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Hydrodynamic superradiance in wave-mediated
cooperative tunneling
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Superradiance occurs in quantum optics when the emission rate of photons from multiple

atoms is enhanced by inter-atom interactions. When the distance between two atoms is

comparable to the emission wavelength, the atoms become entangled and their emission rate

varies sinusoidally with their separation distance due to quantum interference. We here

explore a theoretical model of pilot-wave hydrodynamics, wherein droplets self-propel on the

surface of a vibrating bath. When a droplet is confined to a pair of hydrodynamic cavities

between which it may transition unpredictably, in certain instances the system constitutes a

two-level system with well-defined ground and excited states. When two such two-level

systems are coupled through an intervening cavity, the probability of transition between

states may be enhanced or diminished owing to the wave-mediated influence of its neigh-

bour. Moreover, the tunneling probability varies sinusoidally with the coupling-cavity length.

We thus establish a classical analog of quantum superradiance.
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In classical physics, particle motion is characterized in terms of
dynamical states which may provide in turn the basis for a
statistical description of the system. In quantum physics there

is no such dynamical description: quantum systems are described
entirely in terms of the evolution of their statistical states1. For a
quantum system with at least two subsystems, non-separability
arises when the quantum state cannot be factored into a product
of states of its individual subsystems2. Many well-known bipartite
quantum phenomena arise as a result of such non-separable
states. One is the phenomenon of superradiance and subradiance,
whereby the probability of decay of two coupled systems, as
marked by photon emission, depends on the proximity of those
systems3–6.

Superradiance is a “cooperative” spontaneous emission of
photons from a collection of N atoms that was theoretically
predicted in 1954 by Robert Dicke6. When thermally excited
atoms emit photons incoherently with respect to each other, the
emitted intensity is proportional to the number of atoms, N.
However, when the atoms radiate coherently, in phase with each
other, the net electromagnetic field is proportional to N, and the
emitted intensity thus scales as N2. As a result, the atoms may
decay at an enhanced rate that is up to N times faster than for
incoherent emission, a phenomenon termed “superradiance”.

When the distance between the atoms is of the order of the
emission wavelength, rationalizing this collective behavior
requires consideration of the system’s quantum nature. The most
elementary demonstration of Dicke’s superradiance is achieved
with two ions4. Experimentally, the photon emission rate Γ(R) is
characterized in terms of the inter-ion distance R, and compared
to the single-ion emission rate Γ0 in the same apparatus. The
quantum theory describes a bipartite system in which two
interacting two-level systems form a single four-level system.
When far apart, the two subsystems are independent and can be
either in the ground or excited states. When the two two-level
systems interact, the collective system is treated as a single non-
factorable four-level system, consisting of a ground state ��j i,
degenerate first excited states þ�j i or �þj i that are energetically
indistinguishable, and a second excited (higher energy) state
þþj i. Here þj i and �j i denote the states of the two subsystems,
nomenclature that we adopt for our system. The decay rates Γ± to
or from the degenerate excited states þ�j i and �þj i are well-

approximated by Γ± ðRÞ ¼ Γ0 1 ± 3
2
sinðkRÞ
kR þ ¼

� �
in the limit

kR⪆ 10, where k= 2π/λ denotes the wavenumber and λ the
emission wavelength4. Specifically, Γ+ and Γ− are the rates cor-
responding to transitions to or from the symmetric ð þ�j i þ
�þj iÞ= ffiffiffi

2
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and antisymmetric ð þ�j i � �þj iÞ= ffiffiffi
2
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states,

respectively. We note that Γ± can be either greater or less than the
bare emission rate Γ0, corresponding to, respectively, super-
radiance or subradiance. The measured form of Γ±(R) was found
to be in very good agreement with Dicke’s theoretical prediction4.
Such sinusoidally modulated, enhanced, or diminished radiance is
an indirect measure of the nonseparability of states, a phenom-
enon commonly thought to be peculiar to the quantum realm.

Superradiance is a canonical effect in quantum optics with
important applications in quantum communication7. Moreover,
it was recently demonstrated that entangled free electrons may
also exhibit superradiance through an emission pattern that
cannot be accounted for by a classical mixed state8, suggesting a
means for non-destructive measurement9 of entanglement
between quantum systems. While a classical analog of super-
radiant emission has recently been reported in an experimental
study of interfacial fracture10, we here present an analog based on
the hydrodynamic pilot-wave system11,12.

Hydrodynamics has long served as a rich source of physical
analogs for electromagnetic and optical phenomena13–15. More

recently, it has yielded robust analogs of white holes16, black
holes17,18, and rotational superradiant scattering19. Until recently,
hydrodynamic analogs of quantum systems were relatively rare, but
included the Aharanov–Bohm effect20 and the Casimir effect21.
The walking-droplet system discovered in 2005 by Yves Couder
and Emmanuel Fort11,22 has proven to be a remarkably rich source
of physical analogs for both optical and quantum systems. This
pilot-wave hydrodynamic system exhibits many features previously
thought to be exclusive to the quantum realm, and so has initiated
the burgeoning field of hydrodynamic quantum analogs12,23,24.

Couder and Fort11 discovered a classical pilot-wave system that
consists of a millimetric droplet bouncing on the surface of a vibrating
liquid bath, self-propelling by virtue of a resonant interaction with its
ownwave field. By virtue of this resonance, the droplet is accompanied
by a quasi-monochromatic wave field that imposes a dynamic con-
straint on the droplet that gives rise to the emergence of quantized
dynamical states12. For example, quantized orbital states emerge when
the walking droplets move in the presence of either Coriolis25–27 or
central spring forces28–30 and Bohr–Sommerfeld quantization may
emerge for walkers in a harmonic well31. Features of quantum optics
have also been captured, including single-particle diffraction and
interference22,32,33 and the Hong-Ou-Mandel effect34. The persistence
of the pilot-wave field renders the drop dynamics non-Markovian35,36;
specifically, the instantaneous wave force imparted to the drop during
impact depends on the particle’s history. The droplet thus navigates a
potential landscape of its own making. The non-Markovian feature of
the droplet dynamics gives rise to behavior that might be mistakenly
inferred to be spatially non-local if the influence of the wave field is not
adequately resolved24. Of particular interest, here is the hydrodynamic
analog of unpredictable quantum tunneling37, as has been demon-
strated both experimentally38,39 and numerically40,41.

We introduce here a theoretical model of bipartite tunneling in
the hydrodynamic pilot-wave system that allows us to establish a
classical analog of quantum superradiance. We do so by satisfying
three criteria. First, we consider a classical two-level system in
which one of the two states may be treated as the lower-energy
state, in the sense that it is more likely to arise. Second, we
produce a bipartite system, consisting of two such two-level
systems, coupled in such a way that their collective behavior
cannot be specified in terms of a linear combination of its indi-
vidual subsystems. Third, we demonstrate that the probability of
transition from state to state in each subsystem varies in a
sinusoidal fashion with the distance between the two subsystems.

Results
Model dynamics. Our model system comprises two subsystems,
labeled 1 and 2 in Fig. 1a, each consisting of a wave-generating
particle in an identical pair of cavities separated by a barrier
across which the particle may tunnel. Each particle generates
waves and moves in response to them in a manner detailed in
“Methods”. The two subsystems are separated by a coupling
cavity of variable width Lc, and by barriers that are sufficiently
high as to preclude the particles from tunneling into the coupling
cavity. The particles are thus confined to one of the two sub-
systems, but may find themselves in either the inner or outer
cavities of their subsystem. Each of the four cavities has a fixed
length of L= 1.2 cm, corresponding to ~2.5λF. Here, λF is the
Faraday wavelength, the most unstable wavelength of the
vibrating bath, and the dominant wavelength of the droplet’s
pilot-wave field11,22.

Each bouncing droplet, within its two-level system, generates
waves that are reflected and transmitted as they interact with the
bottom topography. The coupling cavity is relatively deep and so
closer to the Faraday threshold; thus, waves transmitted into it are
relatively persistent and so capable of influencing the other two-
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level system. The central cavity thus establishes the long-range
coupling between the two two-level systems. The efficiency of this
coupling is prescribed by the geometry of the central cavity: by
increasing its depth dc, the coupling is increased, allowing the
coupling cavity to serve as a nearly resonant transmission line42.

In all simulations, we set the coupling cavity depth to
dc= 6.3λF which ensures strong intercavity coupling. In sub-
systems 1 and 2, the particle may tunnel between the outer and
inner cavities, but the probability of presence in these cavities is
not generally 50%. Specifically, in the geometry considered, the
particles are more likely to be in the outer cavity. We thus
describe our bipartite tunneling system in terms of two coupled,
two-level systems, as shown in Fig. 1b.

Tunneling. When a single droplet is placed in one of the two
subsystems, the single-particle tunneling probability (Γ0) may be
deduced by counting the number of tunneling events per crossing
attempt over a sufficiently long time interval. When the two
droplets are placed in each of the two subsystems, the tunneling
probabilities change substantially from Γ0, owing to the wave-
mediated coupling of the two subsystems. Figure 2a, b indicates
that the probability of tunneling increases substantially when the
second droplet is present in the neighboring system, an effect akin
to superradiance. Figure 2c, d presents a configuration with a
longer coupling cavity in which the tunneling probability is
substantially decreased by the addition of a neighbor, corre-
sponding to subradiance.

Having established that wave-mediated coupling alters the
tunneling probability in this bipartite system, we proceed by
characterizing the dependence of the transition probabilities on the
system geometry. Figure 3a illustrates how the tunneling probability
depends on the length of the coupling cavity, Lc. The tunneling
probability either increases or decreases relative to Γ0, varying
continuously with Lc in an oscillatory fashion, reminiscent of the
modulation of the emission rate reported in ion-pair quantum
mechanical superradiance4. Further to this modulation, the peaks
become less intense and slightly broader as Lc increases, a trend that
is likewise apparent in quantum superradiance4. For Lc/λF > 6, the
single-drop and droplet-pair crossing probabilities largely coincide,
indicating that the two components of this bipartite system behave
as if they were uncoupled. Specifically, the tunneling probability of a
particular drop is determined by the length of the coupling cavity,
but unaffected by its distant neighbor.

Rationalizing transition probabilities. The evolution of the
transition probability with coupling-cavity length is rationalized
in Fig. 3b, where we report the difference in oscillator action
δAtotal(Lc)= A+(Lc)−A− (as defined in Eq. (4) of “Methods”)
between the excited and ground states. For the one-drop system,
the oscillator action difference is a constant which is independent
on Lc (see Supplementary Fig. 1 for the details of all the con-
tributions). For the two-drops system, the oscillator action in the
inner cavity is constant (see Supplementary Fig. 2), independent
of Lc, and we take its mean value A− as a reference. Conversely,
the oscillator action in the outer cavity varies significantly with
coupling-cavity length Lc; we denote its value by A+(Lc). A
comparison between Fig. 3a and b shows a direct correspondence
between the maxima and minima of the transition probability
and the minima and maxima of δAtotal, respectively. We conclude
that the wave-mediated lowering of the oscillator action strongly
favors the transition from the ground to the excited states. The
one-droplet system simulations reveal a difference of oscillator
action δAtotal that is approximately constant for sufficiently small
coupling-cavity length Lc < 6λF.

We further note that when Lc/λF < 1 the mid-cavity is a
relatively deep, slender region, which poses problems for the
nonlinear solver of the numerical conformal mapping. This
limitation is presumably due to the crowding phenomenon, a
numerical conformal mapping feature arising when two pre-
images of vertices get exponentially close in the canonical
domain43. The gray region in Fig. 3 identifies these slender
coupling cavities that could not be reliably explored numerically.

Finally, we examine the correlation between the wavefield
structure and the particle dynamics. Figure 4a illustrates both the
particle positions and instantaneous wave field. An assessment of
the wave intensity (Eq. (5) in “Methods”) in each cavity is shown
in Fig. 4b–d. Each cavity is color-coded for ease of reference. The
rightmost panel shows the wave intensity of the system across all
cavities. Periods in which one particle has tunneled into an
excited state are denoted by light gray. Such intervals are
accompanied by a reversal in the relative wave intensity in the
inner and outer cavities, and an increase in the wave intensity in
the coupling cavity. Periods in which both particles are in excited
states are denoted by dark gray, and marked by maxima in the
wave intensity in the coupling cavity and minima in the global
wave intensity. The wave intensity diagnostic thus provides
rationale for associating the outer and inner cavities with,
respectively, ground and excited states.

Fig. 1 Description of the numerical model of two coupled, two-levels systems. a The model system consists of a pair of drops (red and green) walking on
the surface of a vibrating fluid bath (blue) that spans the solid substrate (gray). Each drop is confined to a pair of wells separated by barriers across which
they may tunnel unpredictably. The extent of coupling in this bipartite tunneling system is prescribed by the magnitude of the vertical vibrational forcing, γ0,
angular frequency, ω0, and the width, Lc, of the intervening coupling cavity, a region that is forbidden to both drops. b The state of each droplet is denoted
by �j i or þj i according to whether the drops are in, respectively, the outer “ground” state or the inner “excited” state.
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Discussion
We have examined a model of bipartite tunneling in a classical
system. The tunneling probability within the two subsystems is
mediated by their common wave field and shown to depend on
the length of the coupling cavity. This dependence is similar to
that of the probability of photon emission on inter-ion spacing in
the case of quantum superradiance (e.g., compare our Fig. 2 with
Figs. 2 and 6 of ref. 4). If we consider that the energy stored in our
system is altered each time the droplet tunnels between the
ground and excited states, we can establish a direct analogy
between our system and quantum superradiance. Specifically, we
may identify the alteration of the wave field that accompanies the
transition from a high-energy to lower-energy state with the
emission of a photon in quantum mechanics. Thus, the prob-
ability of tunneling is directly analogous to the transition rate in
superradiant photon emission.

We have highlighted the similarities between our classical system
of bipartite tunneling and super- or subradiant photon emission
from ion pairs. To account for the optical superradiance in quan-
tum mechanics, one must invoke the concept of collective, non-

separable, states that are formed between the two ions, which are
viewed as absorbing or emitting each photon collectively4,7,44,45.
Quantum mechanics offers no physical picture for the origins of
non-separable states, only the mathematical tools required to cal-
culate the relevant probability densities. Our system illustrates how
such correlations may arise in a classical, wave-mediated system.
The correlations in our system arise from the wave coupling
between the two tunneling subsystems.While the form of the waves
may be deduced by linear superposition, their influence on
the tunneling probability is nonlinear. Specifically, the discrete
tunneling events are unpredictable, as they depend in a subtle
fashion on the interactions between the particles, the waves and the
underlying potential wells formed by bottom topography39,40,46.

A hydrodynamic analog of superradiant emission was recently
realized experimentally in a distinct fluidic system. Specifically,
drops were produced via vibration-induced interfacial fracture
from adjacent circular cavities coupled through a thin layer, and
the rate of droplet ejection was seen to vary sinusoidally with the
distance between the cavities10. Table 1 summarizes the key
physical analogies between superradiant emission as arises in

Fig. 2 Tunneling dynamics and trajectories of the drops. a A single droplet tunnels between its ground state (outer cavity) and excited state (inner
cavity). The middle cavity (marked in orange) couples the left and right subsystems. The red and green lines denote the particle paths in the left and right
subsystems, respectively. Dashed lines indicate the edges of the various cavities. b In the bipartite system, a pair of drops tunnel between their ground and
excited states. In (a, b), the coupling-cavity length is Lc= 2.44λF and the four other cavities' lengths are L= 2.52λF. Comparing (a) and (b), makes clear that
a single particle’s tunneling probability is substantially increased by the presence of a neighboring drop, corresponding to superradiance. The configuration
shown in (c, d) is similar to (a) and (b) but with a larger coupling cavity Lc= 3.96λF. Comparing (c) and (d) reveals that the particle’s tunneling between
cavities is inhibited by the presence of the neighboring drop, an effect corresponding to subradiance.
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quantum optics, droplet emission via interfacial fracture10, and
the bipartite droplet tunneling considered here.

Experimental realization of the one-dimensional dynamics
considered here would require that one confine the walking
droplets to a narrow channel, of width comparable to the Faraday
wavelength. Indeed, we have already used such confinement to
study the synchronization of drop-pairs in a three-cavity
geometry47 and extension to the five-cavity geometry con-
sidered here should be possible. While one does not expect
quantitative agreement between our numerical model and such
an experimental realization owing to the heightened dissipation

associated with the three-dimensional laboratory flows, one does
expect to be able to capture qualitative features such as the
superradiant tunneling reported here.

In the study of hydrodynamic quantum analogs, we are gen-
erally satisfied with qualitative analogs, the demonstration of
which is sufficient to challenge the prevailing notion that quan-
tum systems are entirely inscrutable from a classical
perspective24. While there are hydrodynamic analogs that exhibit
behavior quantitatively similar to their quantum counterparts,
including Friedel oscillations48 and quantum corrals49,50, more
commonly the analogy is at the qualitative level, as in the case of

Fig. 3 Evolution of the transition probability with the width of the coupling cavity. a The dependence of the probability of tunneling from the outer to the
inner cavity on the width of the coupling cavity, Lc, for a single drop (red squares) and for two drops (blue circles). The red dashed line is the average
tunneling probability for a single drop for coupling cavity lengths Lc/λF < 6. For 2.3< Lc/λF < 6 this average probability 〈P〉= 1.0% (95% confidence interval
[0.91: 1.09]). Error bars represent the standard deviation over six independent numerical runs. b Evolution of the energy barrier to tunneling, δAtotal, for the two-
droplet system (blue) and the one-droplet system (red). Blue shaded regions adjoining the lines denote the error bars. Note that the probability maxima in panel
a correspond to energy-barrier minima in b. For Lc/λF > 6, the tunneling probability of either drop converges to that of a single droplet, and so is evidently
unaffected by its distant neighbor. The gray region on the left denotes the region of tall, slender coupling cavities that could not be reliably explored numerically.

Fig. 4 Wave intensity. a The particle paths and associated wave fields. Light and dark regions correspond to wave minima and maxima, respectively.
b–e The associated wave intensity, as computed from Supplementary Eq. (3). Comparison of (a) and (b) reveals the correlation between extrema in the
wave intensity and the tunneling events. In (b–e), intervals in which one or both drops are in an excited state are denoted by light and dark gray,
respectively, and are correlated with local extrema in the total wave intensity.
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the bipartite tunneling system studied here. Nevertheless, we
believe that the study of hydrodynamic quantum analogs com-
plements more traditional studies of quantum systems in pro-
viding a perspective and platform for assessing which quantum
effects can and cannot be understood from a classical perspective.

Our bipartite tunneling system has given rise to collective
transition statistics, specifically subradiant and superradiant
tunneling rates between the ground and excited states, which may
be predictably controlled by altering the distance between the two
two-level systems. Notably, the precise energetic difference
between the ground and excited states may be altered and even
reversed by changing the geometry of the outer cavities (Sup-
plementary Fig. 3 and Supplementary Note 3). Our system thus
provides a platform for characterizing wave-induced correlations
between particle pairs. Specifically, by taking the system geometry
as a proxy for measurement settings, we intend to test the viability
of violating Bell-type inequalities with this classical pilot-wave
system51.

Methods
Numerical method. Nachbin et al.40 formulated a theoretical model for the one-
dimensional motion of a walking droplet over a vibrating liquid bath with complex
topography. Here, we adapt this model in order to consider two identical particles
in the multiple-cavity geometry depicted schematically in Fig. 1. The positions, Xj

(j= 1, 2), of the two identical particles of mass m evolve according to Newton’s
Law:

m€Xj þ c FðtÞ _Xj ¼ �FðtÞ ∂η
∂x

ðXjðtÞ; tÞ: ð1Þ

The particle moves in response to gradients of the wave elevation η(x, t), which
thus plays the role of a time-dependent potential. The particle motion is resisted by
a drag force proportional to its speed. The drag constant c follows from the
modeling presented in refs. 52,53. The time dependence of the propulsive and drag
forces reflects that of the reaction force, F(t), acting on the drop during its contact
with the bath52,53. In terms of their lateral motion, the particles are viewed as
oscillators that can transition unpredictably between two neighboring cavities.

The particles serve as moving wave sources that establish their own time-
dependent wave potential that is computed as follows. The velocity potential of the
liquid bath ϕ(x, z, t) is a harmonic function satisfying Laplace’s equation. In the
bulk of the fluid, the velocity field is given by (u, v)=∇ ϕ. The fluid bath has
density 0.95 g/cm3, viscosity 16cS and surface tension 20.9 dynes/cm, values typical
of silicone oil, and oscillates vertically with frequency ω0/2π= 80 Hz. The resonant
bouncing of the particle at the Faraday frequency triggers a monochromatic
damped wave pattern with a corresponding deep-water Faraday wavelength of
λF= 4.75 mm. The wave model is formulated in the bath’s reference frame, where
the effective gravity is gðtÞ ¼ gð1þ γ0 sinðω0tÞÞ, where g is the acceleration due to
gravity, γ0 ¼ A0ω

2
0=g the maximum dimensionless vibrational acceleration, and A0

the amplitude of vibration. We here fix γ0= 4.21 (90.3% of the Faraday threshold,
γF= 4.66), where superradiant effects are pronounced, as indicated by an initial
parameter sweep. The wave field thus evolves according to refs. 40,53:

∂η

∂t
¼ ∂ϕ

∂z
þ 2ν

∂2η

∂x2
; ð2Þ

∂ϕ

∂t
¼ �gðtÞηþ σ

ρ

∂2η

∂x2
þ 2ν

∂2ϕ

∂x2
� ∑

j¼1;2

Pdðx � XjðtÞÞ
ρ

: ð3Þ

The particles (j= 1, 2) generate waves on the free surface by applying local
pressure terms Pd. The wave forcing term Pd(x− Xj(t)) and the coefficient F(t) are
activated only during a fraction of the Faraday period TF, corresponding to the
contact time Tc in the walking-droplet system and approximated by Tc= TF/4. The
particle is assumed to be in resonance with the most unstable (subharmonic)
Faraday mode of the bath53, a key feature of pilot-wave hydrodynamics12,24,54.
Further details and discussion concerning the numerical implementation of the
model system, (1) and (2)–(3) are provided in the Supplementary Note 1.

System’s energetics. We proceed by defining the diagnostics that characterize the
system’s energetics. For nearly periodic cycles, we characterize the particle energy
in phase space. We define a cycle-averaged energy quantity for particle j= 1, 2

�Aj ¼
Z tþT

t

�Ω0X
2
j ðtÞ þ �Ω

�1
0

_X
2
j ðtÞ

h i
dt ð4Þ

that we refer to as the “oscillator action”, a name originating from conserved
quantities used to describe wave propagation in fluids55. �Aj is calculated over the
period T of a given cycle; the associated mean angular frequency �Ω0 is readily

computed numerically. We note that �A1=2 is a length related to the range of droplet
excursions within a cavity. Notably, �A is lower in the ground state than in the
excited state in all geometries considered here: excited states are marked by rela-
tively large particle excursions. We denote by δAtotal the energetic barrier to tun-
neling between two states.

As a diagnostic for the wave energy, we monitor the wave intensity:

jjηjjðtÞ ¼
Z

ηðx; tÞ� �2
dx

� �1=2

: ð5Þ

Further details and discussion concerning the diagnostics (4) and (5) are
provided in the Supplementary Note 2.

Data availability
The data that support the findings of our study are available upon request.

Code availability
The code that generated the data is available upon request.
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