


| Methods in Ecology and Evolu
on LAPEYROLERIE AND BOETTIGER

states or patterns of ecosystem dynamics that are more important 

and more difficult to predict than gradual changes. Here, we exam-

ine several of the best- known examples of critical transitions in eco-

logical systems. We evaluate the most promising machine learning 

methods for probabilistic forecasts relative to traditional statistical 

and mechanistic approaches applied to several classic models in 

ecology.

In this paper, we focus on the task of producing quantitative, 

probabilistic forecasts reflecting the possible distribution of fu-

ture states, as frequently called for in ecological research (Clark 

et al., 2001; Dietze et al., 2018). Such forecasting tasks may arise 

whenever a manager is interested in knowing the future states of 

a system: such as setting future catch quotas for a fishery or ad-

justing eradication effort for an invasive species. It is important to 

distinguish this objective from the extensive previous literature on 

‘early warning signs’ of critical transitions, as reviewed in Scheffer 

et al. (2009), which has sought to answer only a categorical question: 

is the system approaching a critical transition? Recent work such as 

Bury et al. (2021) has introduced ML methods to consider classifica-

tion of this transition in four possible categories (Hopf, saddle- node, 

transcritical, or no bifurcation) rather than two (bifurcation or not). 

These are important results with considerable promise (Lapeyrolerie 

& Boettiger, 2021), but which nevertheless address a very different 

question using very different methods. Early warning signals only 

predict ‘a big change may be coming soon’— they do not try to fore-

on that more modest, qualitative objective when faced with systems 

that might produce critical transitions. Here, we examine the more 

ambitious questions of forecasting when and how much change: or 

more precisely, of making probabilistic forecasts of all future states 

over a given time horizon.

|

We will focus the analysis on several different forecasting scenarios 

based around two classic models in population ecology: Robert May's 

consumer- resource model (May, 1977), and the Nicholson- Bailey 

parasitoid- host model (Nicholson & Bailey, 1935). Though these 

models may appear simple when measured against high- dimensional 

and parameter rich models found in some management contexts 

such as fisheries, they can exhibit rich nonlinear dynamics and pro-

vide greater capacity to generalize (Getz et al., 2018; Levins, 1966). 

These textbook models have been well studied and form the basis 

of half a century of research in ecology, including much recent work 

on topics such as resilience and tipping points which has had im-

portant theoretical and practical management outcomes (Fischer 

et al., 2009; Folke et al., 2004; Polasky et al., 2011). May's model ex-

hibits alternative stable states. In this one- dimensional model, tran-

sitions between these states can occur due to intrinsic stochasticity, 

external forcing, or the gradual environmental change that results 

in a catastrophic saddle- node bifurcation and generates hysteresis. 

The Nicholson- Bailey model is a two species model which contains a 

supercritical Hopf bifurcation, a noncatastrophic bifurcation which 

either creates or destroys a limit cycle—  a stable oscillatory pattern.

such bifurcation dynamics is a particularly important question for 

ecological systems and global environmental change problems. 

Bifurcations represent the kind of nonlinear responses complex sys-

tems can make as the result of slowly changing parameters. This can 

create a particularly challenging forecasting task when such tran-

sitions have not been previously observed in the same system, re-

quiring the forecast to anticipate dynamics for which there are no 

analogs in the historical data. Forecast skill under such no- analog 

conditions may be particularly relevant to ecological forecasting in 

the context of global change (Williams & Jackson, 2007).

We provide fully reproducible coded examples in R and Python for 

performing, scoring, and visualizing each of the forecasts considered 

we have emphasized those which best met our requirements for perfor-

mance, ease- of- use, flexibility, and support for the latest probabilistic 

machine learning models for forecasting. Most of our forecasts use the 

darts framework, a sophisticated and well documented Python library 

with support for a wide range of methods. Our model- based MCMC 

forecasts use the greta framework, a R library that uses Python- based 

TensorFlow Probability to achieve better performance. While Python- 

based frameworks currently have the edge in performance and access 

modern ML algorithms, they lag behind in attention to statistical issues 

such as the computation of strictly proper skill scores.

Our examples of scoring and visualization will rely on a col-

lection of R packages, in particular, scoringRules for the efficient 

calculation of continuous ranked probability score (CRPS) and loga-

rithmic probability (Logs) scores for forecast ensembles (Gneiting & 

Raftery, 2007). Following popular conventions, we express both skill 

scores in error- orientation, that is, larger values indicate worse skill 

(higher degree of error).

We expect greater convergence between methods available in 

R and Python in the future, as already illustrated in the example of 

greta. Complete code for all examples presented here can be found 

at https://github.com/boett iger- lab/mee_tippi ng_point_forec asting.

|

The Nicholson- Bailey model describes a predator– prey dynamic for 

the relationship of a host species and an obligate parasitoid, origi-

nally used to model the population dynamics of blowflies (Lucilia 

cuprina; Nicholson, 1954a, 1954b; Nicholson & Bailey, 1935). We 

consider the form which includes density dependence in the host 

species, and we allow for environmental stochasticity,
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where Ht is the population density of the host species at time t , 

(in arbitrary units) and Pt is the population density of the parasit-

oid. The time step is defined by the generation time of the para-

(Nicholson, 1954a). Following Dakos et al. (2012), we further 

allow the carrying capacity of the host, K to slowly increase at 

a linear rate, which drives a supercritical Hopf bifurcation as K 

becomes sufficiently large. In a Hopf bifurcation, a stable node 

starts an oscillatory pattern which grows in amplitude as the 

bifurcation parameter continues to increase. In this model, the 

Hopf bifurcation is dubbed ‘supercritical’ as it creates a stable 

limit cycle instead of an unstable one. This example illustrates 

one of the many kinds of challenges which nonlinear phenomena 

pose to forecasting: the ‘historical’ data prior to the bifurcation 

never exhibit the cyclical dynamics of growing amplitude that will 

emerge after the bifurcation occurs. If we had used a purely de-

terministic model, the dynamics would be constrained to a single 

stable point, corresponding to a slowly changing steady- state 

population size of host and parasitoid populations. However, 

stochasticity in this case acts as a source of some additional in-

formation about the dynamics, as the noise excites quasi- cycles 

which are visible in the irregular oscillations that appear signifi-

cantly prior to the emergence of true limit cycles which follow 

the bifurcation (Boettiger, 2018b). Examples use the following 

parameters: H0 = 9, P0 = 1, r = 0.75, c = 0.1, K0 = 14, � = 0.08, 

�H = 0.02, �P = 0.02.

|

saddle- node bifurcation. May's consumer- resource model is a 

one- dimensional model describing the growth of a ‘resource’ 

population (e.g. herbivore) which is grazed by a consumer (May & 

1979

of that predation, the resource population density grows under a 

density- dependent pattern described by a logistic function. The 

resource population is also grazed by a consumer at a rate given 

by a Holling type III s- curve (typically used to model handling 

time). For a certain range of parameter choices, this model sup-

ports alternative stable state dynamics, and has been identified 

and employed in explaining alternative stable state dynamics in a 

broad range of ecological and socio- ecological systems (Scheffer 

et al., 2001b).

If the environment slowly alters one of the parameters (say, the en-

counter efficiency, h_t, in our formulation), one of the stable nodes 

moves closer and closer to the unstable saddle point, leading to a 

bifurcation that destroys the stable state, leaving the system to sud-

denly transition to the alternative stable state. Saddle- node bifur-

cations (also known as fold bifurcations) also create a phenomenon 

known as hysteresis, where it is not sufficient to restore the envi-

ronment to the previous parameter values to recover the previous 

state. Unlike the supercritical Hopf bifurcation which exhibits a con-

tinuous transition from a stable node to a small limit cycle that then 

grows, the saddle- node transition is a discontinuous or so- called 

‘catastrophic’ bifurcation. Due both to this sudden, catastrophic na-

ture of the transition and the difficulty in reversing the shift after 

it has occurred, saddle- node bifurcations have been the subject of 

intense study.

Tipping point dynamics have long been identified as an import-

ant but difficult challenge for forecasting (e.g. Folke et al., 2004; 

Scheffer et al., 2001a). Much effort in the ecological literature so 

far has focused on identifying any ‘early warning signs’ that a cat-

astrophic bifurcation might occur at all (Scheffer et al., 2009, 2012) 

rather than more ambitious attempts to provide quantitative prob-

abilistic forecasts of the likely distribution of waiting times before 

such a transition occurs. Tipping points resulting from saddle- node 

bifurcations have been demonstrated in examples ranging from 

laboratory microcosms (Dai et al., 2012; Dai et al., 2015) to whole- 

ecosystem experiments (Carpenter et al., 2011), and postulated as 

a model for global change (Barnosky et al., 2012). Examples use the 

following parameters: r = 1, K = 1, s = 0.1, h0 = 0.15, � = 0.000375, 

� = 0.02, N0 = 0.75.

|

Perhaps the most difficult of all events to predict are those in 

which large transitions are predominately driven by a random 

observe in May's consumer- resource model, in which a stochastic 

term occasionally results in a transition between alternative sta-

ble states. In such cases, no forecast can precisely predict when a 

transition will occur, but it is nonetheless possible to deduce the 

correct distribution of waiting times knowing the correct model. 

In the case of small noise, transitions are Poisson distributed, such 

that the distribution of waiting times is roughly exponential (e.g. 

van Kampen, 1992), though post- hoc the trajectories of such tran-

sitions can be mistaken for saddle- node transitions (Boettiger & 

Hastings, 2012). To consider such cases, we will again use May's 

alternative stable state model, though this time leaving all param-

eters fixed.

In this context, predicting the probability of a transition in the 

future based solely on observations prior to a transition occurring 

is essentially impossible without additional information constrain-

ing the model estimate, as such data is equally consistent with in-

finitely many models or parameter choices which share the same 

(3)Kt+1 = Kt + �,
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local linearization about the stable point. Unlike the saddle- node 

bifurcation, there is no slowly warping potential basin which can 

be detected to inform estimates. Thus, in this scenario, rather than 

considering the problem of predicting the future evolution of a 

single time series based only on its historical values, we consider 

an alternative framing of the task: we imagine our forecaster has 

access to historical data from one or more comparable systems 

which includes a previous stochastic transition event. Based on 

this data, our forecaster seeks to identify the distribution of ex-

pected transition times for analogous systems starting from the 

same initial condition. This parallels actual practice in which re-

searchers would draw on previous examples of stochastic tran-

sitions in a system -  lake- ecosystem shifts, disease emergence, 

changing fire regimes, (Folke et al., 2004; Scheffer et al., 2001a). 

(Note that such stochastic transitions between alternative stable 

states can also create oscillatory- like dynamics when stochastic-

ity is sufficiently high enough to drive repeated transitions from 

one attractor to the other and back again. In such cases, it might 

be reasonable to estimate a strictly forward- looking forecast of 

a single system, predicting the distribution of these transitions.) 

Model definition is the same as May's model for the saddle node 

with fixed parameter h, values: r = 1, K = 1, s = 0.1, h0 = h = 0.26, 

� = 0, � = 0.02, N0 = 0.55.

|

In each scenario, t = 0 is the start time of the training data, while 

the length of training data and forecast horizon (with ensembles 

sampled from the true distribution) are illustrated in Figure 1. For 

the Hopf bifurcation, forecasts begin at t = 100 and extend to 

t = 200; for the saddle node, forecasts begin at t = 250 and ex-

tend to t = 500; and, for the stochastic transition, both training data 

and forecasting tasks begin at 0 and extend to t = 250. While much 

attention is often paid to the number of data points in training or 

testing data, it is essential to realize that these are only meaningful 

relative to the specific process in question. Thus, in each case, we 

have selected these time intervals to focus on the dynamical process 

in question, which unfolds at a different rate and tempo in each sce-

nario. For instance, if the stochastic scenario was restricted to the 

much shorter timescale used in the Hopf case, few replicate simula-

tions would experience a transition at all. If length of the stochastic 

transition time series was made much longer, most of the time se-

ries would be spent post- transition. Likewise, if the forecast horizon 

for the Hopf scenario was extended much further into the future 

under the current parameterization, the system would experience a 

homoclinic bifurcation at which the population collapses to 0. Using 

different length timescales allows us to consider the three different 

forecasting tasks illustrated in Figure 1 that focus around predicting 

the critical behaviour, rather than predicting long periods of relative 

stasis. These three critical transitions are fundamentally different 

processes, there is no perfect apples- to- apples parameterization for 

each that allows the transition to unfold in a way that gives precisely 

the same time windows.

|

-

mates of model parameters, given the true model. This represents an 

Hopf bifurcation: a stable node develops 

into a limit cycle which gradually grows 

larger in this predator– prey model. (b). 

The saddle- node bifurcation in a single 

species. (c) The stochastic transition in a 

single species. Plots show historical data 

used to train the algorithm in purple, and 

replicate simulations of the true dynamics 

(‘future ensemble’) in yellow. Note how 

the characteristic time for the critical 

transition varies across the transitions. 

We will examine forecasts of various 

models (Figure 2) which will each produce 

probablistic forecast distributions (blue, 

Figures 3– 5) seeking to match the true 

future ensemble (yellow) as closely as 

possible.
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idealized case where the nature of the underlying process is known 

precisely. Uncertainty comes from parameter estimates and intrinsic 

stochasticity specified in the model, but does not reflect any uncer-

structures, even when capable of producing the same nonlinear phe-

nomena (i.e. the same bifurcations) will give very different forecasts. 

Even alternative prior distributions of the parameters will generally 

yield alternate forecasts, as likelihood ridges are common to nonlin-

ear models. Thus, this case represents a theoretical upper bound for 

the performance of forecasts by techniques which do not make such 

strong assumptions about the underlying processes.

|

free analogs to the forecasts made using parameter estimation with 

-

2018), these models 

are not well- suited for problems with complex bifurcation dynamics. 

the performance of non- mechanistic models. In contrast to inference 

2018). 

-

2018) for further discussion.

|

Over the past decade, deep learning has become very popular 

for a broad range of challenging time series prediction problems 

(Makridakis et al., 2018). Deep learning models are often used to 

make point forecasts, but for their application to ecological time se-

ries, it will often be necessary to use multi- step, probabilistic fore-

casts. For all the deep learning models in this study, we use the same 

general process. Each machine learning model is trained on one time 

series drawn from the three scenarios described previously. For the 

Hopf and saddle node cases, these time series consist of the pe-

included in the training set for the stochastic transition case. Each 

model is trained to learn the parameters of a Laplace distribution 

for every time step in the forecast horizon. To produce a forecast, 

we input a time series into a model, then we draw samples from the 

distributions that were learned during training.

hyperparameters and initialization seeds (Madhyastha & Jain, 2019). 

We found that for the same set of hyperparameters, we could pro-

duce starkly different forecasts if we trained the same model with 

different initialization seeds. One explanation for this instability is 

that machine learning models often get stuck on the local optima of 

loss surfaces (Madhyastha & Jain, 2019

machine learning models commonly overfit the training data (Mehta 

et al., 2019

arising from neural networks being highly overparameterized (Dar 

et al., 2021). With so many parameters, deep learning models tend 

to have high variance and thus overfit the training data, a conse-

quence of the bias- variance trade- off common across statistics and 

machine learning (Mehta et al., 2019). One frequently used method 

to reduce overfitting is K- fold cross validation (Raschka, 2020), but 

this approach cannot be effectively employed when there is one or 

few time series in the training set. To remedy the instability prob-

lem, we use an ensemble- based method, wherein each ML forecast 

is the union of forecasts from 5 individual models that were trained 

with different initialization seeds. We found this simple ensemble 

technique to be an effective way to improve generalizability in the 

limited data regime.

skill scores across models, including an 

ensemble of methods. Smaller scores are 

better (indicating smaller errors). Black 

bars indicate means. The points indicate 

all individual predictions over time and 

replicate ‘true’ simulations of the given 

scenario.
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Recently, it has become established that using memory or 

attention- based neural networks, and an encoder- decoder archi-

tecture is crucial for improving forecasting performance on time se-

ries data (Du et al., 2020; Kao et al., 2020; Lyu et al., 2020). Herein, 

we will provide some background on what these machine learning 

methods are and their benefits.

Recurrent neural networks (RNN's) are the predominant memory- 

based deep learning method. Recurrent neural networks differ from 

feed- forward neural networks in that a recurrent neural network 

provides feedback to itself between time steps (Sherstinsky, 2020). 

By providing self- feedback, recurrent neural networks are able to 

retain information from previous time steps and thus learn tempo-

ral dependencies. However, a standard recurrent neural network is 

unwieldy to train because of the vanishing and exploding gradient 

problem (Pascanu et al., 2013), so there have been specialized neural 

network architectures designed to avoid these gradient problems. 

Long short- term memory (LSTM) and gated recurrent units (GRU) 

Networks are considered to be the state of the art recurrent neu-

ral networks that address exploding and vanishing gradients (Chung 

et al., 2014). These methods avoid gradient problems by regulating 

the self- feedback via gates which perform operations on the feed-

back signal— see Chung et al. (2014) for more details. While GRU's 

and LSTM's commonly outperform standard RNN's, it is difficult to 

anticipate whether GRU's or LSTM's will be best suited for any time 

series problem (Chung et al., 2014), so we investigate both methods.

The transformer is a state of the art ML architecture that is 

able to model long and short term dependencies on sequence 

to sequence tasks (Vaswani et al., 2017). Transformers use a 

mechanism called self- attention which interrelates different 

positions of the input sequence in order to find an informative 

representation of the input sequence (Vaswani et al., 2017). For 

example, if given a sentence, a transformer could learn the con-

textual relationship between a subject and a direct object, but 

a recurrent neural network would process all the words as one 

phrase. Because of self- attention, Transformers do not need to 

process data sequentially and thus can be parallelized, offering 

significant computational advantages (Vaswani et al., 2017). The 

bifurcation under each model, compared 

to 15 realizations of the true model. 

The bifurcation occurs soon after the 

forecasting period begins, leading to 

progressively larger oscillations. Prior to 

the bifurcation, pseudocycles are visible 

in the training data due to stochastic 

excitations. Following the bifurcation, 

stochasticity blurs the oscillatory pattern 

across replicate simulations. Only the last 

25 time points of the training data are 

shown.
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research (Bommasani et al., 2021), so we considered it critical to 

investigate Transformers in this study.

Encoder- decoder architectures have been shown empirically to 

2021). Encoder- 

decoders work by processing the input sequence into a fixed- length 

vector then decoding this fixed- length vector to an output se-

quence. It is thought that by encoding the input sequence to a vec-

tor, encoder- decoders find informative representations of the input 

sequence that make the prediction task much easier (Sutskever 

et al., 2014). Note that it is possible to use any type of neural network 

as the encoder and the decoder, but it is most common to use re-

current neural networks or networks with attention mechanisms 

2021). Of the models that we present, Block RNN's are 

a direct example of an encoder- decoder- based model since a Block 

RNN employs a RNN as an encoder and a separate RNN as a de-

coder. Transformers also have an encoder and decoder component.

|

To compare forecasts, we focus exclusively on metrics of forecast 

skill which satisfy the property from Gneiting and Raftery (2007) of 

a strictly proper score. This ensures the very desirable behaviour 

that no probabilistic forecast Q(x, t) can have a score as high as the 

node bifurcation under each model, 

compared to 15 realizations of the 

true model. Training data precedes the 

bifurcation, making accurate prediction 

without knowledge of the underlying 

model very difficult.

transition under each model, compared 

to 15 realizations of the true model. In 

contrast to the other challenges, this 

case considers the prediction of replicate 

systems starting from the same initial 

condition, rather than forecasting the 

future evolution of the model after the 

stochastic transition has already occurred.
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score of the true process P(x, t) on average. In other words, while it is 

possible for any of the models considered to overfit the data against 

which they are trained, i.e. have a higher likelihood than the true 

process, it is not possible for these models to overfit the data against 

which they are scored. It is worth noting that this property applies 

specifically to probabilistic forecasts and not point forecasts. Not all 

common metrics often used to compare forecasts are strictly proper 

–  such as the average root- mean- square error or the average abso-

lute error. Concerns about over- fitting arise in most types of model 

estimation and are a particularly acute concern to machine learning 

methods due to the bias- variance trade- off (Mehta et al., 2019). This 

makes the use of strictly proper scoring especially relevant in assess-

ing machine learning predictions.

Not even all strictly proper scores will agree on the same relative 

ranking between forecasts. We will focus on two of the most com-

mon such skill metrics, CRPS score and log probability score (neg-

ative log likelihood; e.g. see Gneiting & Katzfuss, 2014; Gneiting & 

Raftery, 2007). We define these scores explicitly in Equations 7 and 

8, where F and f  respectively correspond to the cumulative distribu-

tion function and probability density function of the forecast; and, 

y denotes an observation. Of the two metrics, the logs probability 

score puts a much a greater penalty on unexpected observations 

than CRPS, and may be more suitable when the occurrence of un-

expected events incurs a particularly high cost. Note that while the 

minus log- likelihood can be negative for sufficiently high probability 

densities, we use a fixed scalar shift of logs score to ensure the log 

skill score is strictly positive, which facilitates visualization without 

impacting relative rankings

|

We examine forecast skill for each of the six forecasting methods 

of our three scenarios (Hopf bifurcation, saddle- node bifurcation, 

and stochastic transition). In addition to these cases, we also con-

sider an ‘ensemble model’, generated by drawing from the distribu-

tion of all models except the MCMC model –  throughout our figures, 

this ensemble model is denoted by ‘ml_ensemble’. Such ensemble 

techniques can better reflect uncertainty than relying on any sin-

gle method (Gneiting & Raftery, 2005). For simplicity, we consider 

the unweighted case, where each model is represented equally in 

the ensemble. Using model- based simulations allows us to examine 

performance against multiple (n = 100) replicates of the ‘true’ pro-

cess, which further helps identify differences that may occur solely 

due to chance. By taking the true model structure as given, MCMC 

methods can be used to determine a theoretical limit of forecasting 

skill. Note that in both bifurcation scenarios, future dynamics will 

visit states never previously observed in the historical data that was 

used to train each of the methods (e.g. very small population sizes). 

This no- analog aspect of forecasting bifurcation dynamics means 

that even with many sample points in the training data and perfect 

knowledge of the true model structure, posterior distributions of pa-

rameter values are still influenced by the choice of priors.

Overall forecasting skill scores for each model across all three 

scenarios are summarized in Figure 2

hide wide variation in forecast skill. Generally, ML performance 

tends to be bracketed between MCMC (essentially the theoretical 

-

with alternative stable states (saddle and stochastic), the distribu-

tion of scores is often bimodal for ML models, though not MCMC. 

The ML ensemble model often performs as well as the best ML 

model on average. Note that a wide prediction of uncertainty does 

not mean a wide range in the score skill— for instance the ensemble 

model which has the widest array of outcomes often has a relatively 

tight distribution of score, especially in logs skill. This reflects the 

relative contributions of accuracy and uncertainty as components in 

the forecasts. Most ML scores are comparable to MCMC skill except 

for the scenario of the saddle- node bifurcation, where all other mod-

els are much worse. To get a deeper understanding of these general 

patterns, we now turn to examine each of the forecast distributions 

themselves in comparison to the future ensemble produced by the 

true generative process model, Figures 3– 5.

Forecasts of the Hopf bifurcation (Figure 3) are roughly com-

from the period of time prior to the onset of the Hopf bifurcation, 

which leads to a stable limit cycle that gradually grows in magni-

tude. Most models predict a roughly constant mean with a spread 

roughly equal to that created by the stochastic oscillations around 

the stable node as seen in the training data prior to the bifurcation. 

Notably, the GRU model picks up the oscillatory nature of the dy-

namics, despite the fact that no true oscillations were yet present 

in the training data. However, like the other ML models, it fails to 

predict the growing amplitude of those oscillations. Having access to 

the true model structure, the MCMC model alone predicts the tran-

sition into a pattern of oscillations which grows over time, though 

it tends to overestimate the amplitude of those oscillations initially. 

Despite this, all methods score comparably in CRPS score (Figure 2) 

with most ML methods actually out- performing the MCMC score 

on average (Figure 5), albeit with much greater variation in individ-

scores over time (Figures 6 and 7), which show that MCMC is initially 

performing worse (over- predicting variance) but as oscillations grow 

further, it starts outperforming the more stationary forecasts of the 

ML models.

The saddle node bifurcation proves even more difficult for most 

methods (Figure 4). Only the MCMC model anticipates the sharp 

transition to an alternative state. Even accurate estimation of the 

MCMC requires slightly informative priors, though still broad enough 

to reflect a wide range of possible outcomes. Two ML methods— lock 

(7)LogS(F, y) = − logf(y),

(8)CRPS(F, y) = ∫ (F(z)−1{y≤ z})
2
dz.
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RNN's and transformers— resemble a naive prediction extrapolating 

the last observed state, failing to reflect the slow downward trend of 

the training data. LSTM's indicate greater uncertainty, while GRU's 

show very large variability which spans the alternative stable state 

range. With additional tuning, better performance may be possi-

uncertainty that is nevertheless not broad enough to span the al-

ternative stable state. Consequentially, the MCMC estimate easily 

outperforms the ML models (Figure 2).

Machine learning methods do markedly better on the stochastic 

transition scenario than in the two bifurcation scenarios (Figure 5). 

This occurs because the training data includes the transition phe-

of a sharp transition between alternative stable states— a dynamic 

-

sition events should be approximately exponentially distributed, as 

seen in the wide range of waiting times for transitions to occur in 

replicates of the true ‘observed’ process (Figure 5). Transformer and 

Block RNN distribution times are much more concentrated, while 

again GRU and especially the LSTM do a better job reflecting the 

uncertainty in range of transition times.

Examining patterns in the scores over time (Figures 6 and 7) 

provides a more nuanced understanding of the forecast dynamics 

than aggregate scores alone (Figure 2). In the Hopf bifurcation, CRPS 

scores get worse over time across all methods, including the MCMC 

forecasts. In the saddle node bifurcation and stochastic transition, 

the same pattern holds somewhat more dramatically for non- MCMC 

forecasts, while MCMC scores are at their worst around the middle 

of the forecast horizon. Comparing CRPS scores to logs score also 

emphasizes the relative role of uncertainty: for instance, the MCMC 

scores for the Hopf bifurcation get steadily worse under CRPS but 

both MCMC scores on the Hopf bifurcation once the magnitude of 

the oscillations exceeds the variance created by mere stochastic-

ity: the MCMC model no longer over- estimates the spread of the 

data, while the ML models now underestimate that variation. CRPS 

scores for stochastic transitions exhibit a distinct two- branch pat-

tern, with scores for a given replicate being either very high (poor 

from the ‘true model’. The general pattern across these plots is that forecast skill gets worse over time— gradually in the case of a Hopf 

bifurcation or suddenly in response to the saddle- node bifurcation. In the stochastic transition case, the scores tend to diverge in two 

branches, where high values indicate periods of time when the forecast predicts the wrong equilibrium state and the lower branch indicates 

predictions of the correct one. The time axis in this plot and in Figure 7 refers to the time from the beginning of the forecast horizon, not the 

time from the beginning of the time series as in other plots.
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skill) or very low, reflecting whether the individual ‘true’ replicate 

matches the mean state predicted by the forecast. Logs skill score 

may be a better measure in this context, where correctly capturing 

the uncertainty in the forecast means that this bi- modal structure in 

scores can be avoided entirely, e.g. by the MCMC predictions. The 

forecast- skill- over time plots illustrate different reasons for the bi- 

modal distribution in skill seen for the saddle- node and stochastic 

transition scenarios in Figure 2 respectively: in the case of the saddle 

node, the two modes are distinguished by time- horizon; short term 

forecasts are relatively accurate, and longer term forecasts (i.e. after 

the catastrophic transition) are poor. In the case of the stochastic 

transition model, the two modes are not structured by horizon but 

by replicate, with some replicates having transitioned and others still 

in the original state.

|

Ecological systems have long been acknowledged as complex, due 

not only to the immense span of dimension and scale such processes 

involve, but also the frequency of emergent and non- linear phenom-

ena such as stochastic resonance, including bifurcations, tipping 

points, and hysteresis examined here. Calls for increased forecast-

ing efforts from ecologists frequently reference the role of changing 

climate and other anthropogenic change, which raise the challenge 

of prediction in no- analog environments, anticipating ecosystem re-

sponses to conditions that have not been previously observed (Clark 

et al., 2001; Dietze et al., 2018). This motivates the question, ‘What 

methods will be most reliable in the face of unobserved conditions’?

In this paper, we carry out an initial exploration on how deep 

learning methods can perform on predicting critical transition 

events. We compare the ability of several cutting edge machine 

learning approaches against statistical and process- based models, 

and show that deep learning methods are generally able to strike a 

middle ground between what we consider as acceptable and ideal 

-

cations focus on point predictions, we have emphasized examples 

that can provide estimates of uncertainty. When the ML models are 

able to observe transition phenomena, as in the stochastic case, they 

Comparing this panel to those in Figure 6 highlights scenarios that most often underestimate uncertainty. Generally, MCMC performs better 

relative to other models under this metric than it does under CRPS, reflecting the bias- variance tradeoff taken when using biased estimators 

in machine learning. The time axis in this plot and in Figure 6 refers to the time from the beginning of the forecast horizon, not the time from 

the beginning of the time series as in other plots.
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performed comparably to MCMC- based forecasting with respect to 

CRPS and log probability score but under- performed MCMC when 

there were no transition events in the training sets as in the Hopf 

predictions of all four ML methods generally scores as well or bet-

ter than any one of the ML methods alone. Yet, examining summary 

statistics, CRPS and log probability scores obscures finer detailed 

components of the forecasts. For instance, forecast skill varies with 

the length of the forecast horizon in a non- monotonic fashion. This 

is the result of multiple factors: for some dynamics, such as those 

involving tipping points, the long term behaviour can be easier to 

predict than transient transitions. Both predicted uncertainty and 

forecast skill can be better on longer horizons than on shorter ones, 

as in the MCMC predictions of tipping point dynamics. It is also im-

portant to remember that probabilistic forecast skill scores do not 

only measure how close observations are to expectation, but also 

reflect the predicted uncertainty: therefore, over- confidence about 

predictive accuracy can result in worse scores than scores from fore-

casts that are less accurate on average but correctly reflect a greater 

degree of uncertainty. The ability to better reflect uncertainty rather 

than better average predictions explains much of the performance 

of the ensemble model.

The success of these ML models on the stochastic transition case 

replicate of a stochastic transition (Figure 5, red line) on which to 

base their estimates. This is typical of ecological scenarios where 

data is so often limited. While even one observation of a transition is 

more than the methods have in our other forecasts, this still presents 

a significant challenge to model estimation. Unlike the MCMC case, 

the ML models have no prior expectation of a model structure that 

contains sharp transitions –  we might have expected these models 

replicate, all four ML models successfully capture the phenomeno-

logical pattern of a sharp shift between two stable states –  this is 

-

not express. This provides a clear illustration of the much broader 

array of phenomenological behaviours that can be accurately mod-

elled with ML models compared to classical statistical models. In this 

way, the ML models can be seen as imposing even fewer assump-

tions on the phenomenological behaviour of the system than the 

very strong process- based assumptions, which happen to match the 

‘true’ model in this case and thus provide a comparison of the theo-

retical optimal performance.

The MCMC case illustrates some of the hard limits to ecological 

forecasting of critical transitions. Our MCMC forecast assumes that 

the data- generating process is known, so the forecaster need only 

infer the posterior distribution of model parameters. This is a much 

stronger assumption than that made by the ML models, though this 

assumption can potentially be justified on the basis of a mechanis-

tic understanding of the processes involved. It is important not to 

confound the MCMC example here with the use of MCMC in pro-

cess based models of real systems. In the real world, this is never 

the case: all models are at best approximations of the underlying 

processes (Oreskes et al., 1994). Despite this advantage, even the 

MCMC forecasts differ from the distribution of the true process. 

Because the available data come from only a small region of the dy-

namical state space, they are consistent with many possible param-

eterizations of the same model structure— which creates likelihood 

ridges and non- identifiability of specific parameter values. Using 

more simplified versions of the dynamical processes in question, 

such as the canonical form of a bifurcation, can mitigate this issue 

in some cases. Even when such non- identifiability issues cannot be 

avoided entirely, they can usually be diagnosed by examining the de-

gree of mixing in MCMC sampling and comparing posterior to prior 

distributions.

When examining the performance of the ML models, it is clear 

that there is no single method that excels in all scenarios. Neither 

is there one class of ML methods that outperforms the others –  a 

fact we found surprising given the reported dominance of encoder- 

et al., 2021). These observations underscore the point that ML is a 

very empirically- driven field in which there are few guarantees on 

performance. Furthermore, due to the black- box- ness of deep learn-

ing and other reasons like instability to initialization seed, it is often 

impossible to provide an explanation for why certain methods over- 

perform or fail to meet expectations.

to predict the qualitative shift in dynamic behaviour that occurs in 

the critical transition scenarios (Hopf and saddle node). This is not 

surprising, as the training data provide no prior example of such be-

haviour (e.g. growing oscillations or a sudden shift). Nevertheless, 

this should be an important reminder of a central difficulty in eco-

logical forecasting. Note that in such scenarios, near- term forecasts 

(Dietze et al., 2018) may be very accurate right up to the transition 

event before becoming widely wrong. Nor can the possibility of 

such non- linear behaviour be easily dismissed in ecological models 

–  the examples considered here have been bedrock of ecological 

modelling and management practices for over half a century (Folke 

et al., 2004), and if anything are only too simple, representing a small 

slice of possible dynamical behaviour of more complicated models.

It may be natural to ask whether this performance would be rem-

edied if the ML models were trained on data which includes prior 

examples of supercritical Hopf or saddle node bifurcations. This 

question is not as easy to answer as it may seem, because of the 

difficulty in defining the corresponding forecasting scenario. The 

scenarios we have considered are true, pure forecasts: the training 

data comes from a single realization of a specific generative process, 

and the task is to predict the future states of that system before 

they occur. Would it be possible to train a predictive algorithm on 

‘analogous’ examples of critical transitions? For instance, could data 

from other lakes, which may have experienced a critical transition 

such as an eutrophication event in the past, be used to train machine 

learning models to predict such events in some focal lake in the fu-

ture (Scheffer et al., 2001a)? Perhaps, but it depends on what we 

mean by an ‘analogous’ system. Even if the underlying mechanism 
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was accurately captured by the same model, say, the saddle- node 

model of Robert M. May (1977) we consider here, it is likely that 

most of the individual model parameters would be quite different, 

even after accounting for re- scaling or non- dimensionalization of the 

model (Hastings, 1996). Rarely do ecologists have access to com-

pletely controlled replicates for fitting or training models. The abil-

ity for ML models to successfully generalize from training in such 

cases remains an open problem and a promising subject of further 

investigation.

There are a number of questions that we have left unanswered 

that we hope will be addressed in future work. In this paper, we have 

explored a small number of machine learning and statistical mod-

els that can be used for forecasting, so comprehensive conclusions 

can not be drawn on whether statistical or machine learning- based 

approaches are better suited for critical transition forecasting prob-

lems. Neither can we claim that ML methods will translate well to all 

sudden transition event forecasting problems in reality, since work-

ing with real data will introduce additional difficulties like how to 

deal with missing data, sparse data and observation errors.

Furthermore, our analysis has focused on the task of making 

a single forecast prior to the occurrence of a critical transition. 

Forecasting is ideally a more iterative process of data assimilation, 

where forecasts are updated with respect to additional obser-

(Dietze et al., 2018). Updating a forecast after a critical transition 

has already occurred may be of little use in the context of hysteresis, 

such as under the saddle node or stochastic transition— recognizing 

the alternative stable state only after the system is stuck in that 

applicable to the Hopf bifurcation, where additional observations 

of slowly growing oscillations may lead to more accurate forecasts. 

Such models may even accurately predict the homoclinic bifurcation 

that occurs when the limit cycle grows too large, eventually hitting 

a saddle point of zero population size for the host species. We leave 

these cases to future exploration rather than attempting to explore 

all such variations in a single narrative.

Ecological forecasting is invariably difficult, even in the idealized 

cases of ample measurement data and clearly identified structural 

models. This paper is not intended to give a complete answer to 

whether deep learning is the best suited method for tipping point 

forecasting problems as this will take numerous studies to resolve; 

instead, this paper aims to be an early exploration on whether deep 

learning methods should be considered as viable tools for this ex-

tremely challenging class of prediction problems. Given the diffi-

culty of forecasting never- before- observed behaviour, as illustrated 

by the Hopf and saddle- node bifurcation scenarios, there is good 

reason for research to focus more on the kind of qualitative predic-

tions long emphasized in the literature on early warning signals and 

resilience (Scheffer et al., 2012). Recently, ML techniques developed 

for classification rather than the ML methods used in regression and 

forecasting models considered here have demonstrated a more nu-

anced ability to reliably detect different classes of critical transitions 

in time- series data (Bury et al., 2021; Lapeyrolerie & Boettiger, 2021). 

Rather than seeking to provide managers with quantitative, probabi-

listic forecasts reflecting a broad uncertainty in possible outcomes, 

this literature has sought to emphasize only a more qualitative form 

of prediction, such as establishing whether a system is either ‘re-

silient’ or ‘approaching a critical transition’. Decision sciences have 

long emphasized the importance of reconciling the qualitative pre-

dictions of resilience thinking with quantitative forecasts of future 

states (Fischer et al., 2009; Polasky et al., 2011). Such approaches 

could be valuable in concert with probabilistic forecasts considered 

here, providing a possible mechanism to identify when the probabi-

listic forecast is least reliable.
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