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Abstract—Single Flux Quantum (SFQ) superconducting
technology provides significant power and performance benefits
in the era of diminishing CMOS scaling. Recent advances
in design tools and fabrication facilities have brought SFQ
based computing to the forefront. One challenge faced by
SFQ technology is to have a compact and robust on-chip
memory, which can be used for implementing register files and
cache memory. While dense memories are being investigated
through the development of three-terminal devices such as
Nanocryotrons, in this work, we build on a novel memory cell
built using traditional Josephson junctions (JJs). In particular,
we design a high capacity register file, called HiPerRF, that
builds on a High Capacity Destructive ReadOut (HC-DRO) cell
in SFQ technology. HC-DRO design can store up to three fluxon
pulses, thereby providing the equivalent of 2-bit storage in a
single cell. However, these cells provide only destructive readout
capability, namely each value can be read only once. However,
CPU register file contents are read multiple times in any
program, and hence a destructive readout complicates register
file design. HiPerRF provides the non-destructive property
using a loopback write mechanism, thereby preserving the
higher density of HC-DRO cells without compromising the
multi-read demands of a register file. HiPerRF reduces the
JJ count of the register file design, after accounting for all
the peripheral access circuitry costs, by 56.1% and reduces
the static power by 46.2%. Furthermore, HiPerRF reduces the
JJ count by 16.3% even when considering an entire in-order
RISC-V CPU core.

Keywords-Superconducting electronics; SFQ; Register File;
Destructive Readout;

I. INTRODUCTION

Rapid Single Flux Quantum (RSFQ) devices introduced
by Likharev et al. [1] have gained traction as one of the
promising technologies to augment CMOS based comput-
ing. Single Flux Quantum (SFQ) technology uses quan-
tized voltage pulses in digital data generation, reproduction,
amplification, memorization, and processing. In particular,
applications and kernels that demand substantial compute
density and/or need to operate at extremely low power
are well suited for SFQ based computing. Some examples
are computing in space applications with extremely limited
power and iterative linear algebraic computations in machine
learning. The SFQ technology is based on superconducting

devices called Josephson Junctions (JJs). These devices work
at a low temperature with a short switching time (~1ps)
and little switching energy dissipation (~ 10~?Joules) [2].
The JJ-based SFQ circuits designed have been demonstrated
to operate at frequencies up to 770GHz [3]. Recent works
focused on efficient SFQ logic circuit realizations, such
as designing ALUs, and other digital structures that are
necessary to build CPUs [4]-[6]. Even the early realization
of a simple 8-bit bit-serial CPU has been prototyped [7]. The
current SFQ technology is roughly equivalent to a 250 nm”
CMOS node. The SCE technology road map [8] predicts that
by 2026 we will have a ’90 nm” equivalent node. Theoretical
estimations of the maximum density of SFQ-based circuits
utilizing the geometric inductance of a wire suggest a density
of approximately 107 JJ/em?. These projections indicate that
building a SFQ based CPU is within reasonable reach.

SFQ memories, however, are built as flip-flop-like designs,
and hence memory density is quite low compared to SRAM.
SFQ provides two different memory cell designs currently: a
destructive readout (DRO) cell and a non-destructive readout
(NDRO) cell (design details in the next section). Each DRO
or NDRO cell in current designs stores a single pulse. To
increase the memory capacity, recently, our group proposed
a High Capacity Destructive ReadOut (HC-DRO) memory
cell [9]. HC-DRO can hold up to three SFQ pulses, which
means they can store 2 bits of information in one memory
cell, thereby providing an opportunity to double the memory
density.

In this paper our goal is to build a CPU register file
using HC-DRO cells. We must, however, tackle multiple
challenges. The inability to retain data after a single read
makes HC-DRO (or any DRO) cells challenging for register
files. The use of NDRO cells is quite expensive in terms of
JJ counts (7X more JJs needed for 2-bit NDRO compared to
a single HC-DRO cell). Given that the size of the physical
register file has a significant performance impact [10], we
propose a solution that relies on HC-DRO cells for high
density while at the same time supporting the need for
reading each register multiple times. Our design is based on
the intuition that only a few registers are actively read at any
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given time window. Hence, one needs to preserve the non-
destructive read property only for those active registers. As
such, we augment a large HC-DRO register file with a small
victim NDRO buffer that helps the readout data to recycle
back to the original register in a lazy manner, outside of
the critical path, thereby providing the non-destructive read
property. Prior work [11] has used a rotating shift register
where the value of each bit is pushed back from the tail
of a shift register to the head. But this work is centered on
designing a rotating shift register and does not address the
architectural challenges of incorporating destructive readout
cells into an architecturally feasible register file design.
Given that the architectural challenges of building a register
file in a CPU pipeline are substantial, we design HiPerRF
to tackle the numerous challenges. This work will discuss
these challenges and propose solutions that allow SFQ based
CPU designs to exploit HC-DRO cells for register files. The
primary contributions of this paper are as follows:

o We present the design of HiPerRF, which is a register
file built with HC-DRO cells. We present the design
enhancements to read and write multiple SFQ pulses
without perturbing the rest of the SFQ CPU pipeline.
Since HC-DRO cells lose data after each read, we
present an approach to restore the value after each read.
We use a set of NDRO cells shared across an entire
column of DRO cells to enable a low-cost approach to
preserve the HC-DRO cell contents.

We present a dual-banked design of HiPerRF. The dual-
banked HiPerRF accompanied with a static scheduling
algorithm reduces the port contention and increases the
performance.

We implemented the design using detailed cell level
libraries and a hybrid pipeline-gate level simulation to
evaluate the area and power impacts. Given that JJ
counts are the primary design limiter in SFQ CPUs, we
quantified the JJ reduction benefits of HiPerRF when
integrated into an in-order RISC-V CPU. Our results
also show that when considering the whole CPU, the
HiPerRF design provides a 16.3% reduction in the JJ
count.

II. BACKGROUND
A. SFQ Logic

Unlike the CMOS technology that uses high and low
voltage levels to represent ’1” and 70”, SFQ logic use
magnetic pulses. The SFQ pulse is stored in the form of a
single quantum flux or fluxon. These fluxons are transmitted
between logic gates to enable computations. For memory
cells, the existence of an SFQ pulse represents a 17, and
the absence of a pulse represents a ”0”. However, when
performing computations in an SFQ logic gate, the lack of a
pulse at the input leads to ambiguity. The lack of a pulse can
mean a ”’0”, or the pulse has not yet arrived. To disambiguate
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these two scenarios, SFQ logic uses gate-level clocking. At
the end of a clock period, the absence of a pulse at the gate
input will be treated as an input ”0” for computation. The
use of gate-level clocking is thus unique to SFQ logic, as
opposed to pipeline stage-level clocking used in traditional
Microprocessors.

Since all SFQ logic gates have a clock, the output pulses
generated by a logic gate are driven to the next gate in the
computation in the next cycle. This characteristic makes the
SFQ circuits pipelined down at the gate level. The gate-level
clocking requirement leads to deep pipelines, which create
data and control hazards more frequently than in CMOS
designs. We describe such hazards in the HiPerRF design
and present solutions that consider gate-level pipelining
impacts. For instance, our design considers various data and
control hazards to make sure no two signals arrive at any
gate at the same time.

B. Clock Distribution

Gate pipelined circuits may pose a challenge for clock
distribution. Prior approaches to tackle clocking challenges
include using a hierarchical clock design where a system
clock (called the slow clock) is used for advancing func-
tional pipeline stages, such as issue and decode stage, and
using local clock (fast clock) for bit-serial operations [12].
Such hierarchical clock distribution solutions help meet the
timing requirement and simplify clock design. These are
also concurrent advances in clock distribution strategies,
which are outside the scope of this paper. For instance,
using the dynamic SFQ (DSFQ) technology [13], researchers
have designed the gate with self-resetting property, thereby
removing the need for a clock to operate each gate. This
paper eschews the clock distribution concern by designing
a CPU register file architecture that does not need explicit
clock distribution for each gate. Instead, the read and write
enable signals of the register file (generated from a decoder)
automatically activate individual gates in the register access
ports to trigger data movement. By using a clock-follow-data
like approach, one can avoid the clock distribution demands
of the register file design, as we demonstrate in this paper.

C. DRO Memory Cell

Destructive read-out (DRO) cell [1] of single flux quantum
(SFQ) technology is one of the most important building
blocks for superconducting circuits, which can be used as
a memory element for storing the SFQ pulses. It is also
used as a buffer cell for synchronizing the signals [14] in a
circuit. DRO cell is also known sometimes as an RS-Flipflop
or D-Flipflop.

Figure 1(a) shows the schematic of a regular DRO cell
which receives an SFQ pulse at input D and stores it in
the superconducting loop J;-L,-J, if it does not already
have a fluxon (SFQ pulse) stored in it. If the J;-L;-J, loop
already has a fluxon stored in it, the incoming pulse is
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dissipated through the buffer junction Jy. The stored fluxon
is read by input CLK which resets the superconducting loop,
subsequently resulting in an SFQ pulse at the output Q. Each
cell read is destructive since the loop is reset after each read
operation. Thus a DRO cell stores at most a single fluxon
acting as a one-bit storage cell, and provides destructive read
out capability.

(®)

Figure 1. Schematic of (a) DRO Cell (b) HC-DRO cell

D. HC-DRO Memory Cell

In our prior work, we proposed high capacity destructive
read-out (HC-DRO) cell [9]. This design is based on an
important observation that it is possible to store more than
one fluxon in a memory cell, creating the effect of a multi-
bit storage cell. Figure 1(b) shows the schematic of the HC-
DRO cell. Compared with Figure 1(a), the Jy JJ has been
removed, thereby allowing the accumulation of more than
one incoming pulse. The J;-L,-J, loop can hold multiple
pulses by increasing the L, inductance. The critical currents
of J; and J, are generally increased to enable stable reading
of the multiple pulses.

While storing multiple bits in a storage cell may increase
device variability, with careful inductor sizing and critical
current delivery to JJs, a 2-bit HC-DRO can be robustly
built [9]. We have designed and verified the operation of
a robust 2-bit HC-DRO cell using JoSim, a detailed device
and circuit simulator for superconducting designs [15]. The
design parameters that provided the robust behavior in our
design are L1~ 6 pH, L2~ 20 pH, L3~ 4 pH, J1~ 115
1A, J2~ 111 pA, J3~ 80 pA. While device variability may
be another concern, we believe the advances in fabrication
technology will enable HC-DRO to be built just as robustly
as any device.

E. NDRO Memory Cell

Non-destructive read-out (NDRO) cell [16] is another
important memory cell in SFQ technology. Unlike DRO
cells, NDRO cells can keep the data after the read operation.
It works similar to a CMOS D flip-flop with reset. Figure 2
shows the schematic of a regular NDRO cell. Once it
receives a pulse from the input IN, it will store the fluxon
in the loop J3-Ls-J7-J10. If the J3-Ls-J7-J;o loop already has
a fluxon stored in it, the incoming IN pulse is dissipated
through the junction J,. The pulse that comes from the
input RESET will make the fluxon stored in the loop to be
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dissipated through J;. If there is no pulse stored in the loop,
the RESET pulse is dissipated through Js. The pulse from the
input CLK, which is essentially a read operation, will trigger
a pulse on the output OUT only if the J3-Ls-J;-J;o loop has
a fluxon, and the stored fluxon stays as is. Thus the NDRO
cell keeps the read operation non-destructive. However, this
design cost 11 JJs. To store 2-bits with NDRO requires 2x 11
JJs. On the other hand, HC-DRO uses only 3 JJs to store 2-
bit, hence providing a 7.3x density advantage. Note that in
SFQ designs, density is mainly measured in terms of JJ count
since JJs are the most critical manufacturing bottleneck.

Schematic of an NDRO Cell

Figure 2.

F. Splitters and Mergers

Because a single pulse is generated from a logic gate, it
is not possible to drive two SFQ gates by one SFQ pulse.
Unlike CMOS fan-out junctions, an SFQ pulse must be
explicitly split at every fan-out point. Thus, to drive two
SFQ gates, a splitter [1] is required that reproduces the input
pulse. Figure 3(a) shows the schematic of a splitter. Once
the splitter receives a pulse on its input A, it will generate
two SFQ pulses on both its outputs (output B and C).

In SFQ logic, a merger gate [1] makes two SFQ pulses
drive the same pin possible. Figure 3(b) shows the schematic
of a merger. When two pulses A and B arrive too close in
time, there will be only one pulse on the output C. In this
case, the early one will trigger a single pulse to be outputted
at C, and the later one is dissipated through J3 (A) or J4 (B).

Ly

(@)

(d)

Figure 3. Schematic of (a) Splitter and (b) Merger Cell
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G. Context for a SFQ Microprocessor

In this section, we provide a brief context for the SFQ-
based CPU targeted in this paper. Given that SFQ is at a
nascent stage in terms of design tools and manufacturing,
our goal in this paper is to explore the design challenges
of building a register file within the context of an in-order
pipelined CPU, with fetch-decode-execute stages, based on
RISC-V ISA with SFQ-based cells used in its design. We
acknowledge that CMOS processor designs have much more
complex control structures and execution paradigms (such
as out-of-order and speculative execution). But a nascent
technology requires research explorations such as those
presented here to understand challenges and opportunities
within a reasonable scale.

Throughout this paper, we rely on extensive physics and
device-level characterization data for SFQ designs that our
team has made publicly available on GitHub [16] as part
of our IARPA superconducting design tools initiative. For
example, the repository provides splitter and merger cell
parameters, including the cell timings, power, and margin
estimates, which are incorporated into our register file access
pipeline models. In terms of architectural level evaluations,
we provide a detailed Verilog-based implementation of
HiPerRF and its peripheral access circuits, including the
decoders and read/write port designs and wiring needs.
For wiring, as we describe in more detail later, HiPerRF
is primarily reliant on Passive microstrip Transmission
Lines (PTL) and just a few Josephson Transmission Lines
(JTLs) [17] for its design. Our place and route simulations
account for these wire delays as well as any additional JJ
counts needed. We then integrate our models into an in-
order processor model to quantify the chip level are benefits
of HiPerRF. Given the research resource limitation in our
setting, while the fabrication of a chip is outside our scope,
we believe that our detailed architectural exploration studies
will provide key insights into the CPU level implications of
future technologies such as SFQ.

III. CLOCK-LESS NDRO REGISTER FILE

This section describes our NDRO based register file
design, which acts as a strong baseline. We first discuss how
we design our innovative clock-less read, write and reset
ports of the NDRO baseline register file using SFQ logic
gates. The goal here is to demonstrate how to eliminate the
need for clock distribution in SFQ register file design setting
aside the memory density improvement of HC-DRO cells. In
the next section, we show how the clock-less NDRO register
file is enhanced with the dense HC-DRO cells to create the
HiPerRF design.

Figure 4 shows the design. We show the design with one
read and write port. Each rectangular box with an IN and
OUT is one register entry. The figure shows a set of such
register entries that together form the register file. At the
output end, an explicit merger gate (marked as M) merges
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the output. Since there is a single read port, a single register
is read enabled, which produces an output while all other
registers do not place any pulses on the output. The output
from the single register whose read is enabled will then be
sent as R_DATA. The figure shows three blocks: read and
write ports that are similar to CMOS design and an SFQ-
specific reset port.

Write :: Read |, Reset :
Port | IIR_ADDR =" Port :J REfET Port |
W_ADDR —/ \!: L/ \ IJ/ \— w_apDR!

g I NI

CLK

RESET

Figure 4. NDRO register file design

A. Read Port Design

A register read request is transformed into a read enable
signal for the corresponding register. This transformation
may be done using a demultiplexer (DEMUX) to decode the
read address. CMOS designs may use combinational gates
to achieve DEMUX functionality, as shown in Figure 6(a).
However, in SFQ designs implementing such combinational
design is prohibitively expensive.

Figure 5 shows the schematic of an AND gate for com-
binational design. It costs 12 JJs. To build the DEMUX,
we have to split the input signal (IN) and the select signal
(SEL) across the two AND gates. The NOT gate also costs
10 JJs and also needs a clock signal. As such, in SFQ
technology the size of logic gates, the additional clock
signals, and the existence of mergers and splitters will make
the combinational DEMUX design very large. A 1-to-2
combinational DEMUX needs a total of about 50 JJs.

CLK o o OUT

Schematic of an AND Gate

Figure 5.
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Rather than a combinational design, we built a demul-
tiplexer using a Non-Destructive ReadOut cell with Com-
plementary output (NDROC) which was proposed in prior
work [7], [18]. Figure 6(b) shows the NDROC block dia-
gram. The select signal (SEL) is connected to the SET input
of the NDRO cell. If the SEL signal receives a clock pulse (a
value 1), then the NDROC cell’s SET pin is activated. When
a pulse to the clock pin (CLK) is provided, it then outputs
that pulse on the QO output (OUTO), and the complement is
sent to Q1 output. Thus the NDROC can be repurposed to
act as a 1-to-2 DEMUX. Note that in the above description,
the SEL signal is driven by the source register number. The
source register could be an architected register encoded in
the instruction if no renaming is done. Otherwise, the source
register is the physical register number.

The NDROC based 1-to-2 DEMUX costs only 33 JJs [19],
which is about 60% of the combinational design based on
AND gates. However, for this design to work correctly,
the RESET signal needs to be asserted after each demux
operation. Recall that the NDROC cell preserves any prior
”1” stored in it from a select signal that deposited a ’1”. We
need to clean the ”1” if we want to write a ”’0” for the next
selection.

SEL SEL[O]
ouTe
IN SET
Q[— OUT®e
ouT1 SEL[1] Lk
| -
@) SET » RESIETQl ,OUT1
IN —cik
SIIEL RESETQl SET
T Qe|— OUT2
SET ik
e — OUTO
IN —lcik L ouT3
U— 0UT1
RESET
T ©
(b)
Figure 6. (a) DEMUX built with combinational logic (b) DEMUX built

with NDROC (c) 1-to-4 DEMUX with NDROC

Since most practical ISA designs have many registers,
it is necessary to build a 1-to-n DEMUX using NDROC:s.
The proposed hierarchical tree structure DEMUX is shown
in Figure 6(c). The SEL[1] signal is connected to the first
NDROC cell to either activate the top bank or bottom bank
of the register file. The SEL[0] signal selects one of the
two registers in either the top or the bottom bank in the
second step. The SEL[0] signal must be split to drive the
two NDROCs. The outputs of the first level NDROC are
connected to the CLK pin of the second level NDROC.

To activate a register in a read operation, we connect
the register number’s select bits to the appropriate level of
the NDROC tree. Then a single clock pulse is provided as
the read enable pulse. The read enable pulse then traverses
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through the NDROC tree and will trigger the pulse on the
OUT port corresponding to the register number.

To design a read port using the above design, we connect
the read enable (REN) signal (generated from a decoder
stage) to the starting input (IN) of the DEMUX and the
read address (R_ADDR) (register number) to the SEL pins.
Each of the output pins (OUTO0..OUTN) is connected to
the corresponding NDRO register entry. Since each NDRO
register entry may have a 32/64-bit value, the corresponding
OUT pin must be split 32/64 times in a tree hierarchy again
to read the register’s entire width. These splitters are omitted
in Figure 4 for simplicity.

In this design, no clock distribution is needed since the
read enable and read address signals provided as inputs act
as triggers that move the fluxons through various gates to
trigger the appropriate register to be read eventually. Using
this design, we eliminate the need for clock distribution in
the read port design. In fact, for the entire register file design,
we use the enable signal as the trigger without the need for
an explicit clock, thereby making our design scalable and
robust to clock skew.

Finally, the output port merger block connects the output
of each NDRO register to the output port of the register file.

B. Reset Port Design

In a CMOS design, it is possible to overwrite an existing
memory cell content with a new value. However, in an SFQ
memory cell that has an existing SFQ pulse (equivalent to
storing a ’1” in a cell), it is not possible to replace it with a
”0”. Writing a no pulse does not remove the existing SFQ
pulse in the cell. Hence, every write operation must first
reset all the bits in a register entry to ”0” before a new
write operation can be performed.

Every write operation to a NDRO register must be pre-
ceded by a reset so that the existing pulses in each memory
cell are dissipated. Thus a new reset port is necessary for
performing this function. Since the reset port is used prior to
writing the data, the reset port uses the destination register’s
address (W_ADDR) to access the register. It also uses a
special RESET_ENABLE signal that is sent as input to
the DEMUX of the reset port. The DEMUX circuit moves
the RESET_ENABLE pulse through the gates in the port
to eventually select the destination register. The reset pulse
reaches the selected register’s reset pins so that the content
of the selected register is set to 70.”

C. Write Port Design

Once the reset operation is completed, the write port
is activated to perform the write operation. The write
port has three inputs, write enable (WEN), write address
(W_ADDR), and write data (W_DATA). Same as the read
and reset ports, the W_ADDR is decoded using the DEMUX
design that we described. The write data is split and sent to
all the NDRO registers. In order to write the data to the
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correct NDRO registers, we add Dynamic AND (DAND)
gates [13] between the write data and the SET pin of the
NDRO register as shown in Figure 7(a).

DAND gates do not use clock signals to control the
timing; instead, they use the hold time to control. Figure 7(b)
shows the timing of the DAND gate. If two inputs arrive
between the hold time, there will be a pulse on the output.
Otherwise, these inputs will not generate any output. By
using DAND gates, we can avoid using clocked AND gates
to reduce the complexity of the design. When both WEN
signals and W_DATA arrive within the hold time window,
the pulse will arrive at the corresponding NDRO register’s
SET pin and write the data into the NDRO register. Thus
the benefit of using DAND in the write port is to eliminate
the need for clocking and splitter cells that may be needed
for clock distribution.

W_ADDR[1:0] "-PATA[3:€]
& A -~
WEN |
’ B I\v
Dynamic AND out /\v
W_DATA[3] - —
WEN_O Reser Hold time

(a) (b)

Figure 7. (a) NDRO write circuit (b) Dynamic AND timing

D. Read and Write Operation

Read operation: To initiate a read operation on the
register file, the decoder extracts R_ADDR and sends that
address along with REN (read enable) pulse to the register
file. The REN pulse traverses the gates selected by the
R_ADDR bits to move the register data out to the execution.

Write operation: First, the write operation must reset the
NDRO register entry. The write operation sends the WEN
and W_DATA to write the corresponding NDRO registers. A
reset of all the NDROCs follows the write operation before
the next operation can begin.

E. Timing
The register read and write operation control signals

(REN, WEN, and RESET) are generated in the decode stage
of the pipeline. While these three signals originate at the

same time, they must be delivered with appropriate delays.
Based on our detailed device modeling simulations (more
details on modeling to follow), the NDROC gate in the
current SFQ technology can receive two successive enable
signals on its input (IN) with a 53ps delay. That means two
read enable, write enable or reset signals must be at least
53ps apart. This delay is the cumulative delay of Holdgrgsgr
+ Criticalggsgr _o_seT + Setupsgr delay of the gates in the
register file ports. The propagation delay, which is the time it
takes for an SFQ pulse on the IN to reach the OUT, is about
24ps, and it is much less than 53ps. Hence the NDROC tree
DEMUX can be fully pipelined at a cycle time of 53ps.

For any write operation, the reset signal has to precede
any write operation. Our device-level simulation measured
that critical time [20] between RESET signal and when data
can be sent on the input IN of a register. This delay to
separate the WEN from the RESET is 10ps, less than the
53ps delay needed for the DEMUX access. Based on these
considerations, the clock cycle of the NDRO register file
is 53 ps, while different control signals, such as RESET
followed by WEN signals within a clock, are delayed by
10ps.

The timing for an example instruction sequence is shown
in Figure 8. During the execution of one instruction, there is
at most one register write operation, and at most two source
register read operations. The figure shows a sequence of
instructions labeled Inst O ... Inst x+1. Let us assume that
the write back operation from Inst 0 is going to overlap with
the source read operation of Inst x. Thus the write from old
instruction (write back), which is the R1 from Inst 0, and
two read operations from current instruction, R1 and R3
from Inst x will contend for the register file access. Inst X
also has a read-after-write dependency with Inst O here.

Given this scenario, our preferred design option initiates
the write operation of R1 before the read operation so that
we can ensure the internal forwarding. The write operation
first initiates a RESET operation. After RESET, the WEN
(write enable) signal pulse is provided with a delay, which is
based on the critical time between RESET and IN of the R1
register. Then the instruction initiates the REN (read enable)
pulse. The second read operation for source register R3 in
the second cycle is initiated concurrently with the RESET
and WEN operation of Inst 1.

Srcl Read Src2 Read Srcl Read Src2 Read
I, R1 I, R3 I, RS
REN | @ry | w3 | @ars) I CI Y R— RiRésiE
WEN l \ I Rd Wr Inst 1 R7=RO+R8
(I, R7)
RESET Rd Wr Rd Reset
I, R1 I, R7
Rd Reset( + R) — Inst x R2=R1+R3
OUT . ry Readout | Inst x#1  R4=R5+R6
CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4
Figure 8. 32x32 bits NDRO register file timing
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IV. HIPERRF: HC-DRO RF wiTH NDRO CAPABILITIES

HiPerRF uses HC-DRO cells to replace the NDRO cells to
improve register file density. In our prior work we proposed
HC-DRO cells [9] for density, but that work did not consider
how to tackle the unwanted destructive readout property
in designing a CPU register file. Our prior work also did
not account for the circuit timing requirements and the
various challenges associated with scheduling a register file’s
read/write operations.

Figure 9 shows the HiPerRF design. This design assumes
that the HiPerRF design is a self-contained unit, and the rest
of the CPU operates on each bit of information separately.
Namely, even though the design stores 2-bits in one cell,
they are read out as at most three pulses using an HC-
READ circuit (described below) and fed to the rest of the
logic. There are four major components in HiPerRF different
from the baseline NDRO register file. First, the obvious
replacement of NDRO cells with HC-DRO cells to store
data. The second, the absence of a reset port. The third is a
new output port design that enables the HiPerRF operation
to retain the data. The last one is adding the HC-CLK, HC-
WRITE, and HC-READ circuits that can decode and encode
the two-bit storage HC-DRO cell into up to 3 separate pulses
and vice-versa.

Output
Port

SET RESET

Loop
Buffer
oLk

Loop-back Data

Figure 9. HiPerRF design

A. HC-DRO Read and Write Circuits

To read and write the HC-DRO cells correctly, we need
to design the HC-DRO specific read and write circuits based
on the initial design shown in previous work [9].

HC-WRITE circuits: Each HC-DRO cell encodes two
bits of information into O to 3 pulses. We need an HC-
WRITE circuit to convert the two bits of information gener-
ated by an ALU into up to 3 pulses for storage in HC-DRO.
The HC-WRITE circuit designed is shown in Figure 10(a).
The write circuit uses Josephson Transmission Lines (JTL),
represented as diamonds with J in Figure 10(a). JTL is an
SFQ design element that allows the fluxon to pass through
it with delay. For instance, in the figure, when two pulses
arrive at BO (LSB) and B1 (MSB), the pulse starting at
B0 goes through the two merge cells to produce the first

421

pulse on the OUT. The pulse from B1 travels through three
JTLs horizontally and goes through the splitter and merge
cell to generate the second pulse. The split pulse from B1
will go through the vertical JTL path and eventually become
the third pulse. The JTLs act as delay elements to create the
minimum required separation to store two consecutive pulses
into the HC-DRO cell; in our current design, this delay is
about 10ps due to the requirement of the setup and hold
time [21] of HC-DRO cells.

HC-CLK circuits: To read HC-DRO cells, we need to
send three consecutive pulses to the input pin to read out all
the fluxons stored inside. For instance, the REN signal that
eventually reaches an operand register from the DEMUX
port must generate three pulses to read each HC-DRO cell.
The HC-CLK circuit is used to duplicate one SFQ pulse into
three pulses. The circuit is shown in Figure 10(b). Same as
before, the design uses JTLs to create three pulses that meet
the required timing restrictions without any explicit clock
signals.
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. P |t
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J\,_ READ
READ READ e
z z
IN —[ECOUNTERZ-ECOUNTERE o READ/
S?M S?M
BO_/\_ Bl _/\_ o

(©) )

Figure 10. (a) HC-WRITE design (b) HC-CLK design (¢) HC-READ
design (d) state machine diagram of the counter

HC-READ circuits: Reading HC-DRO cells may pro-
duce 0 to 3 consecutive pulses at the input pin. These serial
pulses need to be translated into normal one-bit logic to
create two parallel pulses. The proposed HC-ReAD design
used in this work is built using two one-bit counters [22] to
build a two-bit counter. The design is shown in Figure 10(c).
The state machine diagram of the counter is shown in
Figure 10(d). After counting the pulses, the circuit generates
two bit output as two parallel pulses on B1 and BO.

B. LoopBuffer for Non-destructive readout

The output port design of HiPerRF provides the non-
destructive readout capabilities for HC-DRO cells. We add
a LoopBuffer to the output port, a set of NDRO cells that
enables restoring a register entry data after a read operation.

Read operation flow: The CLK input of the NDRO cell
is connected to the output pulses produced from an HC-
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DRO register. When an instruction wants to read a source
register, the LoopBuffer’s NDRO cell is first set to 1; namely,
a single pulse is stored in the NDRO cell prior to the start of
the register read operation. Each of the 2-bit source register
values (at most three pulses stored in a single HC-DRO
cell) arrive at the CLK pin of the LoopBuffer’s NDRO cell.
The incoming pulses from the HC-DRO register exit the
LoopBuffer as output pulses. For instance, if the HC-DRO
cell has an encoded value of 107, it will generate two output
pulses, triggering the LoopBuffer NDRO to produce two
output pulses. If the HC-DRO cell has an encoded value
of ”117, it will generate three output pulses, triggering the
NDRO to produce three output pulses.

Those output pulses go through the splitter, and one
branch of that restores the data back to the source register,
while the other branch is sent to HC-READ to decode into
two-bit values for operation by the ALU.

Write operation: In HiPerRF, when an instruction enters
the write back stage, its destination register write operation
is divided into two steps: the first operation reads the register
content and erases that register content using the LoopBuffer.
To enable this erase operation, the LoopBuffer is first reset to
zero and the current content of the destination register is read
into the LoopBuffer to dissipate its value. Then the write
back of the new value follows normally since the destination
register is now cleared.

The LoopBuffer design is based on the intuition that
only a few registers are actively read at any given time
window. Hence, one needs to preserve the non-destructive
read property only for those active registers. As such, our
design allows a large HC-DRO register file to share a small
victim NDRO buffer that helps the readout data to recycle
back to the original register.

C. Read Port and Write Port Design

The read and write port operate similarly to the NDRO
baseline design. The one difference is adding the HC-CLK
circuits between the DEMUXSs and HC-DRO cells. The HC-
CLK generates three pulses for read enable and write enable
signals. This operation enables us to read each HC-DRO cell
using the enable pulses generated from HC-CLK. The use of
NDRO cells in LoopBuffer provides interesting optimization
opportunities. As explained above, the NDRO cell can be
reset to erase register content. We use this property to use

a single read port to work as a reset port as well. Thus the
need for a reset port is eliminated in the HiPerRF design.

Unlike the NDRO register file’s write port, the HiPerRF’s
write port needs to accept data both from the regular register
write operations and the LoopBuffer. Hence, a new merger
gate is added at the write port, as shown in Figure 9. An
HC-WRITE is added between the input and the merger to
encode the data for HC-DRO storage.

D. Timing

Similar to the NDRO REF, the bottleneck in HiPerRF is
also the NDROC of the DEMUX. The gap between two REN
signals and two WEN signals is also 53ps, which will be the
cycle time. The control pulse timing of HiPerRF is shown
in Figure 11. At the start of executing Instruction X, a write
operation of the destination register is initiated. The write
operation first generates a REN pulse (to reset the register).
The REN pulse passes through HC-CLK to generate three
pulses (each 10ps apart in our design due to the requirement
of the setup and hold time of HC-DRO cells, as shown
in three rectangular pulses in the figure). The WEN pulse
follows this reset operation in the second clock, which passes
through HC-CLK to generate three pulses. Concurrent with
the WEN pulse, the first source read operation is initiated
with a REN pulse in the second clock (for clarity, the three
pulse sequence is shown as just one pulse). The loopback
write for this read operation is initiated in the third cycle, as
the dashed arrow shows. In the third clock, the second source
register’s REN pulse is initiated, followed by a loopback
write operation of source 2 in the fourth clock. During the
fourth clock, the second instruction’s destination register’s
write operation is also initiated, and the process repeats every
three cycles. Note that in this timing sequence, the write
operation of register R1 is unable to forward the data to Inst
X. Hence, Inst X has to go through the full source register
read operation.

The loopback write brings one more issue to the forefront:
the Read-After-Read (RAR) hazards. If Inst x is reading
from the R3 twice (R2=R3+R3), the second read operation at
cycle three will read out nothing since the data has not come
back yet. In this case, the second R3 should be duplicated
from the first read operation rather than being read from the
RF. Note that for precise exception handling, the loopback
write operation cannot be optimized even if the same register
is being overwritten anyway.

LB wr Inst © R1=R9+R8
WEN }r Al L8 ‘.’“.'T.xl__ } Rd wr | Inst 1 R7-R9+R8
Rd Reset Srcl Read Src2 Read Rd Reset Srcl Read Src2 Read Inst X E2=R3+R4
(Is R1) (Ix R3) (I« R4) (I R7) (Ixs1 R4) (Ixa R6) Inst x+1 R5=R4+R6
CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 CYCLE 6
Figure 11. Timing of HiPerRF
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V. MULTI-BANK HIPERRF

For performance reasons, we considered adding an addi-
tional read port to HiPerRF. However, in the HiPerRF design
adding a read port requires performing the two concurrent
loopback operations as well, which require two write ports.
Hence the HiPerRF design essentially requires read and
write ports to scale together. Based on our design estimate,
a 32x32 bits HiPerRF with two read ports and two write
ports costs nearly triples the JJ counts due to superlinear
increase in the merger, splitter, and other peripheral circuitry
needed to support two ports. An area-efficient solution is a
banked register file. By splitting HiPerRF into two banks, we
can achieve two read ports and two write ports without the
superlinear growth in the peripheral circuitry. The banked
design also reduces the DEMUX depth, speeding up access
to the register file. Since each bank has only half the regis-
ters, the banked design removes one merger and one splitter
(about 10ps time) from the loopback path, saving loopback
timing. Thus banking not only reduces port contention but
also reduces the loopback path delay.

Output

Figure 13. Dual-banked HiPerRF design

A. Port Design

The dual-banked HiPerRF design is shown in Figure 13.
Each bank will have its own read port, write port, and output

port. Although the number of the DEMUXes is doubled,
each of the DEMUXes is only half the size of the one in
the HiPerRF design above. Hence the main JJ overhead is
the extra LoopBuffer. We omit the splitters for illustration
simplicity. The rest of the circuits remains the same as the
HiPerRF design mentioned in section I'V.

B. Timing

Similar to the HiPerRF design, the main bottleneck is still
the DEMUX. The cycle time remains 53ps here. The timing
is shown in Figure 12. However, since we may perform two
read operations in the same cycle, the scheduling will be
different here. We split the register file into two banks based
on the parity of the register number. Registers with odd
register numbers belong to bank 0, and the other belongs
to bank 1.

At the beginning of cycle 2, since Inst x needs to read the
registers from different banks, we can send two read signals
to both banks. Cycle one and cycle three are reserved for the
write back’s reset operation (Inst 1 and 3). Similarly, we send
the read signal of R4 at the beginning of cycle 4. However,
unlike HiPerRF, we do not send the next read signal in the
next cycle. Instead, we reserve this for the write back’s reset
operation of Inst 2. The second read operation starts at the
beginning of cycle 6. As a result, if the instruction is reading
two registers from different banks, it only takes two cycles.
However, if the instruction is reading two registers from the
same bank, it takes four cycles.

In comparison, HiPerRF needs three cycles for all instruc-
tions. By doing so, we utilize the two read ports without
increasing the complexity of the scheduling unit. Similar to
HiPerRF, reading two same registers (R2=R3+R3) needs the
duplication of the readout results.

VI. EVALUATION

The evaluation of HiPerRF focuses on two aspects,
hardware design evaluation and software simulation results
for measuring application-level performance. For each of
the above-described register file designs, we built Verilog
netlists using the publicly available cell libraries [16]. We
successfully verified the functionality and timing with dif-
ferent combinations of inputs, including accounting for wire

WEN@ Rd_Wr AI __>_I Rd Wr !
RENO — T LB Wr RE’I Risf)t — Inst © R1=R9+R8
Rd Reset Szﬂ Re)ad : Inst 1 R2=R9+R8
L R3 Inst 2 R7=R9+R8
WENl (I, R1) ) _.\I Rd Wr ) __......\I
RENl A LB Wr / - LB wr
Src2 Read Rd Reset Srcl Read Src2 Read Inst x R2=R3+R4
(I« R4) (I R2) (I R4) (Ia R6) Inst x+1 R5=R4+R6
CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 CYCLE 6
Figure 12. Timing of dual-banked HiPerRF
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delays post place and route. We then integrated the Verilog
model of our register file designs within the RISC-V Sodor
core CPU to measure the overall JJ count reduction for the
whole chip.

A. Hardware performance

The hardware performance is evaluated in two parts, JJ
count and static power. The total JJ count is calculated by
using the SFQ cell library provided by [16]. For the dynamic
AND gate and NDROC, the data is derived from [13]
and [19]. The static power for the entire register file design is
also derived from the cell libraries. Note that in SFQ designs,
the limiting design factor is the number of JJs that can
be integrated with current fabrication technologies. Hence,
measuring savings in terms of JJ counts is more appropriate
than chip area. Nonetheless, the register file size is about
20% of the total CPU design area using NDRO cells, and it
is reduced with HiPerRF by various amounts based on the
size of the register file.

Total Percentage
JJ Count of Baseline
Register File 4x 4| 16x16|32x32 | dx4 | 16x 16 |32 x 32
ize (bits)
_ NDRO RF 784 | 9850 | 36722 | 100% | 100% | 100%
( Design)
HiPerRF 695 | 5195 | 16133 | 88.65% | 52.74% | BI%
Dual-banked HiPerRF | 736 | 5626 | 17094 | 93.88% | 57.12% | 46.55%
Table 1

TOTAL JJ COUNT AND THE PERCENTAGE OVER THE BASELINE DESIGN

Static Power Percentage
(uWW) of Baseline
Register File 4x4|16x16|32x32| 4x4 | 16x16 | 32 x 32
Size (bits)
n NI.).RO RF. 170.73 | 1997.49 | 7262.17 100% 100% 100%
(! Design)
HiPerRF 149.16 | 1220.05 3911.00 | 87.37% | 61.08% 53.85%
Dual-banked HiPerRF | 148.47 | 1289.80 | 4077.88 | 87.00% | 64.58% | 56.15%
Table 1I

STATIC POWER AND THE PERCENTAGE OVER THE BASELINE DESIGN

Table I shows the JJ count for each of the described
register file designs for two different register file sizes. The
data includes the JJ counts for splitters, mergers, and any
necessary JTLs for the register file access. The first row
shows the baseline, an NDRO based register file. The second
row shows HiPerRF design. The third row shows a dual-
banked HiPerRF design. The 4x4, 16x16 and 32x32 bits

Readout Delay Percentage
(ps) of Baseline
Register File 4x416x16|32x32| 4x4 | 16x16 | 32x32
Size (bits)
NDRO RF 77 144 1775 | 100% | 100% | 100%
(Baseline Design)
HiPerRF 122.8 187.8 220.3 159.48% | 130.42% | 124.11%
Dual-banked HiPerRF 94.8 159.8 192.3 123.12% | 110.97% | 108.33%
Table III

READOUT DELAY AND THE PERCENTAGE OVER THE BASELINE DESIGN

HiPerRF saves about 11%, 47%, and 56% of JJs compared
to the baseline design. The extra JJs required to implement
HC read and write circuits can be amortized with the density
advantage of HC-DRO cells. Hence, the relative advantage
of HiPerRF grows as the size of the register file increases
in the future.

Table II shows the static power for each design and the
percentage of the baseline design. As expected, the static
power is a function of the number of JJs used in a design.
Hence, the HiPerRF with 32x32 bits consumes about 46%
less static power compared to the baseline design, reflecting
the reduction in JJ count. Note that these results did not
include the benefits associated with reduced cooling power
due to reduced static power. Heat extraction is a major power
source and may lead to two orders of magnitude more energy
consumption [8].

Full Chip Benefit: To quantify the benefits at the chip
level, we synthesized the RISC-V Sodor in-order core with
HiPerRF by using the qPalace tool [23] to get the JJ count.
The Sodor core has five main parts: ALU, Register File (RF),
Control and Status Registers (CSR), control path, and front
end. The total JJ count of these various CPU components
using baseline NDRO register file design is 139,801. When
the register file is replaced with HiPerRF, including all the
additional overheads of read/write and clock circuits, the
total JJ count reduces to 117,039 JJs. Thus the total JJ
reduction is 16.3%.

We also analyzed the readout delay, which is a critical
performance metric. Table III shows the readout delay for
each design and the percentage of the baseline design. The
4x4, 16x16 and 32x32 bits HiPerRF actually increases the
readout delay due to the need to write the data into the
LoopBuffer before the data is made available to the ALU.
The increase in delay is about 24% for a larger register file.
However, the dual-banked design could reduce the readout
delay overhead to 8% by reducing the long latency of
accessing the NDROC. We expect that as the register file
size grows, relative gains in power and JJ count reduction
of HiPerRF grow. That is because the overhead circuitry
costs are better amortized. Moreover, even the readout delay
overhead will eventually match the baseline with a larger
size.

B. Simulation Results

To analyze the performance improvement at the appli-
cation level, we designed an SFQ based gate-level CPU
simulator. The ISA we chose to simulate is RISC-V 321,
which is the basic RISC-V ISA. The simulator is based on
the RISC-V ISA Simulator Spike [24] and written in C++.
While the basic simulator uses a function-level pipeline,
our enhanced simulator implements a gate-level pipeline.
Such a gate-level pipeline model is necessary, for instance,
to enable pipelined execution within the read and write
ports that use a long chain of NDROC cells. Our simulator
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Figure 14.

uses the notion of a macro clock to simulate the fetch-
decode-execute-writeback pipelines, and it uses micro clocks
to simulate the gate-level pipelining functions of SFQ. As
we discussed before, our simulator supports the internal
forwarding within the register file when appropriate without
violating timing. In our current simulator design, an external
cache at 77K is interfaced with the SFQ design, which is the
usual practice for interfacing larger memories [25]. As such,
all memory references are satisfied from the 77K memory.
However, recent advances in new materials such as three-
terminal JJs, magnetic JJs, ferromagnetic JJs, and spin-based
JJs have advanced memory integration closer to SFQ [26]-
[29], which is outside the scope of our simulation capability.

To get the depth of each gate-level pipelined stage, we
synthesized the RISC-V Sodor in-order core Verilog code by
using the qPalace tool [23] which synthesizes SFQ designs
built from the cell libraries. We measured the gate-level
pipeline depth of each functional block from the synthesis
results. Based on the synthesis result from qPalace, the Sodor
design has a worst-case gate-level cycle time of 28ps, which
is about half of the 53ps needed for HiPerRF. Hence, we
used a cycle time of 28ps for each gate, and each read
or write operation takes two cycles. As such, the readout
delay shown in Table III is translated into the corresponding
number of cycles. These readout delays are then used as
input to determine the stall cycles for handling dependencies.
The performance results below account for any write port
contention between loopback writes, and the traditional write
back path. The way it is accounted for is described in
Section IV-D where we only issue instructions every three
cycles, where one of those cycles is reserved for write
back operation to not conflict with loopback. Similarly, we
also account for the latency in the dual-banked HiPerRF
described in V-B. Hence, by design, our approach statically
eliminates write port contention between write back and
loopback, and the scheduling costs are modeled in the
simulator accurately.

The benchmarks we used are from the RISC-V reposi-
tory [30] and SPEC CPU 2006 [31]. Due to the ISA and sim-
ulator limitations, we ran 429.mcf, 458.sjeng, 462.libquan-
tum, and 999.specrand. Some limitations include lack of
full support for floating-point instructions, cross-compiler
failures from the GCC compiler. Due to the extremely slow

towers
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Dual-banked HiPerRF + Ideal scheduling
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429.mef

CPI overhead over baseline (NDRO RF) of different RISC-V and SPEC 2006 benchmarks for different designs

gate-level simulations, each benchmark is simulated for 24
hours. SFQ simulators need to do detailed gate-level pipeline
simulations to bring the SFQ pulse state properly loaded into
the simulator. Hence, fast-forwarding using pinpoints [32]
and other advanced simulation strategies need a careful
redesign, which is part of our future work.

Figure 14 shows the CPI overhead for each benchmark
and the average CPI overhead across all benchmarks, com-
pared to the NDRO register file baseline. It is worth noting
that in SFQ based designs, the gate-level pipelining poses
significant challenges for read-after-write (RAW) hazards.
The execution stage of the RISC-V core is 28 stages
deep. Hence, any two instructions with RAW dependency
in a short window will stall in the execution stage. We
believe that current compiler optimizations may place RAW
dependencies somewhat closer to each other to exploit data
forwarding capabilities in traditional CPU pipelines. How-
ever, SFQ based CPUs require quite the opposite — to spread
the RAW dependency instructions as far apart as possible.
As a result, the average cycles per instruction measured in
our modified RISC-V core gate-level simulator is about 30
cycles averaged across all the benchmarks. Furthermore, the
compiler we used is not optimized for accessing multiple
banks. Hence, for the dual-banked design, we also run the
simulations that consider the ideal situation, in which all
instructions read the two source registers from different
banks.

The CPI of HiPerRF is about 9.8% worse than the
baseline. As discussed earlier, HiPerRF’s design goals are to
use fewer JJs without significantly impacting performance.
HiPerRF is expected to have somewhat lower cycle level per-
formance than the baseline design because the LoopBuffer
is in the critical path, and any subsequent instruction that
wants to read the same source register may have to wait
for the loopback write before accessing the register file.
Dual-banked HiPerRF reduces this overhead to 3.6%. This
improvement is due to less port contention and short readout
delay. In the ideal situation, the CPI overhead is only 2.3%,
which is almost as good as the baseline design but saves
53% JJs in the register file, and 16.3% fewer JJs even at the
overall chip level.
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C. Impact of Wire Delay

There are two types of wiring in RSFQ technology,
Passive microstrip Transmission Lines (PTL) and Josephson
Transmission Lines (JTL). Our design uses PTLs for all the
wires, and we use JTLs only when there is a need to induce
delays, as was the case with the HC-READ circuit. We
have done the placement and routing of our design by using
Cadence Innovus with the library extracted from the open-
source gPalace tool [23]. Figure 15 shows the fully placed
and routed results of HiPerRF. The white areas in Figure 15
show the LoopBack path of HiPerRF. The longest delay on
the LoopBack path is only 4.6ps, which is much smaller
than the decoder latencies (53ps). Although the LoopBack
path looks long in the visual illustration in Figure 9, this
path is quite short in reality after placement and routing
are done. On average, across multiple circuits placed and
routed with gPalace, the wire length between two gates
is 262um between any two gates. Furthermore, as per the
gPalace derived data, the delay of the PTL is 1ps/100um,
so the average wire delay between two gates is 2.62ps.
Based on these data, the new readout delay accounting
for all wire delays is shown in Table IV. With a detailed
wire delay inclusion, the overall readout latency overhead
increases by about 1% compared to the baseline; hence the
CPI performance impact is at most 1%.

NDRO RF Dual-banked

(Baseline Design) | HIPerRF | pip  RF
Readout Delay (ps) 216.8 270.1 236.8
Loopback Latency (ps) - 108.4 93.7
Table IV

READOUT DELAY, LOOP-BACK LATENCY WITH PTL DELAY

Y VYV MW VY 4 A MM AL

-
-
Cl
=]
-
-
-
-

Figure 15. Placement and routing results of HiPerRF

VII. RELATED WORK

While we have described the related work as related to
specific design choices throughout the text, in this section,
we focus on a couple of related works that focus on
superconducting register file designs.
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Fujiwara [11] proposed a shift register file built with DRO
cells. Their design is a basic single-bit shift register design
where the data moves from the tail to the head of the shift
register. They used their design in the functional verifica-
tion without considering the architectural and performance
implications in a CPU. However, the implications of trying
to build an HC-DRO register file design with loopback capa-
bilities are significant. (1) HiPerRF is designed to function
with the 2-bit DRO cell, which is not considered in prior
work. As such HiPerRF design must also handle multi-
bit decoding and encoding circuits, which are novel and
entirely outside of the scope of [11]. (2) HiPerRF design
also carefully considers the timing challenges of scheduling
loop back and write back data arriving at the write port. (3)
We also demonstrate how read ports can be repurposed as
reset ports to remove data from an HC-DRO register before
a new write is allowed. This design substantially simplifies
the cost of the port design since we eliminate many of the
splitter cells that are latency-sensitive. (4) We compared our
design with the NDRO design. We evaluated our design and
showed the actual JJ count benefits with a little performance
penalty, which is negligible with the dual-bank option.

Dorojevets and Chen [33] proposed a Reciprocal Quantum
Logic NDRO-based storage. They described the design de-
tails and extended their design to different memory designs,
such as register file and cache. However, their design is
fundamentally limited to using NDRO cells to store register
data. Hence, they do not consider the possibility of reducing
register file design size using HC-DRO cells as the primary
storage elements.

VIII. CONCLUSION

Superconducting devices based on Josephson Junctions
are an important device technology that needs to be explored
in the context of a microprocessor design. The development
of single flux quantum (SFQ) devices and the logic design
tools and techniques around SFQ has been gaining traction
with significant research investments. In this work, we
explored how SFQ based designs can be used to implement
an area-efficient register file in the context of a modified
RISC-V in-order core processor. Since memory is a premium
resource in SFQ designs, we propose HiPerRF, which uses
High Capacity Destructive ReadOut (HC-DRO) cells and
yet supports the multiple read property critical for any
microprocessor register file. We designed the HiPerRF and
proposed multiple enhancements to reduce the access latency
of HiPerRF. Using gate-level synthesis tools and gate-level
simulations, we demonstrate that HiPerRF saves nearly 56%
of the JJ counts. We executed a range of benchmarks on a
pipelined CPU design with gate-level detail to show that
the HiPerRF only pays about 10% performance reduction
due to the LoopBuffer. We also demonstrate how to use a
dual-banked design to reduce the port contention and reduce
performance penalties of accessing DEMUX trees that are
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embedded in the read, write, and reset ports of SFQ register
files.
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