
47

A Variation-aware Hold Time Fixing Methodology for

Single Flux Quantum Logic Circuits

XI LI, SOHEIL NAZAR SHAHSAVANI, XUAN ZHOU, MASSOUD PEDRAM, and

PETER A. BEEREL, University of Southern California

Single flux quantum (SFQ) logic is a promising technology to replace complementary metal-oxide-

semiconductor logic for future exa-scale supercomputing but requires the development of reliable EDA tools

that are tailored to the unique characteristics of SFQ circuits, including the need for active splitters to support

fanout and clocked logic gates. This article is the first work to present a physical design methodology for in-

serting hold buffers in SFQ circuits. Our approach is variation-aware, uses common path pessimism removal

and incremental placement to minimize the overhead of timing fixes, and can trade off layout area and timing

yield. Compared to a previously proposed approach using fixed hold time margins, Monte Carlo simulations

show that, averaging across 10 ISCAS’85 benchmark circuits, our proposed method can reduce the number of

inserted hold buffers by 8.4% with a 6.2% improvement in timing yield and by 21.9% with a 1.7% improvement

in timing yield.

CCS Concepts: • Hardware → Emerging technologies;

Additional Key Words and Phrases: Single-flux quantum (SFQ), common path pessimism removal (CPPR),

clock tree synthesis, legalization, placement, timing uncertainty, hold time, Gaussian distribution, Monte

Carlo simulation

ACM Reference format:

Xi Li, Soheil Nazar Shahsavani, Xuan Zhou, Massoud Pedram, and Peter A. Beerel. 2021. A Variation-aware

Hold Time Fixing Methodology for Single Flux Quantum Logic Circuits. ACM Trans. Des. Autom. Electron.

Syst. 26, 6, Article 47 (June 2021), 17 pages.

https://doi.org/10.1145/3460289

1 INTRODUCTION

Superconductive electronics, and single-flux quantum (SFQ) [18] in particular, is a promising
replacement for complementary metal-oxide-semiconductor (CMOS) technology for exas-
cale supercomputing. With the increasing need for big data and supercomputing, the hundreds of
megawatts of power needed by current exa-scale computing platforms is a growing concern [23].
Rapid SFQ technology was introduced back in the late 1908s [18], with a theoretical potential of

Xi Li and Soheil Nazar Shahsavani contributed equally to this research.

This work was supported by the Office of the Director of National Intelligence, Intelligence Advanced Research Projects

Activity, via the U.S. Army Research Office Grant W911NF-17-1-0120.

Authors’ addresses: X. Li, S. N. Shahsavani, X. Zhou, M. Pedram, and P. A. Beerel, University of Southern California, Ming

Hsieh Department of Electrical and Computer Engineering, Los Angeles, CA, 90089-2560; emails: {xli497, nazarsha, zhoux-

uan, pedram, pabeerel}@usc.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1084-4309/2021/06-ART47 $15.00

https://doi.org/10.1145/3460289

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

https://doi.org/10.1145/3460289
mailto:permissions@acm.org
https://doi.org/10.1145/3460289
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3460289&domain=pdf&date_stamp=2021-08-01

47:2 X. Li et al.

meeting high-performance needs with three orders of magnitude lower power compared to state-
of-the-art semiconductor technologies [20].
Nevertheless, the potential of SFQ is yet to be achieved for complex designs such as micro-

processors for a variety of reasons. Most notably, the lack of an established reliable computer-

aided design (CAD) tool flow has been a long-term obstacle for SFQ technology to scale [5, 11].
More specifically, SFQ circuits often have ultra high clock frequencies and significant time uncer-
tainty [3, 31], which makes the design of clock distribution networks (CDN) and timing closure
extremely challenging.
In particular, managing clock skew in high-frequency SFQ CDNs is extremely important [10],

because, in addition to the storage gates, all logic gates are clocked and all fanouts are implemented
with splitters, which increases the size and insertion delay of the clock network significantly. More-
over, due to variations in the fabrication process, and biasing or temperature variations, timing
uncertainties in the clock trees are significant. Therefore, developing methodologies for genera-
tion of high-quality clock trees and robust timing uncertainty-aware timing closure algorithms is
paramount.
A recent work [25] proposed a minimum-skew CDN topology generation algorithm using a

fully-balanced tree structure that accounts for timing criticalities in the datapath and the total
wirelength of the clock tree, and minimizes the total negative slack in the presence of timing uncer-
tainties. Evenwhen deploying such CDN algorithms, EDA flows need to utilize efficient techniques
to close timing, i.e., fix setup and hold timing issues. In particular, potential hold-time violations
are typically mitigated by adding clockless buffers into problematic short paths in the data path.
The high clock frequency and gate-level pipelining of SFQ circuits makes this task particularly
challenging. Moreover, as in CMOS, these buffers should account for expected timing variations
and should be validated either through someform of static timing analysis [35] or classic Monte
Carlo simulation [28].
To the best of our knowledge, the proposed method is the first work to propose a physical

design methodology for hold buffer insertion in SFQ circuits. Our approach is variation-aware
and reduces area and performance overheads by applying common-path pessimism removal

(CPPR) to remove the pessimism associated with the common clock paths to pairs of sequentially
adjacent gates [8, 34]. Furthermore, we employ an incremental placement methodology to place
the added buffers and minimize the perturbation to the original placement solution. The efficacy of
the proposed method is evaluated using ISCAS’85 benchmark circuits [2]. Compared with utilizing
fixed constant margins for all timing paths, as suggested in Reference [28], the proposed method
significantly reduces the number of inserted hold buffers with competitive timing yield. The key
contributions of this article can be summarized as follows:

(1) The development of the first variation-aware hold time fixing approach for SFQ circuits. The
approach considers both local and global timing uncertainties and effectively uses common
path pessimism removal to reduce the number of inserted hold buffers on each timing path.

(2) The placement of hold buffers is implemented by the qPlace tool [24] that is enhanced with
an incremental placement strategy that generates high-quality solutions.

(3) The approach is evaluated using dynamic timing analysis with a grid-based placement-aware
variation model [28] on multiple ISCAS’85 benchmark circuits. The functionalities of cir-
cuits are verified via Monte Carlo co-simulation with behavioral netlists. Comparing our
variation-aware approach to a fixed-margin baseline, the average number of hold buffers
can be reduced by 8.4% with 6.2% increase in timing yield and 21.9% with a 1.7% increase in
timing yield. It allows a tradeoff between timing yield and layout area by tuning algorithmic
parameters.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

A Variation-aware Hold Time Fixing Methodology for Single Flux Quantum Logic Circuits 47:3

Compared with related prior work in CMOS, there are two key differences in our approach. First,
state-of-the-art CMOS CPPR algorithms use complex pre-processing steps to transform the prob-
lem of finding the least-common-ancestor (LCA) of sequentially adjacent gates into a range

minimum query (RMQ) problem [8, 13, 14]. In SFQ circuits, however, the clock tree must be
implemented with splitter circuitry that is often limited to binary forks. Moreover, since every
logic gate is clocked, the clock tree is usually far deeper than CMOS and is typically balanced to
minimize clock skew. Its balanced nature enables our LCA detection algorithm to be significantly
simpler and more efficient to solve. Second, the combinational logic between sequentially adjacent
gates is limited to splitters that route datapath signals to multiple clocked sinks. It is sufficient to
insert hold buffers at the input port of any clocked gate with a hold violation. While in CMOS,
due to the exponential number of timing paths and interaction between paths [27], this approach
may lead to setup violations on other paths and thus more complex insertion algorithms are re-
quired [12, 16, 22, 32].

The rest of this article is organized as follows. Background and prior work are summarized in
Section 2. Section 3 presents the proposed approach for hold time fixing and incremental place-
ment. Section 4 details the experiments flow including the grid-based variationmodel and dynamic
simulation methodology. Simulation results are presented in Section 5 followed by conclusions in
Section 6.

2 BACKGROUND

2.1 Definitions and Notation

In this section, we introduce some definitions and notations used throughout the article.

2.1.1 Combinational and Sequential Cells in SFQ Logic. In CMOS logic, combinational logic
refers to digital circuits that determine their outputs as Boolean functions of their inputs. However,
in SFQ circuit, gates such as AND, OR, XOR, and NOT are clocked [6]. They process pulses on
their inputs by changing states of their internal current loops and produce their output pulses in
response to an input clock pulse and thus are also sequential.
Moreover, unlike CMOS, splitters are needed to actively copy input pulses to multiple outputs.

In particular, splitters are needed to distribute the clock and implement the fanout of logic gates.
In addition, buffers that simply copy their single input to their single output are also sometimes
needed. Both of these gates need not be clocked and thus are considered as combinational SFQ
gates.

2.1.2 Data Path Delay. In conjunction with interconnect delay, combinational gates make up
the datapath delay between sequential SFQ elements. For example, Figure 1 illustrates two sequen-
tial SFQ elements G1 and G2, while S1 − S5 are clock splitters that distribute the clock signal from
a clock source to each sequential element in the circuit. The data path delay of the path between
G1 and G2 refers to the summation of clock-to-Q delay of G1, the delay of the splitters, and inter-
connect delays between the gates.

2.1.3 Insertion Delay. The insertion delay refers to the total delay from the clock source to
clock input of a sequential element [15]. This is also known as the arrival time of the clock signal
at the clock pin of each sequential gate. ForG1 in Figure 1, it refers to the delay from clock source
(Clk Src) through splitters S1, S3, and S4 as well as the delay of interconnects connecting the clock
source to G1.

2.1.4 Clock Skew. Two sequential elements connected by data path splitters and interconnect
are called sequentially adjacent gates. In Figure 1, G1 and G2 are called launching and capturing

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

47:4 X. Li et al.

Fig. 1. Example of a timing path in a SFQ circuit.

flops, respectively. The difference between the clock arrival time at the launching and capturing
flip-flops is defined as the clock skew between the pair of gates. For the pair of flip-flops illustrated
in Figure 1, the clock skew is the difference between the delay from Clk Src through splitters S1, S3,
and S4 as well as the delay of interconnects connecting the clock source to G1, on one hand, and
the delay from clock source through splitters S1, S3, and S5 as well as the delay of interconnects
connecting the clock source to G2, on the other hand.

2.1.5 Hold Time. Each sequential element requires some time to reliably capture input data
at its data pin. Hold time is defined as the amount of time after the arrival of the clock pulse
during which input data must remain stable and it imposes a timing constraint on every pair of
sequentially adjacent gates G1 and G2. Let Tskew (G1,G2) denote the clock skew and Tmin

DP
(G1,G2)

denote the minimum data path delay between G1 and G2. Let T
max
hold

represent the maximum hold
time required for G2. Then, hold slack is defined as the difference between when the data can
change and how long it should remain stable, i.e.,

Slackhold (G1,G2) = Tskew (G1,G2) +T
min
DP (G1,G2) −Tmax

hold
. (1)

A negative hold slack leads to a hold time violation. As shown in Equation (1), hold slack is not
a function of the clock cycle time. Therefore, it cannot be fixed by adjusting clock frequency and
even a single hold time violation may lead to circuit malfunction.
Unlike CMOS technology, where multiple hold time refinement techniques such as gate down-

sizing, switching between low-threshold and high-threshold gates, and wire sizing are commonly
used, such options are not available in the current SFQ technology and existing cell libraries. Hence,
hold buffer insertion is one of the most applicable approaches for SFQ circuits.

2.1.6 Hold Time Margin. Hold time margin (i.e., safety margin) is the extra delay added to data
paths to avoid hold violations accounting for variations in the timing parameters in Equation (1).
Providing this “cushion” to the design can help make it more robust to timing variations and
possible hold time violations. Hold margin is satisfied when

Slackhold (G1,G2) ≥ T
marдin

hold
(G1,G2). (2)

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

A Variation-aware Hold Time Fixing Methodology for Single Flux Quantum Logic Circuits 47:5

2.1.7 Clock Tree Topology. In this article, we define the clock tree topology (CTT) as a di-
rected binary treeT connecting clock source to all the clock sinks. The root ofT denotes the clock
splitter S0 connected to the clock source while the nodes {Sn+1, Sn+2, . . . , Sn+k } represent the leaf
nodes (clock sinks), i.e., sequential elements in a circuit. A clock topology generation algorithm
creates nodes {S1, . . . , Sn } representing the clock splitters, adds them to the clock tree, and con-
nects the clock source to all the sink nodes. We assume the leaf nodes are at level 0, while the root
is at the highest level of the tree. In Figure 1, the CTT refers to the binary tree including Clk Src,
S1 through S5, and the edges between clock splitters S4, S5, and sink nodes G1,G2, respectively.

2.1.8 Common Clock Path. A clock path (CP) is a path inT from root node through tree nodes
to each leaf node (clock sink). For two leaf nodes inT , the common clock path (CCP) refers to the
portion of the clock tree that is common between the CPs to each gate, while the non-common

clock path (NCP) represents the non-common portion of the CPs. In Figure 1, the common clock
path includes nodes S1 and S3 and the edges connecting Clk Src to S3.

2.2 Timing Uncertainty-aware Clock Topology Generation

The topology of a clock network is one of the key factors that determine the yield of a logic circuit
and its robustness against variations in timing. One of the key goals in achieving high yield is
to maximize the CCP to pairs of flip-flops that are on timing critical paths; that is to ensure the
variations in the arrival time of the clock signal at launching and capturing flops does not lead to
negative slacks and timing violations. Consequently, when generating a CTT, accounting for the
criticality of data paths and timing yield are important factors. Not surprisingly, the importance
of concurrent clock-and-data optimization is also emphasized in commercial CMOS tools [4].
The authors of References [25] present a low-cost, timing uncertainty-aware balanced CTT gen-

eration algorithm for SFQ circuits. This algorithm considers the criticality of the data paths in terms
of timing slacks as well as the total wirelength of the clock tree and generates a (height-) balanced
binary clock tree using a bottom-up approach and an integer linear programming (ILP) formu-
lation. The results show significant improvement in terms of timing metrics (i.e., total and worst
negative slack) over the baseline algorithm that is essentially a wirelength driven approach, i.e.,
method of means and medians (MMM) [17, 25].
In this work, we utilize this method to generate high-quality balanced clock topologies that im-

prove the timing yield and minimize the need for hold-fixing buffers and associated area overhead.
With current gate counts in the SFQ technology, we believe this solution is practical. However, as
the scale of SFQ circuits grows, alternative optimization strategies may be necessary.
Table 1 lists the results of applying the proposed ILP-based topology generation algorithm for

several benchmarks from the ISCAS’85 benchmark suite [2] and compares the results with that
of the MMM algorithm in terms of the number of required hold buffers after placement and clock
tree synthesis. To account for worst-case conditions, it is assumed that due to timing variations,
the delay of all the gates on the launch (capture) CP decrease (increase) by (3∗σ), where σ denotes
the standard deviation of gate delay values. It is also assumed that the delay of all gates on each
datapath is minimized. and the delay of hold buffers is set to be 5.5 ps. As shown in Table 1, using
the proposed approach in Reference [25], the total number of hold buffers required to fix the hold
time violations in various benchmarks is reduced by an average of 6% over 7 benchmarks, by as
much as 14.8%, showing the importance of minimizing worst-case negative slack. Note, however,
that the work in Reference [25] did not consider the physical placement of the hold buffers nor the
potential benefit of CPPR.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

47:6 X. Li et al.

Table 1. Number of Hold Buffers with Greedy Topology Generation

(MMM) vs. ILP Topology Generation

3σ
Design # buffers MMM [17] # buffers ILP [25] Saving (%)

c432 1188 1012 14.8

c499 447 426 4.7

c880 828 757 8.6

c1355 421 431 –2.4

c1908 805 739 8.2

c3540 1490 1416 5.0

c5315 3249 3055 6.0

AVG. 1204 1119 6

Fig. 2. A balanced binary tree with 8 sinks. (a) At nominal condition, the max clock skew is zero. (b) If all

the splitter delays on path S0 → S7 decrease to the min propagation delay and all the splitter delays on the

S0 → S14 increase to the max propagation delay, then a hold time violation may occur on data path S7 → S14.
(c) Two buffers are added to the path between S7 → S14 to increase its hold slack.

3 THE PROPOSED METHOD

3.1 Overview

In this section, we formally define the problem, provide a motivating example, and illustrate the
proposed methodology in detail.

3.2 Motivating Example

Consider the clock tree topology depicted in Figure 2 where a clock signal is propagated to eight
sink nodes using a balanced binary tree. Assume, the propagation delay of internal nodes (i.e.,
splitters) as well as hold buffers to be 5 ps with a ±20% variation on the delay due to timing
variations. Consider a data path connecting node 7 to node 14. Considering the worst-case scenario
in terms of hold slack, due to timing variations the delay of all clock splitter nodes on the launch CP
decrease to 4 ps and all the splitter delays on the capture CP increase to 6 ps. As a result, the hold
slack may be reduced by 6×1 ps = 6 ps. However, such an estimation is overly pessimistic as node
0 is on the common CP to nodes 7 and 14. Therefore, the worst-case incurred hold slack cannot
be less than −4 ps. Consequently, accounting for CPPR during the timing closure can reduce the
number of required hold buffers, connecting node 7 to 14, from 3 to 2, assuming each hold buffer
adds a delay of 2 ps. This reduces the area overhead by 33% while achieving the same timing yield.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

A Variation-aware Hold Time Fixing Methodology for Single Flux Quantum Logic Circuits 47:7

Fig. 3. Overview flow of the proposed algorithm.

3.3 Problem Formulation

The input to this problem is a netlist graph (G) comprising of the logic cells (i.e., nodes), their
connections (i.e., edges), the location of each node on the layout area, descriptions of the clock
network, including the clock tree topology (T) and the location of the splitter nodes (S0 . . . Sn), and
a variability model that defines the variations of gate delays under the presence of process, biasing,
or temperature variations. The objective function is to minimize the total number of required hold
buffers such that timing of the circuit with respect to hold constraints is satisfied or a target timing
yield is reached. Therefore, the total negative hold slack in the presence of timing variations should
be less than a predefined threshold value. In other words, we aim to satisfy the constraints in terms
of worst negative hold slack while minimizing the number of inserted hold buffers, i.e., the area
overhead of timing closure.

3.4 Proposed Methodology—An Overview

The overall flow of our proposed method is depicted in Figure 3. The first phase follows the algo-
rithms outlined in Reference [24] and Reference [28]. The Berkeley open source logic synthesis
tool, ABC [26], is used to synthesis the netlist. The qPlace tool, as part of the qPALACE CAD tool
suite for SFQ circuit [24, 25], is employed to place the logic gates, construct a minimum-skew clock
network, and place the clock splitters [24, 25] to minimize the nominal clock skew, reducing the
total negative slack associated with all sequentially adjacent gates. ABC then parses and translates
the generated netlist and clock tree information, extracts delays associated with the logic gates,
splitters, and interconnect using a linear delay model [25], and performs timing analysis for all
setup and hold constraints. Using our proposed variation-aware hold fixing algorithm, ABC then
inserts hold buffers, i.e., Josephson transmission line (JTL) cells, between sequentially adjacent
pairs in the netlist as needed.
As shown in Figure 3, we then enter the second phase of the flow in which the updated circuit,

including newly inserted JTLs, is physically placed by the qPlace tool, either using our proposed
incremental placement technique or by re-placing the entire circuit. The IBM CPLEX v12.10 pack-
age [1] is used for solving mixed integer linear programming (MILP) problems for clock tree
placement and legalization. Since this step may modify the location of logic gates, the clock tree
is re-synthesized to minimize the nominal clock skew and generate a high-quality clock network,
albeit we force it to use the same clock tree topology as in phase one. This is motivated by the
variation-aware hold fixing algorithm that takes advantage of the topology of the clock tree and
common clock paths to minimize the area overhead of timing fixes. Although clock skews and

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

47:8 X. Li et al.

hold slacks in the nominal condition may be modified, the timing variations will not lead to addi-
tional timing violations, as the worst-case variations as a function of the clock topology remains
constant.
In addition, to both mitigate routing congestion caused by the relative few number of routing

layers and to facilitate a final pass of hold buffer insertion, during this second placement phase we
reserve empty space next to each logic cell and existing hold buffers. After this second placement,
we parse the re-placed circuit into ABC and run a final round of timing analysis. If any additional
hold buffers are required, then they are inserted into the reserved spaces without the need to move
other gates. We note that our ABC timing fix algorithm and System Verilog translation with inter-
connect delay model has been added to the existing qPALACE tool suite [24, 25]. In particular, the
qPlace placement tool [24] has been extended to include an option for our incremental placement
algorithm.
The next subsections detail our novel hold time fixing and incremental placement techniques.

The description of the third (evaluation) phase of the flow is presented in Section 4.

3.5 Variation Aware Common Path Pessimism Removal

CPPR is the removal of unnecessary pessimism of timing analysis on launching clock path and
capturing clock path by accounting for the common portion of the launch and capture CPs [8, 34].
Particularly, the timing uncertainty of the propagation delay of these elements in the CCP affects

the launching and capturing clock path delays similarly. Thus we propose to remove this unneces-
sary timing uncertainty from our timing analysis to more accurately capture the worst-case timing
scenario.
To account for the remaining timing variations, we add hold margins to each timing path and

thereby make the design robust to hold time violations. Assume G1 and G2 are the launching and
the capturing logic gates, respectively. The hold slack fromG1 toG2 is formulated with timing con-
straints as Equation (2). Instead of applying a constant hold margin to all hold slacks as proposed
in Reference [28], we propose a variation-aware strategy to determine the hold margin required
for each timing path and apply CPPR to eliminate unnecessary pessimism.
For all gates in the circuit, we assume the gate delay follows a Gaussian distribution with same

standard variation value σ . In the worst-case scenario, a hold short path can be formulated as
follows: the delay of clock splitters in the launching clock path bias to a low value, while the
delay of clock splitters in the capturing clock path bias to a high value. At the same time, the
delay of gates in data path bias to a low value. We consider the 3σ rule [9], which states that
99.7% of the possible data are within three standard variation deviations from themean and assume
a worst-case delay change of 3σ for each gate.
Consider the worst-case scenario in Equation (2), the variation-aware hold margin can be set as

the the maximum reduction of Slackhold (G1,G2) caused by gate delay variations,

T
marдin

hold
(G1,G2) = 3σ ∗ (DNCP (G1,G2) + DDP (G1,G2)), (3)

where DNCP (G1,G2) represents the sum of the delay of the clock splitters that are not common to
LP and CP, while DDP (G1,G2) refer to the sum of delay of the gates along the data path from G1

to G2.
DNCP (G1,G2) is determined by finding the lowest common ancestor in the balanced binary clock

tree. We record the routes from the clock source to clock sinks when building the clock tree. For
any two sequentially adjacent gates, the algorithm traverses both launching and capturing clock

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

A Variation-aware Hold Time Fixing Methodology for Single Flux Quantum Logic Circuits 47:9

paths level by level, starting at the leaves (level 0), until reaching a common node, the LCA.1 The
number of splitters in the NCP is simply the number of nodes met during the traversal, which is
equal to twice the level of the LCA minus 1. Thus, we can compute DNCP (G1,G2) in Equation (3)
as:

DNCP (G1,G2) = 2 ∗ (level(LCA(G1,G2)) − 1) ∗ Dsp , (4)

where Dsp denotes the nominal splitter delay.
For each timing path, the hold time constraint is checked and in case of a negative slack, hold

buffers are added before the corresponding input pin ofG2 until the constraint is met. Consider as
an example the circuit in Figure 1 and the hold time for the path G1 to G2. The clock path of G1

consists of the following clock segments: the clock source, splitters S1, S3, S4. Similarly, the clock
path ofG2 comprises of clock segments: clock source, splitters S1, S3, S5. The CCP contains S1 and
S3, while NCP contains S4 and S5. level(LCA(G1,G2)) is 2 in this case. The hold time margin for
G2 is thus

T
marдin

hold
(G1,G2) = 3σ ∗ (2 ∗ Dsp + DG1

+ Ndata_sp ∗ Dsp), (5)

where DG1 denotes the nominal clock-to-Q delay ofG1, and Ndata_sp denotes the number of split-

ters in data path fromG1 toG2. T
marдin

hold
(G1,G2) can be used to guide hold buffer insertion for the

timing path from G1 to G2.
Assuming there areN clock sinks in thewhole circuit, the heightH of clock tree, a fully-balanced

binary tree, is �loд2N � + 1. For CCP, the time complexity to find LCA isO(H). We denote the total
number of pairs of sequentially adjacent gates as E. Consequently, the time complexity of finding
LCA of all sequentially adjacent gates is O(E ∗ log2 N). The fact that the clock tree is a fully-
balanced binary tree simplifies the LCA detection algorithm. In particular, for traditional CMOS
circuits, state-of-the-art LCA detection algorithms typically require a reduction to an instance of
RMQ problem via an Euler walk of the clock tree and the storage of several extra tables [13, 14, 19].

3.6 Placement Methodology

After adding the hold buffers to the netlist, the location of logic cells and inserted hold buffers is
determined. Note that since the timing closure algorithm is based on the original clock topology
and inserted hold buffers are not sequential elements, after placement and legalization of the hold
buffers, the same clock topology can be utilized. However, to minimize timing metrics such as
maximum clock skew and the negative timing slacks, the location of gates are properly adjusted.
Similarly to Reference [24], we adopt the deferred merge embedding algorithm for calculating the
location of the tapping points of the clock network on the layout area and employ an integer linear
programming algorithm to map the clock splitters to routing channels and remove the overlaps
among the clock splitters and logic gates, such that the maximum clock skew is minimized. Finally,
once a legal high-quality solution in terms of placement and timing metrics is generated, another
iteration of timing fixes adjusts the timing slacks.
Accordingly, the location of the placed logic and clock splitters are then modified to accommo-

date the placement of the hold buffers. The total number of inserted hold buffers is a function of
the degree of timing uncertainties and can be a large fraction of the size of the original netlist.
Therefore, to optimize the quality of results in terms of the total wirelength and timing metrics,
we propose two placement strategies: (i) Incremental Placement and (ii) Placement from Scratch.

3.6.1 Incremental Placement. The incremental placement methodology helps preserving the
original placement solution by constraining the placement of logic cells and data splitters to the

1Note that the common node must be at the same level in both the launch and capture paths because the clock tree is

balanced.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

47:10 X. Li et al.

same rows as they are initially placed. When the number of inserted hold buffers is relatively
small, an incremental placement approach helps minimizing the displacement of original netlist
elements, eliminates the need for extensive modifications to the clock network, and facilitates
converging to a high-quality solution without the need for multiple iterations of placement and
clock synthesis. Alternatively, when the number of inserted hold buffers is large, executing the
placement algorithm from scratch may yield better overall placement metrics such as the total
wirelength, layout area, and routing congestion. As the number of required hold buffers depends
on the structure of circuit and the degree of variations, this article considers both.
In our incremental placement flow, the logic cells and data splitters remain in their initially

placed logic row, i.e., their y coordinates are preserved. However, their x coordinates are adjusted
to accommodate the placement of hold buffers.
The pseudo code for the incremental placement flow is shown in Algorithm 1. Lines 1–23 show

the assignment of the hold buffers to logic rows. First, the ideal number of gates per row is deter-
mined by computing the total number of gates (including hold buffers, logic cells, data splitters
and clock splitters) and dividing this number by the number of rows (cf. line 1 in Algorithm 1).
The algorithm tries to assign hold buffers to logic rows to minimize the final width of the layout
area thereby the total layout area after hold buffer insertion, using the number of cells assigned
per row as a proxy for row width. This is achieved by setting a threshold value for the number of
gates per row and trying to distribute the hold buffers among rows such that the final distribution
of logic gates per row is below this threshold for all rows. Initially, this threshold value is set to the
ideal number of gates per row and each row is marked as full or partially filled by comparing the
existing gate count with this threshold (cf. line 7). We then assign each hold buffer to the nearest
partially filled row to its fanout gate. In particular, if the row of the fanout gate is partially filled,
we assign the hold buffer to the same row with its x coordinate shifted from its fanout gate by
the width of one hold buffer (cf. lines 8–10). Otherwise, the hold buffer is assigned to the nearest
partially filled row with x coordinate set to the same value as the fanout gate (cf. lines 12–15).
There may be scenarios in which all close-by rows for a hold buffer are full which can increase the
wire delay more than expected and force an increase in the clock cycle time. To avoid degrading
the clock frequency when this situation is encountered, we instead increase the threshold by one
buffer and accept a small increase in area (cf. lines 16–20). Once the assignment of the hold buffers
to the logic rows are determined, each logic row is legalized to remove all cell overlaps using the
algorithm presented in Reference [25] (cf. line 24 in Algorithm 1). In lines 25 and 26, the algorithm
synthesizes and places the clock tree [24] and produces the final legal placement.
Because the logic cells are mapped to their original logic rows, the location of the sink nodes

of the clock network are minimally modified. Therefore, the location of the tapping points of the
clock network, i.e., the placement of the clock splitters, will be similar to those of the original clock
network.
In summary, the incremental placement algorithm tries to fulfill three objectives: (i) preserve

the layout area by distributing the hold buffers among partially filled rows, (ii) minimize the per-
turbation to the original placement solution to facilitate the clock tree synthesis and control the
clock skew, and (iii) minimize the adverse effect of additional cell and interconnect delays, due to
the insertion of hold buffers, on the maximum clock frequency of the circuit.

3.6.2 Placement from Scratch. For some circuits and variation settings, the number of inserted
hold buffers per row can be comparable to the initial number of gates. Thus, the incremental
placement algorithm is forced to make substantial modifications to the original placement solution
resulting in a significant increase in the total wirelength. For these cases, it is beneficial to re-place
the updated netlist without any row restrictions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

A Variation-aware Hold Time Fixing Methodology for Single Flux Quantum Logic Circuits 47:11

ALGORITHM 1: Incremental Placement

INPUT: A netlist, logic cell placement, a CTT, a list of inserted hold buffers
OUTPUT: A placed netlist with clock tree and hold buffers

1: Th = � #nodes#rows
� � the threshold (max) # of gates per row

2: rowMap[rowId] = no. gates in row rowId
3: for each path from u to v do

4: currRowId = getRow(v)
5: for each hold buffer j do
6: currGateNum = rowMap[currRowId]
7: f illed = compare(Th, currGateNum)
8: if f illed is false then
9: assign j to same row as v
10: rowMap [currRowId] += 1
11: else

12: closestRowId ← closest unfilled row
13: if clock frequency meets then
14: assign j to closest unfilled row
15: rowMap [closestRowId] += 1
16: else � Increase threshold by 1
17: Th += 1
18: assign j to same row as v
19: rowMap [currRowId] += 1
20: end if

21: end if

22: end for

23: end for � complete row assignment of hold buffers
24: legalize and remove overlaps of hold buffers
25: add clock splitters from original CTT to netlist
26: place clock splitters, legalize, and remove overlaps

Once the placement and clock tree synthesis are completed, the timing closure flow adds a
final round of hold buffer insertion to ensure timing requirements under nominal conditions are
satisfied. Experimental results show that the total number of required hold buffers in this phase is
much smaller than the size of the netlist and can be placed in the reserved empty spaces next to
existing logic cells without requiring multiple iterations.

4 EVALUATION FLOW

We evaluated the timing yield of our final circuits by translating them to System Verilog netlists
using Python scripts, similarly to Reference [29], and running dynamic Monte Carlo (MC) co-
simulations in Cadence NCsim, checking all setup and hold constraints. This section first presents
the variation model used and then details of the co-simulation Monte Carlo flow.

4.1 Variation Model

In this subsection, we summarize the variation model utilized to generate the random gate delays
used in the MC simulations for evaluating timing yield [28].

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

47:12 X. Li et al.

Fig. 4. Grid-based variation model with uniform grids.

To account for the spatial correlation of timing uncertainties, we employ a placement-aware
variation model, utilizing a grid-based model similarly to References [28, 33] illustrated in Figure 4.
In this model, the entire layout area is considered to be inside one grid bin (level 0) where we
assume global variations affect all the gate delays. Subsequently, to account for the local variations
on the chip, we divide the layout area level by level, each bin is subdivided into smaller bins. At
each level, it is assumed that all process parameters and variations within the same bin have the
same characteristics. The differences of bins are determined by the local variation of the level and
different hierarchy levels are assumed to be statistically independent [28]. By adding up the time
variations induced by all levels, the delay factor of each gate can be defined. The delay of all gates
produce a dataset that follows a Gaussian distribution. We set the targeted standard variation of
this Gaussian distribution dataset under process variations based on the process control monitor
data for 350-nm fabrication process SFQ5ee developed by MIT Lincoln Laboratory [30]. Then the
parameters for global and local variations can be set according to the targeted standard variation
[7, 21, 28].

4.2 Dynamic Simulation

To run MC simulations, we define gate delay scaling factors for each gate in the circuit and write
them as System Verilog macros. According to our variation model, we generate a new random
delay factor set for each Monte Carlo simulation. In case of a plain simulation without random
gate delays, the gate delay factors are set to one. This is used to verify the circuit in the nominal
case before Monte Carlo simulations. A “golden” behavior netlist is co-simulated to validate the
circuit functionality with the same random input vectors. A MC run is considered as a “pass” only
when there are no setup or hold violations and no mismatches between the primary outputs of the
model under simulation with those of the golden results.

5 SIMULATION RESULTS

We compare the proposedmethodwith a baseline approach proposed in Reference [28] that applies
a constant hold margin to each timing critical path in the circuit. The fixed margin approach does
not consider clock topology and requires, in general, multiple iterations to obtain a design-specific

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

A Variation-aware Hold Time Fixing Methodology for Single Flux Quantum Logic Circuits 47:13

Table 2. Number of Hold Buffers (JTLs) and Timing Yield (%) for the Fixed Margin (7 ps), and the Proposed

Variation-based 3σ and 2σ Hold Margin, with Incremental Placement

fixed margin (7ps) 3σ 2σ

Design
Std
Dev

Yield(%)
JTLs
plc

JTLs
replc

Yield(%) # JTLs plc
JTLs
replc

Yield+(%) # JTLs-(%) Yield(%)
JTLs
plc

JTL
replc

Yield+(%) # JTLs-(%)

c432 0.0808 99.1 1508 1564 99.7 1012 1420 0.6 9.2 95.4 1012 1185 –3.7 24.2
c499 0.0808 95.9 564 584 99.7 426 531 4.0 9.1 99.3 426 470 3.5 19.5
c880 0.0808 90.4 1031 1151 99.8 757 1018 10.4 11.6 95.4 757 871 5.5 24.3
c1355 0.0809 99.1 577 591 100.0 431 525 0.9 11.2 97.8 431 470 –1.3 20.5
c1908 0.0808 97.5 1085 1150 99.7 739 985 2.3 14.3 98.3 739 830 0.8 27.8
c2670 0.0831 93.8 2831 3570 99.8 2513 3573 6.4 –0.1 96.1 2513 3196 2.5 10.5
c3540 0.0829 93.7 2055 2294 99.7 1416 2190 6.4 4.5 93.5 1416 1770 –0.2 22.8
c5315 0.0829 90.2 4199 5036 99.1 3055 4747 9.9 5.7 91.4 3055 3939 1.3 21.8
c6288 0.0829 92.5 4697 6039 99.2 3592 5404 7.2 10.5 93.0 3592 4685 0.5 22.4
c7552 0.0829 86.8 2601 2990 98.9 1794 2745 13.9 8.2 94.2 1794 2252 8.5 24.7

AVG. 0.0819 93.9 2115 2497 99.6 1574 2313.8 6.2 8.4 95.4 1574 1967 1.7 21.9

fixed margin that achieves a high timing yield while managing the overhead in terms of incurred
area. In contrast, our proposedmethod adds more hold margins to paths where the lowest common
ancestor of sequentially adjacent FFs is higher in the clock tree and thereby achieves superior
results over all the benchmarks. We also compare the two proposed re-placement methods, i.e.,
placement from scratch and incremental placement.
We run Monte Carlo simulations on the placed ISCAS’85 benchmarks [2]. All experiments were

run on two Intel Xeon E5-2450 v2 CPUs with 128 GB of RAM. We experimented with both 2σ and
3σ variations in hold time margin with random Gaussian distributed gate delays to analyze the
tradeoff between area and timing yield. For the fixed margin approach, we evaluated hold margin
values of 10 ps and 4 ps, before settling on a compromise of 7 ps, optimizing both buffer area
overhead and timing yield. In all our experiments, the additional white-space around logic cells
and hold buffers designed to reduce local routing congestion (i.e., ensuring a routable solution is
produced) and inserting hold buffers in the final step of timing closure, is set to 8× the routing
track (10 μm). To solve the MILP problem for clock tree synthesis, the CPLEX time limit is set to
60 minutes.
Table 2 lists the timing yield values and the number of inserted hold buffers before and after re-

placement, for the baseline, 2σ , and 3σ approaches. In these experiments, the clock frequencies are
set to the delay of the longest timing path with a small setup margin. In our simulation results, the
average clock frequency of fixed and variation-based hold fixing approaches differ by an average
of 5% across all the benchmarks.
Compared with the fixed margin approach, our 3σ approach produces netlists with an average

reduction of 8.4% in terms of number of hold buffers and an increase in timing yield of 6.2%. The
2σ approach achieves an average of 21.9% saving in terms of number of hold buffers with a 1.7%
higher timing yield. The primary source of improvement over the baseline approach comes from
the application of CPPR to the clock tree topology.
Note that these results assume no common clock path between PIs/POs and the logic cells. If

we estimate the CCP length of PI/PO paths with the average CCP length of the circuit, then the
3σ approach achieves an average of 10.2% saving in hold buffers over the fixed margin approach.
Alternatively, if we simply exclude JTLs on PI/PO paths, then the 3σ approach saves an average of
14.1% hold buffers.

The results of the placement from scratch algorithm are shown in Table 3. The 3σ approach
shows a 2.0% saving on the number of hold buffers with a 5.9% improvement on timing yield,
when compared with the baseline approach. Additionally, the 2σ approach shows a 19.4% saving
on the number of hold buffers with a 0.9% drop on yield.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

47:14 X. Li et al.

Table 3. Number of Hold Buffers (JTLs) and Timing Yield (%) for the Fixed Margin (7 ps), and the Proposed

Variation-based 3σ and 2σ Hold Margin, with Placement from Scratch

fixed margin (7ps) 3σ 2σ

Design
Std
Dev

Yield(%)
JTLs
plc

JTLs
replc

Yield(%) # JTLs plc
JTLs
replc

Yield+(%) # JTLs-(%) Yield(%)
JTLs
plc

JTL
replc

Yield+(%) # JTLs-(%)

c432 0.0809 90.7 1508 1935 98.8 1012 1685 8.9 12.9 95.6 1012 1385 5.4 28.4
c499 0.0810 99.2 564 698 99.9 426 731 0.7 –4.7 95.9 426 601 –3.3 13.9
c880 0.0808 97.9 1031 1408 99.5 757 1394 1.6 1.0 92.6 757 1132 –5.4 19.6
c1355 0.0810 96.9 577 695 99.5 431 678 2.7 2.4 95.8 431 573 –1.1 17.6
c1908 0.0808 91.3 1085 1343 99.9 739 1274 9.4 5.1 92.5 739 1032 1.3 23.2
c2670 0.0819 95.7 2831 4170 99.5 2513 4155 4.0 0.4 95.1 2513 3615 –0.6 13.3
c3540 0.0829 94.3 2055 2922 99.3 1416 3105 5.3 –6.3 94.6 1416 2417 0.3 17.3
c5315 0.0828 90.8 4199 8507 97.8 3055 8621 7.7 –1.3 89.3 3055 7143 –1.7 16.0
c6288 0.0829 85.9 4697 7731 98.9 3592 7591 15.1 1.8 87.4 3592 6333 1.7 18.1
c7552 0.0829 94.7 2601 5115 98.3 1794 4658 3.8 8.9 89.1 1794 3742 –5.9 26.8

AVG. 0.0818 93.7 2115 3452 99.1 1574 3389 5.9 2.0 92.8 1574 2797 –0.9 19.4

Table 4. Number of Hold Buffers (JTLs) for Placement from Scratch vs. Incremental

Placement Approaches

fixed margin (7ps) 3σ 2σ

Design
logic gates
+splitters

JTLs
scratch

JTLs
incre.

Saving (%) # JTLs scratch
JTLs
incre.

Saving (%) # JTLs scratch # JTLs incre. Saving (%)

c432 3760 1935 1564 19.2 1685 1420 15.7 1385 1185 14.4
c499 1916 698 584 16.3 731 531 27.4 601 470 21.8
c880 3585 1408 1151 18.3 1394 1018 27.0 1132 871 23.1
c1355 1916 695 591 15.0 678 525 22.6 573 470 18.0
c1908 3596 1343 1150 14.4 1274 985 22.7 1032 830 19.6
c2670 6841 4170 3570 14.4 4201 3573 14.9 3615 3196 11.6
c3540 7831 2922 2294 21.5 3105 2190 29.5 2417 1770 26.8
c5315 15575 8507 5036 40.8 8621 4747 44.9 7143 3939 44.9
c6288 14169 7731 6039 21.9 7591 5404 28.8 6333 4685 26.0
c7552 9420 5115 2990 41.5 4658 2745 41.1 3742 2252 39.8

AVG. 6861 3452 2497 22.3 3394 2314 27.5 2797 1967 24.6

Finally, aggregating Tables 2, 3, and 4 provides a comparison between placement from scratch
and incremental placement approaches. Under the assumed variations, incremental placement out-
performs the placement from scratch approach, with savings on hold buffers with 22.3%, 27.5%, and
24.6% under fixed, 3σ and 2σ margin approaches, respectively. Additionally, incremental placement
minimizes the total power consumption associatedwith DC bias resistors in each SFQ cell by reduc-
ing the number of inserted hold buffers, hence static power consumption, which is responsible for
most of the circuit power dissipation in standard RSFQ logic [20]. The main advantage in terms of
reducing the number of hold buffers originates from minimizing the perturbation to the original
placement solution and layout area. As mentioned earlier, our flow utilizes the original timing-
aware clock topology, which considers the criticality of the data paths in terms of timing slacks,
after placement and legalization of the hold buffers. Therefore, less perturbations to the placement
solution and the fixed clock topology lead to fewer changes in the location of clock splitters, less
modifications to the clock arrival times, hence less effort on timing closure and hold fixing.
Table 5 presents the results including the minimum clock cycle and the layout area by applying

two placement approaches under 3σ margin approach. Under the assumed variations, incremental
placement has an average overhead of 12.4% and 0.2% in terms of minimum clock cycle time and
layout area, respectively. By distributing the hold buffers such that the logic and hold buffers are
somewhat uniformly distributed among all the rows, incremental placement minimizes the impact
on layout area. The reason behind the degradation of clock cycle times is that incremental place-
ment sometimes creates setup critical paths by adding to the wire delay of paths with inserted
hold buffers, whereas placement from scratch approach, aimed at minimizing the total wirelength

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

A Variation-aware Hold Time Fixing Methodology for Single Flux Quantum Logic Circuits 47:15

Table 5. CCT and Area Comparison between Placement from Scratch vs. Incremental Placement (3σ)

Placement from Scratch Incremental Placement
Design Std Dev CCT (ps) Area CCT (ps) CCT Overhead Area Area Overhead
c432 0.0809 116.6 3.72E+07 139.6 19.7% 3.64E+07 -2.3%
c499 0.0810 115.8 1.80E+07 121.7 5.2% 1.82E+07 1.0%
c880 0.0808 118.9 3.19E+07 117.4 -1.2% 3.16E+07 -1.0%
c1355 0.0810 82.0 1.79E+07 92.5 12.8% 1.80E+07 0.1%
c1908 0.0808 88.6 3.20E+07 115.8 30.7% 3.15E+07 -1.6%
c2670 0.0819 249.3 7.17E+07 302.2 21.2% 7.24E+07 0.8%
c3540 0.0829 146.3 7.11E+07 157.0 7.3% 7.26E+07 2.0%
c5315 0.0828 299.5 1.44E+08 324.5 8.4% 1.44E+08 0.4%
c6288 0.0829 204.5 1.30E+08 248.9 21.7% 1.32E+08 1.6%
c7552 0.0829 306.3 9.81E+07 299.9 -2.1% 9.95E+07 1.5%

AVG. 0.0818 172.8 6.52E+07 192.0 12.4% 6.57E+07 0.2%

Table 6. Runtime in the Fixed Margin (7ps), and the

Proposed Variation-based 3σ and 2σ Hold Margin,

with Incremental Placement

Runtime (s)

Design fixed margin (7ps) 3σ 2σ
c432 101 92 93

c499 57 56 55

c880 95 87 86

c1355 59 56 57

c1908 90 87 86

c2670 206 199 199

c3540 245 235 237

c5315 618 594 593

c6288 516 484 489

c7552 383 363 361

AVG. 237 225 226

without row restrictions, manages to minimize more of the wirelengths and hence reduces the
long wires on some paths that improves the clock cycle time.
Note that if the timing uncertainties were significantly higher, more hold buffers would be

needed and the perturbations to the original gate locations would be larger, increasing the over-
heads of incremental placement. For example, consider circuit c880 with variation increased from
0.080 to 0.134. Then, incremental placement overheads increase to 0.4% in area and 8% in minimum
clock cycle time.
Finally, to quantify the scalability of our proposed hold time fixing algorithm, Table 6 summa-

rizes the runtime of our timing closure flow beginning after clock tree synthesis and including
incremental placement. Our variation-aware approach takes similar time as the fixed margin ap-
proach and even for benchmarks with a large gate count takes less than 10 minutes.

6 CONCLUSIONS

This article presents a variation-aware hold time fixing flow for SFQ circuits. We consider the
worst-case scenario in terms of gate delay variations caused by timing uncertainties and apply
the common path pessimism removal technique to the clock tree topology to reduce the number

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

47:16 X. Li et al.

of required hold buffers for closing the timing of a circuit. Our flow allows a tradeoff between
timing yield and layout area of the circuit. Additionally, we present two placement techniques,
incremental and from scratch, to efficiently place inserted hold buffers while reducing incurred
overheads in terms of layout area and maximum clock frequency. The efficacy of the presented
methodology is verified using Monte Carlo simulations on ISCAS’85 benchmark circuits and an
SFQ5ee-based cell library.

ACKNOWLEDGMENTS

The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of the
Office of the Director of National Intelligence, Intelligence Advanced Research Projects Activity,
or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation herein.

REFERENCES

[1] 2019. IBM ILOG CPLEX 12.10. Retrieved from http://www.ilog.com/products/cplex/.

[2] D. Bryan. 1985. The ISCAS’85 benchmark circuits and netlist format. In Proceedings of the Technischer Bericht, Micro-

electronics Center ofNorth Carolina (MCNC). https://davidkebo.com/documents/iscas85.pdf.

[3] P. Bunyk, K. Likharev, and D. Zinoviev. 2001. RSFQ technology: Physics and devices. Int. J. High Speed Electron. Syst.

11 (03 2001). https://doi.org/10.1142/S012915640100085X

[4] P. Cunningham,M. Swinnen, and SteevWilcox. 2009. Clock concurrent optimization rethinking timing optimizationto

target clocks and logic at the same time. Azuro Inc.

[5] C. J. Fourie and M. H. Volkmann. 2013. Status of superconductor electronic circuit design software. IEEE Trans. Appl.

Supercond. 23, 3 (2013), 1300205–1300205.

[6] Kris Gaj, Eby G. Friedman, and Marc J. Feldman. 1997. Timing of multi-gigahertz rapid single flux quantum digital

circuits. J. VLSI Sign. Process. Syst. Sign. Image Vid. Technol. 16 (1997), 247–276.

[7] Kris Gaj, Eby G. Friedman, and Marc J. Feldman. 1997. Timing of Multi-Gigahertz rapid single flux quantum digital

circuits. Journal of Vlsi Signal Processing Systems for Signal, Image and Video Technology 16, 2 (1997), 247–276. https:

//doi.org/10.1023/A:1007903527533

[8] V. Garg. 2014. Common path pessimism removal: An industry perspective: Special Session: Common Path Pessimism

Removal. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. 592–595.

[9] Erik W. Grafarend. 2006. Linear and Nonlinear Models: Fixed Effects, Random Effects, and Mixed Models. Walter de

Gruyter. 553 pages.

[10] K. Han, A. B. Kahng, and J. Li. 2020. Optimal generalized h-tree topology and buffering for high-performance and

low-power clock distribution. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 39, 2 (2020), 478–491.

[11] D. S. Holmes, A. L. Ripple, and M. A. Manheimer. 2013. Energy-efficient superconducting computing power budgets

and requirements. IEEE Trans. Appl. Supercond. 23, 3 (2013), 1701610–1701610.

[12] S. Huang, G. Jhuo, and W. Huang. 2010. Minimum buffer insertions for clock period minimization. In Proceedings

of the 2010 International Symposium on Computer, Communication, Control and Automation (3CA’10), Vol. 1. 426–429.

https://doi.org/10.1109/3CA.2010.5533776

[13] T. Huang, P. Wu, and M. D. F. Wong. 2014. Fast path-based timing analysis for CPPR. In Proceedings of the 2014

IEEE/ACM International Conference on Computer-Aided Design (ICCAD’14). 596–599. https://doi.org/10.1109/ICCAD.

2014.7001413

[14] T. Huang, P. Wu, and M. D. F. Wong. 2014. UI-Timer: An ultra-fast clock network pessimism removal algorithm. In

Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD’14). 758–765. https:

//doi.org/10.1109/ICCAD.2014.7001436

[15] K. Hubert. 2008. Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication. Cambridge University

Press.

[16] Inhak Han, Daijoon Hyun, and Youngsoo Shin. 2016. Buffer insertion to remove hold violations at multiple process

corners. In Proceedings of the 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC’16). 232–237.

https://doi.org/10.1109/ASPDAC.2016.7428016

[17] Michael A. B. Jackson, Arvind Srinivasan, and E. S. Kuh. 1990. Clock routing for high performance ICs. In Proceedings

of the ACM/IEEE Design Automation Conference. 573–579.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

http://www.ilog.com/products/cplex/
https://davidkebo.com/documents/iscas85.pdf
https://doi.org/10.1142/S012915640100085X
https://doi.org/10.1023/A:1007903527533
https://doi.org/10.1109/3CA.2010.5533776
https://doi.org/10.1109/ICCAD.2014.7001413
https://doi.org/10.1109/ICCAD.2014.7001436
https://doi.org/10.1109/ASPDAC.2016.7428016

A Variation-aware Hold Time Fixing Methodology for Single Flux Quantum Logic Circuits 47:17

[18] K. K. Likharev and V. K. Semenov. 1991. RSFQ logic/memory family: A new Josephson-junction technology for sub-

terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1, 1 (1991), 3–28.

[19] M. A. Bender and M. F. Colton. 2000. The LCA problem revisited. In Proceedings of the 4th Latin American Symposium

on Theoretical Informatics, LNCS, Vol. 1776, 88–94. https://doi.org/10.1007/10719839_9

[20] O. A. Mukhanov. 2011. Energy-efficient single flux quantum technology. IEEE Trans. Appl. Supercond. 21, 3 (2011),

760–769.

[21] L. C. Müller, H. R. Gerber, and C. J. Fourie. 2008. Review and comparison of RSFQ asynchronous methodologies. J.

Phys. Conf. Ser. 97 (Feb. 2008), 12109. https://iopscience.iop.org/article/10.1088/1742-6596/97/1/012109/pdf.

[22] Pei-Ci Wu, M. D. F. Wong, I. Nedelchev, S. Bhardwaj, and V. Parkhe. 2014. On timing closure: Buffer insertion for

hold-violation removal. In Proceedings of the 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC’14). 1–6.

https://doi.org/10.1145/2593069.2593171

[23] Daniel A. Reed and Jack Dongarra. 2015. Exascale computing and big data. Commun. ACM 58, 7 (Jun. 2015), 56–68.

https://doi.org/10.1145/2699414

[24] S. N. Shahsavani and M. Pedram. 2019. A minimum-skew clock tree synthesis algorithm for single flux quantum logic

circuits. IEEE Trans. Appl. Supercond. 29, 8 (2019), 1–13.

[25] Soheil Nazar Shahsavani, Bo Zhang, and Massoud Pedram. 2020. A timing uncertainty-aware clock tree topology

generation algorithm for single flux quantum circuits. In Proceedings of the Design, Automation and Test in Europe

Conference (DATE’20). 278–281.

[26] Michael Shell. 2020. ABC: A System for Sequential Synthesis and Verification. Retrieved from https://people.eecs.

berkeley.edu/~alanmi/abc/.

[27] N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. 1993. Minimum padding to satisfy short path con-

straints. In Proceedings of the 1993 International Conference on Computer Aided Design (ICCAD’93). 156–161. https:

//doi.org/10.1109/ICCAD.1993.580048

[28] R. N. Tadros and P. A. Beerel. 2020. Optimizing (HC)2LC, A robust clock distribution network for SFQ circuits. IEEE

Trans. Appl. Supercond. 30, 1 (2020), 1–11.

[29] R. N. Tadros, A. Fayyazi, M. Pedram, and P. A. Beerel. 2020. Systemverilog modeling of SFQ and AQFP circuits. IEEE

Trans. Appl. Supercond. 30, 2 (2020), 1–13.

[30] S. K. Tolpygo, V. Bolkhovsky, D. E. Oates, R. Rastogi, S. Zarr, A. L. Day, T. J. Weir, A. Wynn, and L. M. Johnson. 2018.

Superconductor electronics fabrication process with MoNx kinetic inductors and self-shunted josephson junctions.

IEEE Trans. Appl. Supercond. 28, 4 (2018), 1–12.

[31] I. V. Vernik, Q. P. Herr, K. Gaij, andM. J. Feldman. 1999. Experimental investigation of local timing parameter variations

in RSFQ circuits. IEEE Trans. Appl. Supercond. 9, 2 (1999), 4341–4344.

[32] T. Xiao, H. Bagga, G. J. Chen, R. Cheung, and R. Pattipati. 2011. Path aware event scheduler in HoldAdvisor for fixing

min timing violations. In Proceedings of the IEEE 29th International Conference on Computer Design (ICCD’11). 71–77.

https://doi.org/10.1109/ICCD.2011.6081378

[33] J. Xiong, V. Zolotov, and L. He. 2007. Robust extraction of spatial correlation. IEEE Trans. Comput.-Aid. Des. Integr.

Circ. Syst. 26, 4 (2007), 619–631.

[34] J. Zejda and P. Frain. 2002. General framework for removal of clock network pessimism. In Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design. 632–639.

[35] B. Zhang and M. Pedram. 2020. qSTA: A static timing analysis tool for superconducting single-flux-quantum circuits.

IEEE Trans. Appl. Supercond. 30, 5 (2020), 1–9.

Received December 2020; revised March 2021; accepted April 2021

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 6, Article 47. Publication date: June 2021.

https://doi.org/10.1007/10719839_9
https://iopscience.iop.org/article/10.1088/1742-6596/97/1/012109/pdf
https://doi.org/10.1145/2593069.2593171
https://doi.org/10.1145/2699414
https://people.eecs.berkeley.edu/~alanmi/abc/
https://doi.org/10.1109/ICCAD.1993.580048
https://doi.org/10.1109/ICCD.2011.6081378

