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Ezllijmnia’ Berkeley, Berkeley, California, 1. Can machine learning help us make better decisions about a changing planet?
In this paper, we illustrate and discuss the potential of a promising corner of

g::‘;z:‘;::ce machine learning known as deep reinforcement learning (RL) to help tackle the
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Handling Editor: Tamara Miinkemiiller that is dynamic and uncertain. Deep RL is the subfield of RL that incorporates
deep neural networks into the agent. We train deep RL agents to solve sequen-
tial decision-making problems in setting fisheries quotas and managing ecologi-
cal tipping points.

3. We show that a deep RL agent is able to learn a nearly optimal solution for the
fisheries management problem. For the tipping point problem, we show that a
deep RL agent can outperform a sensible rule-of-thumb strategy.

4. Our results demonstrate that deep RL has the potential to solve challenging de-
cision problems in conservation. While this potential may be compelling, the
challenges involved in successfully deploying RL-based management to realistic
scenarios are formidable—the required expertise and computational cost may
place these applications beyond the reach of all but large, international technol-
ogy firms. Ecologists must establish a better understanding of how these algo-
rithms work and fail if we are to realize this potential and avoid the pitfalls such
a transition would bring. We ultimately set forth a research framework based
on well-posed, public challenges so that ecologists and computer scientists can

collaborate towards solving hard decision-making problems in conservation.
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1 |INTRODUCTION

Advances in both available data and computing power are opening
the door for machine learning (ML) to play a greater role in address-
ing some of our planet's most pressing environmental problems.
But will ML approaches really help us tackle our most pressing
environmental problems? From the growing frequency and inten-
sity of wildfire (Moritz et al., 2014), to over-exploited fisheries
(Worm et al., 2006) and declining biodiversity (Dirzo et al., 2014),
to emergent zoonotic pandemics (Dobson et al., 2020), the diver-
sity and scope of environmental problems are unprecedented.
Applications of ML in ecology have to-date illustrated the promise
of two methods: supervised learning (Joseph, 2020) and unsuper-
vised learning (Valletta et al., 2017). However, the fields of ecology
and conservation have largely overlooked the third and possibly
most promising approach in the ML triad: reinforcement learning
(RL). Three features distinguish RL from other ML methods in ways
that are particularly well suited to addressing issues of global eco-
logical change:

1. RL is explicitly focused on the task of selecting actions in an
uncertain and changing environment to maximize some objective.

2. RL does not require massive amounts of representative sampled
historical data.

3. RL approaches easily integrate with existing ecological models
and simulations, which may be our best guide to understanding

and predicting future possibilities.

Despite relevance to decision making under uncertainty that
could make RL uniquely well suited for ecological control, RL has
only been applied to this field in a few cases (Fonnesbeck, 2008;
Silvestro et al., 2022; Treloar et al., 2020; Xu et al., 2021). To date,
the problems considered by RL research have largely been drawn
from examples in robotic movement and games like Go and Starcraft
(OpenAl et al., 2018; Silver et al., 2018; Vinyals et al., 2019). Complex
environmental problems share many similarities to these tasks and
games: the need to plan many moves ahead given a large number
of possible outcomes, to account for uncertainty and to respond
with contingency to the unexpected. RL agents typically develop
strategies by interacting with simulators, a practice that should not
be unsettling to ecologists, since learning from simulators is com-
mon across ecology. Rich, processes-based simulations such as the
SORTIE model in forest management (Pacala et al., 1996), Ecopath
with Ecosim in fisheries management (Steenbeek et al., 2016) or
climate change policy models (Nordhaus, 1992) are already used to
explore scenarios and inform ecosystem management. Decision-
theoretic approaches based on optimal control techniques can only
find the best strategy in the simplest of ecological models; the so
called “curse of dimensionality” makes problems with a large number
of states or actions intractable by conventional methods (Chades
et al., 2021; Ferrer-Mestres et al., 2021; Marescot et al., 2013;
Wilson et al., 2006). Neural-network-based RL techniques, re-

ferred to as deep RL, have proven particularly effective in problems

involving complex, high-dimensional spaces that have previously
proven intractable to classical methods.

While deep RL may have the potential to open up such intrac-
table problems, it also risks making those problems tractable only
for stakeholders with access to extensive computational resources
and expertise. It is notable that the landmark advances cited above
have been solved not by academic teams but by specialized research
teams of international technology firms such as Alphabet. Precise
estimates of computational resources used in that research are
difficult to establish, but previous estimates benchmarked against
commercially available cloud computing platforms place the training
of a single model at over $35 million (Hernandez & Brown, 2020;
Huang, 2018; Silver et al., 2017), and many realistic ecological prob-
lems will involve even greater complexity than these landmark ex-
amples (OpenAl et al., 2018; Silver et al., 2017, 2018). While the
history of improved efficiency in computing technology has shown
a remarkable ability to reduce such barriers, it has simultaneously
moved the leading edge of those capabilities farther beyond the
reach of traditional ecological research. We believe that ecologists
must seek to better understand the design, capabilities and limita-
tions of these algorithms while keeping in mind that the application
of RL to conservation will surely require the ambitious collaboration,
resources and expertise on par with the scale of the immense envi-
ronmental and ecological problems we face.

In this paper, we draw on examples from fisheries management
and ecological tipping points to illustrate how deep RL techniques
can successfully discover optimal solutions to previously solved
management scenarios and discover highly effective solutions to
unsolved problems. We focus on examining the potential and lim-
itations of deep RL through the lens of simple, classical models.
Over a century of theory and practice in ecology has demonstrated
that simple models can provide meaningful insights, which improve
management outcomes (Getz et al., 2018). As Richard Levins suc-
cessfully established in his classic paper on the principles of model
building (Levins, 1966), model complexity must not be mistaken for
model realism. Levins espoused simple mechanistic models that
satisfy the goals of being both realistic and general. More complex
models such as those used in fisheries to guide the management of
specific stocks typically sacrifice generality for precision. Such sim-
ple, realistic and general models are still the bedrock of most theory
and practice today (for instance, the notion of maximum sustainable
yield, MSY, infisheries, or R, in epidemiology, remain important con-
cepts in management). These models provide an ideal first bench-
mark for evaluating the performance of emerging methods of deep
RL for several reasons: Firstly, for some cases, the optimal solution
is already known, providing a clear standard-of-comparison to eval-
uate RL performance. Prior work sometimes overlooks this essen-
tial step, assuming that whatever behaviour an RL agent produces
is sufficiently optimal (Mnih et al., 2015). As our evaluations will
illustrate, such an assumption can be quickly misleading. Second,
these models are already widely studied and will be familiar to many
readers: Schaefer (1954) is a staple of fisheries management text-

books and practice, with over 2800 citations, while May (1977) has
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become a canonical model of thresholds and tipping points, which
still continues to dominate how many ecologists think about these
phenomena (Scheffer et al., 2015). Many readers can thus bene-
fit from existing knowledge and intuition about the behaviour and
implications of these models in interpreting the performance of
deep RL, something that would not be possible with a more com-
plex model. Third, these models include or can easily be extended
to contexts for which the optimal management policy is unknown
or inaccessible to classical methods. Our implementations of these
models have been published to the python-based PyPi code archive
and include many such variations that represent open problems
for RL. We include extensive appendices with carefully annotated
code, which should allow readers to both reproduce and extend this
analysis.

This paper does not intend to validate deep RL as a method that
should be used to directly inform decision-making on current con-
servation problems. Rather, we seek to provide ecologists with a
greater understanding of both potentials and pitfalls of this emerging
approach. We have selected familiar example problems to provide
ecologists with a greater background and intuition to understand
these techniques and engage in the collaborative development of
deep RL-based methods, while also highlighting challenges that
ecological problems pose to existing techniques. Validating deep
RL for current conservation problems is beyond the scope of any
one paper: this will necessitate examining a range of more “precise”

models, which will require more computational resources than that
available to most researchers and extensive collaboration between

large teams of ecologists and computer scientists.

2 |MATERIALS AND METHODS

All applications of RL can be divided into two components: an
environment and an agent. The environment is typically a computer
simulation, though it is possible to use the real world as the RL
environment (Ha et al., 2020). The agent, which is often a computer
program, continuously interacts with the environment. At each time
step, the agent observes the current state of the environment and
then performs an action.* As a result of this action, the environment
transitions to a new state and transmits a numerical reward signal
to the agent (Figure 1). The goal of the agent is to learn how to
maximize its expected cumulative reward. The agent learns how to
achieve this objective during a period called training. In training, the
agent explores the available actions. Once the agent comes across a
highly rewarding sequence of observations and actions, the agent
will reinforce this behaviour so that it is more likely for the agent to
exploit the same high reward trajectory in the future. Throughout
this process, the agent's behaviour is codified into what is called a
policy, which describes what action an agent should take for a given
observation.
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FIGURE 1 Deep reinforcement learning: A deep RL agent uses a neural network to select an action in response to an observation of the
environment, and receives a reward from the environment as a result. During training, the agent tries to maximize its cumulative reward by
interacting with the environment and learning from experience. In the RL loop, the agent performs an action, then the environment returns
areward and an observation of the environment's state. The agent-environment loop continues until the environment reaches a terminal
state, after which the environment will reset, causing a new episode to begin. Across training episodes, the agent will continually update
the parameters in its neural network, so that the agent will select better actions. Before training starts, the researcher must input a set of
hyperparameters to the agent; hyperparameters direct the learning process and thus affect the outcome of training. A researcher finds the
best set of hyperparameters during tuning. Hyperparameter tuning consists of iterative trials, in which the agent is trained with different
sets of hyperparameters. At the end of a trial, the agent is evaluated to see which set of hyperparameters results in the highest cumulative
reward. An agent is evaluated by recording the cumulative reward over one episode, or the mean reward over multiple episodes. Within
evaluation, the agent does not update its neural network; instead, the agent uses a trained neural network to select actions
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2.1 |RL environments

An environment is a mathematical function, computer program
or real world experience that takes an agent's proposed action as
input and returns an observation of the environment's current
state and an associated reward as output. In contrast to classical
approaches (Chades et al., 2021; Marescot et al., 2013), there are
few restrictions on what comprises a state or action. States and
actions may be continuous or discrete, completely or partially
observed, and single or multidimensional. The main focus of building
an RL environment, however, is on the environment's transition
dynamics and reward function. The designer of the environment can
make the environment follow any transition and reward function
provided that both are functions of the current state and action.
The ability to tailor the actions, states, transition dynamics and
reward function allows RL environments to model a broad range of
decision making problems. For example, we can set the transitions
to be deterministic or stochastic. We could map any countable
set of actions to a discrete action space. We can also specify the
reward function to be sparse, whereby a positive reward can only
be received after a long sequence of actions, for example, the end
point in a maze. In other environments, an agent may have to learn to
forgo immediate rewards (or even accept an initial negative reward)
in order to maximize the net discounted reward as we illustrate in
examples here.

The OpenAl gym software framework was created to address
the lack of standardization of RL environments and the need for
better benchmark environments to advance RL research (Brockman
et al., 2016). The gym framework defines a standard interface and
methods by which a developer can describe an arbitrary environ-
ment in a computer program. This interface allows for the application
of software agents that can interact and learn in that environment
without knowing anything about the environment's internal details.
Using the gym framework, we turn existing ecological models into
valid environmental simulators that can be used with any RL agent.
In Appendix C, we give detailed instruction on how an OpenAl gym
is constructed.

2.2 |Deep RL agents

To optimize the RL objective, agents either take a model-free or
model-based approach. The distinction is that model-free algorithms
do not attempt to learn or use a predictive model of the environment;
yet, model-based algorithms employ a predictive model of the
environment to achieve the RL objective. A trade-off between these
approaches is that when it is possible to quickly learn a model of the
environment or the model is already known, model-based algorithms
tend to require much less interaction with the environment to learn
good-performing policies (Janner et al., 2019; Sutton & Barto, 2018).
Yet, frequently, learning a model of the environment is very difficult,
and in these cases, model-free algorithms tend to outperform
(Janner et al., 2019).

Neural networks become useful in RL when the environment has
a large observation-action space,? which happens frequently with
realistic decision-making problems. Whenever there is a need for
an agent to approximate some function, typically a function to rep-
resent the policy and/or to model the transition dynamics, neural
networks can be used in this capacity due to their property of being
general function approximators (Hornik et al., 1989). Although there
are other function approximators that can be used in RL, for example
Gaussian processes (Grande et al., 2014), neural networks have ex-
celled in this role because of their ability to learn complex, nonlinear
and high dimensional functions and their ability to adapt given new
information (Arulkumaran et al., 2017). There is a multitude of deep
RL algorithms since there are many design choices that can be made
in constructing a deep RL agent—see Appendix A for more detail on
these engineering decisions. In Table 1, we present some of the more
common deep RL algorithms, which serve as good reference points
for the current state of deep RL.

Training a deep RL agent involves allowing the agent to interact
with the environment for potentially thousands to millions of time
steps. During training, the deep RL agent continually updates its neu-
ral network parameters so that it will converge to an optimal policy.
The amount of time needed for an agent to learn high reward yielding
behaviour cannot be predetermined and depends on a host of factors
including the complexity of the environment, the complexity of the
agent, and more. Yet, overall, it has been well established that deep
RL agents tend to be very sample inefficient (Gu et al., 2017), so it is
recommended to provide a generous training budget for these agents.

The deep RL agent controls the learning process with parameters
called hyperparameters. Examples of hyperparameters include the
step size used for gradient ascent and the interval to interact with the
environment before updating the policy. In contrast, a weight or bias
in an agent's neural network is simply called a parameter. Parameters
are learned by the agent, but the hyperparameters must be specified
by the RL practitioner. Since the optimal hyperparameters vary across
environments and cannot be predetermined (Henderson et al., 2019),
it is necessary to find a good-performing set of hyperparameters in
a process called hyperparameter tuning, which uses standard multi-
dimensional optimization methods. We further discuss and show the
benefits of hyperparameter tuning in Appendix B.

2.3 | RL objective

The reinforcement learning environment is typically formalized
as a discrete-time partially observable Markov decision process
(POMDP). A POMDP is a tuple that consists of the following:

e S: a set of states called the state space

e A: aset of actions called the action space

e Q: a set of observations called the observation space

o E(0;|s;): an emission distribution, which accounts for an agent's
observation being different from the environment's state

e T(s;,1]5,a;): a state transition operator which describes the

dynamics of the system
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TABLE 1 Survey of common deep RL

. Abbreviation
algorithms

PlaNet
12A

MBPO

DQN
A2C
A3C
TRPO

PPO
DDPG

TD3
SAC
IMPALA

e r(s;,a;): areward function

® dy(5sp): an initial state distribution

ey e (0, 1]: a discount factor that describes how much the agent
will value rewards to be received in the distant future versus the
immediate future (Clark, 2010)

The agent interacts with the environment in an iterative loop,
whereby the agent only has access to the observation space, the
action space and the discounted reward signal, ytr(st,at)‘ As the
agent interacts with the environment by selecting actions ac-
cording to its policy, zz(at|ot),3 the agent creates a trajectory,
7 = (S9,00,d0s --- »SH-1OH_1, 1, Sy )- From these definitions, we can

provide an agent's trajectory distribution for a given policy as,

H-1

p,(7) =dy(sp) Hn(atl 0,)E(0;15;) T(St41l5:a;)-
-0

-

The goal of reinforcement learning is for the agent to find an optimal

policy distribution, z* (ar| 0; ) that maximizes the expected return, J(x):

H-1

7" =argmaxE,, [ Z ytr(sr,at)] = argmax J(x).
b4 t=0 n

Although there are RL-based methods for infinite horizon problems,
that is, when H = oo, we will only present episodic or finite horizon
POMDPs in this study. In Appendix A, we will discuss in greater de-
tail how deep RL algorithms attempt to optimize the RL objective.

3 |RESULTS

We provide two examples that illustrate the application and poten-

tial of deep RL to ecological and conservation problems, highlighting

Algorithm name Model

Deep Planning Network (Hafner et al., 2019) Model-based

Imagination-Augmented Agents (Weber Model-based
etal., 2017)

Model-based Policy Optimization (Janner Model-based
et al., 2019)

Deep Q Networks (Mnih et al., 2015) Model-free

Advantage Actor Critic (Mnih et al., 2016) Model-free

Asynchronous A2C (Babaeizadeh et al., 2016) Model-free

Trust Region Policy Optimization (Schulman, Model-free
Levine, et al., 2017)

Proximal Policy Optimization (Schulman, Wolski, Model-free
et al., 2017)

Deep Deterministic Policy Gradient (Lillicrap Model-free
etal., 2019)

Twin Delayed DDPG (Fujimoto et al., 2018) Model-free

Soft Actor Critic (Haarnoja et al., 2018) Model-free

Importance Weighted Actor Learner (Espeholt Model-free

etal, 2018)

both the potential and the inherent challenges. Annotated code for
these examples may be found in Appendix B and at https://github.
com/boettiger-lab/rl-intro. All algorithms were run on an NVIDIA
Quadro RTX 8000 GPU. The training budget for the fishing scenario
was 300K timesteps (3 K runs, taking about 25 min). The train-
ing budget for the tipping point example was 3 M timesteps (6 K
runs, taking around 3hr). Software details and hyperparameters
are provided in the associated GitHub repo. Hyperparameter tun-
ing typically required 100s of training runs using both Optuna, a
python-based hyperparameter optimization module, and manual
adjustments.

3.1 |Sustainable harvest sustainable harvest

The first example focuses on the important but well-studied prob-
lem of setting harvest quotas in fisheries management. This provides
a natural benchmark for deep RL approaches, since we can compare
the RL solution to the mathematical optimum directly. Determining
fishing quotas is both a critical ecological issue (Costello et al., 2016;
Worm et al., 2006, 2009) and a textbook example that has long in-
formed the management of renewable resources within fisheries
and beyond (Clark, 1990).

Given a population growth model that predicts the total bio-
mass of a fish stock in the following year as a function of the
current biomass, it is straightforward to determine what biomass
corresponds to the maximum growth rate of the stock, or By,
the biomass at maximum sustainable yield (MSY; Schaefer, 1954).
When the population growth rate is stochastic, the problem is
slightly harder to solve, as the harvest quota must constantly
adjust to the ups and downs of stochastic growth, but it is still

possible to show the optimal strategy merely seeks to maintain
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the stock at B,,sy, adjusted for any discounting of future yields
(Reed, 1979).

For illustrative purposes, we consider the simplest version of the
dynamic optimal harvest problem as outlined by Clark (1973) (for the
deterministic case) and Reed (1979) (under stochastic recruitment).
The manager seeks to optimize the net present value (discounted
cumulative catch) of a fishery, observing the stock size each year
and setting an appropriate harvest quota in response. In the classical
approach, the best model of the fish population dynamics must first
be estimated from data, potentially with posterior distributions over
parameter estimates reflecting any uncertainty. From this model, the
optimal harvest policy—that is, the function which returns the opti-
mal quota for each possible observed stock size—can be determined
either by analytic (Reed, 1979) or numerical (Marescot et al., 2013)
methods, depending on the complexity of the model. In contrast, a
model-free deep RL algorithm makes no assumption about the pre-
cise functional form or parameter values underlying the dynamics—it
is in principle agnostic to the details of the simulation.

We illustrate the deep RL approach using the model-free algo-
rithm known as Twin Delayed Deep Deterministic Policy Gradient or
more simply, TD3 (Fujimoto et al., 2018). A step-by-step walk-through
for training agents on this environment is provided in the Appendix.
We compare the resulting management, policy and reward under
the RL agent to that achieved by the optimal management solution
(Figure 2). Despite having no knowledge of the underlying model,
the RL agent learns enough to achieve nearly optimal performance.

The cumulative reward (utility) realized across 100 stochastic rep-
licates is indistinguishable from that of the optimal policy (Figure 2).
Nevertheless, comparing the mean state over replicate simulations
reveals some differences in the RL strategy, wherein the stock is
maintained at a slightly higher-than-optimal biomass. Because our
state space and action space are sufficiently low-dimensional in this

example, we are also able to visualize the policy function directly, and
compare to the optimal policy (Figure 2). This confirms that quotas
tend to be slightly lower than optimal, most notably at larger stock
sizes. These features highlight a common challenge in the design and
training of RL algorithms. RL cares only about improving the realized
cumulative reward, and may sometimes achieve this in unexpected
ways. Because these simulations rarely reach stock sizes at or above
carrying capacity, that is, larger stock sizes are under-explored, these
larger stock sizes show a greater deviation from the optimal policy
than we observe at more frequently visited lower stock sizes. This
observation brings up a point that is well worth discussing, which is
how to best identify and resolve underexplored scenarios. Usually,
RL practitioners identify underexplored scenarios by either doing
extensive testing or visualizing the policy, then tweaking the hyper-
parameters relevant to exploration in hopes of improving the result.

How could an RL agent be applied to empirical data? One
solution would be to train an agent on a simulation environment
that approximates the fishery of interest then query the policy
of the agent to find a quota for the observed stock. To illustrate
this, we examine the quota that would be recommended by our
newly trained RL agent, above, against historical harvest levels
of Argentine hake based on stock assessments from 1986-2014
(RAM Legacy Stock Assessment Database, 2020, see Appendix D).
Hake stocks showed a marked decline throughout this period,
while harvests decreased only in proportion (Figure 3). In con-
trast, our RL agent would have recommended significantly lower
quotas over most of the same interval, including the closure of
the fishery as stocks were sufficiently depleted—a stark contrast
to the management policy evidenced in the historical catch. Note
that we have no way of knowing for sure if the RL quotas would
have led to recovery nor do we know the optimal harvest rates,
because we can never know the “true model” of the Argentine
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FIGURE 2 Fisheries management using neural network agents trained with RL algorithm TD3 compared to optimal management. Top
panel: Mean fish population size over time across 100 replicates. Shaded region shows the 95% confidence interval over simulations. Lower
left: The optimal solution is the policy of constant escapement. Below the target escapement of 0.5, no harvest occurs, while any stock
above that level is immediately harvested back down. The TD3 agent adopts a policy that ceases any harvest below this level, while allowing
a somewhat higher escapement than optimal. Lower right: TD3 achieves a nearly-optimal mean utility.
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FIGURE 3 Setting fisheries harvest
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hake dynamics. We can confirm that the fishery closures seen in
the RL agent's solution are considered optimal under the assump-
tions of constant escapement theory (Reed, 1979) whenever the
stock is below the biomass of maximum sustainable yield (B,s,),
and that most fisheries models of this stock (RAM Legacy Stock
Assessment Database, 2020) would suggest that the populations
observed in the latter two decades of the data are below that
threshold.

This approach is not as different from conventional strategies as
it may seem. In a conventional approach, ecological models are first
estimated from empirical data, (stock assessments in the fisheries
case). Quotas can then be set based directly on these model esti-
mates, or by comparing alternative candidate “harvest control rules”
(policies) against model-based simulations of stock dynamics. This
latter approach, known in fisheries as management strategy evalu-
ation (MSE; Punt et al., 2016) is already closely analogous to the RL
process. Instead of researchers evaluating a handful of control rules,
the RL agent proposes and evaluates a plethora of possible control

rules autonomously.

3.2 | Ecological tipping points

Our second example focuses on a case for which we do not have
an existing, provably optimal policy to compare against. We con-
sider the generic problem of an ecosystem facing slowly dete-
riorating environmental conditions, which move the dynamics
closer towards a tipping point (Figure 4). This model of a critical
transition has been posited widely in ecological systems, from the
simple consumer-resource model of May, 1977 on which our dy-
namics are based, to microbial dynamics (Dai et al., 2012), lake
ecosystem communities (Carpenter et al., 2011) and planetary
ecosystems (Barnosky et al., 2012). On top of these ecological dy-
namics, we introduce an explicit ecosystem service model quanti-
fying the value of a more desirable ‘high’ state relative to the ‘low’
state. For simplicity, we assume a proportional benefit b associ-

ated with the ecosystem state X(t). Thus, when the ecosystem is

year

near the ‘high’ equilibrium, )?H, the corresponding ecosystem ben-
efit, b)A(,_,, is higher than at the low equilibrium, bx;, consistent with
the intuitive description of ecosystem tipping points (Barnosky
etal., 2012).

We also enumerate the possible actions that a manager may take
in response to environmental degradation. In the absence of any
management response, we assume the environment deteriorates at
a fixed rate a, which can be thought of as the incremental increase
in global mean temperature or similar anthropogenic forcing term.
Management can slow or even reverse this trend by choosing an op-
posing action A,. We assume that large actions are proportionally
more costly than small actions, consistent with the expectation of
diminishing returns: taking the cost associated with an action A, as
equal to cAf. Many alterations of these basic assumptions are also
possible: our gym conservation implements a range of different
scenarios with user-configurable settings. In each case, the manager
observes the current state of the system each year and must then
select the policy response that year.

Because this problem involves a parameter whose value changes
over time (the slowly deteriorating environment), the resulting eco-
system dynamics are not autonomous. This precludes our ability to
solve for the optimal management policy using classical theory such
as for Markov decision processes (MDP, Marescot et al., 2013), typ-
ically used to solve sequential decision-making problems. However,
it is often argued that simple rules can achieve nearly optimal man-
agement of ecological conservation objectives in many cases (Joseph
etal.,, 2009; Meir et al., 2004; Wilson et al., 2006). A common conser-
vation strategy employs a fixed response level rather than a dynamic
policy which is toggled up or down each year: for example, declaring
certain regions as protected areas in perpetuity. An intuitive strategy
faced with an ecosystem tipping point would be ‘perfect conserva-
tion’, in which the management response is perfectly calibrated to
counter-balance any further decline. While the precise rate of such
decline may not be known in practice (and will not be known to RL
algorithms before-hand either), it is easy to implement such a policy in
simulation for comparative purposes. We compare this rule-of-thumb
to a policy found by training an agent using the TD3 algorithm.
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FIGURE 4 Bifurcation diagram for tipping point scenario. The ecosystem begins in the desirable ‘high’ state under an environmental
parameter (e.g. global mean temperature, arbitrary units) of 0.19. In the absence of conservation action, the environment worsens (e.g. rising
mean temperature) as the parameter increases. This results in only a slow degradation of the stable state, until the parameter crosses the
tipping point threshold at about 0.215, where the upper stable branch is annihilated in a fold bifurcation and the system rapidly transitions
to lower stable branch, around state of 0.1. Recovery to the upper branch requires a much greater conservation investment, reducing the
parameter all the way to 0.165 where the reverse bifurcation will carry it back to the upper stable branch
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FIGURE 5 Ecosystem dynamics under management using the steady-state rule-of-thumb strategy compared to management using a

neural network trained using the TD3 RL algorithm. Top panel: Mean

and 95% confidence interval of ecosystem state over 100 replicate

simulations. As more replicates cross the tipping point threshold under steady-state strategy, the mean slowly decreases, while the TD3
agent preserves most replicates safely above the tipping point. Lower left: The policy function learned using TD3 relative to the policy
function under the steady state. Lower right: Mean rewards under TD3 management eventually exceed those expected under the steady-
state strategy as a large initial investment in conservation eventually pays off.

The TD3-trained agent proves far more successful in preventing
chance transitions across the tipping point, consistently achieving
a higher cumulative ecosystem service value across replicates than
the steady-state strategy.

Examining the replicate management trajectories and corre-
sponding rewards (Figure 5) reveal that the RL agent incurs signifi-
cantly higher costs in the initial phases of the simulation, dipping

well below the mean steady-state reward initially before exceeding

it in the long run. This initial investment then begins to pay off—by
about the 200th time step, the RL agent has surpassed the perfor-
mance of the steady-state strategy. The policy plot provides more
intuition for the RL agent's strategy: at very high state values, the RL
agent opts for no conservation action—so far from the tipping point,
no response is required. Near the tipping point, the RL agent steeply
ramps up the conservation effort, and retains this effort even as

the system falls below the critical threshold, where a sufficiently
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aggressive response can tip the system back into recovery. For
a system at or very close to the zero-state, the RL agent gives up,
opting for no action. Recall that the quadratic scaling of cost makes
the rapid response of the TD3 agent much more costly to achieve
the same net environmental improvement divided into smaller incre-
ments over a longer timeline. However, our RL agent has discovered
that the extra investment for a rapid response is well justified as the
risk of crossing a tipping point increases.

A close examination of the trajectories of individual simulations
which cross the tipping point under either management strategy (see
Appendix B) further highlights the difference between these two
approaches. Under the steady-state strategy, the system remains
poised too close to the tipping point: stochastic noise eventually
drives most replicates across the threshold, where the steady-
state strategy is too weak to bring them back once they collapse.
As replicate after replicate stochastically crashes, the mean state
and mean reward bend increasingly downwards. In contrast, the RL
agent edges the system slightly farther away from the tipping point,
decreasing but not eliminating the odds of a chance transition. In
the few replicates that experience a critical transition anyway, the
RL agent usually responds with sufficient commitment to ensure
their recovery (Appendix B). Only 3 out of 100 replicates degrade
far enough for the RL agent to give up the high cost of trying to
rescue them. The RL agent's use of a more dynamic strategy out-
performs the steady-state strategy. Numerous kinks visible in the
RL policy function also suggest that this solution is not yet optimal.
Such quirks are likely to be common features of RL solutions—long
as they have minimal impact on realized rewards. Further tuning of
hyper-parameters, increased training, alterations or alternatives to
the training algorithm would likely be able to further improve upon
this performance.

3.3 | Additional environments

Ecology holds many open problems for deep RL. To extend the ex-
amples presented here to reflect greater biological complexity or
more realistic decision scenarios, the transition, emission and/or
reward functions of the environment can be modified. We provide
an initial library of example environments at https://boettiger-lab.
github.io/conservation-gym. Some environments in this library in-
clude a wildfire gym that poses the problem of wildfire suppression
with a cellular automata model, an epidemic gym that examines tim-
ing of interventions to curb disease spread, as well as more complex
variations of the fishing and conservation environments presented

above.

4 |DISCUSSION

Ecological challenges facing the planet today are complex, and
their outcomes are both uncertain and consequential. Even our

best models and best research will never provide a crystal ball to

the future, only better elucidate possible scenarios. Consequently,
that research must also confront the challenge of making robust,
resilient decisions in a changing world. The science of ecological
management and quantitative decision-making has a long history
(e.g. Schaefer, 1954; Walters & Hilborn, 1978) and remains an active
area of research (Fischer et al., 2009; Polasky et al., 2011; Wilson
et al., 2006). However, the limitations of classical methods such
as optimal control frequently constrain applications to relatively
simplified models (Wilson et al., 2006), ignoring elements such as
spatial or temporal heterogeneity and autocorrelation, stochasticity,
imperfect observations, age or state structure, and other sources
of complexity that are both pervasive and influential on ecological
dynamics (Hastings & Gross, 2012). Complexity comes not only
from the ecological processes but also the available actions. Deep
RL agents have proven remarkably effective in handling such
complexity, particularly when leveraging immense computing
resources increasingly available through advances in hardware and
software (Matthews, 2018).

This paper does not set the precedent as the first application
of RL to ecology. There have been a number of studies applying
RL to behavioural ecology, typically with multiagent environments
(Frankenhuis et al., 2019; Perolat et al., 2017; Wang et al., 2020). Yet,
it is important to distinguish the aim of these behavioural studies
from the aim of applying RL to conservation management. In pre-
vious behavioural ecology studies, RL algorithms as a substitute for
animal learning mechanisms (Perolat et al., 2017; Wang et al., 2020).
When applying deep RL to conservation management, we do not
make the assumption that an RL algorithm learns analogously to how
an animal learns. We instead propose that RL be used as a tool to
search for solutions to decision-making problems.

The examples presented here only scrape the surface of possible
RL applications to conservation problems. The examples we have
focused on are intentionally quite simple, though it is worth re-
membering that these very same simple models have a long history
of relevance and application in both research and policy contexts.
Despite their simplicity, the optimal strategy is not always obvious
beforehand, however intuitive it may appear in retrospect. In the
case of the ecosystem tipping point scenario, the optimal strategy
is unknown, and the approximate solution found by our RL imple-
mentation could almost certainly be improved upon. In these simple
examples in which the simulation implements a single model, train-
ing is analogous to classical methods that take the model as given
(Marescot et al., 2013). But classical approaches can be difficult to
generalize when the underlying model is unknown. In contrast, the
process of training an RL algorithm on a more complex problem is
no different than training on a simple one: we only need access to
a simulation which can generate plausible future states in response
to possible actions. This flexibility of RL could allow us to attain bet-
ter decision-making insight for our most realistic ecological models
like those used for the management of forests and wildfire (Moritz
et al., 2014; Pacala et al., 1996), disease (Dobson et al., 2020), ma-
rine ecosystems (Steenbeek et al., 2016), or global climate change
(Nordhaus, 1992).
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The rapidly expanding class of model-free RL algorithms is par-
ticularly appealing given the ubiquitous presence of model uncer-
tainty in ecological dynamics. Rarely do we know the underlying
functional forms for ecological processes. Methods which must first
assume something about the structure or functional form of a pro-
cess before estimating the corresponding parameter can only ever
be as good as those structural assumptions. Frequently, available
ecological data are insufficient to distinguish between possible al-
ternative models (Knape & de Valpine, 2012), or the correct model
may be nonidentifiable with any amount of data. Model-free RL
approaches offer a powerful solution for this thorny issue. Model-
free algorithms have proven successful at learning effective policies
even when the underlying model is difficult or impossible to learn
(Pong et al., 2020), as long as simulations of possible mechanisms
are available.

Successfully applying RL to complex ecological problems is no
easy task. Even on relatively uncomplicated environments, training
an RL agent can be more challenging than expected due to an en-
tanglement of reasons, see Table 2, like hyperparameter instability
and poor exploration that can be very difficult to resolve (Berger-Tal
et al., 2014; Henderson et al., 2019). It is also worth acknowledging
that deep RL algorithms, particularly model-free algorithms, have
poor sample efficiency, which could limit deep RL from being effec-
tive on environments that are slow to run (Haarnoja et al., 2018).
Thus, as Sections 5.1 and 5.2 illustrate, it is important to begin with
simple problems, including those for which an optimal strategy is
already known. Such examples provide important benchmarks to
calibrate the performance, tuning and training requirements of RL.
Once RL agents have mastered the basics, the examples can be eas-
ily extended into more complex problems by changing the environ-
ment. Yet, even in the case that an agent performs well on a realistic
problem, there will be a range of open questions in using deep RL to
inform decision-making. Since deep neural networks lack transpar-
ency (Castelvecchi, 2016), can we be confident that the agent will
generalize its past experience to new situations—especially when we
cannot readily visualize the policy? To gain such confidence, it will
be necessary to do extensive testing on previously unseen contexts

TABLE 2 Practical issues with deep RL

Issue Description

Generalization

Reproducibility

(Kazak et al., 2019), but even then, it can be difficult to verify that
the agent will perform as expected. Given that there have been
many examples of reward misspecification leading to undesirable
behaviour (Hadfield-Menell et al., 2020), what if we have selected
an objective that unexpectedly causes damaging behaviour? Reward
misspecification is not unique to RL and has long been a central
problem in ecological management and decision-making (Conroy &
Peterson, 2013; Gregory et al., 2012), but it is important to make
clear that RL does not resolve this issue. A greater role of algorithms
in conservation decision-making also raises questions about ethics
and power, particularly when those algorithms are opaque or propri-
etary (Chapman et al., 2021; Scoville et al., 2021).

Yet, a more immediate barrier to the use of deep RL in conserva-
tion is deep RL's hardware requirements. Depending on the complexity
of the RL environment and agent, the equipment necessary to train
an agent can vary widely. The examples shown above were selected
so they can be replicated on a personal computer, but more realistic
problems will likely require specialized computational resources. For
instance, one of the most notable achievements in RL, Alphastar, re-
quired 33 TPUs, processors that are specialized for deep learning, for
more than 40days (Vinyals et al., 2019). Fully detailed conservation
decision-making problems will likely require comparable specialized al-
gorithms and hardware that ecologists do not generally have access to.
For deep RL to be an effective tool for conservation, there will need to
be large investments of time and money, and extensive collaboration
across computer science and ecology.

Deep RL is still a very young field, where despite several land-
mark successes, potential far outstrips practice. Recent advances in
the field have proven the potential of the approach to solve com-
plex problems (Mnih et al., 2015; Silver et al., 2016, 2017, 2018), but
typically leveraging large teams with decades of experience in ML
and millions of dollars worth of computing power (Silver et al., 2017).
Successes have so far been concentrated in applications to games
and robotics, not scientific and policy domains, though this is begin-
ning to change (Popova et al., 2018; Zhou et al., 2017). Iterative im-
provements to well-posed public challenges have proven immensely
effective in the computer science community in tackling difficult

Agents struggle to adapt to tasks not seen in training (Kirk et al., 2022).

It can be very challenging to replicate results due to a host of reasons like differences in

computational hardware (Henderson et al., 2019)

Lack of transparency

Hyperparameter instability

Deep RL users cannot interpret why agents select actions (Castelvecchi, 2016)

Agent performance can vary significantly over slight alterations in hyperparameters, like

initialization seed (Henderson et al., 2019)

Reward misspecification

High capital demands

Agents commonly learn undesirable behaviour that still maximizes the RL objective (Hadfield-
Menell et al., 2020)

Landmark successes like AlphaGo and AlphaStar have required very large teams of researchers

and large amounts of computational power (Silver et al., 2017; Vinyals et al., 2019)

Sample inefficiency

Current algorithms require large amounts of interaction with the environment to achieve

reward maximization (Haarnoja et al., 2018)
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problems, which allow many teams with diverse expertise not only
to compete but to learn from each other (Deng et al., 2009; Villarroel
et al., 2013). By working to develop similarly well-posed challenges
as clear benchmarks, ecology and environmental science research-
ers may be able to replicate that collaborative, iterative success in

cracking hard problems.
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ENDNOTES

! The terms observation and state are used nearly interchangeably in
describing RL, so it is worth clarifying the distinction. An observa-
tion is the depiction of the environment that is given to the agent
at each time step, but the state is the true underlying description of
the environment. When the term observation is used, this usually
means that the observation does not provide an accurate portrayal
of the environment's state. Yet, in cases when the observation and
state are in agreement, the term observation is typically not used at
all.

IN)

Conventionally, an observation-action space is considered to be large
when it is non-tabular, that is, it cannot be represented in a computa-
tionally tractable table.

3 The policy can also be conditioned on a history of observations,
(0gs -+ 0)).
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