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Abstract
1. In the current age of a rapidly changing environment, it is becoming increasingly

important to study critical transitions and how to best anticipate them. Critical
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transitions pose extremely challenging forecasting problems, which necessitate

informative uncertainty estimation rather than point forecasts. In this study, we

Handling Editor: Christine Rollinson apply some of the most cutting edge deep learning methods for probabilistic
time series forecasting to several classic ecological models that examine critical
transitions.

2. Our analysis focuses on three different simulated examples of critical transi-
tions: a Hopf bifurcation, a saddle-node bifurcation and a stochastic transition.
For each scenario, we compare the forecasts from four deep learning models,
long-short term memory networks, gated recurrent unit networks, lock recur-
rent neural networks and transformers, to forecasts from an ARIMA model and
a MCMC estimated model that is given the true transition dynamics.

3. We found that the deep learning models were able to perform comparably to
the idealized MCMC model on the stochastic transition case, and generally in
between the MCMC and ARIMA models on the Hopf and saddle-node bifurca-
tion examples.

4. Our results establish that deep learning methods warrant further exploration on

the challenging class of critical transition forecasting problems.
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1 | INTRODUCTION

and accuracy of short term forecasts in many fields (Du et al., 2020;
Kao et al., 2020; Lyu et al., 2020). Will these emerging methods

Forecasting plays an important and rapidly growing role in both
testing our fundamental understanding of ecological processes, and
informing ecological applications and conservation decision-making
(Dietze et al., 2018; Schindler et al., 2015). Meanwhile, recent ad-

vances in machine learning have rapidly improved the prevalence

improve the capacity for forecasts in ecological systems as well?
Ecological dynamics are notoriously complex, with uncertainty
and non-linearity playing critical roles (Boettiger, 2018a; Hallett
et al., 2004; Ovaskainen & Meerson, 2010). These challenges are

nowhere more evident than in critical transitions, sudden shifts in the
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states or patterns of ecosystem dynamics that are more important
and more difficult to predict than gradual changes. Here, we exam-
ine several of the best-known examples of critical transitions in eco-
logical systems. We evaluate the most promising machine learning
methods for probabilistic forecasts relative to traditional statistical
and mechanistic approaches applied to several classic models in
ecology.

In this paper, we focus on the task of producing quantitative,
probabilistic forecasts reflecting the possible distribution of fu-
ture states, as frequently called for in ecological research (Clark
et al., 2001; Dietze et al., 2018). Such forecasting tasks may arise
whenever a manager is interested in knowing the future states of
a system: such as setting future catch quotas for a fishery or ad-
justing eradication effort for an invasive species. It is important to
distinguish this objective from the extensive previous literature on
‘early warning signs’ of critical transitions, as reviewed in Scheffer
et al. (2009), which has sought to answer only a categorical question:
is the system approaching a critical transition? Recent work such as
Bury et al. (2021) has introduced ML methods to consider classifica-
tion of this transition in four possible categories (Hopf, saddle-node,
transcritical, or no bifurcation) rather than two (bifurcation or not).
These are important results with considerable promise (Lapeyrolerie
& Boettiger, 2021), but which nevertheless address a very different
question using very different methods. Early warning signals only
predict ‘a big change may be coming soon’—they do not try to fore-
cast when or how big. As we shall see, there is good reason to focus
on that more modest, qualitative objective when faced with systems
that might produce critical transitions. Here, we examine the more
ambitious questions of forecasting when and how much change: or
more precisely, of making probabilistic forecasts of all future states

over a given time horizon.

2 |MATERIALS AND METHODS

We will focus the analysis on several different forecasting scenarios
based around two classic models in population ecology: Robert May's
consumer-resource model (May, 1977), and the Nicholson-Bailey
parasitoid-host model (Nicholson & Bailey, 1935). Though these
models may appear simple when measured against high-dimensional
and parameter rich models found in some management contexts
such as fisheries, they can exhibit rich nonlinear dynamics and pro-
vide greater capacity to generalize (Getz et al., 2018; Levins, 1966).
These textbook models have been well studied and form the basis
of half a century of research in ecology, including much recent work
on topics such as resilience and tipping points which has had im-
portant theoretical and practical management outcomes (Fischer
et al., 2009; Folke et al., 2004; Polasky et al., 2011). May's model ex-
hibits alternative stable states. In this one-dimensional model, tran-
sitions between these states can occur due to intrinsic stochasticity,
external forcing, or the gradual environmental change that results
in a catastrophic saddle-node bifurcation and generates hysteresis.

The Nicholson-Bailey model is a two species model which contains a

supercritical Hopf bifurcation, a noncatastrophic bifurcation which
either creates or destroys a limit cycle—a stable oscillatory pattern.

Assessing the accuracy of forecasting methods in the face of
such bifurcation dynamics is a particularly important question for
ecological systems and global environmental change problems.
Bifurcations represent the kind of nonlinear responses complex sys-
tems can make as the result of slowly changing parameters. This can
create a particularly challenging forecasting task when such tran-
sitions have not been previously observed in the same system, re-
quiring the forecast to anticipate dynamics for which there are no
analogs in the historical data. Forecast skill under such no-analog
conditions may be particularly relevant to ecological forecasting in
the context of global change (Williams & Jackson, 2007).

We provide fully reproducible coded examples in R and Python for
performing, scoring, and visualizing each of the forecasts considered
here. After significant time spent considering alternative frameworks,
we have emphasized those which best met our requirements for perfor-
mance, ease-of-use, flexibility, and support for the latest probabilistic
machine learning models for forecasting. Most of our forecasts use the
darts framework, a sophisticated and well documented Python library
with support for a wide range of methods. Our model-based MCMC
forecasts use the greta framework, a R library that uses Python-based
TensorFlow Probability to achieve better performance. While Python-
based frameworks currently have the edge in performance and access
modern ML algorithms, they lag behind in attention to statistical issues
such as the computation of strictly proper skill scores.

Our examples of scoring and visualization will rely on a col-
lection of R packages, in particular, scoringRules for the efficient
calculation of continuous ranked probability score (CRPS) and loga-
rithmic probability (Logs) scores for forecast ensembles (Gneiting &
Raftery, 2007). Following popular conventions, we express both skill
scores in error-orientation, that is, larger values indicate worse skill
(higher degree of error).

We expect greater convergence between methods available in
R and Python in the future, as already illustrated in the example of
greta. Complete code for all examples presented here can be found
at https://github.com/boettiger-lab/mee_tipping_point_forecasting.

2.1 | Scenario 1: Hopf bifurcation

The Nicholson-Bailey model describes a predator-prey dynamic for
the relationship of a host species and an obligate parasitoid, origi-
nally used to model the population dynamics of blowflies (Lucilia
cuprina; Nicholson, 1954a, 1954b; Nicholson & Bailey, 1935). We
consider the form which includes density dependence in the host

species, and we allow for environmental stochasticity,

Hyyy = Htexp<r<1 - %) — P, + nm), (1)
t

Pt+1:Htexp<r<1— Kﬂ>>(1—exp(—cPt+np,t))y (2)

t
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Ki1 =K +6, (3)

where H, is the population density of the host species at time t,
(in arbitrary units) and P, is the population density of the parasit-
oid. The time step is defined by the generation time of the para-
sitoid, which is about 2 weeks in the case of Nicholson's blowflies
(Nicholson, 1954a). Following Dakos et al. (2012), we further
allow the carrying capacity of the host, K to slowly increase at
a linear rate, which drives a supercritical Hopf bifurcation as K
becomes sufficiently large. In a Hopf bifurcation, a stable node
starts an oscillatory pattern which grows in amplitude as the
bifurcation parameter continues to increase. In this model, the
Hopf bifurcation is dubbed ‘supercritical’ as it creates a stable
limit cycle instead of an unstable one. This example illustrates
one of the many kinds of challenges which nonlinear phenomena
pose to forecasting: the ‘historical’ data prior to the bifurcation
never exhibit the cyclical dynamics of growing amplitude that will
emerge after the bifurcation occurs. If we had used a purely de-
terministic model, the dynamics would be constrained to a single
stable point, corresponding to a slowly changing steady-state
population size of host and parasitoid populations. However,
stochasticity in this case acts as a source of some additional in-
formation about the dynamics, as the noise excites quasi-cycles
which are visible in the irregular oscillations that appear signifi-
cantly prior to the emergence of true limit cycles which follow
the bifurcation (Boettiger, 2018b). Examples use the following
parameters: Hy=9, Po=1 r=0.75 ¢=0.1, K,=14, 6§ =0.08,
oy =0.02, 6p =0.02.

2.2 |Scenario 2: The saddle- node bifurcation

A yet more difficult forecasting scenario is created by the
saddle-node bifurcation. May's consumer-resource model is a
one-dimensional model describing the growth of a ‘resource’
population (e.g. herbivore) which is grazed by a consumer (May &
Anderson, 1979). As in the Nicholson-Bailey model, in the absence
of that predation, the resource population density grows under a
density-dependent pattern described by a logistic function. The
resource population is also grazed by a consumer at a rate given
by a Holling type Ill s-curve (typically used to model handling
time). For a certain range of parameter choices, this model sup-
ports alternative stable state dynamics, and has been identified
and employed in explaining alternative stable state dynamics in a
broad range of ecological and socio-ecological systems (Scheffer
et al., 2001b).

N heN?
Nt+1:Nt+rNt<1—?>—sz+Nt2 +rg (4)
hypr=h +a (5)
n: N'(0,0), (6)

If the environment slowly alters one of the parameters (say, the en-
counter efficiency, h_t, in our formulation), one of the stable nodes
moves closer and closer to the unstable saddle point, leading to a
bifurcation that destroys the stable state, leaving the system to sud-
denly transition to the alternative stable state. Saddle-node bifur-
cations (also known as fold bifurcations) also create a phenomenon
known as hysteresis, where it is not sufficient to restore the envi-
ronment to the previous parameter values to recover the previous
state. Unlike the supercritical Hopf bifurcation which exhibits a con-
tinuous transition from a stable node to a small limit cycle that then
grows, the saddle-node transition is a discontinuous or so-called
‘catastrophic’ bifurcation. Due both to this sudden, catastrophic na-
ture of the transition and the difficulty in reversing the shift after
it has occurred, saddle-node bifurcations have been the subject of
intense study.

Tipping point dynamics have long been identified as an import-
ant but difficult challenge for forecasting (e.g. Folke et al., 2004;
Scheffer et al., 2001a). Much effort in the ecological literature so
far has focused on identifying any ‘early warning signs’ that a cat-
astrophic bifurcation might occur at all (Scheffer et al., 2009, 2012)
rather than more ambitious attempts to provide quantitative prob-
abilistic forecasts of the likely distribution of waiting times before
such a transition occurs. Tipping points resulting from saddle-node
bifurcations have been demonstrated in examples ranging from
laboratory microcosms (Dai et al., 2012; Dai et al., 2015) to whole-
ecosystem experiments (Carpenter et al., 2011), and postulated as
a model for global change (Barnosky et al., 2012). Examples use the
following parameters: r=1, K =1, s =0.1, hy = 0.15, « = 0.000375,
o =0.02,N, =0.75.

2.3 | Scenario 3: The stochastic transition

Perhaps the most difficult of all events to predict are those in
which large transitions are predominately driven by a random
component. An example of such a transition event is possible to
observe in May's consumer-resource model, in which a stochastic
term occasionally results in a transition between alternative sta-
ble states. In such cases, no forecast can precisely predict when a
transition will occur, but it is nonetheless possible to deduce the
correct distribution of waiting times knowing the correct model.
In the case of small noise, transitions are Poisson distributed, such
that the distribution of waiting times is roughly exponential (e.g.
van Kampen, 1992), though post-hoc the trajectories of such tran-
sitions can be mistaken for saddle-node transitions (Boettiger &
Hastings, 2012). To consider such cases, we will again use May's
alternative stable state model, though this time leaving all param-
eters fixed.

In this context, predicting the probability of a transition in the
future based solely on observations prior to a transition occurring
is essentially impossible without additional information constrain-
ing the model estimate, as such data is equally consistent with in-

finitely many models or parameter choices which share the same
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local linearization about the stable point. Unlike the saddle-node
bifurcation, there is no slowly warping potential basin which can
be detected to inform estimates. Thus, in this scenario, rather than
considering the problem of predicting the future evolution of a
single time series based only on its historical values, we consider
an alternative framing of the task: we imagine our forecaster has
access to historical data from one or more comparable systems
which includes a previous stochastic transition event. Based on
this data, our forecaster seeks to identify the distribution of ex-
pected transition times for analogous systems starting from the
same initial condition. This parallels actual practice in which re-
searchers would draw on previous examples of stochastic tran-
sitions in a system - lake-ecosystem shifts, disease emergence,
changing fire regimes, (Folke et al., 2004; Scheffer et al., 2001a).
(Note that such stochastic transitions between alternative stable
states can also create oscillatory-like dynamics when stochastic-
ity is sufficiently high enough to drive repeated transitions from
one attractor to the other and back again. In such cases, it might
be reasonable to estimate a strictly forward-looking forecast of
a single system, predicting the distribution of these transitions.)
Model definition is the same as May's model for the saddle node
with fixed parameter h, values: r=1, K=1, s =0.1, hy = h =0.26,
a=0,0=0.02, Ny =0.55.

2.4 |Selecting timescales

In each scenario, t = O is the start time of the training data, while
the length of training data and forecast horizon (with ensembles

sampled from the true distribution) are illustrated in Figure 1. For

(a) Hopf bifurcation

the Hopf bifurcation, forecasts begin at t = 100 and extend to
t = 200; for the saddle node, forecasts begin at t = 250 and ex-
tend to t = 500; and, for the stochastic transition, both training data
and forecasting tasks begin at 0 and extend to t = 250. While much
attention is often paid to the number of data points in training or
testing data, it is essential to realize that these are only meaningful
relative to the specific process in question. Thus, in each case, we
have selected these time intervals to focus on the dynamical process
in question, which unfolds at a different rate and tempo in each sce-
nario. For instance, if the stochastic scenario was restricted to the
much shorter timescale used in the Hopf case, few replicate simula-
tions would experience a transition at all. If length of the stochastic
transition time series was made much longer, most of the time se-
ries would be spent post-transition. Likewise, if the forecast horizon
for the Hopf scenario was extended much further into the future
under the current parameterization, the system would experience a
homoclinic bifurcation at which the population collapses to 0. Using
different length timescales allows us to consider the three different
forecasting tasks illustrated in Figure 1 that focus around predicting
the critical behaviour, rather than predicting long periods of relative
stasis. These three critical transitions are fundamentally different
processes, there is no perfect apples-to-apples parameterization for
each that allows the transition to unfold in a way that gives precisely

the same time windows.

2.5 | Method group 1: Markov Chain Monte Carlo

As areference case, we consider forecasts produced by MCMC esti-

mates of model parameters, given the true model. This represents an

species — host --- parasitoid
g 109 [\ﬂ\/\f\\,—v/‘\/\/\/\/\
=
g s T
0 50 100 150 200
t FIGURE 1 Forecastscenarios. (a) The
. . Hopf bif tion: a stabl de devel
(b) Saddle—node bifurcation Tiopr bitlircation: a stable hode develops
into a limit cycle which gradually grows
8'2: e B A e N larger in this predator-prey model. (b).
13 0'4_ - The saddle-node bifurcation in a single
© Y . . e .
> 024 species. (c) The stochastic transition in a
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0 100 200 300 400 500 used to train the algorithm in purple, and
t replicate simulations of the true dynamics
(c) Stochastic transition (‘future ensemble’) in yellow. Note how
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2 N We will examine forecasts of various
> 0.21 \ models (Figure 2) which will each produce
0.01+— y r : T T probablistic forecast distributions (blue,
0 50 100 150 200 250 . .
t Figures 3-5) seeking to match the true
future ensemble (yellow) as closely as
type — historical forecast future ensemble

possible.
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idealized case where the nature of the underlying process is known
precisely. Uncertainty comes from parameter estimates and intrinsic
stochasticity specified in the model, but does not reflect any uncer-
tainty in our knowledge of the model structure. Alternative model
structures, even when capable of producing the same nonlinear phe-
nomena (i.e. the same bifurcations) will give very different forecasts.
Even alternative prior distributions of the parameters will generally
yield alternate forecasts, as likelihood ridges are common to nonlin-
ear models. Thus, this case represents a theoretical upper bound for
the performance of forecasts by techniques which do not make such

strong assumptions about the underlying processes.

2.6 | Method group 2: Statistical models (ARIMA)

We present forecasts produced by ARIMA models as the model-
free analogs to the forecasts made using parameter estimation with
MCMC. Since ARIMA models make the assumption that the future
will resemble the past via ARIMA's auto-regressive and moving aver-
age components (Hyndman & Athanasopoulos, 2018), these models
are not well-suited for problems with complex bifurcation dynamics.
Thus, ARIMA-based forecasts should be treated as alower bound for
the performance of non-mechanistic models. In contrast to inference
with MCMC, uncertainty with ARIMA models is estimated directly
from the learned parameters (Hyndman & Athanasopoulos, 2018).
Since ARIMA is acommonly encountered method, we will refer read-

ers to Hyndman and Athanasopoulos (2018) for further discussion.
2.7 | Method group 3: Machine learning models
Over the past decade, deep learning has become very popular

for a broad range of challenging time series prediction problems

(Makridakis et al., 2018). Deep learning models are often used to

0.10 1.00 10.00 1e-01 1e+01 1e+03
score

make point forecasts, but for their application to ecological time se-
ries, it will often be necessary to use multi-step, probabilistic fore-
casts. For all the deep learning models in this study, we use the same
general process. Each machine learning model is trained on one time
series drawn from the three scenarios described previously. For the
Hopf and saddle node cases, these time series consist of the pe-
riod leading up to the bifurcation. A critical transition is, however,
included in the training set for the stochastic transition case. Each
model is trained to learn the parameters of a Laplace distribution
for every time step in the forecast horizon. To produce a forecast,
we input a time series into a model, then we draw samples from the
distributions that were learned during training.

A major nuisance with deep learning methods is their instability to
hyperparameters and initialization seeds (Madhyastha & Jain, 2019).
We found that for the same set of hyperparameters, we could pro-
duce starkly different forecasts if we trained the same model with
different initialization seeds. One explanation for this instability is
that machine learning models often get stuck on the local optima of
loss surfaces (Madhyastha & Jain, 2019). Another likely cause is that
machine learning models commonly overfit the training data (Mehta
etal., 2019). Across deep learning, overfitting is a fundamental issue,
arising from neural networks being highly overparameterized (Dar
et al., 2021). With so many parameters, deep learning models tend
to have high variance and thus overfit the training data, a conse-
quence of the bias-variance trade-off common across statistics and
machine learning (Mehta et al., 2019). One frequently used method
to reduce overfitting is K-fold cross validation (Raschka, 2020), but
this approach cannot be effectively employed when there is one or
few time series in the training set. To remedy the instability prob-
lem, we use an ensemble-based method, wherein each ML forecast
is the union of forecasts from 5 individual models that were trained
with different initialization seeds. We found this simple ensemble
technique to be an effective way to improve generalizability in the

limited data regime.
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Recently, it has become established that using memory or
attention-based neural networks, and an encoder-decoder archi-
tecture is crucial for improving forecasting performance on time se-
ries data (Du et al., 2020; Kao et al., 2020; Lyu et al., 2020). Herein,
we will provide some background on what these machine learning

methods are and their benefits.

2.71 | Recurrent neural networks

Recurrent neural networks (RNN's) are the predominant memory-
based deep learning method. Recurrent neural networks differ from
feed-forward neural networks in that a recurrent neural network
provides feedback to itself between time steps (Sherstinsky, 2020).
By providing self-feedback, recurrent neural networks are able to
retain information from previous time steps and thus learn tempo-
ral dependencies. However, a standard recurrent neural network is
unwieldy to train because of the vanishing and exploding gradient
problem (Pascanu et al., 2013), so there have been specialized neural
network architectures designed to avoid these gradient problems.
Long short-term memory (LSTM) and gated recurrent units (GRU)
Networks are considered to be the state of the art recurrent neu-

ral networks that address exploding and vanishing gradients (Chung

FIGURE 3 Forecasts of the Hopf
bifurcation under each model, compared
to 15 realizations of the true model.

The bifurcation occurs soon after the
forecasting period begins, leading to
progressively larger oscillations. Prior to
the bifurcation, pseudocycles are visible
in the training data due to stochastic
excitations. Following the bifurcation,
stochasticity blurs the oscillatory pattern
across replicate simulations. Only the last
25 time points of the training data are
shown.

type
— historical
— forecast

future ensemble

et al., 2014). These methods avoid gradient problems by regulating
the self-feedback via gates which perform operations on the feed-
back signal—see Chung et al. (2014) for more details. While GRU's
and LSTM's commonly outperform standard RNN's, it is difficult to
anticipate whether GRU's or LSTM's will be best suited for any time
series problem (Chung et al., 2014), so we investigate both methods.

2.7.2 | Transformers

The transformer is a state of the art ML architecture that is
able to model long and short term dependencies on sequence
to sequence tasks (Vaswani et al.,, 2017). Transformers use a
mechanism called self-attention which interrelates different
positions of the input sequence in order to find an informative
representation of the input sequence (Vaswani et al., 2017). For
example, if given a sentence, a transformer could learn the con-
textual relationship between a subject and a direct object, but
a recurrent neural network would process all the words as one
phrase. Because of self-attention, Transformers do not need to
process data sequentially and thus can be parallelized, offering
significant computational advantages (Vaswani et al., 2017). The

Transformer is likely to be a foundational method for future Al
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FIGURE 4 Forecasts of the saddle-
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research (Bommasani et al., 2021), so we considered it critical to

investigate Transformers in this study.

2.7.3 | Encoder-decoders

Encoder-decoder architectures have been shown empirically to
excel on sequence to sequence tasks (Aitken et al., 2021). Encoder-
decoders work by processing the input sequence into a fixed-length
vector then decoding this fixed-length vector to an output se-
quence. It is thought that by encoding the input sequence to a vec-
tor, encoder-decoders find informative representations of the input
sequence that make the prediction task much easier (Sutskever

etal., 2014). Note that it is possible to use any type of neural network

50 100 150 200 250

0 50 100150200250 0 50 100150200250

t

as the encoder and the decoder, but it is most common to use re-
current neural networks or networks with attention mechanisms
(Aitken et al., 2021). Of the models that we present, Block RNN's are
a direct example of an encoder-decoder-based model since a Block
RNN employs a RNN as an encoder and a separate RNN as a de-

coder. Transformers also have an encoder and decoder component.

2.8 | Forecast skill: Strictly proper scores

To compare forecasts, we focus exclusively on metrics of forecast
skill which satisfy the property from Gneiting and Raftery (2007) of
a strictly proper score. This ensures the very desirable behaviour

that no probabilistic forecast Q(x,t) can have a score as high as the
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score of the true process P(x, t) on average. In other words, while it is
possible for any of the models considered to overfit the data against
which they are trained, i.e. have a higher likelihood than the true
process, it is not possible for these models to overfit the data against
which they are scored. It is worth noting that this property applies
specifically to probabilistic forecasts and not point forecasts. Not all
common metrics often used to compare forecasts are strictly proper
- such as the average root-mean-square error or the average abso-
lute error. Concerns about over-fitting arise in most types of model
estimation and are a particularly acute concern to machine learning
methods due to the bias-variance trade-off (Mehta et al., 2019). This
makes the use of strictly proper scoring especially relevant in assess-
ing machine learning predictions.

Not even all strictly proper scores will agree on the same relative
ranking between forecasts. We will focus on two of the most com-
mon such skill metrics, CRPS score and log probability score (neg-
ative log likelihood; e.g. see Gneiting & Katzfuss, 2014; Gneiting &
Raftery, 2007). We define these scores explicitly in Equations 7 and
8, where F and f respectively correspond to the cumulative distribu-
tion function and probability density function of the forecast; and,
y denotes an observation. Of the two metrics, the logs probability
score puts a much a greater penalty on unexpected observations
than CRPS, and may be more suitable when the occurrence of un-
expected events incurs a particularly high cost. Note that while the
minus log-likelihood can be negative for sufficiently high probability
densities, we use a fixed scalar shift of logs score to ensure the log
skill score is strictly positive, which facilitates visualization without

impacting relative rankings

LogS(F,y) = — logf(y), (7)

CRPS(F, y) = J(F(z)— 1(y <z))%dz (®)

3 |RESULTS

We examine forecast skill for each of the six forecasting methods
(MCMC, ARIMA, block-RNN, GRU, LSTM and Transformer) in each
of our three scenarios (Hopf bifurcation, saddle-node bifurcation,
and stochastic transition). In addition to these cases, we also con-
sider an ‘ensemble model’, generated by drawing from the distribu-
tion of all models except the MCMC model - throughout our figures,
this ensemble model is denoted by ‘ml_ensemble’. Such ensemble
techniques can better reflect uncertainty than relying on any sin-
gle method (Gneiting & Raftery, 2005). For simplicity, we consider
the unweighted case, where each model is represented equally in
the ensemble. Using model-based simulations allows us to examine
performance against multiple (n = 100) replicates of the ‘true’ pro-
cess, which further helps identify differences that may occur solely
due to chance. By taking the true model structure as given, MCMC
methods can be used to determine a theoretical limit of forecasting
skill. Note that in both bifurcation scenarios, future dynamics will

visit states never previously observed in the historical data that was

used to train each of the methods (e.g. very small population sizes).
This no-analog aspect of forecasting bifurcation dynamics means
that even with many sample points in the training data and perfect
knowledge of the true model structure, posterior distributions of pa-
rameter values are still influenced by the choice of priors.

Overall forecasting skill scores for each model across all three
scenarios are summarized in Figure 2. Average scores (black lines)
hide wide variation in forecast skill. Generally, ML performance
tends to be bracketed between MCMC (essentially the theoretical
optimum), and the statistical ARIMA model, though sometimes per-
forming worse than ARIMA or better than MCMC. Under scenarios
with alternative stable states (saddle and stochastic), the distribu-
tion of scores is often bimodal for ML models, though not MCMC.
The ML ensemble model often performs as well as the best ML
model on average. Note that a wide prediction of uncertainty does
not mean a wide range in the score skill—for instance the ensemble
model which has the widest array of outcomes often has a relatively
tight distribution of score, especially in logs skill. This reflects the
relative contributions of accuracy and uncertainty as components in
the forecasts. Most ML scores are comparable to MCMC skill except
for the scenario of the saddle-node bifurcation, where all other mod-
els are much worse. To get a deeper understanding of these general
patterns, we now turn to examine each of the forecast distributions
themselves in comparison to the future ensemble produced by the
true generative process model, Figures 3-5.

Forecasts of the Hopf bifurcation (Figure 3) are roughly com-
parable across the phenomenological models (ARIMA and machine
learning models). All models are trained using 100 time points drawn
from the period of time prior to the onset of the Hopf bifurcation,
which leads to a stable limit cycle that gradually grows in magni-
tude. Most models predict a roughly constant mean with a spread
roughly equal to that created by the stochastic oscillations around
the stable node as seen in the training data prior to the bifurcation.
Notably, the GRU model picks up the oscillatory nature of the dy-
namics, despite the fact that no true oscillations were yet present
in the training data. However, like the other ML models, it fails to
predict the growing amplitude of those oscillations. Having access to
the true model structure, the MCMC model alone predicts the tran-
sition into a pattern of oscillations which grows over time, though
it tends to overestimate the amplitude of those oscillations initially.
Despite this, all methods score comparably in CRPS score (Figure 2)
with most ML methods actually out-performing the MCMC score
on average (Figure 5), albeit with much greater variation in individ-
ual scores. A clearer picture can be seen by looking at these skill
scores over time (Figures 6 and 7), which show that MCMC is initially
performing worse (over-predicting variance) but as oscillations grow
further, it starts outperforming the more stationary forecasts of the
ML models.

The saddle node bifurcation proves even more difficult for most
methods (Figure 4). Only the MCMC model anticipates the sharp
transition to an alternative state. Even accurate estimation of the
MCMC requires slightly informative priors, though still broad enough

to reflect a wide range of possible outcomes. Two ML methods—lock
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CRPS scores over time
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FIGURE 6 CRPS scores over time for each scenario. Each line represents the CRPS scores against a replicate of time series observations
from the ‘true model’. The general pattern across these plots is that forecast skill gets worse over time—gradually in the case of a Hopf
bifurcation or suddenly in response to the saddle-node bifurcation. In the stochastic transition case, the scores tend to diverge in two
branches, where high values indicate periods of time when the forecast predicts the wrong equilibrium state and the lower branch indicates
predictions of the correct one. The time axis in this plot and in Figure 7 refers to the time from the beginning of the forecast horizon, not the

time from the beginning of the time series as in other plots.

RNN's and transformers—resemble a naive prediction extrapolating
the last observed state, failing to reflect the slow downward trend of
the training data. LSTM's indicate greater uncertainty, while GRU's
show very large variability which spans the alternative stable state
range. With additional tuning, better performance may be possi-
ble for these ML models. The selected ARIMA model reflects wide
uncertainty that is nevertheless not broad enough to span the al-
ternative stable state. Consequentially, the MCMC estimate easily
outperforms the ML models (Figure 2).

Machine learning methods do markedly better on the stochastic
transition scenario than in the two bifurcation scenarios (Figure 5).
This occurs because the training data includes the transition phe-
nomenon of interest. All ML models accurately capture the dynamics
of a sharp transition between alternative stable states—a dynamic
the statistical ARIMA model entirely fails to reflect. Stochastic tran-
sition events should be approximately exponentially distributed, as
seen in the wide range of waiting times for transitions to occur in
replicates of the true ‘observed’ process (Figure 5). Transformer and

Block RNN distribution times are much more concentrated, while

again GRU and especially the LSTM do a better job reflecting the
uncertainty in range of transition times.

Examining patterns in the scores over time (Figures 6 and 7)
provides a more nuanced understanding of the forecast dynamics
than aggregate scores alone (Figure 2). In the Hopf bifurcation, CRPS
scores get worse over time across all methods, including the MCMC
forecasts. In the saddle node bifurcation and stochastic transition,
the same pattern holds somewhat more dramatically for non-MCMC
forecasts, while MCMC scores are at their worst around the middle
of the forecast horizon. Comparing CRPS scores to logs score also
emphasizes the relative role of uncertainty: for instance, the MCMC
scores for the Hopf bifurcation get steadily worse under CRPS but
not under logs score. A relatively sharp transition can be seen under
both MCMC scores on the Hopf bifurcation once the magnitude of
the oscillations exceeds the variance created by mere stochastic-
ity: the MCMC model no longer over-estimates the spread of the
data, while the ML models now underestimate that variation. CRPS
scores for stochastic transitions exhibit a distinct two-branch pat-

tern, with scores for a given replicate being either very high (poor
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Logs skill score over time
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FIGURE 7 Logs skill score over time. Forecasts which underestimate uncertainty do substantially worse in logs score than in CRPS score.
Comparing this panel to those in Figure 6 highlights scenarios that most often underestimate uncertainty. Generally, MCMC performs better
relative to other models under this metric than it does under CRPS, reflecting the bias-variance tradeoff taken when using biased estimators
in machine learning. The time axis in this plot and in Figure 6 refers to the time from the beginning of the forecast horizon, not the time from

the beginning of the time series as in other plots.

skill) or very low, reflecting whether the individual ‘true’ replicate
matches the mean state predicted by the forecast. Logs skill score
may be a better measure in this context, where correctly capturing
the uncertainty in the forecast means that this bi-modal structure in
scores can be avoided entirely, e.g. by the MCMC predictions. The
forecast-skill-over time plots illustrate different reasons for the bi-
modal distribution in skill seen for the saddle-node and stochastic
transition scenarios in Figure 2 respectively: in the case of the saddle
node, the two modes are distinguished by time-horizon; short term
forecasts are relatively accurate, and longer term forecasts (i.e. after
the catastrophic transition) are poor. In the case of the stochastic
transition model, the two modes are not structured by horizon but
by replicate, with some replicates having transitioned and others still

in the original state.

4 |DISCUSSION

Ecological systems have long been acknowledged as complex, due

not only to the immense span of dimension and scale such processes

involve, but also the frequency of emergent and non-linear phenom-
ena such as stochastic resonance, including bifurcations, tipping
points, and hysteresis examined here. Calls for increased forecast-
ing efforts from ecologists frequently reference the role of changing
climate and other anthropogenic change, which raise the challenge
of prediction in no-analog environments, anticipating ecosystem re-
sponses to conditions that have not been previously observed (Clark
et al., 2001; Dietze et al., 2018). This motivates the question, ‘What
methods will be most reliable in the face of unobserved conditions’?

In this paper, we carry out an initial exploration on how deep
learning methods can perform on predicting critical transition
events. We compare the ability of several cutting edge machine
learning approaches against statistical and process-based models,
and show that deep learning methods are generally able to strike a
middle ground between what we consider as acceptable and ideal
case forecasting methods, ARIMA and MCMC-based parameter
estimation respectively. Although most ML-based forecasting appli-
cations focus on point predictions, we have emphasized examples
that can provide estimates of uncertainty. When the ML models are

able to observe transition phenomena, as in the stochastic case, they
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performed comparably to MCMC-based forecasting with respect to
CRPS and log probability score but under-performed MCMC when
there were no transition events in the training sets as in the Hopf
and saddle-node examples. An ensemble forecast combining the
predictions of all four ML methods generally scores as well or bet-
ter than any one of the ML methods alone. Yet, examining summary
statistics, CRPS and log probability scores obscures finer detailed
components of the forecasts. For instance, forecast skill varies with
the length of the forecast horizon in a non-monotonic fashion. This
is the result of multiple factors: for some dynamics, such as those
involving tipping points, the long term behaviour can be easier to
predict than transient transitions. Both predicted uncertainty and
forecast skill can be better on longer horizons than on shorter ones,
as in the MCMC predictions of tipping point dynamics. It is also im-
portant to remember that probabilistic forecast skill scores do not
only measure how close observations are to expectation, but also
reflect the predicted uncertainty: therefore, over-confidence about
predictive accuracy can result in worse scores than scores from fore-
casts that are less accurate on average but correctly reflect a greater
degree of uncertainty. The ability to better reflect uncertainty rather
than better average predictions explains much of the performance
of the ensemble model.

The success of these ML models on the stochastic transition case
is particularly notable. All methods are given only a single previous
replicate of a stochastic transition (Figure 5, red line) on which to
base their estimates. This is typical of ecological scenarios where
data is so often limited. While even one observation of a transition is
more than the methods have in our other forecasts, this still presents
a significant challenge to model estimation. Unlike the MCMC case,
the ML models have no prior expectation of a model structure that
contains sharp transitions - we might have expected these models
to perform little differently than the ARIMA model. Given this single
replicate, all four ML models successfully capture the phenomeno-
logical pattern of a sharp shift between two stable states - this is
behaviour that the structurally simpler family of ARIMA models can-
not express. This provides a clear illustration of the much broader
array of phenomenological behaviours that can be accurately mod-
elled with ML models compared to classical statistical models. In this
way, the ML models can be seen as imposing even fewer assump-
tions on the phenomenological behaviour of the system than the
ARIMA model. In contrast, the MCMC performance benefits from
very strong process-based assumptions, which happen to match the
‘true’ model in this case and thus provide a comparison of the theo-
retical optimal performance.

The MCMC case illustrates some of the hard limits to ecological
forecasting of critical transitions. Our MCMC forecast assumes that
the data-generating process is known, so the forecaster need only
infer the posterior distribution of model parameters. This is a much
stronger assumption than that made by the ML models, though this
assumption can potentially be justified on the basis of a mechanis-
tic understanding of the processes involved. It is important not to
confound the MCMC example here with the use of MCMC in pro-

cess based models of real systems. In the real world, this is never

the case: all models are at best approximations of the underlying
processes (Oreskes et al., 1994). Despite this advantage, even the
MCMC forecasts differ from the distribution of the true process.
Because the available data come from only a small region of the dy-
namical state space, they are consistent with many possible param-
eterizations of the same model structure—which creates likelihood
ridges and non-identifiability of specific parameter values. Using
more simplified versions of the dynamical processes in question,
such as the canonical form of a bifurcation, can mitigate this issue
in some cases. Even when such non-identifiability issues cannot be
avoided entirely, they can usually be diagnosed by examining the de-
gree of mixing in MCMC sampling and comparing posterior to prior
distributions.

When examining the performance of the ML models, it is clear
that there is no single method that excels in all scenarios. Neither
is there one class of ML methods that outperforms the others - a
fact we found surprising given the reported dominance of encoder-
decoders in the field of sequence-to-sequence deep learning (Aitken
et al., 2021). These observations underscore the point that ML is a
very empirically-driven field in which there are few guarantees on
performance. Furthermore, due to the black-box-ness of deep learn-
ing and other reasons like instability to initialization seed, it is often
impossible to provide an explanation for why certain methods over-
perform or fail to meet expectations.

Overall, ML models and the more traditional ARIMA model fail
to predict the qualitative shift in dynamic behaviour that occurs in
the critical transition scenarios (Hopf and saddle node). This is not
surprising, as the training data provide no prior example of such be-
haviour (e.g. growing oscillations or a sudden shift). Nevertheless,
this should be an important reminder of a central difficulty in eco-
logical forecasting. Note that in such scenarios, near-term forecasts
(Dietze et al., 2018) may be very accurate right up to the transition
event before becoming widely wrong. Nor can the possibility of
such non-linear behaviour be easily dismissed in ecological models
- the examples considered here have been bedrock of ecological
modelling and management practices for over half a century (Folke
et al., 2004), and if anything are only too simple, representing a small
slice of possible dynamical behaviour of more complicated models.

It may be natural to ask whether this performance would be rem-
edied if the ML models were trained on data which includes prior
examples of supercritical Hopf or saddle node bifurcations. This
question is not as easy to answer as it may seem, because of the
difficulty in defining the corresponding forecasting scenario. The
scenarios we have considered are true, pure forecasts: the training
data comes from a single realization of a specific generative process,
and the task is to predict the future states of that system before
they occur. Would it be possible to train a predictive algorithm on
‘analogous’ examples of critical transitions? For instance, could data
from other lakes, which may have experienced a critical transition
such as an eutrophication event in the past, be used to train machine
learning models to predict such events in some focal lake in the fu-
ture (Scheffer et al., 2001a)? Perhaps, but it depends on what we

mean by an ‘analogous’ system. Even if the underlying mechanism
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was accurately captured by the same model, say, the saddle-node
model of Robert M. May (1977) we consider here, it is likely that
most of the individual model parameters would be quite different,
even after accounting for re-scaling or non-dimensionalization of the
model (Hastings, 1996). Rarely do ecologists have access to com-
pletely controlled replicates for fitting or training models. The abil-
ity for ML models to successfully generalize from training in such
cases remains an open problem and a promising subject of further
investigation.

There are a number of questions that we have left unanswered
that we hope will be addressed in future work. In this paper, we have
explored a small number of machine learning and statistical mod-
els that can be used for forecasting, so comprehensive conclusions
can not be drawn on whether statistical or machine learning-based
approaches are better suited for critical transition forecasting prob-
lems. Neither can we claim that ML methods will translate well to all
sudden transition event forecasting problems in reality, since work-
ing with real data will introduce additional difficulties like how to
deal with missing data, sparse data and observation errors.

Furthermore, our analysis has focused on the task of making
a single forecast prior to the occurrence of a critical transition.
Forecasting is ideally a more iterative process of data assimilation,
where forecasts are updated with respect to additional obser-
vations, rather than projecting 100s of time steps into the future
(Dietze et al., 2018). Updating a forecast after a critical transition
has already occurred may be of little use in the context of hysteresis,
such as under the saddle node or stochastic transition—recognizing
the alternative stable state only after the system is stuck in that
basin will often be considered ‘too late'. Assimilation may be more
applicable to the Hopf bifurcation, where additional observations
of slowly growing oscillations may lead to more accurate forecasts.
Such models may even accurately predict the homoclinic bifurcation
that occurs when the limit cycle grows too large, eventually hitting
a saddle point of zero population size for the host species. We leave
these cases to future exploration rather than attempting to explore
all such variations in a single narrative.

Ecological forecasting is invariably difficult, even in the idealized
cases of ample measurement data and clearly identified structural
models. This paper is not intended to give a complete answer to
whether deep learning is the best suited method for tipping point
forecasting problems as this will take numerous studies to resolve;
instead, this paper aims to be an early exploration on whether deep
learning methods should be considered as viable tools for this ex-
tremely challenging class of prediction problems. Given the diffi-
culty of forecasting never-before-observed behaviour, as illustrated
by the Hopf and saddle-node bifurcation scenarios, there is good
reason for research to focus more on the kind of qualitative predic-
tions long emphasized in the literature on early warning signals and
resilience (Scheffer et al., 2012). Recently, ML techniques developed
for classification rather than the ML methods used in regression and
forecasting models considered here have demonstrated a more nu-
anced ability to reliably detect different classes of critical transitions

intime-series data (Bury et al., 2021; Lapeyrolerie & Boettiger, 2021).

Rather than seeking to provide managers with quantitative, probabi-
listic forecasts reflecting a broad uncertainty in possible outcomes,
this literature has sought to emphasize only a more qualitative form
of prediction, such as establishing whether a system is either ‘re-
silient’ or ‘approaching a critical transition’. Decision sciences have
long emphasized the importance of reconciling the qualitative pre-
dictions of resilience thinking with quantitative forecasts of future
states (Fischer et al., 2009; Polasky et al., 2011). Such approaches
could be valuable in concert with probabilistic forecasts considered
here, providing a possible mechanism to identify when the probabi-

listic forecast is least reliable.
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