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Abstract—Single Flux Quantum (SFQ) superconducting
technology provides significant power and performance benefits
in the era of diminishing CMOS scaling. Recent advances
in design tools and fabrication facilities have brought SFQ
based computing to the forefront. One challenge faced by
SFQ technology is to have a compact and robust on-chip
memory, which can be used for implementing register files and
cache memory. While dense memories are being investigated
through the development of three-terminal devices such as
Nanocryotrons, in this work, we build on a novel memory cell
built using traditional Josephson junctions (JJs). In particular,
we design a high capacity register file, called HiPerRF, that
builds on a High Capacity Destructive ReadOut (HC-DRO) cell
in SFQ technology. HC-DRO design can store up to three fluxon
pulses, thereby providing the equivalent of 2-bit storage in a
single cell. However, these cells provide only destructive readout
capability, namely each value can be read only once. However,
CPU register file contents are read multiple times in any
program, and hence a destructive readout complicates register
file design. HiPerRF provides the non-destructive property
using a loopback write mechanism, thereby preserving the
higher density of HC-DRO cells without compromising the
multi-read demands of a register file. HiPerRF reduces the
JJ count of the register file design, after accounting for all
the peripheral access circuitry costs, by 56.1% and reduces
the static power by 46.2%. Furthermore, HiPerRF reduces the
JJ count by 16.3% even when considering an entire in-order
RISC-V CPU core.

Keywords-Superconducting electronics; SFQ; Register File;
Destructive Readout;

I. INTRODUCTION

Rapid Single Flux Quantum (RSFQ) devices introduced

by Likharev et al. [1] have gained traction as one of the

promising technologies to augment CMOS based comput-

ing. Single Flux Quantum (SFQ) technology uses quan-

tized voltage pulses in digital data generation, reproduction,

amplification, memorization, and processing. In particular,

applications and kernels that demand substantial compute

density and/or need to operate at extremely low power

are well suited for SFQ based computing. Some examples

are computing in space applications with extremely limited

power and iterative linear algebraic computations in machine

learning. The SFQ technology is based on superconducting

devices called Josephson Junctions (JJs). These devices work

at a low temperature with a short switching time (∼1ps)

and little switching energy dissipation (∼ 10−19Joules) [2].

The JJ-based SFQ circuits designed have been demonstrated

to operate at frequencies up to 770GHz [3]. Recent works

focused on efficient SFQ logic circuit realizations, such

as designing ALUs, and other digital structures that are

necessary to build CPUs [4]–[6]. Even the early realization

of a simple 8-bit bit-serial CPU has been prototyped [7]. The

current SFQ technology is roughly equivalent to a ”250 nm”

CMOS node. The SCE technology road map [8] predicts that

by 2026 we will have a ”90 nm” equivalent node. Theoretical

estimations of the maximum density of SFQ-based circuits

utilizing the geometric inductance of a wire suggest a density

of approximately 107 JJ/cm2. These projections indicate that

building a SFQ based CPU is within reasonable reach.

SFQ memories, however, are built as flip-flop-like designs,

and hence memory density is quite low compared to SRAM.

SFQ provides two different memory cell designs currently: a

destructive readout (DRO) cell and a non-destructive readout

(NDRO) cell (design details in the next section). Each DRO

or NDRO cell in current designs stores a single pulse. To

increase the memory capacity, recently, our group proposed

a High Capacity Destructive ReadOut (HC-DRO) memory

cell [9]. HC-DRO can hold up to three SFQ pulses, which

means they can store 2 bits of information in one memory

cell, thereby providing an opportunity to double the memory

density.

In this paper our goal is to build a CPU register file

using HC-DRO cells. We must, however, tackle multiple

challenges. The inability to retain data after a single read
makes HC-DRO (or any DRO) cells challenging for register

files. The use of NDRO cells is quite expensive in terms of

JJ counts (7X more JJs needed for 2-bit NDRO compared to

a single HC-DRO cell). Given that the size of the physical

register file has a significant performance impact [10], we

propose a solution that relies on HC-DRO cells for high

density while at the same time supporting the need for

reading each register multiple times. Our design is based on

the intuition that only a few registers are actively read at any
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given time window. Hence, one needs to preserve the non-

destructive read property only for those active registers. As

such, we augment a large HC-DRO register file with a small

victim NDRO buffer that helps the readout data to recycle

back to the original register in a lazy manner, outside of

the critical path, thereby providing the non-destructive read

property. Prior work [11] has used a rotating shift register

where the value of each bit is pushed back from the tail

of a shift register to the head. But this work is centered on

designing a rotating shift register and does not address the

architectural challenges of incorporating destructive readout

cells into an architecturally feasible register file design.

Given that the architectural challenges of building a register

file in a CPU pipeline are substantial, we design HiPerRF

to tackle the numerous challenges. This work will discuss

these challenges and propose solutions that allow SFQ based

CPU designs to exploit HC-DRO cells for register files. The

primary contributions of this paper are as follows:

• We present the design of HiPerRF, which is a register

file built with HC-DRO cells. We present the design

enhancements to read and write multiple SFQ pulses

without perturbing the rest of the SFQ CPU pipeline.

Since HC-DRO cells lose data after each read, we

present an approach to restore the value after each read.

We use a set of NDRO cells shared across an entire

column of DRO cells to enable a low-cost approach to

preserve the HC-DRO cell contents.

• We present a dual-banked design of HiPerRF. The dual-

banked HiPerRF accompanied with a static scheduling

algorithm reduces the port contention and increases the

performance.

• We implemented the design using detailed cell level

libraries and a hybrid pipeline-gate level simulation to

evaluate the area and power impacts. Given that JJ

counts are the primary design limiter in SFQ CPUs, we

quantified the JJ reduction benefits of HiPerRF when

integrated into an in-order RISC-V CPU. Our results

also show that when considering the whole CPU, the

HiPerRF design provides a 16.3% reduction in the JJ

count.

II. BACKGROUND

A. SFQ Logic

Unlike the CMOS technology that uses high and low

voltage levels to represent ”1” and ”0”, SFQ logic use

magnetic pulses. The SFQ pulse is stored in the form of a

single quantum flux or fluxon. These fluxons are transmitted

between logic gates to enable computations. For memory

cells, the existence of an SFQ pulse represents a ”1”, and

the absence of a pulse represents a ”0”. However, when

performing computations in an SFQ logic gate, the lack of a

pulse at the input leads to ambiguity. The lack of a pulse can

mean a ”0”, or the pulse has not yet arrived. To disambiguate

these two scenarios, SFQ logic uses gate-level clocking. At

the end of a clock period, the absence of a pulse at the gate

input will be treated as an input ”0” for computation. The

use of gate-level clocking is thus unique to SFQ logic, as

opposed to pipeline stage-level clocking used in traditional

microprocessors.

Since all SFQ logic gates have a clock, the output pulses

generated by a logic gate are driven to the next gate in the

computation in the next cycle. This characteristic makes the

SFQ circuits pipelined down at the gate level. The gate-level

clocking requirement leads to deep pipelines, which create

data and control hazards more frequently than in CMOS

designs. We describe such hazards in the HiPerRF design

and present solutions that consider gate-level pipelining

impacts. For instance, our design considers various data and

control hazards to make sure no two signals arrive at any

gate at the same time.

B. Clock Distribution

Gate pipelined circuits may pose a challenge for clock

distribution. Prior approaches to tackle clocking challenges

include using a hierarchical clock design where a system

clock (called the slow clock) is used for advancing func-

tional pipeline stages, such as issue and decode stage, and

using local clock (fast clock) for bit-serial operations [12].

Such hierarchical clock distribution solutions help meet the

timing requirement and simplify clock design. These are

also concurrent advances in clock distribution strategies,

which are outside the scope of this paper. For instance,

using the dynamic SFQ (DSFQ) technology [13], researchers

have designed the gate with self-resetting property, thereby

removing the need for a clock to operate each gate. This

paper eschews the clock distribution concern by designing

a CPU register file architecture that does not need explicit

clock distribution for each gate. Instead, the read and write

enable signals of the register file (generated from a decoder)

automatically activate individual gates in the register access

ports to trigger data movement. By using a clock-follow-data

like approach, one can avoid the clock distribution demands

of the register file design, as we demonstrate in this paper.

C. DRO Memory Cell

Destructive read-out (DRO) cell [1] of single flux quantum

(SFQ) technology is one of the most important building

blocks for superconducting circuits, which can be used as

a memory element for storing the SFQ pulses. It is also

used as a buffer cell for synchronizing the signals [14] in a

circuit. DRO cell is also known sometimes as an RS-Flipflop

or D-Flipflop.

Figure 1(a) shows the schematic of a regular DRO cell

which receives an SFQ pulse at input D and stores it in

the superconducting loop J1-L2-J2 if it does not already

have a fluxon (SFQ pulse) stored in it. If the J1-L1-J2 loop

already has a fluxon stored in it, the incoming pulse is
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dissipated through the buffer junction J0. The stored fluxon

is read by input CLK which resets the superconducting loop,

subsequently resulting in an SFQ pulse at the output Q. Each

cell read is destructive since the loop is reset after each read

operation. Thus a DRO cell stores at most a single fluxon

acting as a one-bit storage cell, and provides destructive read

out capability.

(a) (b)

Figure 1. Schematic of (a) DRO Cell (b) HC-DRO cell

D. HC-DRO Memory Cell

In our prior work, we proposed high capacity destructive

read-out (HC-DRO) cell [9]. This design is based on an

important observation that it is possible to store more than

one fluxon in a memory cell, creating the effect of a multi-

bit storage cell. Figure 1(b) shows the schematic of the HC-

DRO cell. Compared with Figure 1(a), the J0 JJ has been

removed, thereby allowing the accumulation of more than

one incoming pulse. The J1-L2-J2 loop can hold multiple

pulses by increasing the L2 inductance. The critical currents

of J1 and J2 are generally increased to enable stable reading

of the multiple pulses.

While storing multiple bits in a storage cell may increase

device variability, with careful inductor sizing and critical

current delivery to JJs, a 2-bit HC-DRO can be robustly

built [9]. We have designed and verified the operation of

a robust 2-bit HC-DRO cell using JoSim, a detailed device

and circuit simulator for superconducting designs [15]. The

design parameters that provided the robust behavior in our

design are L1∼ 6 pH, L2∼ 20 pH, L3∼ 4 pH, J1∼ 115
μA, J2∼ 111 μA, J3∼ 80 μA. While device variability may

be another concern, we believe the advances in fabrication

technology will enable HC-DRO to be built just as robustly

as any device.

E. NDRO Memory Cell

Non-destructive read-out (NDRO) cell [16] is another

important memory cell in SFQ technology. Unlike DRO

cells, NDRO cells can keep the data after the read operation.

It works similar to a CMOS D flip-flop with reset. Figure 2

shows the schematic of a regular NDRO cell. Once it

receives a pulse from the input IN, it will store the fluxon

in the loop J3-L5-J7-J10. If the J3-L5-J7-J10 loop already has

a fluxon stored in it, the incoming IN pulse is dissipated

through the junction J2. The pulse that comes from the

input RESET will make the fluxon stored in the loop to be

dissipated through J7. If there is no pulse stored in the loop,

the RESET pulse is dissipated through J5. The pulse from the

input CLK, which is essentially a read operation, will trigger

a pulse on the output OUT only if the J3-L5-J7-J10 loop has

a fluxon, and the stored fluxon stays as is. Thus the NDRO

cell keeps the read operation non-destructive. However, this

design cost 11 JJs. To store 2-bits with NDRO requires 2×11

JJs. On the other hand, HC-DRO uses only 3 JJs to store 2-

bit, hence providing a 7.3× density advantage. Note that in

SFQ designs, density is mainly measured in terms of JJ count

since JJs are the most critical manufacturing bottleneck.

Figure 2. Schematic of an NDRO Cell

F. Splitters and Mergers

Because a single pulse is generated from a logic gate, it

is not possible to drive two SFQ gates by one SFQ pulse.

Unlike CMOS fan-out junctions, an SFQ pulse must be

explicitly split at every fan-out point. Thus, to drive two

SFQ gates, a splitter [1] is required that reproduces the input

pulse. Figure 3(a) shows the schematic of a splitter. Once

the splitter receives a pulse on its input A, it will generate

two SFQ pulses on both its outputs (output B and C).

In SFQ logic, a merger gate [1] makes two SFQ pulses

drive the same pin possible. Figure 3(b) shows the schematic

of a merger. When two pulses A and B arrive too close in

time, there will be only one pulse on the output C. In this

case, the early one will trigger a single pulse to be outputted

at C, and the later one is dissipated through J3 (A) or J4 (B).

(a) (b)

Figure 3. Schematic of (a) Splitter and (b) Merger Cell
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G. Context for a SFQ Microprocessor

In this section, we provide a brief context for the SFQ-

based CPU targeted in this paper. Given that SFQ is at a

nascent stage in terms of design tools and manufacturing,

our goal in this paper is to explore the design challenges

of building a register file within the context of an in-order

pipelined CPU, with fetch-decode-execute stages, based on

RISC-V ISA with SFQ-based cells used in its design. We

acknowledge that CMOS processor designs have much more

complex control structures and execution paradigms (such

as out-of-order and speculative execution). But a nascent

technology requires research explorations such as those

presented here to understand challenges and opportunities

within a reasonable scale.

Throughout this paper, we rely on extensive physics and

device-level characterization data for SFQ designs that our

team has made publicly available on GitHub [16] as part

of our IARPA superconducting design tools initiative. For

example, the repository provides splitter and merger cell

parameters, including the cell timings, power, and margin

estimates, which are incorporated into our register file access

pipeline models. In terms of architectural level evaluations,

we provide a detailed Verilog-based implementation of

HiPerRF and its peripheral access circuits, including the

decoders and read/write port designs and wiring needs.

For wiring, as we describe in more detail later, HiPerRF

is primarily reliant on Passive microstrip Transmission

Lines (PTL) and just a few Josephson Transmission Lines

(JTLs) [17] for its design. Our place and route simulations

account for these wire delays as well as any additional JJ

counts needed. We then integrate our models into an in-

order processor model to quantify the chip level are benefits

of HiPerRF. Given the research resource limitation in our

setting, while the fabrication of a chip is outside our scope,

we believe that our detailed architectural exploration studies

will provide key insights into the CPU level implications of

future technologies such as SFQ.

III. CLOCK-LESS NDRO REGISTER FILE

This section describes our NDRO based register file

design, which acts as a strong baseline. We first discuss how

we design our innovative clock-less read, write and reset

ports of the NDRO baseline register file using SFQ logic

gates. The goal here is to demonstrate how to eliminate the

need for clock distribution in SFQ register file design setting

aside the memory density improvement of HC-DRO cells. In

the next section, we show how the clock-less NDRO register

file is enhanced with the dense HC-DRO cells to create the

HiPerRF design.

Figure 4 shows the design. We show the design with one

read and write port. Each rectangular box with an IN and

OUT is one register entry. The figure shows a set of such

register entries that together form the register file. At the

output end, an explicit merger gate (marked as M ) merges

the output. Since there is a single read port, a single register

is read enabled, which produces an output while all other

registers do not place any pulses on the output. The output

from the single register whose read is enabled will then be

sent as R DATA. The figure shows three blocks: read and

write ports that are similar to CMOS design and an SFQ-

specific reset port.

Figure 4. NDRO register file design

A. Read Port Design

A register read request is transformed into a read enable

signal for the corresponding register. This transformation

may be done using a demultiplexer (DEMUX) to decode the

read address. CMOS designs may use combinational gates

to achieve DEMUX functionality, as shown in Figure 6(a).

However, in SFQ designs implementing such combinational

design is prohibitively expensive.

Figure 5 shows the schematic of an AND gate for com-

binational design. It costs 12 JJs. To build the DEMUX,

we have to split the input signal (IN) and the select signal

(SEL) across the two AND gates. The NOT gate also costs

10 JJs and also needs a clock signal. As such, in SFQ

technology the size of logic gates, the additional clock

signals, and the existence of mergers and splitters will make

the combinational DEMUX design very large. A 1-to-2

combinational DEMUX needs a total of about 50 JJs.

Figure 5. Schematic of an AND Gate
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Rather than a combinational design, we built a demul-

tiplexer using a Non-Destructive ReadOut cell with Com-

plementary output (NDROC) which was proposed in prior

work [7], [18]. Figure 6(b) shows the NDROC block dia-

gram. The select signal (SEL) is connected to the SET input

of the NDRO cell. If the SEL signal receives a clock pulse (a

value 1), then the NDROC cell’s SET pin is activated. When

a pulse to the clock pin (CLK) is provided, it then outputs

that pulse on the Q0 output (OUT0), and the complement is

sent to Q1 output. Thus the NDROC can be repurposed to

act as a 1-to-2 DEMUX. Note that in the above description,

the SEL signal is driven by the source register number. The

source register could be an architected register encoded in

the instruction if no renaming is done. Otherwise, the source

register is the physical register number.

The NDROC based 1-to-2 DEMUX costs only 33 JJs [19],

which is about 60% of the combinational design based on

AND gates. However, for this design to work correctly,

the RESET signal needs to be asserted after each demux

operation. Recall that the NDROC cell preserves any prior

”1” stored in it from a select signal that deposited a ”1”. We

need to clean the ”1” if we want to write a ”0” for the next

selection.

(a)

(b)

(c)

Figure 6. (a) DEMUX built with combinational logic (b) DEMUX built
with NDROC (c) 1-to-4 DEMUX with NDROC

Since most practical ISA designs have many registers,

it is necessary to build a 1-to-n DEMUX using NDROCs.

The proposed hierarchical tree structure DEMUX is shown

in Figure 6(c). The SEL[1] signal is connected to the first

NDROC cell to either activate the top bank or bottom bank

of the register file. The SEL[0] signal selects one of the

two registers in either the top or the bottom bank in the

second step. The SEL[0] signal must be split to drive the

two NDROCs. The outputs of the first level NDROC are

connected to the CLK pin of the second level NDROC.

To activate a register in a read operation, we connect

the register number’s select bits to the appropriate level of

the NDROC tree. Then a single clock pulse is provided as

the read enable pulse. The read enable pulse then traverses

through the NDROC tree and will trigger the pulse on the

OUT port corresponding to the register number.

To design a read port using the above design, we connect

the read enable (REN) signal (generated from a decoder

stage) to the starting input (IN) of the DEMUX and the

read address (R ADDR) (register number) to the SEL pins.

Each of the output pins (OUT0..OUTN) is connected to

the corresponding NDRO register entry. Since each NDRO

register entry may have a 32/64-bit value, the corresponding

OUT pin must be split 32/64 times in a tree hierarchy again

to read the register’s entire width. These splitters are omitted

in Figure 4 for simplicity.

In this design, no clock distribution is needed since the

read enable and read address signals provided as inputs act

as triggers that move the fluxons through various gates to

trigger the appropriate register to be read eventually. Using

this design, we eliminate the need for clock distribution in

the read port design. In fact, for the entire register file design,

we use the enable signal as the trigger without the need for

an explicit clock, thereby making our design scalable and

robust to clock skew.

Finally, the output port merger block connects the output

of each NDRO register to the output port of the register file.

B. Reset Port Design

In a CMOS design, it is possible to overwrite an existing

memory cell content with a new value. However, in an SFQ

memory cell that has an existing SFQ pulse (equivalent to

storing a ”1” in a cell), it is not possible to replace it with a

”0”. Writing a no pulse does not remove the existing SFQ

pulse in the cell. Hence, every write operation must first

reset all the bits in a register entry to ”0” before a new

write operation can be performed.

Every write operation to a NDRO register must be pre-

ceded by a reset so that the existing pulses in each memory

cell are dissipated. Thus a new reset port is necessary for

performing this function. Since the reset port is used prior to

writing the data, the reset port uses the destination register’s

address (W ADDR) to access the register. It also uses a

special RESET ENABLE signal that is sent as input to

the DEMUX of the reset port. The DEMUX circuit moves

the RESET ENABLE pulse through the gates in the port

to eventually select the destination register. The reset pulse

reaches the selected register’s reset pins so that the content

of the selected register is set to ”0.”

C. Write Port Design

Once the reset operation is completed, the write port

is activated to perform the write operation. The write

port has three inputs, write enable (WEN), write address

(W ADDR), and write data (W DATA). Same as the read

and reset ports, the W ADDR is decoded using the DEMUX

design that we described. The write data is split and sent to

all the NDRO registers. In order to write the data to the
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correct NDRO registers, we add Dynamic AND (DAND)

gates [13] between the write data and the SET pin of the

NDRO register as shown in Figure 7(a).

DAND gates do not use clock signals to control the

timing; instead, they use the hold time to control. Figure 7(b)

shows the timing of the DAND gate. If two inputs arrive

between the hold time, there will be a pulse on the output.

Otherwise, these inputs will not generate any output. By

using DAND gates, we can avoid using clocked AND gates

to reduce the complexity of the design. When both WEN

signals and W DATA arrive within the hold time window,

the pulse will arrive at the corresponding NDRO register’s

SET pin and write the data into the NDRO register. Thus

the benefit of using DAND in the write port is to eliminate

the need for clocking and splitter cells that may be needed

for clock distribution.

(a) (b)

Figure 7. (a) NDRO write circuit (b) Dynamic AND timing

D. Read and Write Operation

Read operation: To initiate a read operation on the

register file, the decoder extracts R ADDR and sends that

address along with REN (read enable) pulse to the register

file. The REN pulse traverses the gates selected by the

R ADDR bits to move the register data out to the execution.

Write operation: First, the write operation must reset the

NDRO register entry. The write operation sends the WEN

and W DATA to write the corresponding NDRO registers. A

reset of all the NDROCs follows the write operation before

the next operation can begin.

E. Timing

The register read and write operation control signals

(REN, WEN, and RESET) are generated in the decode stage

of the pipeline. While these three signals originate at the

same time, they must be delivered with appropriate delays.

Based on our detailed device modeling simulations (more

details on modeling to follow), the NDROC gate in the

current SFQ technology can receive two successive enable

signals on its input (IN) with a 53ps delay. That means two

read enable, write enable or reset signals must be at least

53ps apart. This delay is the cumulative delay of HoldRESET

+ CriticalRESET to SET + SetupSET delay of the gates in the

register file ports. The propagation delay, which is the time it

takes for an SFQ pulse on the IN to reach the OUT, is about

24ps, and it is much less than 53ps. Hence the NDROC tree

DEMUX can be fully pipelined at a cycle time of 53ps.

For any write operation, the reset signal has to precede

any write operation. Our device-level simulation measured

that critical time [20] between RESET signal and when data

can be sent on the input IN of a register. This delay to

separate the WEN from the RESET is 10ps, less than the

53ps delay needed for the DEMUX access. Based on these

considerations, the clock cycle of the NDRO register file

is 53 ps, while different control signals, such as RESET

followed by WEN signals within a clock, are delayed by

10ps.

The timing for an example instruction sequence is shown

in Figure 8. During the execution of one instruction, there is

at most one register write operation, and at most two source

register read operations. The figure shows a sequence of

instructions labeled Inst 0 ... Inst x+1. Let us assume that

the write back operation from Inst 0 is going to overlap with

the source read operation of Inst x. Thus the write from old

instruction (write back), which is the R1 from Inst 0, and

two read operations from current instruction, R1 and R3

from Inst x will contend for the register file access. Inst X

also has a read-after-write dependency with Inst 0 here.

Given this scenario, our preferred design option initiates

the write operation of R1 before the read operation so that

we can ensure the internal forwarding. The write operation

first initiates a RESET operation. After RESET, the WEN

(write enable) signal pulse is provided with a delay, which is

based on the critical time between RESET and IN of the R1

register. Then the instruction initiates the REN (read enable)

pulse. The second read operation for source register R3 in

the second cycle is initiated concurrently with the RESET

and WEN operation of Inst 1.

Figure 8. 32×32 bits NDRO register file timing
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IV. HIPERRF: HC-DRO RF WITH NDRO CAPABILITIES

HiPerRF uses HC-DRO cells to replace the NDRO cells to

improve register file density. In our prior work we proposed

HC-DRO cells [9] for density, but that work did not consider

how to tackle the unwanted destructive readout property

in designing a CPU register file. Our prior work also did

not account for the circuit timing requirements and the

various challenges associated with scheduling a register file’s

read/write operations.

Figure 9 shows the HiPerRF design. This design assumes

that the HiPerRF design is a self-contained unit, and the rest

of the CPU operates on each bit of information separately.

Namely, even though the design stores 2-bits in one cell,

they are read out as at most three pulses using an HC-

READ circuit (described below) and fed to the rest of the

logic. There are four major components in HiPerRF different

from the baseline NDRO register file. First, the obvious

replacement of NDRO cells with HC-DRO cells to store

data. The second, the absence of a reset port. The third is a

new output port design that enables the HiPerRF operation

to retain the data. The last one is adding the HC-CLK, HC-

WRITE, and HC-READ circuits that can decode and encode

the two-bit storage HC-DRO cell into up to 3 separate pulses

and vice-versa.

Figure 9. HiPerRF design

A. HC-DRO Read and Write Circuits

To read and write the HC-DRO cells correctly, we need

to design the HC-DRO specific read and write circuits based

on the initial design shown in previous work [9].

HC-WRITE circuits: Each HC-DRO cell encodes two

bits of information into 0 to 3 pulses. We need an HC-

WRITE circuit to convert the two bits of information gener-

ated by an ALU into up to 3 pulses for storage in HC-DRO.

The HC-WRITE circuit designed is shown in Figure 10(a).

The write circuit uses Josephson Transmission Lines (JTL),

represented as diamonds with J in Figure 10(a). JTL is an

SFQ design element that allows the fluxon to pass through

it with delay. For instance, in the figure, when two pulses

arrive at B0 (LSB) and B1 (MSB), the pulse starting at

B0 goes through the two merge cells to produce the first

pulse on the OUT. The pulse from B1 travels through three

JTLs horizontally and goes through the splitter and merge

cell to generate the second pulse. The split pulse from B1

will go through the vertical JTL path and eventually become

the third pulse. The JTLs act as delay elements to create the

minimum required separation to store two consecutive pulses

into the HC-DRO cell; in our current design, this delay is

about 10ps due to the requirement of the setup and hold

time [21] of HC-DRO cells.

HC-CLK circuits: To read HC-DRO cells, we need to

send three consecutive pulses to the input pin to read out all

the fluxons stored inside. For instance, the REN signal that

eventually reaches an operand register from the DEMUX

port must generate three pulses to read each HC-DRO cell.

The HC-CLK circuit is used to duplicate one SFQ pulse into

three pulses. The circuit is shown in Figure 10(b). Same as

before, the design uses JTLs to create three pulses that meet

the required timing restrictions without any explicit clock

signals.

(a) (b)

(c) (d)

Figure 10. (a) HC-WRITE design (b) HC-CLK design (c) HC-READ
design (d) state machine diagram of the counter

HC-READ circuits: Reading HC-DRO cells may pro-

duce 0 to 3 consecutive pulses at the input pin. These serial

pulses need to be translated into normal one-bit logic to

create two parallel pulses. The proposed HC-ReAD design

used in this work is built using two one-bit counters [22] to

build a two-bit counter. The design is shown in Figure 10(c).

The state machine diagram of the counter is shown in

Figure 10(d). After counting the pulses, the circuit generates

two bit output as two parallel pulses on B1 and B0.

B. LoopBuffer for Non-destructive readout

The output port design of HiPerRF provides the non-

destructive readout capabilities for HC-DRO cells. We add

a LoopBuffer to the output port, a set of NDRO cells that

enables restoring a register entry data after a read operation.

Read operation flow: The CLK input of the NDRO cell

is connected to the output pulses produced from an HC-
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DRO register. When an instruction wants to read a source

register, the LoopBuffer’s NDRO cell is first set to 1; namely,

a single pulse is stored in the NDRO cell prior to the start of

the register read operation. Each of the 2-bit source register

values (at most three pulses stored in a single HC-DRO

cell) arrive at the CLK pin of the LoopBuffer’s NDRO cell.

The incoming pulses from the HC-DRO register exit the

LoopBuffer as output pulses. For instance, if the HC-DRO

cell has an encoded value of ”10”, it will generate two output

pulses, triggering the LoopBuffer NDRO to produce two

output pulses. If the HC-DRO cell has an encoded value

of ”11”, it will generate three output pulses, triggering the

NDRO to produce three output pulses.

Those output pulses go through the splitter, and one

branch of that restores the data back to the source register,

while the other branch is sent to HC-READ to decode into

two-bit values for operation by the ALU.

Write operation: In HiPerRF, when an instruction enters

the write back stage, its destination register write operation

is divided into two steps: the first operation reads the register

content and erases that register content using the LoopBuffer.

To enable this erase operation, the LoopBuffer is first reset to

zero and the current content of the destination register is read

into the LoopBuffer to dissipate its value. Then the write

back of the new value follows normally since the destination

register is now cleared.

The LoopBuffer design is based on the intuition that

only a few registers are actively read at any given time

window. Hence, one needs to preserve the non-destructive

read property only for those active registers. As such, our

design allows a large HC-DRO register file to share a small

victim NDRO buffer that helps the readout data to recycle

back to the original register.

C. Read Port and Write Port Design

The read and write port operate similarly to the NDRO

baseline design. The one difference is adding the HC-CLK

circuits between the DEMUXs and HC-DRO cells. The HC-

CLK generates three pulses for read enable and write enable

signals. This operation enables us to read each HC-DRO cell

using the enable pulses generated from HC-CLK. The use of

NDRO cells in LoopBuffer provides interesting optimization

opportunities. As explained above, the NDRO cell can be

reset to erase register content. We use this property to use

a single read port to work as a reset port as well. Thus the

need for a reset port is eliminated in the HiPerRF design.
Unlike the NDRO register file’s write port, the HiPerRF’s

write port needs to accept data both from the regular register

write operations and the LoopBuffer. Hence, a new merger

gate is added at the write port, as shown in Figure 9. An

HC-WRITE is added between the input and the merger to

encode the data for HC-DRO storage.

D. Timing
Similar to the NDRO RF, the bottleneck in HiPerRF is

also the NDROC of the DEMUX. The gap between two REN

signals and two WEN signals is also 53ps, which will be the

cycle time. The control pulse timing of HiPerRF is shown

in Figure 11. At the start of executing Instruction X, a write

operation of the destination register is initiated. The write

operation first generates a REN pulse (to reset the register).

The REN pulse passes through HC-CLK to generate three

pulses (each 10ps apart in our design due to the requirement

of the setup and hold time of HC-DRO cells, as shown

in three rectangular pulses in the figure). The WEN pulse

follows this reset operation in the second clock, which passes

through HC-CLK to generate three pulses. Concurrent with

the WEN pulse, the first source read operation is initiated

with a REN pulse in the second clock (for clarity, the three

pulse sequence is shown as just one pulse). The loopback

write for this read operation is initiated in the third cycle, as

the dashed arrow shows. In the third clock, the second source

register’s REN pulse is initiated, followed by a loopback

write operation of source 2 in the fourth clock. During the

fourth clock, the second instruction’s destination register’s

write operation is also initiated, and the process repeats every

three cycles. Note that in this timing sequence, the write

operation of register R1 is unable to forward the data to Inst

X. Hence, Inst X has to go through the full source register

read operation.
The loopback write brings one more issue to the forefront:

the Read-After-Read (RAR) hazards. If Inst x is reading

from the R3 twice (R2=R3+R3), the second read operation at

cycle three will read out nothing since the data has not come

back yet. In this case, the second R3 should be duplicated

from the first read operation rather than being read from the

RF. Note that for precise exception handling, the loopback

write operation cannot be optimized even if the same register

is being overwritten anyway.

Figure 11. Timing of HiPerRF
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V. MULTI-BANK HIPERRF

For performance reasons, we considered adding an addi-

tional read port to HiPerRF. However, in the HiPerRF design

adding a read port requires performing the two concurrent

loopback operations as well, which require two write ports.

Hence the HiPerRF design essentially requires read and

write ports to scale together. Based on our design estimate,

a 32x32 bits HiPerRF with two read ports and two write

ports costs nearly triples the JJ counts due to superlinear

increase in the merger, splitter, and other peripheral circuitry

needed to support two ports. An area-efficient solution is a

banked register file. By splitting HiPerRF into two banks, we

can achieve two read ports and two write ports without the

superlinear growth in the peripheral circuitry. The banked

design also reduces the DEMUX depth, speeding up access

to the register file. Since each bank has only half the regis-

ters, the banked design removes one merger and one splitter

(about 10ps time) from the loopback path, saving loopback

timing. Thus banking not only reduces port contention but

also reduces the loopback path delay.

Figure 13. Dual-banked HiPerRF design

A. Port Design

The dual-banked HiPerRF design is shown in Figure 13.

Each bank will have its own read port, write port, and output

port. Although the number of the DEMUXes is doubled,

each of the DEMUXes is only half the size of the one in

the HiPerRF design above. Hence the main JJ overhead is

the extra LoopBuffer. We omit the splitters for illustration

simplicity. The rest of the circuits remains the same as the

HiPerRF design mentioned in section IV.

B. Timing

Similar to the HiPerRF design, the main bottleneck is still

the DEMUX. The cycle time remains 53ps here. The timing

is shown in Figure 12. However, since we may perform two

read operations in the same cycle, the scheduling will be

different here. We split the register file into two banks based

on the parity of the register number. Registers with odd

register numbers belong to bank 0, and the other belongs

to bank 1.

At the beginning of cycle 2, since Inst x needs to read the

registers from different banks, we can send two read signals

to both banks. Cycle one and cycle three are reserved for the

write back’s reset operation (Inst 1 and 3). Similarly, we send

the read signal of R4 at the beginning of cycle 4. However,

unlike HiPerRF, we do not send the next read signal in the

next cycle. Instead, we reserve this for the write back’s reset

operation of Inst 2. The second read operation starts at the

beginning of cycle 6. As a result, if the instruction is reading

two registers from different banks, it only takes two cycles.

However, if the instruction is reading two registers from the

same bank, it takes four cycles.

In comparison, HiPerRF needs three cycles for all instruc-

tions. By doing so, we utilize the two read ports without

increasing the complexity of the scheduling unit. Similar to

HiPerRF, reading two same registers (R2=R3+R3) needs the

duplication of the readout results.

VI. EVALUATION

The evaluation of HiPerRF focuses on two aspects,

hardware design evaluation and software simulation results

for measuring application-level performance. For each of

the above-described register file designs, we built Verilog

netlists using the publicly available cell libraries [16]. We

successfully verified the functionality and timing with dif-

ferent combinations of inputs, including accounting for wire

Figure 12. Timing of dual-banked HiPerRF
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delays post place and route. We then integrated the Verilog

model of our register file designs within the RISC-V Sodor

core CPU to measure the overall JJ count reduction for the

whole chip.

A. Hardware performance

The hardware performance is evaluated in two parts, JJ

count and static power. The total JJ count is calculated by

using the SFQ cell library provided by [16]. For the dynamic

AND gate and NDROC, the data is derived from [13]

and [19]. The static power for the entire register file design is

also derived from the cell libraries. Note that in SFQ designs,

the limiting design factor is the number of JJs that can

be integrated with current fabrication technologies. Hence,

measuring savings in terms of JJ counts is more appropriate

than chip area. Nonetheless, the register file size is about

20% of the total CPU design area using NDRO cells, and it

is reduced with HiPerRF by various amounts based on the

size of the register file.

Total
JJ Count

Percentage
of Baseline

Register File
Size (bits)

4 × 4 16 × 16 32 × 32 4 × 4 16 × 16 32 × 32

NDRO RF
(Baseline Design) 784 9850 36722 100% 100% 100%

HiPerRF 695 5195 16133 88.65% 52.74% 43.93%
Dual-banked HiPerRF 736 5626 17094 93.88% 57.12% 46.55%

Table I
TOTAL JJ COUNT AND THE PERCENTAGE OVER THE BASELINE DESIGN

Static Power
(μW)

Percentage
of Baseline

Register File
Size (bits)

4 × 4 16 × 16 32 × 32 4 × 4 16 × 16 32 × 32

NDRO RF
(Baseline Design) 170.73 1997.49 7262.17 100% 100% 100%

HiPerRF 149.16 1220.05 3911.00 87.37% 61.08% 53.85%
Dual-banked HiPerRF 148.47 1289.89 4077.88 87.00% 64.58% 56.15%

Table II
STATIC POWER AND THE PERCENTAGE OVER THE BASELINE DESIGN

Table I shows the JJ count for each of the described

register file designs for two different register file sizes. The

data includes the JJ counts for splitters, mergers, and any

necessary JTLs for the register file access. The first row

shows the baseline, an NDRO based register file. The second

row shows HiPerRF design. The third row shows a dual-

banked HiPerRF design. The 4×4, 16×16 and 32×32 bits

Readout Delay
(ps)

Percentage
of Baseline

Register File
Size (bits)

4 × 4 16 × 16 32 × 32 4 × 4 16 × 16 32 × 32

NDRO RF
(Baseline Design) 77 144 177.5 100% 100% 100%

HiPerRF 122.8 187.8 220.3 159.48% 130.42% 124.11%
Dual-banked HiPerRF 94.8 159.8 192.3 123.12% 110.97% 108.33%

Table III
READOUT DELAY AND THE PERCENTAGE OVER THE BASELINE DESIGN

HiPerRF saves about 11%, 47%, and 56% of JJs compared

to the baseline design. The extra JJs required to implement

HC read and write circuits can be amortized with the density

advantage of HC-DRO cells. Hence, the relative advantage

of HiPerRF grows as the size of the register file increases

in the future.

Table II shows the static power for each design and the

percentage of the baseline design. As expected, the static

power is a function of the number of JJs used in a design.

Hence, the HiPerRF with 32×32 bits consumes about 46%

less static power compared to the baseline design, reflecting

the reduction in JJ count. Note that these results did not

include the benefits associated with reduced cooling power

due to reduced static power. Heat extraction is a major power

source and may lead to two orders of magnitude more energy

consumption [8].

Full Chip Benefit: To quantify the benefits at the chip

level, we synthesized the RISC-V Sodor in-order core with

HiPerRF by using the qPalace tool [23] to get the JJ count.

The Sodor core has five main parts: ALU, Register File (RF),

Control and Status Registers (CSR), control path, and front

end. The total JJ count of these various CPU components

using baseline NDRO register file design is 139,801. When

the register file is replaced with HiPerRF, including all the

additional overheads of read/write and clock circuits, the

total JJ count reduces to 117,039 JJs. Thus the total JJ

reduction is 16.3%.

We also analyzed the readout delay, which is a critical

performance metric. Table III shows the readout delay for

each design and the percentage of the baseline design. The

4×4, 16×16 and 32×32 bits HiPerRF actually increases the

readout delay due to the need to write the data into the

LoopBuffer before the data is made available to the ALU.

The increase in delay is about 24% for a larger register file.

However, the dual-banked design could reduce the readout

delay overhead to 8% by reducing the long latency of

accessing the NDROC. We expect that as the register file

size grows, relative gains in power and JJ count reduction

of HiPerRF grow. That is because the overhead circuitry

costs are better amortized. Moreover, even the readout delay

overhead will eventually match the baseline with a larger

size.

B. Simulation Results

To analyze the performance improvement at the appli-

cation level, we designed an SFQ based gate-level CPU

simulator. The ISA we chose to simulate is RISC-V 32I,

which is the basic RISC-V ISA. The simulator is based on

the RISC-V ISA Simulator Spike [24] and written in C++.

While the basic simulator uses a function-level pipeline,

our enhanced simulator implements a gate-level pipeline.

Such a gate-level pipeline model is necessary, for instance,

to enable pipelined execution within the read and write

ports that use a long chain of NDROC cells. Our simulator
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Figure 14. CPI overhead over baseline (NDRO RF) of different RISC-V and SPEC 2006 benchmarks for different designs

uses the notion of a macro clock to simulate the fetch-

decode-execute-writeback pipelines, and it uses micro clocks

to simulate the gate-level pipelining functions of SFQ. As

we discussed before, our simulator supports the internal

forwarding within the register file when appropriate without

violating timing. In our current simulator design, an external

cache at 77K is interfaced with the SFQ design, which is the

usual practice for interfacing larger memories [25]. As such,

all memory references are satisfied from the 77K memory.

However, recent advances in new materials such as three-

terminal JJs, magnetic JJs, ferromagnetic JJs, and spin-based

JJs have advanced memory integration closer to SFQ [26]–

[29], which is outside the scope of our simulation capability.

To get the depth of each gate-level pipelined stage, we

synthesized the RISC-V Sodor in-order core Verilog code by

using the qPalace tool [23] which synthesizes SFQ designs

built from the cell libraries. We measured the gate-level

pipeline depth of each functional block from the synthesis

results. Based on the synthesis result from qPalace, the Sodor

design has a worst-case gate-level cycle time of 28ps, which

is about half of the 53ps needed for HiPerRF. Hence, we

used a cycle time of 28ps for each gate, and each read

or write operation takes two cycles. As such, the readout

delay shown in Table III is translated into the corresponding

number of cycles. These readout delays are then used as

input to determine the stall cycles for handling dependencies.

The performance results below account for any write port

contention between loopback writes, and the traditional write

back path. The way it is accounted for is described in

Section IV-D where we only issue instructions every three

cycles, where one of those cycles is reserved for write

back operation to not conflict with loopback. Similarly, we

also account for the latency in the dual-banked HiPerRF

described in V-B. Hence, by design, our approach statically

eliminates write port contention between write back and

loopback, and the scheduling costs are modeled in the

simulator accurately.

The benchmarks we used are from the RISC-V reposi-

tory [30] and SPEC CPU 2006 [31]. Due to the ISA and sim-

ulator limitations, we ran 429.mcf, 458.sjeng, 462.libquan-

tum, and 999.specrand. Some limitations include lack of

full support for floating-point instructions, cross-compiler

failures from the GCC compiler. Due to the extremely slow

gate-level simulations, each benchmark is simulated for 24

hours. SFQ simulators need to do detailed gate-level pipeline

simulations to bring the SFQ pulse state properly loaded into

the simulator. Hence, fast-forwarding using pinpoints [32]

and other advanced simulation strategies need a careful

redesign, which is part of our future work.

Figure 14 shows the CPI overhead for each benchmark

and the average CPI overhead across all benchmarks, com-

pared to the NDRO register file baseline. It is worth noting

that in SFQ based designs, the gate-level pipelining poses

significant challenges for read-after-write (RAW) hazards.

The execution stage of the RISC-V core is 28 stages

deep. Hence, any two instructions with RAW dependency

in a short window will stall in the execution stage. We

believe that current compiler optimizations may place RAW

dependencies somewhat closer to each other to exploit data

forwarding capabilities in traditional CPU pipelines. How-

ever, SFQ based CPUs require quite the opposite – to spread

the RAW dependency instructions as far apart as possible.

As a result, the average cycles per instruction measured in

our modified RISC-V core gate-level simulator is about 30

cycles averaged across all the benchmarks. Furthermore, the

compiler we used is not optimized for accessing multiple

banks. Hence, for the dual-banked design, we also run the

simulations that consider the ideal situation, in which all

instructions read the two source registers from different

banks.

The CPI of HiPerRF is about 9.8% worse than the

baseline. As discussed earlier, HiPerRF’s design goals are to

use fewer JJs without significantly impacting performance.

HiPerRF is expected to have somewhat lower cycle level per-

formance than the baseline design because the LoopBuffer

is in the critical path, and any subsequent instruction that

wants to read the same source register may have to wait

for the loopback write before accessing the register file.

Dual-banked HiPerRF reduces this overhead to 3.6%. This

improvement is due to less port contention and short readout

delay. In the ideal situation, the CPI overhead is only 2.3%,

which is almost as good as the baseline design but saves

53% JJs in the register file, and 16.3% fewer JJs even at the

overall chip level.
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C. Impact of Wire Delay

There are two types of wiring in RSFQ technology,

Passive microstrip Transmission Lines (PTL) and Josephson

Transmission Lines (JTL). Our design uses PTLs for all the

wires, and we use JTLs only when there is a need to induce

delays, as was the case with the HC-READ circuit. We

have done the placement and routing of our design by using

Cadence Innovus with the library extracted from the open-

source qPalace tool [23]. Figure 15 shows the fully placed

and routed results of HiPerRF. The white areas in Figure 15

show the LoopBack path of HiPerRF. The longest delay on

the LoopBack path is only 4.6ps, which is much smaller

than the decoder latencies (53ps). Although the LoopBack

path looks long in the visual illustration in Figure 9, this

path is quite short in reality after placement and routing

are done. On average, across multiple circuits placed and

routed with qPalace, the wire length between two gates

is 262μm between any two gates. Furthermore, as per the

qPalace derived data, the delay of the PTL is 1ps/100μm,

so the average wire delay between two gates is 2.62ps.

Based on these data, the new readout delay accounting

for all wire delays is shown in Table IV. With a detailed

wire delay inclusion, the overall readout latency overhead

increases by about 1% compared to the baseline; hence the

CPI performance impact is at most 1%.

NDRO RF
(Baseline Design) HiPerRF Dual-banked

HiPerRF
Readout Delay (ps) 216.8 270.1 236.8

Loopback Latency (ps) – 108.4 93.7

Table IV
READOUT DELAY, LOOP-BACK LATENCY WITH PTL DELAY

Figure 15. Placement and routing results of HiPerRF

VII. RELATED WORK

While we have described the related work as related to

specific design choices throughout the text, in this section,

we focus on a couple of related works that focus on

superconducting register file designs.

Fujiwara [11] proposed a shift register file built with DRO

cells. Their design is a basic single-bit shift register design

where the data moves from the tail to the head of the shift

register. They used their design in the functional verifica-

tion without considering the architectural and performance

implications in a CPU. However, the implications of trying

to build an HC-DRO register file design with loopback capa-

bilities are significant. (1) HiPerRF is designed to function

with the 2-bit DRO cell, which is not considered in prior

work. As such HiPerRF design must also handle multi-

bit decoding and encoding circuits, which are novel and

entirely outside of the scope of [11]. (2) HiPerRF design

also carefully considers the timing challenges of scheduling

loop back and write back data arriving at the write port. (3)

We also demonstrate how read ports can be repurposed as

reset ports to remove data from an HC-DRO register before

a new write is allowed. This design substantially simplifies

the cost of the port design since we eliminate many of the

splitter cells that are latency-sensitive. (4) We compared our

design with the NDRO design. We evaluated our design and

showed the actual JJ count benefits with a little performance

penalty, which is negligible with the dual-bank option.

Dorojevets and Chen [33] proposed a Reciprocal Quantum

Logic NDRO-based storage. They described the design de-

tails and extended their design to different memory designs,

such as register file and cache. However, their design is

fundamentally limited to using NDRO cells to store register

data. Hence, they do not consider the possibility of reducing

register file design size using HC-DRO cells as the primary

storage elements.

VIII. CONCLUSION

Superconducting devices based on Josephson Junctions

are an important device technology that needs to be explored

in the context of a microprocessor design. The development

of single flux quantum (SFQ) devices and the logic design

tools and techniques around SFQ has been gaining traction

with significant research investments. In this work, we

explored how SFQ based designs can be used to implement

an area-efficient register file in the context of a modified

RISC-V in-order core processor. Since memory is a premium

resource in SFQ designs, we propose HiPerRF, which uses

High Capacity Destructive ReadOut (HC-DRO) cells and

yet supports the multiple read property critical for any

microprocessor register file. We designed the HiPerRF and

proposed multiple enhancements to reduce the access latency

of HiPerRF. Using gate-level synthesis tools and gate-level

simulations, we demonstrate that HiPerRF saves nearly 56%

of the JJ counts. We executed a range of benchmarks on a

pipelined CPU design with gate-level detail to show that

the HiPerRF only pays about 10% performance reduction

due to the LoopBuffer. We also demonstrate how to use a

dual-banked design to reduce the port contention and reduce

performance penalties of accessing DEMUX trees that are
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embedded in the read, write, and reset ports of SFQ register

files.
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