2 Sup, Amin(zzw)

episodes, and will return covariates 3 such that

. SUpP, )\mil’l(Eﬂ')Q Sup, )\min(zw) 1 N -t
Amin(X) > N - , - poly 1 ———,d, H, )\, log —
=) mm{ d BH3log 21/ [P0 %% \ SUby Aunin() %

+ max{dlog1/d, \}

and

J

op < N + l)“ y (0] _— . 0
|| H g <Sup7r)\min(2ﬂ) > (

d,H, )\ log —
» @y £, A, 108 Sllpﬂ-)‘min(zfr)2 Supﬂ)\min(xﬂ)

Proof. By Theorem 4 of Wagenmaker et al. (2022), as long as Algorithm 5 of Wagenmaker et al.
(2022) is run with parameters e and 2, it will terminate after at most

1 dm dm
1)

dH log(d/~?
e o 2t T g () gt 2 LR

episodes for m = [log(2/€)] (to get the slightly more precise bound on the number of episodes
collected than that given in Theorem 4 of Wagenmaker et al. (2022), we use the precise definition of
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K; given at the start of Appendix B). Furthermore, if € < sup, Amin (27 ), with probability at least
1 — 6 it will collect covariates X satisfying Amin(2) > €/72.

It follows that, by our choice of €; = 277, 42 = 9-J | Cand 6, — 6/(472). for
. ’ K max{12544dlog —-2201) \} i = 6/(457)

every j we will collect at most

2N (2 4 32T5)
5

,AYlog(djay), d*H?5° log®/?(da;) log

7/2 cojdH log(daj;) }
5

c1 - 27 max {2jdj2 max{dlog

episodes, where we denote a; := max{12544dlog w,g}. Note that T} is an upper bound

on this complexity. Furthermore, once j is large enough that 277 < sup, Amin(Zr), Theorem 4 of
Wagenmaker et al. (2022) implies that the condition Amin(32) > €;/ ’y]z will be met. By our choice of
7]2 and € , it follows that the if condition on Line 6 will be met once 277 < SUp,: Amin(2x). Since 277
decreases by a factor of 2 each time, it follows that the if statement on Line 6 will have terminated
once 277 > sup, Amin(Xr)/2. This implies that the total number of episodes collected before the if
statement on Line 6 is met is bounded as

1 N dmax{dlog %,A} d*H3log™/? %
ly 1 ———— d,H, A\ log— | - D.5
POy o8 (Supﬂ' )\min(ETr) @ 02,708 Y > ( Sup, Amin(zw)z Sup, )\min(zw) ( )

By Lemma D.7, since )\min(E) > max{12544d log M ,A} and Tj is an upper bound on the
number of episodes run at epoch j, every time we run all policies 7 € II, with probability at least
1—0/(2N), we will collect covariates 3 such that

2N (2 + 32T})

5 7&}

= 1
Amin(X2) > Anin(2)/2 > 3 max{12544d log
Thus, if we rerun every policy [N/ |ﬁH times to create covariates X, with probability at least 1 —4/2,
we have

2N (2 + 32T5)
5

- N
Amin (X) > —~|max{12544d log A}

= 9|l

Note that this procedure will complete after at most N + [II| episodes. Furthermore, |II| < (D.5),
so we can lower bound

3 . SUup;, )\min(zw)Q Sup, )\min(zw) 1 N -
Amin () > N - : polylog [ ——————— d,H,\log—~ | .
> mm{ d FH10g721/5 [ P77 \sup, Awin(Bn) %%

The final lower bound on the returned covariates follows since we return 3 + i) and we know
that Amin(X) > max{12544d log w ,A}. The upper bound on ||% + ZHOp follows since every
feature vector encountered has norm of at most 1.

The failure probability of each call to Algorithm 5 of Wagenmaker et al. (2022) is 6/(452), so the

total failure probability of Algorithm 7 is

>0 72
—=—0 < .
E: 5 245_(5/2
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D.4 Online XY-Optimal Design

Theorem 9 (Full version of Theorem 5). Consider running OPTCOV with some € > 0 and functions
Fi(A) = XY opi(A)

for Ag + (T;K;)"'%; = A; and

2
ni = — (14 || Aillop) - log |®|
Yo
Li=[IA7Y 5 B =20A7 18,0+ mill A lop),  Mi = IA3,

where 2; is the matriz returned by running CONDITIONEDCOV with N < T;K;, 6 < 6/(2i%), and
some A > 0. Then with probability 1 — 26, this procedure will collect at most

% infAco maxges ”d)Hi(A)—l

1 1 1
+ poly (d,H,logl/é,)\*,,)\,log|<1>\,log )
min €exp

€exp

episodes, where

)2 X 1 1\ !
AA)=A min min - polyl —,d,H,\ log — I
(A) —i—mm{ d B log7/2 /s poly log )\:nin, y 115 A, 0g5 )

and will produce covariates S+ 3 such that

max |||

2
pecd (

S+t < €exp
and
Amin(Z + ;) > max{dlog1/5,A}.

Proof. Note that the total failure probability of our calls to CONDITIONEDCOV is at most
o0
1) 72
— = —0 <.
Z 22 12—
=1

For the remainder of the proof, we will then assume that we are on the success event of CONDI-
TIONEDCOV, as defined in Lemma D.8.

By Lemma D.5, f;(A) satisfies Definition 5.1 with constants
Li = A7 s B =20 A7 13+ mill AT lop),  Mi = [IAT1Z,
for A; + (Tsz)ilzz

By Lemma D.8, on the success event of Lemma D.8 we have that

Vi ) i) Alhin 1 AT
Amin (Ai) > mm{ 4 B og 18 - poly log )\*—,d, H, )\, i, log 5

min

(note that the polylog(i)~! dependence arises because we take N « T;K; = 2%). Thus, we can
bound, for all i (using the upper bound on ||%;||o, given in Lemma D.8 to upper bound 7;),

d>  d5HSlog"1/5
b s S oo

99

1
)‘fnin

1
7daH7évi710g 5) )



1 1
Bi S POly (d7 H, IOg 1/57 )\*77 77A7i710g ’(I)|> .

min

Assume that the termination condition of OPTCOV for i satisfying

~ 1 1 1
i <log (poly< ,d,H,logl/é,)\*,,)\,log|‘1>|>> . (D.6)

exp min
We assume this holds and justify it at the conclusion of the proof. For notational convenience, define

1 1 1
L= pOIy <10g7d7 H,lOg 1/5’ )\*77 7>\710g|q)|> .

exp min

Given this upper bound on ?, set
d>  d5HSlog"1/6
(/\Elin)4 ’ ()\Elin)2

With this choice of L, M, 3, we have L; < L, M; < M, 5; < 3 for all 4 <.
Now take f(A) <= XYopt(A;n, Ag) with

* 2 *
Ap < min (Afnin) , Abnin : ! i (D.7)
d " d3H3log"?1/5 | polylog:

L=M:= max{ } - poly log ¢, B =1

and

2log || 1+ mi (A;nin)Q Ain 1
= . min , . .
! Yo d " d3H3log/?1/5 | polylogt

Note that in this case, we have [[Agllop < Amin(A;) for all i, so Ag = A; and n < n;. By the
construction of XY opt and Lemma D.2, it follows that f(A) > f;(A) for all A = 0, so this is a valid
choice of f, as required by Theorem 8. Furthermore, we can set R = 2, since ||A|r <1 for all 7.

To apply Theorem 8, it remains only to find a suitable value of fn,. By Lemma D.1 and

Lemma D.3, we can lower bound f; by Hﬂ&i‘l’%p. By Lemma D.8, we can lower bound

7o > Yo
1+ ||AiHop B dmax{dlog A} d4H3log7/2(15>

24 polyloge - ( Or )7 + N

min

We then take this as our choice of fiin.

We can now apply Theorem 8, using the complexity for OpTCOV instantiated with FORCE given
in Corollary 6, and get that with probability at least 1 — §, OpTCoV will terminate in

N < 5N* (eexp/2; f) + 1
episodes, and will return (time-normalized) covariates A such that
£(A) € Neexp.

By Lemma D.4, our choice of n and Ay, we can upper bound

4infrco maxgpes ”(rb”2A(A)*1

N* (€exp/2; ) < 2N (€exp/2; XY opt) =

€exp
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where here A(A) = A + Ag for Ag as in (D.7). Furthermore, by Lemma D.1 we have

max |15, 5,y 1 < S(A)

The final upper bound on the number of episodes collected and the lower bound on the minimum
eigenvalue of the covariates follows from Lemma D.8.

It remains to justify our bound onj, (D.6). Note that by definition of OpTCoV, if we run for
a total of IV episodes, we can bound i < ilogQ (N). However, we see that the bound on ¢ given
in (D.6) upper bounds ilogQ(N ) for N the upper bound on the number of samples collected by

OpTCovV stated above. Thus, our bound on i is valid. O

E Suboptimality of Optimistic Algorithms

E.1 Linear Bandit Construction

In the linear bandit setting, at each time step ¢, the learner chooses some z; € Z, and observes ;.
We will consider the case when the noise is Bernoulli so that y; ~ Bernoulli({(6y, z;) + 1/2), and will
set

0.=e;, Z={ei,e....eqT2,...,xa}, T =(§—A)er+ e
for some &, A, « to be chosen. In this setting, the optimal arm is z* = ey, and A(e;) =&, 1 > 2,

We will assume:

2C 20, A?
52d > ¢ > max{y/Vd,VA}, max{( = (d/A21)1*0‘ + 2d ’A} < ~2. (E.1)

We provide explicit values for £, A, and ~ that satisfy this in Lemma E.3.

Definition E.1 (d-correct). We say a stopping rule 7 is d-correct if P[z; = z*] > 1 — ¢, where 2,
is the arm recommended at time 7.

Lemma E.1. Consider running some low-regret algorithm satisfying Definition 4.1 on the linear
bandit instance described above and let T be some stopping time. Then if T is d-correct, we must
have that
d—1 1
E[r] > —— -log ——.
712 G5az 18 545

Proof. This proof follows closely the proof of Theorem 1 of Fiez et al. (2019) and relies on the
Transportation Lemma of Kaufmann et al. (2016).

Bounding the number of pulls to {es,...,e;}. By assumption, we collect data with a low-
regret algorithm satisfying Definition 4.1. Every time we pull e;,7 > 2, we incur a loss of 1/2. Thus,
we can lower bound

E[Vy — Vg™] > ZEM%—M1

so, letting T'(x;) denote the total number of pulls to x;, we have

K K d d

CLK® +Cy 2 ) E[Vy — V] = 22 E[Pr, [z = zi]] = 5 Y E[T(x:)]. (E.2)
k=1 =11=2 1=2

—_
—_
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Applying the Transportation Lemma. Let O, denote the set of 8 vectors such that e is
not the optimal arm, that is, max,cx (0, z) > (0,£e1). Let vg , = Bernoulli((0, z) + 1/2). Then by
the Transportation Lemma of Kaufmann et al. (2016), for any 8 € O,};, assuming our stopping rule
is d-correct, we have

1
ZE KL (ve, 2||ve,2) Zlogm.
zZ€EZ

Combining this with our constraint (E.2), it follows that - E[T'(2)] > > .z t- for any (t.).cz
that is a feasible solution to

d

. 1 1

mantz s.t. OIenGl)gt t-KL(vg, 2||ve ) > log m,Cl(th)a+C2 > 5215% (E.3)
z€Z z€Z zeZ 1=2

We can rearrange the second constraint to

20, N 22 S b,
(Paezt)™  Yiezts  Diezts

Assume that the optimal value of (E.3) satisfies ) - t, > AQ, then this constraint can be weakened
to

2 20207 _ Yyt
(d/AQ)l—a d = Ezeztz‘

It follows then that if the optimal value to

d
te,
min g ty s.t. min t-KL(vg, 2||ve.2) > log ,C > iz bo: (E4)
2€2 0O 77 D ozezlz

is at least d/A2, then the optimal value to (E.3) is also at least d/A2%, so our assumption that
Yoseztz> % will be justified.
For z # z*, let 0,(¢,t) denote the instance

(Y6 + OA(t) 'y,
Yy A(t)~!

for y, = 2* — z, A(t) = Y osez ﬁzz—r + diag([€2,7%/d, . ..,7?/d]), and € < min{A, ¢}. Note
zlez bz
that y] 0, (e, t) = —e < 0 which implies that 0, (e, t) € ©,. Furthermore, we can bound:
Claim E.2. For all z,v € Z,
yIA(t) LovTA(t) Ly,
(y2 A(t)'y2)?

KL(ve, v/ Ve, (c.)0) < 16(y] 0. + €)?

This implies that, for any ¢,

TAMN) oo T A(t) Ly,
S LKL (Ve ol Vo, (ctyw) < 16 to(y] 0, + €)Y )~ (t)2 Y
vEZ vEZ (yz A(t)_ Yz)
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v A1) ez s v DA My

=16 ty-(y] 0. +e)’

veZ (y2 A(t)y2)?
TA@)TA@)A (L)
<163ty (10, + ¥z AU _AWAD Ty
veEZ (yz A(t)i yz)
16(y;|—9* + 6)2
S L. s
vEZ Hyz”;i(t)*l
Thus
(B4) >min Yty st. min Y t,KL(vg, v||Ve, (c1)0) > log L o> iyt
' - o *,U z(61), v/ — 3 [l
veZ zFz* ez 24(5 Z'UEZ t’U
Hyz||2~ _ d
- A)-? 1 Yoo ta,
> min t s.t. ty > max -log (> i
'l;Z ’ veEZ : e 16(y;|—9* + 6)2 2.49 Z’UEZ 12%
= inf max Hyzu%()‘)_l ‘1o 1
i te 16(yl 0, + €2 824

where A(\) = > ez A2z and A={ elz : (> Z?:Q Az, }- We can further lower bound this
by

. ||z* _wiH%O\),l | 1
= o 16( — )0, 2 B2us

Ae; — ve;||%
= inf max B veZHA()\)il - log L
\eA i>2 16(A + €)? 245"

By Lemma E.4, we have

inf Ae; — ve;||%
Jnf maxf|Aer =9z

-1
> inf max(Ae; — vei)' (2526161T +2max{¢, v’} \ieie] +diag([¢%,~7/d, . .. ,72/d})) (Aer —ve)
ENg 12>

T T ™!
> inf max(Aei —qe,)T (3¢%ere] + (2max{(, 12\ +97 d)ese] ) (Aer —ye)
EAg 12
2

= —-— 1 f e —
362 T oA, T N + 1/d

where in the final equality we have used that ¢ < 2. However, this is clearly minimized by choosing
Ai = 1/(d — 1), which gives a lower bound of
1 d—1
>
2/(d-1)+1/d = 3

Putting all of this together, we have shown that any feasibly solution (¢;).cz to (E.3) must satisfy

Zt > d—1 -log !
fompt # 7 48(A +€)2 2.46°
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Using that any feasible solution to (E.3) lower bounds ), - E[T'(z)] and taking ¢ — 0 gives the
result.

O
Lemma E.3. Take some A > 0 satisfying:
1
A < i 1 1 1 2(1-a)
min v/
- 2704d2’ | 10816C” \ 10816d*Cy
and set
1 2C; 20, A?
= — = dA b .
$= g 7T mex { (/A% T g
Then this choice of &,v,0 satisfies (E.1) and, furthermore, ||z||2 <1 for all z € Z.
Proof. To satisfy (E.1), we must have 52—1/& > ~. Thus, if
1
1 1 1 3(i-a)
A< —— A</ A<|—r
~ 2704d?’ — V 10816Cs’ - (10816d0‘C1> ’
some computation shows that choosing 7 as prescribed will meet the constraint ——~ > ~ and will

52Vd
also satisfy v > v/dA. The norm bound follows by our choice of { and since £ >~/ Vd> VA, O

E.1.1 Additional Proofs

Proof of Claim E.2. We first show that [(6.(e, t),v)| < 13d¢ for all z,v € Z. Note that for all
veZ, |(v,0,)| <¢

Case 1: z = z*. In this case, (Y5, 0) = 0 so the result follows from our condition on e.

Case 2: z =¢;,i >2. Lt A={\e Az : (> Zsz Az, }. In this case, (z,60,) = 0 and
(Y, 0x) = . Furthermore, by Lemma E.4,

~ -1
vl AWM s 2 inf gl (2 Awdiag((2)2) + ding([¢%,2/d, ..., 72/d))) s
A€l z'eZ
-1
>yl (26%ere] +2max{(, 1 }eie] + ding([€242/d, ..,7*/d)) ys
3, !
& " 2max{(42} +42/d

1
= Smax(C 2 2/

> ¢

S 1

where the last inequality follows from our assumption that ¢ < 2. In the other direction, we can
bound

1 d 2d
<

v A(t) 'y, < v'diag([€%,4%/d, ..., v*/d) "ty < ot

=2
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where the last inequality follows by our assumption that £ > -/ V/d. Putting this together, we have

2
2d/y” 13d¢.

(0(c.0).0)] < €+ (6 + 705 <

Case 3: z = x;. In this case (y.,0:) = A. We can apply a calculation analogous to above to
lower bound y] A(t)ly., but in this case obtain

2

~ 3 ¥ 1
T 1 2
A(t . > A°— > .
v A 2 X T () 2
Similarly, we can upper bound
~ . _ A dy 2d
'UTA(t) y. < delag([§2,72/d, S 772/d]) y. < ? + ? < 7

This gives a final upper bound of

[(0z(e, ), v)| < €+ (A+e)6j <&+ 12\/? < 13d¢.

Combining these three cases gives that [(0,(e,t),v)| < 13d¢ for all z,v € Z. By our assumption
that £ < -, it follows that (6. (e, t),v)| < 1/4 for all z,v € Z.

By Lemma D.2 of Wagenmaker et al. (2022), as long as (0 (e, t),v) +1/2 € (0,1) and (0., v) +
1/2 € (0,1), which will be the case by the definition of 8, and since [(0;(e,t),v)| < 1/4 as noted
above, we have

(0 (e, t) — 0,,v)?
KL ollo-tcow) < (g () v) + 172)(1/2 — (Baect). o))

Using what we have just shown, we can upper bound this as

(0(e,t) — 0,,v)?
((0z(e,t),v) +1/2)(1/2 — (02(e, 1), v))

(0, (e,t) — 0,,v)?
(—1/4+1/2)(1/2 — 1/4)
= 16(0, (e, 1) — 0y, v)>.

<

By our choice of 8,(e, t), this is equal to:

ZUTA) tov T A(t) Ly,
(Y2 A(t)~ly.)?

which completes the proof. O

16(y19* +€)

Lemma E.4.

Z Aozz!| <2 Z A diag(z?).

zEZ zZEZ

Proof. This follows since every z € Z has at most two non-zero entries, and since (ax + by)(ax +
by)" < 2a’xx’ +20%yy . O
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E.2 Mapping to Linear MDPs

We can map this linear bandit (with parameters chose as in Lemma E.3) to a linear MDP with
state space S = {so, s1, 52, -..,54+1}, action space A = Z U {ey+1/2}, parameters

0:=0, 6:=e;

pi(s1) = [20.,1],  pi(s) = =[-26,, 1],

ISR

and feature vectors

¢(307 edJrl) = ed+1/27 ¢(SO7 Z) = [Z/Q, 1/2]7 VzeZ
o(s1,z) =e1, @(5,2z)=e€,i>2, VzeA
Note that, if we take action z in state sg, our expected episode reward is

d+1
Pi(s1]s0,2) - 14+ Y Pi(Sils0,2) - 0= (0, 2) +1/2
i=2

since we always acquire a reward of 1 in any state s1, and a reward of 0 in any state 5;, and the
reward distribution is Bernoulli.

Lemma E.5. The MDP constructed above is a valid linear MDP as defined in Definition 5.1.
Proof. For z € Z we have,

Pi(s1]s0, 2) = (P(s0, 2), p1(s1)) = (0s,2) +1/2 >0

Pi(8i[s0, 2) = (p(s0, 2), p1(5:)) = é(—<9hz> +1/2) 20

where the inequality follows since (0, z)| < O(1/d) for all z € Z. In addition,

d+1
1
Pi(s1]s0,2) + > _ Pi(5ils0,2) = (0x,2) +1/2+d - S(=(0.,2)+1/2)=1.
=2

Thus, Pi(+|so, z) is a valid probability distribution for z € Z. A similar calculation shows the same
for z = egy1/2.

It remains to check the normalization bounds. Clearly, by our construction of Z, ||¢(s,a)|2 <1
for all s and a. It is also obvious that [|@p|l2 < v/d and |61 ]2 < V/d. Finally,

1
NSz = || D )| = 11264, 1] +d- 72012 < V.
s€S\so 9
Thus, all normalization bounds are met, so this is a valid linear MDP. O

Proof of Proposition 2. If we assume that the learner has prior access to the feature vectors, and
also knows this is a linear MDP, then, even with no knowledge of the dynamics, we can guarantee
an optimal policy is contained in the set of policies 7%% defined as:

/ ! / !
1% (s0) = 2,757 (s0) = 2/, m, % (s1) = Eex, w7 (5:) = Een
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This holds because in states s; and 3;, the performance of each action is identical since the feature
vectors are identical, so it doesn’t matter which action we choose in these states. In this case, we
can bound |I1| < |Z]? < 4d2.

Now, for z € A, z # eq11/2, we have

Grznry = [2/2,1/2]
Grern = ((61,2) + 1/2er + o(—(6,2) +1/2) Y ey

1>2

andif z = €q41/2, @ 2 | = €441/2, D220 o = €1/2+ ﬁ > i>o €i. Let meyp be the policy that plays
action es in state sg at step h = 1. Then,

Aﬂ'exp,2 (&1 + a9 § €;e
z>3

Since (0,,z) < O(1/d) and [z]; < O(1/d) for all z by construction, it follows that we can bound,
for all z, 2/,

6perallys =0 |14 5 -d| =0
1>2
SO
Inaln 2
Y (Vg — v, AL = QW)

Now let mexp, be the policy that, at step h = 1, plays e; with probability 1/4, e441 with
probability 1/4, and plays e; with probability 4( 0 for i > {2,...,d}. In this setting, we have

1, .1 1 .
Awexp,l = 1526161 + 1€d+1€d+1 + m | Z e;e; .
1€{2,....d}
Note that Vj — =& —(0,,2),s0 for z =ey,...,eq411, we have V' — VI~ = ¢ = 0O(1/d),
while for z = fel, x2,..., %4, we have V' — I/(]”z’z =A.
It’s easy to see that for z = eg,...,eqy1, we have [|@ ../ [, < O(d), and for z =
’ Texp

gel, xa, ..., x4, H(ﬁ”z’zlJHA;elxp,l < O(1+dy?) = O(1). Combining these bounds with the gap values,
we conclude that
InilZs
rlrgi et max{ Vg — VJ ,QXH 6}2 < 01/ + poly(d))

min’
The result then follows by Theorem 7. O

Lower bounding the performance of low-regret algorithms. Assume that we have access
to the linear bandit instance constructed in Appendix E.1 with parameters chosen as in Lemma E.3.
That is, at every timestep t we can choose an arm z; € Z and obtain and observe reward
y¢ ~ Bernoulli({0y, z;) + 1/2). Using the mapping up, we can use this bandit to simulate a linear
MDP as follows:
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1. Start in state sg and choose any action z; € A

2. Play action z; in our linear bandit. If reward obtained is y; = 1, then in MDP transition to
any of the states s1. If reward obtained is y; = 0 transition to any of the states 52, ..., 5411,
each with probability 1/d. If the chosen action was z; = e441/2, then play any action in the
linear bandit and transition to state s; with probability 1/2 and So,. .., 5441 with probability
1/2d, regardless of y;

3. Take any action in the state in which you end up, and receive reward of 1 if you are in s, and
reward of 0 if you are in 3g,...,5441.

Note that this MDP has precisely the transition and reward structure as the MDP constructed
above.

Lemma E.6. Assume m is ¢ < A/2-optimal in the MDP constructed above. Then, z* =
arg max,c 4 7 (/o).

Proof. Note that the value of 7 in the linear MDP is given by V" = >, > m1(z]s0) ({2, 0x) +1/2) +
m1(ed+1/2]s0)/2 and the optimal policy is m1(2*[sg) = 1 and has value V' = (2*,0,) + 1/2. It
follows that if 7 is e-optimal, then

S milzls0) (2, 0.) + 1/2) + ma(eqsr /2]s0)/2 > (2%,0,) +1/2 — e
zEZ

— ﬂl(z*‘SO)(f—i-l/Q)—i- Z 7T1(Z‘So)(§—A+1/2) Z€+1/2—6
z€A z#z*
= —A Z 1(z]s0) > —e
z€A,z#2z*

— e> A Z ‘80
z€A,z#£2*

If e < A/2, this implies that > c 4 ... m1(2[s0) < 1/2, so it must be the case that m(2*[so) >
1/2. 0

Proof of Proposition 3. Consider running the above procedure for some number of steps. By
Lemma E.6, if we can identify an € < A/2-optimal policy in this MDP, we can use it to determine
z*, the optimal arm in the linear bandit. As we have used no extra information other than samples
from the linear bandit to construct this, it follows that to find an ¢ < A/2-optimal policy in the
MDP, we must take at least the number of samples prescribed by Lemma E.1. O
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