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a b s t r a c t 

Measuring condensation heat transfer and its associated heat transfer coefficient is not trivial. Rigorous 

measurements require careful experimental design and tradeoff studies to properly select sensor type, 

sample geometry and size, coolant fluid and flow rate, operating conditions, working fluid purity, purge 

methodology, and measurement protocol. Conventional tube-based condensation heat transfer measure- 

ments quantify the change in the enthalpy of a single-phase coolant flow via measurement of the inlet 

and outlet bulk coolant temperatures. The uncertainties associated with this classical and well-established 

experimental method are high. The high uncertainty stems from the high characteristic heat transfer co- 

efficient or heat flux associated with the condensation process, making the thermal resistance on the 

external tube side typically on the same order of magnitude as the internal single-phase coolant con- 

vective heat transfer thermal resistance. Even when taking the utmost care and using extremely accu- 

rate sensors having low uncertainty, the relative uncertainties of heat flux and heat transfer coefficient 

can be in the range of 20% to 100%. Here, we take advantage of machine learning (ML) to develop an 

optical visualization method for dropwise condensation heat transfer characterization. Using state-of-the- 

art intelligent vision, we demonstrate a previously-unexplored method for characterizing the condensate 

droplet shedding frequency, droplet shedding size, and heat flux without the need for high-speed imag- 

ing. We verify our technique by conducting rigorous steam condensation measurements on Parylene C 

coated smooth copper tube samples having 500 nm, 1 μm, and 5 μm Parylene C thicknesses. We validate 

our ML predictions with data obtained simultaneously using the enthalpy-change method on a custom 

and well-established condensation chamber. In contrast to conventional heat transfer measurement meth- 

ods, the uncertainty of our ML method is constant ( ∼10%) and does not vary with heat flux. We finally 

demonstrate the key advantage of our ML measurement technique on a custom-made tube having axi- 

ally varying surface properties resulting in differing local heat transfer coefficient. Our ML heat transfer 

measurement method enables the high fidelity characterization of phase change heat flux, reduction in 

relative measurement uncertainty, resolution of local effects, and elimination of the need for temperature 

measurement across samples. 

© 2022 Elsevier Ltd. All rights reserved. 

1

p

h

p

M

U

a

p

a

c

r

d

h

0

. Introduction 

Condensation is an important phase-change phenomenon to a 

lethora of industries. In particular, dropwise condensation (DWC) 

as been the topic of great interest in the past century due to its 

otential to enhance the thermal efficiency of applications such 
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s high heat flux electronics thermal management [1] , the steam 

ower cycle used for power generation [2] , and building heating 

nd cooling [3] . The key to efficient DWC is the rapid removal of 

ondensate droplets from the condensing surface. Efficient droplet 

emoval minimizes the conduction thermal resistance of the con- 

ensate liquid remaining on the surface. DWC mainly occurs on 

onwetting surfaces where contact angle hysteresis is typically 

ow [4] . This droplet removal relies on gravity or vapor shear and 

ypically happens when the droplet size approaches the capillary 

ength ( ∼2.7 mm for water) of the condensate [5] . 

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123016
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Nomenclature 

Symbols 

A Surface area 

Al Aluminum 

ANN Artificial neural network 

BiFPN Bi-directional feature pyramid network 

c Specific heat 

Cu Copper 

d Used to refer to parameters uncertainty 

D Diameter 

DAQ Data acquisition system 

DCNN Deep convolutional neural network 

DI Deionized 

DWC Dropwise condensation 

EES Engineering Equation Solver 

ESEM Environmental scanning electron microscopy 

Exp Experimental 

f Friction factor 

F Droplet shedding frequency 

fps Frame per second 

FWC Filmwise condensation 

g Acceleration due to gravity 

h Heat transfer coefficient 

H Image height 

HCl Hydrochloric acid 

I Image (pixel) intensity 

IoU Intersection over union 

k Thermal conductivity 

L Length 

LMTD Log mean temperature difference 

˙ m Mass flow rate 

ML Machine learning 

MSE Mean square error 

NCG Non-condensable gas 

P Pressure 

Pr Prandtl number 

q ′′ Heat flux 

Re Reynolds number 

Ref Refrigerant 

RGB Red-Green-Blue color space 

RNN Recurrent neural network 

RTD Resistance thermal detector 

SSIM Structural similarity index metric 

T Temperature 

U Overall heat transfer coefficient 

V Droplet volume 
˙ V Volumetric flow rate 

W Image width 

Greek symbols 

� Difference 

μ Dynamic viscosity 

λ Mean image intensity 

σ Standard deviation 

ρ Density 

θ Droplet contact angle 

Subscripts 

a Advancing (droplet contact angle) 

b At bulk 

c Coolant 

con Condensation 

fg Associated with latent heat of vaporization 
a

2 
in Inlet 

o Outer or outside 

out Outlet 

r Receding (droplet contact angle) 

s At surface 

sat Saturated state 

tube tube 

For both filmwise condensation on bare surfaces or DWC on 

romoted surfaces, the experimental characterization of condensa- 

ion heat transfer requires particular attention to be paid to sensor 

election and measurement protocols. Condensation experiments 

re usually conducted in vacuum-compatible chambers to limit the 

resence of non-condensable gases (NCGs) that greatly degrade 

he heat transfer measurement. Even trace amounts of NCGs, as 

ow as a few PPM, can degrade the measured heat transfer co- 

fficient by as much as 50% [ 6 , 7 ]. When testing condenser tube

urfaces, heat flux is calculated by measuring the coolant bulk in- 

et and bulk outlet temperatures inside of the tube. Knowledge 

f the coolant inlet and outlet temperatures as well as the satu- 

ated vapor temperatures enables the use of the log mean tem- 

erature difference [8] to determine the overall vapor-to-coolant 

eat transfer coefficient ( U). This overall quantity can then be 

sed with the internal heat transfer coefficient ( h i ) on the coolant 

ide to estimate the external condensation heat transfer coefficient 

 h con ). 

The typical uncertainties associated with condensation heat flux 

 q ”) and heat transfer coefficient estimations are relatively high. 

mall errors in temperature measurements propagate into high un- 

ertainties in the estimations. Many past studies have measured 

he condensation heat transfer on flat surfaces by carefully in- 

erting several temperature sensors at specified locations inside 

 copper block on which the sample is mounted. Assuming one- 

imensional steady-state heat conduction, and knowing the dis- 

ance between the thermocouples, the heat flux can be calcu- 

ated. A separate temperature sensor is required at a location close 

o the surface of the sample and inside the copper block in or- 

er to estimate the condensing surface temperature and to calcu- 

ate h con [ 9 , 10 ]. The temperature differences measured are quite 

mall ( �T = 1 – 3 K) and may lie within the uncertainty of the

emperature sensors used [11] . Furthermore, carful installation of 

he sensors to ensure good thermal contact and orthogonality to 

he surface normal is challenging. To ameliorate these difficul- 

ies, researchers have also attempted to quantify the condensation 

eat transfer on tube geometries. Similar challenges exist on tubes 

here sensors need to be placed at the centerline of the tube to 

easure the bulk fluid temperature. Furthermore, highly turbulent 

oolant flow having high Reynolds number (Re d > 20,0 0 0) is re- 

uired to minimize the radial temperature gradient in the coolant 

ow at the inlet and outlet. 

Recently, an innovative approach called the thermal amplifica- 

ion technique [12] was created to reduce condensation heat trans- 

er measurement uncertainty. The approach uses a high coolant 

ow rate in the primary test section to ensure that the govern- 

ng thermal resistance is on the condensation side as opposed to 

he coolant side. Then, the method uses a heat exchanger to cou- 

le the primary loop to a secondary loop having a cooling water 

tream with a much lower flow rate in order to measure higher 

emperature differences and achieve higher signal-to-noise ratio. 

he measured temperature difference in the secondary loop was 

wo orders of magnitude larger than the primary loop due to the 

eduction in flow rate. Although thermal amplification was able to 

chieve uncertainties of 10%, it is complex. 
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A significant source of error of coolant enthalpy-change-based 

ondensation heat transfer measurement techniques, including the 

hermal amplification technique, is the importance of spatial lo- 

ation of the temperature sensor inserted inside the coolant flow. 

his particular sensitivity to probe location stems from the fact 

hat the coolant temperature profile is not uniform for develop- 

ng or fully-developed internal pipe flows [13] . As such, it is very 

mportant to install both the inlet and outlet sensor at the same ra- 

ial location inside the tube in reference to the tube inner wall lo- 

ation. Moreover, cases exist where measuring the bulk fluid tem- 

erature is not feasible. For example, when the flow is laminar and 

 flow mixer is not present [14] . 

A lack of accurate correlations for internal heat transfer coef- 

cient for more complex geometries and conditions (e.g., inter- 

ally enhanced tubing, thermally and hydrodynamically developing 

ow) is yet another limitation of conventional methods. Therefore, 

 need exists to develop a more robust, raid, and simple approach 

o measure the condensation heat transfer which can be applicable 

t different flow conditions, for different tube geometries, and that 

s insensitive to temperature sensor accuracy or position. 

A common alternative method to the coolant enthalpy-change 

pproach eliminates the use of temperature sensors and uses col- 

ected condensate mass or volume falling from the condensing sur- 

ace to estimate the condensation heat transfer rate [ 15 , 16 ]. How-

ver, the precise collection of condensates from the condensing 

urface of interest over time is challenging as condensation can 

ccur on tertiary surfaces such as chamber walls, fittings, and con- 

ections, resulting in accumulation error. To alleviate these errors, 

he condensate collector needs to be installed inside the condensa- 

ion chamber and at the proper position relative to the condensing 

urface, adding additional complexity and a source of uncertainty. 

oreover, the collector should possess real-time measurement ca- 

ability as the condensation rate varies with vapor pressure and 

akes time to reach to steady-state. These challenges result in rel- 

tively high uncertainty in the measurements and therefore the 

nthalpy change-based method has been the preferred method of 

hoice in the past decade when compared to the mass collection 

ethod. 

In the past decade, many studies have focused on developing 

urfaces to increase droplet-shedding frequency and decrease the 

roplet shedding size during DWC. These surfaces can be classi- 

ed as hydrophobic [17] , superhydrophobic [18] , hybrid or biphilic 

 19 , 20 ], liquid infused [21] , and slippery hydrophilic [4] . Despite

he progress in surface design and DWC heat transfer enhance- 

ent, much less attention has been given to improving charac- 

erization methods for reducing the condensation heat transfer 

easurement uncertainty. Although reporting uncertainty values is 

ivotal to understand, compare, and contrast surface heat trans- 

er performance, many studies report only the heat flux and heat 

ransfer coefficient values without conducting error propagation 

nalysis to evaluate the uncertainty of their results [11] . Among 

he studies which have reported the uncertainty values for their 

eat transfer measurements, uncertainties range from 12% to 60% 

or heat flux and 20% to 80% for condensation heat transfer coeffi- 

ient [ 5 , 22–26 ]. 

In an effort to simplify and speed up heat transfer quantifi- 

ation, several studies have developed visualization techniques to 

ain understating of DWC droplet dynamics. Environmental scan- 

ing electron microscopy (ESEM) represents an appropriate ap- 

roach for investigating micro/nanoscale droplet growth dynamics 

uring DWC [ 27 , 28 ]. Although ESEM represents a powerful obser- 

ation tool, it is expensive and cannot be used for the heat flux 

nd heat transfer coefficient measurement mainly due to time res- 

lution challenges. 

A second visualization method used to study droplet dynam- 

cs during DWC is high-speed optical imaging. By recording videos 
3 
f DWC at a very high frame rate ( > 200 frame per second (fps))

sing a high-speed camera, the heat transfer characteristics can be 

tudied. This was done in the past using high-speed images to cap- 

ure 10 s duration DWC videos at 200 fps. These images were then 

onverted to black and white to facilitate the detection of falling 

roplets in order to estimate the falling droplet frequency on tubes 

aving hybrid wettability [29] . Drawbacks exist when using high 

rame rate videos for heat flux estimation. First, a high-speed cam- 

ra is required, which is expensive. Second, recording high speed 

ideos at high frame rates results in large data file sizes. There- 

ore, the real-time video duration is limited to only tens of seconds 

 ∼10 s). As a result, the frequency of shedding droplets is calcu- 

ated by averaging over a short time period which results in poor 

ime-averaged accuracy. Therefore, it would be beneficial to have 

igh-fidelity heat flux estimation using shedding droplet detection 

t relatively low frame rates ( < 60 fps). This remains a challenge 

s falling droplets from condensing tubes move too quickly to be 

esolved accurately at low frame rates, resulting in deformed or 

lurry images. 

A promising pathway to overcome this imaging challenge is to 

se recently developed learning-based computer vision techniques 

o detect and resolve deformed droplets. Remarkable progress has 

een made in computer vision techniques using deep convolutional 

eural networks (DCNNs) for classification [30] , object detection 

31] , semantic and instance segmentation [32] . DCNNs do not re- 

uire hand-crafted feature selection. Instead, a hierarchy of fea- 

ures at different scales is extracted by using several convolutional 

ayers that are activated by non-linear functions such as sigmoid, 

eLU, and Leaky ReLU and are connected to each other through 

ooling layers [33] . Therefore, DCNNs are invariant to translation 

nd objects can be detected at spatially varying locations. Also, a 

ell-trained DCNN can be illumination-invariant [34] and therefore 

esirable for characterization of condensation experiments that are 

one at different lighting conditions and with differing optical 

roperties of the condensing surface. 

Recently, multiple thermofluidic studies have investigated the 

ombination of visual data along with deep neural network models 

or two-phase heat transfer prediction. One study custom designed 

 CNN with two convolutional layers followed by a fully connected 

ayer to enable nucleate pool boiling heat flux estimation [35] . The 

tudy reported a mean average percentage error as low as 10% over 

he validation and test datasets for nucleate boiling heat flux. Al- 

hough demonstrating promising results, the model developed was 

ystem-dependent and not universal. Follow on work developed a 

ybrid physics-informed framework for boiling heat flux prediction 

sing visual data [36] . The model consisted of a combination of the 

GG16 DCNN [37] and Mask R-CNN [32] algorithms for feature ex- 

raction. The outputs of these two networks were additionally pro- 

essed through a fully connected layer for heat flux prediction. Us- 

ng the hybrid framework, they reported a pool boiling curve pre- 

iction with a mean error of 6%. 

Although promising, intelligent-vision techniques for external 

ondensation have been less explored. Potential exists to use these 

tate-of-the-art techniques for condensation characterization, espe- 

ially during DWC and jumping droplet condensation [38] . In this 

ork, we first conduct a rigorous uncertainty analysis for conven- 

ional methods for external condensation characterization, demon- 

trating the necessity of using more reliable measurement methods 

o attain higher certainty levels as well as simplified characteriza- 

ion. We then propose a simple, yet powerful, learning-based al- 

orithm that requires low frame rate ( ∼ 30 fps) video imaging as 

he input to the falling droplet detection network. The output of 

he network is then processed for robust and accurate condensa- 

ion heat flux measurement. We verified our method by conduct- 

ng rigorous steam condensation measurements on a Parylene C 

oated copper tube samples having 500 nm, 1 μm, and 5 μm thick- 
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Fig. 1. (a) Schematic and (b) photograph of the test facility used for condensation heat transfer measurement and visualization. Schematic not to scale. Inset of (a): cross 

sectional view at the dash-dot line in (a) depicting the optical access of the sample. (c) Photograph of the chamber when opened showing the tube sample with internal 

components. A summary of instrumentation with span and corresponding uncertainty are shown in Table 1 . 
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esses in a custom condensation chamber. We validated the data 

sing the classical coolant enthalpy-change method using water as 

he coolant fluid. In contrast to the conventional method where the 

ncertainty varied with tube geometry, flow condition, sensors un- 

ertainty, and condensation heat flux, our method achieved a con- 

tant relative uncertainty of ∼10% for all cases tested. Using only 

ptical visualization data, we show that our technique is also capa- 

le of achieving local heat transfer measurement. To demonstrate 

he utility of our technique for local axially varying heat fluxes on 

 tube sample, we fabricated a single tube with axially varying 

etting properties, leading to different condensation heat transfer 

odes for each section on a single sample. Using our approach, 

e measured the local heat fluxes on the three different surfaces 

aving differing wetting properties using a single experiment. 

. Experimental setup 

To obtain visualization data, and to conduct classical coolant 

nthalpy-change heat transfer measurements, experiments were 

onducted in the test facility shown in Fig. 1 . The facility was built

s part of past condensation heat transfer experiments, the de- 

ails of which can be found here [ 39 , 40 ]. Briefly, the facility con-

ists of a custom developed stainless steel vacuum/pressure cham- 
4 
er (Gladwin Tank) in which condensation occurs (shell) on an in- 

ernal sample (tube). The system also consists of a steam supply 

ystem (Kurt J. Lesker) and an independent coolant flow loop. The 

nternal diameter of the chamber (shell) is 30.5 cm and the max- 

mum straight tube length tested inside the chamber can be as 

ong as 30 cm. Each end of the chamber is sealed with 44.5 mm 

hick stainless steel flanges. Both flanges have several feedthrough 

ttings allowing thermocouple, resistance temperature detector 

RTDs), fluidic, and pressure transducer installation. Two indepen- 

ent pressure transducers (MicroPirani, MKS Instruments and Bara- 

ron 728A) were installed on the chamber to monitor the pressure 

nside when vacuuming the chamber and throughout DWC exper- 

ments. Finally, 6 optical viewports (5.08 cm diameter ports from 

PF Products and 6.35 dimeter ports from MDC Vacuum) were in- 

talled on the chamber for ease of visualization. The viewports are 

esigned for internal pressures up to 2.75 MPa and can operate in 

acuum conditions. Next to the chamber, the steam supply system 

Standard CF TEE, Kurt J. Lesker with 20.3 cm outer diameter) is 

lled with deionized (DI) water which is heated by tape heaters 

Part #AWH-101-040DP, ETS Equipment) that are installed on the 

uter surface of the vapor generator. The heating rate of the tape 

eaters is controlled by connecting the tape heaters to a variable 

oltage regulator (Model PM-1220B, ETS Equipment). The DI wa- 
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er temperature was monitored during the heating process by a 

-type thermocouple (Part #SCPSS-032, Omega) which was passed 

nto the vapor generator. The vapor generator had four ports on 

op that were manufactured into a custom made CF blank by Kurt 

. Lesker. These ports were used to connect the vapor generator to 

he line connecting to the main chamber, a pressure relief valve set 

t 300 kPa (Part #SS-RL4S8, Swagelok), a vapor vent line to avoid 

ver-pressurization, and a fill line used to fill the vapor generator 

ith DI water. 

At the coolant flow loop, water is cooled using a large capacity 

hiller (Part #327005091602, System III TU7 Pump, Thermo Fisher 

cientific) and routed to the test section inside the chamber. The 

oolant flow rate was measured using an electromagnetic flow me- 

er (Part #FMG93, Omega). The coolant inlet and outlet tempera- 

ures were measured using two RTDs (Part #AT-PX1123Y-LR4S1T2T, 

eoTemp) located at the entrance and exit of the test tube sample. 

ll auxiliary connections and tubing inside the chamber were insu- 

ated to prevent condensate formation and to limit condensation to 

ccur on the test tube only. Also, the chamber itself was wrapped 

ith tape heaters (Part #AWH-101-040DP, ETS Equipment) that 

ere controlled with a voltage regulator (Model PM-1220BE, ETS 

quipment) to gently heat the chamber and prevent condensate 

ormation on the internal side of the chamber wall and viewports. 

he pressure of the condensing vapor was controlled by throttling 

 manual valve (Model #6L-LD8-BBXX, Swagelok) connecting the 

apor generator to the chamber (labeled V1 in Fig. 1 ). 

Non-condensable gases were removed from the system by us- 

ng a vacuum pump (Model Alcatel 2005) that was turned on 

rior to each experiment. A liquid nitrogen cold trap (Model 

TLR4 × 1100QF, Kurt J. Lesker) was installed in line between the 

hamber and the vacuum pump to remove any moisture from the 

ir, which improves the quality of the vacuum and protects the 

ump. While pumping down the chamber, the heaters around the 

apor generator were also turned on to boil the DI water. How- 

ver, the valve (Model #6L-LD8-BBXX, Swagelok) connecting the 

apor generator the chamber was kept closed at this stage. After 

he chamber pressure reached 200 Pa, the coolant line was ini- 

iated to work so that the coolant inlet and outlet temperature 

ould reach to the steady values before the measurement started. 

After the chamber pressure reached below 2 Pa, the DI wa- 

er was allowed to boil for at least 10 min, and the coolant inlet

nd outlet reached steady state, the condensation experiment was 

tarted. At this point, the valve (Model #6L-LD8-BBXX, Swagelok) 

onnecting the vacuum pump to the chamber (labeled V2 in Fig. 1 ) 

as closed and the vapor was let into the chamber with pressure 

et by adjusting the valve position on the valve between the vapor 

enerator and the chamber (labeled V1 in Fig. 1 ). For every mea- 

urement made at a certain vapor pressure, we made sure to reach 

teady state ( ± 50 Pa pressure oscillation) and report steady state 

alues. All measurements were collected through a special high- 

ccuracy data acquisition system (DAQ, PXIe 1073, National Instru- 

ents) and analyzed with LabVIEW. The PXIe DAQ was specifically 

hosen to provide the highest possible fidelity in enthalpy mea- 

urements with minimal DAQ uncertainty. A summary of instru- 
Table 1 

Details of test facility instrumentation and uncertainty of each sensor. Numberin

Fig. 1 (a). 

Measurement Instrument 

Coolant temperatures Class AA RTD 

Vapor temperature T-type thermocouple 

Coolant flow rate Electromagnetic flow meter 

Chamber pressure Pressure transducer (Pirani) 

Chamber pressure Pressure transducer (Baratron) 

Tube length Caliper 

Tube diameter Provided by vendor 

5

entation with span and corresponding uncertainty are shown in 

able 1 . 

. Uncertainty analysis 

In conventional heat transfer experiments, the heat flux on the 

utside of the tube is measured by calculating the enthalpy change 

f the coolant flowing inside of the tube, as described in Eq. (1) ,

here c p , c is the coolant specific heat capacity, ˙ m c is the coolant 

ass flow rate, T c , out is the coolant outlet temperature, T c , in is the 

oolant inlet temperature, and A o is the external surface area of 

he tube. The outer area of the smooth tube is calculated with 

q. (2) , where D o and L are the outer diameter and length of 

he tube, respectively. Using the log mean temperature difference 

 �T LMTD ) method, the overall heat transfer coefficient ( U) of the 

ube can be computed by Eq. (3) , where �T LMTD is calculated us- 

ng Eq. (4) . Here, T sat is the saturated vapor temperature. The cal- 

ulated U contains the convective resistances on the inner and 

uter walls of the tube as well as the heat conduction resistance 

hrough the tube wall and any applied coating layer to promote 

WC. The coolant-side convective heat transfer coefficient ( h in ) is 

sually calculated using the Petukhov correlation [41] for turbulent 

ow using Eqs. (5) and (6) , where Re represents the internal flow 

eynolds number based on the internal tube diameter ( D i ) and is 

efined by Eq. (7) , Pr is the coolant Prandtl number, f is the pipe

riction factor, k is the coolant thermal conductivity, μb and μs are 

he dynamic viscosities of the coolant at the bulk fluid tempera- 

ure and at the tube wall temperature, respectively, and n = 0.11 

hen the fluid is heated and n = 0.25 when the fluid is cooled 

42] . Knowing h in , we can divide the U into three different ther- 

al resistance components of internal convection, tube wall heat 

onduction, and external condensation as shown in Eq. (8) , where 

 con is the condensation heat transfer coefficient, k tube is the ther- 

al conductivity of the tube material, and A i is the internal surface 

rea of the tube. Therefore, a closed form solution can be obtained 

or h con which is shown in Eq. (9) . 

 

′′ = 

c p , c ˙ m c ( T c , out − T c , in ) 

A o 
. (1) 

 o = πD o L . (2) 

 = 

q ′′ 
�T LMTD 

. (3) 

T LMTD = 

( T sat − T c, in ) − ( T sat − T c, out ) 

ln 

[ 
( T sat −T c , in ) 
( T sat −T c , out ) 

] . (4) 

 in = 

(
k 

D i 

) (
f 
8 

)
RePr 

1 . 07 + 12 . 7 

(
f 
8 

) 1 
2 
(
P r 

2 
3 − 1 

)(
μb 

μs 

)n 

. (5) 

f = [ 0 . 79 ln ( Re ) − 1 . 64 ] 
−2 

. (6) 

e = 

4 ρ ˙ V 

πμD i 

(7) 
g in the measurement column corresponds to the locations identified in 

Loc. Span Uncertainty 

t1, t2 7-20 °C 0.15 °C ± 0.12% 

t3 20-100 °C ± 0.5 °C 
f1 11-30 L/min ± 1% 

p2 0-17 kPa ± 1% 

p1 0.133-133 kPa 0.5 - 1% 

0-30 cm ± 0.5 mm 

- ± 0.1 mm 
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UA 

= 

1 

h con A o 
+ 

ln 

(
D o 
D i 

)
2 πL k tube 

+ 

1 

h in A i 

. (8) 

 con = 

( 

1 

U 

− A o 

h in A i 

−
A o ln 

(
D o 
D i 

)
2 πL k tube 

) −1 

. (9) 

The uncertainty of the measured heat flux is dependent to the 

ncertainties of the inlet and outlet temperatures, mass flow rate, 

iameter and length of the tube measurements. The relative uncer- 

ainty of the heat flux can be calculated by Eq. (10) . Uncertainty of

he temperature difference is defined in Eq. (11) , where dT is the 

oolant inlet and outlet temperature measurement error: 

dq ′′ 
q ′′ = 

√ (
d ˙ m c 

˙ m c 

)2 

+ 

(
d ( T c , out − T c , in ) 

( T c , out − T c , in ) 

)2 

+ 

(
d D o 

D o 

)2 

+ 

(
dL 

L 

)2 

(10) 

 ( T c , out − T c , in ) = 

√ 

2 dT (11) 

Analyzing Eq. (10) , we see that the heat flux relative uncer- 

ainty is very sensitive to the accuracy of the mass flow rate, and 

nlet/outlet temperatures measurements. Furthermore, at a fixed 

ass flow rate and fixed inlet temperature, the outlet tempera- 

ure increases with increasing heat flux and the ratio of the out- 

et temperature measurement error to the measured temperature 

alue reduces, resulting in a smaller relative uncertainty for the 

eat flux measurement. 

Longer tubes with higher diameters are also preferred in order 

o increase the temperature difference across the tube leading to 

igher signal-to-noise ratio. A similar uncertainty analysis could 

e conducted for measured h con . The uncertainty analysis on U

hich is necessary for conducting the uncertainty analysis of h con 

s shown in Eq. (12) , where d�T LMTD is shown in Eqs. (13) to (16) .

he error of the saturation temperature ( d T sat ) could be defined by 

he error of the thermocouple installed inside the chamber or the 

ressure sensor measuring the chamber saturation pressure. Here, 

o simplify Eq. (13) , we assume that this error is comparable to 

he d T ( d T sat ≈ d T ). Therefore, a simplified version of Eq. (13) is

hown in Eq. (16) . 

dU 

U 

= 

√ (
d ˙ m c 

˙ m c 

)2 

+ 

(
d ( T c , out − T c , in ) 

( T c , out − T c , in ) 

)2 

+ 

(
d D o 

D o 

)2 

+ 

(
dL 

L 

)2 

+ 

(
(12) 

d�T LMTD 

�T LMTD 

= 

√ 

( d T sat ) 
2 
( T c , out − T c , in ) 

4 + ( dT ) 
2 
( T sat − T c , out ) 

2 A + ( d

( T sat − T c , out ) ( T sat − T c , in ) 

(
ln 

[ 
( T sat −T c , in ) 
( T sat −T c , out ) 

(13) 

 = 

(
T c , in − T c , out + ( T sat − T c , in ) ln 

[
( T sat − T c , in ) 

( T sat − T c , out ) 

])2 

(14) 

 = 

(
T c , in − T c , out + ( T sat − T c , out ) ln 

[
( T sat − T c , in ) 

( T sat − T c , out ) 

])2 

(15) 
s

6

T LMTD 

T LMTD 

)2 

 

T sat − T c , in ) 
2 B 

d�T LMTD 

�T LMTD 

= dT 

√ 

( T c , out − T c , in ) 
4 + ( T sat − T c , out ) 

2 A + ( T sat − T c , in ) 
2 B 

( T sat − T c , out ) ( T sat − T c , in ) 

(
ln 

[ 
( T sat −T c , in ) 
( T sat −T c , out ) 

] )2 

(16) 

Conducting the uncertainty analysis for U , the uncertainty anal- 

sis of h con is done using Eq. (9) and is shown in Eq. (17) , where

 1 −4 are defined by Eqs. (18) to (21) . The relative uncertainty of the 

nternal convective heat transfer coefficient ( d h in / h in ) is dependent 

o the accuracy of the correlation used for estimating the internal 

eat transfer coefficient ( h in ). In case of the Petukhov correlation 

 Eq. 5 ), the uncertainty of h in is reported to be 6% [ 24 , 41 ]. 

 h con = 

2 

√ 

B 1 + B 2 + B 3 + B 4 (
U D o D i ln 

(
D o 
D i 

)
+ 2 U D o k − 2 D i h in k 

)2 
. (17) 

 1 = 4 U 

4 D 

2 
o D 

2 
i k 

4 (d h in ) 
2 . (18) 

 2 = U 

4 D 

2 
i k 

2 h 

2 
in (d D o ) 

2 ( D i h in 

(
ln 

(
D o 

D i 

)
+ 1) + 2 k 

)2 

. (19) 

 3 = U 

2 k 2 h 

2 
in (d D i ) 

2 ( U D o D i h in + 2 U D o k ) 
2 

. (20) 

 4 = 4 D 

4 
i h 

4 
in k 

4 ( dU ) 
2 

. (21) 

It is important to note, the aforementioned analysis is predi- 

ated on ensuring that the internal coolant flow is highly turbu- 

ent ( Re > 10,0 0 0) and the flow is hydrodynamically fully devel- 

ped, both of which are necessary conditions to ensure high accu- 

acy for the Petukhov correlation ( Eq. 5 ). Turbulence in particular 

s of upmost importance as any laminar flow results in significant 

adial temperature profile development within the internal coolant 

ow, making the measurement of bulk fluid temperature difficult 

nless highly efficient flow mixers are installed. To achieve reason- 

ble results, Re > 10,0 0 0 is necessary. 

Fig. 2 shows the uncertainty analysis results for the condensa- 

ion heat flux as a function of tube length ( L ) and outer diameter

 D o ), heat flux ( q ”), and the absolute uncertainty of the temper- 

ture sensor ( dT ). Fig. 2 (a) and 2(b) show the relative heat flux

ncertainty ( dq ′′ ) when the uncertainty of the temperature mea- 

urement sensor is dT = 0.1 °C, corresponding to the uncertainty of 

he class AA RTDs used in the experimental results of this work 

 Table 1 ). Fig. 2 (c) and (d) show dq ′′ when the uncertainty of

he temperature sensor is dT = 0.5 °C, corresponding to an approx- 

mated case where a calibrated thermocouple is used, which com- 

rises of a combination of the uncertainty due to data fitting (stan- 

ard deviation) combined with the uncertainty of the instrument 

typically an RTD) used for calibration. We note that the uncer- 

ainty of the thermocouples can vary based on the thermocouple 

ype and quality of the manufacturing and can be as high as ±2 °C. 

ere, we chose a value which is at the low range of common ther- 

ocouple uncertainties [43] . The results show that the dq ′′ is very 

ensitive to the accuracy of the temperature sensors. For example, 
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Fig. 2. Uncertainty analysis results for external tube condensation heat flux. (a) Condensation heat flux relative uncertainty ( dq ′′ ) as a function of tube length ( L ) and heat 

flux ( q ”) for a fixed tube outer diameter of D o = 6.35 mm (1/4” DIA tubing) and temperature sensor uncertainty dT = 0.1 °C. (b) dq ′′ as a function D o and q ” for fixed L = 28 cm 

and dT = 0.1 °C. (c) and (d) show the same dq ′′ analysis presented in (a) and (b) but for dT = 0.5 °C temperature uncertainty. For this analysis, the coolant was tap water, and 

the coolant flow rate was 15 LPM for all cases. This corresponds to Re = 48833 for D i = 4.7 mm. The legends on top of the figures are valid for all graphs. Tube wall thickness 

is 1.6 mm for all cases. 
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he heat flux uncertainty is 3 to 4 times higher when dT increases

rom 0.1 °C to 0.5 °C for a fixed tube length and tube diameter. 

It is important to note that our analysis is conservative in that 

t completely ignores the uncertainty component from the data 

ollection process and the DAQ system itself. In fact, DAQ uncer- 

ainty must be accounted for any measurement, with DAQ un- 

ertainty components for temperature measurements using high 

uality DAQ cards (NI 9217 4-Ch PT100 RTD 24-bit card or a NI 

213 Spring, 16-ch TC, 24-bit card) approaching ±1 °C. Even the 

XIe DAQ used in our experimental setup has a DAQ uncertainty 

f ±0.1 °C for associated RTD measurements. 

Common tubes lengths used for testing condensation perfor- 

ance of promoter coatings and nanoengineered surfaces are typ- 

cally less than L = 50 cm with diameters D o < 1.3 cm [ 40 , 44–47 ].

herefore, heat flux uncertainties up to dq ′′ ≈ 100% are unavoid- 

ble for conventional experimental measurement methods. 

The relative uncertainty analysis of the condensation heat 

ransfer coefficient ( d h con ) for a variety of tube sizes ( L and D o )

nd h con as a function of coolant volumetric flow rate ( ̇ V ) is shown 

n Fig. 3 . The d h con generally decreases with increasing coolant 

ow rate because higher flow rates result in higher h in . The higher 

 in reduces the internal convective thermal resistance, enhancing 

he relative contribution of the external condensation heat trans- 

er resistance to the overall steam-to-coolant thermal resistance. 

owever, for some cases (e.g., low h con ) where the heat transfer 
7 
s mainly limited by the external condensation side, increasing the 

ow rate negatively affects the relative error because the absolute 

rror for h in increases with marginal effect on the temperature dif- 

erence across the tube due to the limits from the external condi- 

ion. Higher coolant flow rates (higher Re) are required for higher 

alues of h con in order to maintain a reasonable thermal resistance 

atio with the external condensation heat transfer thermal resis- 

ance. 

Fig. 3 (a) shows the uncertainty analysis of the d h con where un- 

ertainty levels are higher for higher h con values at low coolant 

ow rates. This trend occurs because heat transport is mainly lim- 

ted by the internal coolant thermal resistance rather than the con- 

ensation itself. However, uncertainty decrease faster with increas- 

ng coolant flow rate for higher h con values. This indicates the im- 

ortance of lowering the internal heat transfer resistance via utiliz- 

ng higher coolant flow rates, enhanced (finned) internal surfaces 

 4 8 , 4 9 ], or flow perturbation or modification [50] , in order to at-

ain reliable external condensation heat transfer measurements. 

Fig. 3 (b) shows the effect of tube length ( L ) and coolant

ow rate on d h con . As expected, longer tube length is prefer- 

ble to increase the coolant inlet-to-outlet temperature difference 

nd signal-to-noise ratio. Analysis of the tube diameter on d h con 

 Fig. 3 c) reveals a similar result as that observed in Fig. 3 (a),

here higher coolant flow rates are required for larger diame- 

er tubes to achieve the same internal flow thermal resistance. 
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Fig. 3. Uncertainty analysis of the tube condensation heat transfer coefficient ( h con ). 

(a) Condensation heat transfer coefficient relative uncertainty ( d h con ) as a function 

of volumetric coolant flow rate ( ̇ V ) for varying h con . Results shown are for fixed 

dT = 0.1 °C, L = 28 cm, and D o = 6.35 mm. The shaded regions show four different 

uncertainty ranges for typical h con for four different conditions: refrigerant con- 

densation (Ref, gray shade), steam filmwise condensation (FWC, red shade), steam 

dropwise condensation (DWC, blue shade), and steam jumping droplet condensa- 

tion (Jumping, teal shade). (b) Condensation heat transfer coefficient relative un- 

certainty d h con as a function of ˙ V for varying tube length ( L ). Results shown are 

for fixed dT = 0.1 °C, D o = 6.35 mm, and h con = 50 kW/(m 

2 �K). (c) Condensation heat 

transfer coefficient relative uncertainty d h con as a function of ˙ V for varying D o . Re- 

sults are for fixed dT = 0.1 °C, L = 28 cm, and h con = 50 kW/(m 

2 �K). Tube wall thick- 

ness is 1.6 mm for all cases. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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or extremely small tubes ( D o = 2 mm), an optimum is present in 

ig. 3 (c), whereby increasing the coolant flow rate would increase 

ncertainty. Looking at Eq. (5) , with a fixed volumetric flow rate 

 ̇

 V ), h in is directly proportional to Re and inversely proportional to 

 i . At fixed 

˙ V , Re increases for smaller tube diameter ( Eq. 21 ) re-

ulting in higher h in , although at the expense of larger pressure 

rop. Thus, the d h con is initially lower for smaller tube diameters. 

owever, with the increase in the flow rate, larger tubes become 

ore preferable due to the increased temperature difference across 

he tube and higher signal-to-noise ratio. 

We note that the Petukhov correlation is most accurate for 

0 4 < Re < 5 × 10 6 , however, a larger range of Re is considered here

 Figs. 2 and 3 ), only for our theoretical analysis. In the experiments,

e ensured that Re lies in the proper range to achieve reliable h con 

stimation. Furthermore, all results shown in Figs. 2 and 3 were 
8 
urther verified by conducting uncertainty propagation in the en- 

ineering equation solver (EES) software. 

The uncertainty analysis reveals the difficulties of using the 

lassical coolant enthalpy change method in order to accurately de- 

ermine the condensation heat flux and heat transfer coefficient: 

i) The need to utilize highly turbulent coolant flow ( Re > 10,0 0 0) 

in order to enable accurate bulk coolant temperature estimation 

and to minimize the coolant side thermal resistance. 

ii) The need for large tube lengths ( L > 50 cm) especially for steam 

dropwise condensation in order to achieve reasonable un- 

certainty in heat flux measurement ( < 20%). Excessive tube 

lengths are not always possible simply due to manufacturing 

constraints of DWC promoter coatings. For example, deposition 

chamber size, coating scale up limitations, chemical availability, 

and cost. 

ii) The inability to obtain reasonable uncertainty ( < 10%) due to 

fundamental limitations associated with the use of an internal 

heat transfer coefficient correlation having a minimum uncer- 

tainty of 6% (Petukhov correlation, Eq. 5 ). 

v) The need for excessive coolant volumetric flow rate ( > 30 LPM) 

in order to achieve reasonable uncertainties ( < 20%) resulting 

in excessive pressure drop though the tube section. 

v) The inability to measure local condensation heat transfer coef- 

ficient along the tube axis. 

i) The need to ensure hydrodynamically fully developed flow to 

reliably utilize the Petukhov correlation ( Eq. 5 ). 

ii) The need for highly accurate temperature sensors (e.g., class AA 

RTDs) to ensure reasonable uncertainty ( < 20%). 

. Intelligent vision based heat transfer measurement method 

Motivated by the uncertainty analysis conducted in Section 3 , 

e propose a simple, yet powerful visualization-based method for 

WC heat transfer characterization. First, we discuss two classical 

mage processing methods implemented for our purpose and dis- 

uss their failure modes. Then, we propose our robust learning- 

ased method for falling droplet detection which is further post- 

rocessed for high-fidelity shedding droplet frequency and conden- 

ation heat flux quantification. 

Falling droplets from a condensing tube have been detected us- 

ng high speed video recording at high frame rates ( > 200 fps) 

29] . However, droplets look deformed when the capture rate is 

ot high enough ( ∼ 30 fps). Therefore, simple visualization meth- 

ds fail to detect and count these droplets ( Fig. 4 ). One of the tra-

itional methods to compare two images at the same illumination 

ondition analyses the mean square error ( MSE ) of pixel intensities. 

aking this idea into account, all the frames (including the refer- 

nce frame) are first converted from the RGB (red, green, and blue 

olor) space to the gray space and are compared pixel by pixel 

rom left to right and top to bottom with the reference frame to 

alculate the MSE as shown in Eq. (22) : 

SE 
(

ˆ I , I 
)

= 

1 

W H 

W ∑ 

w =1 

H ∑ 

h =1 

[
ˆ I ( w, h ) − I ( w, h ) 

]2 
, (22) 

here W and H are the image width and height, respectively, ˆ I is 

he reference image and 

ˆ I ( w, h ) refers to the pixel intensity of the 

eference image at the ( w, h ) location, and I( w, h ) is the pixel in-

ensity of the new image at the ( w, h ) location. A threshold value 

ould be used to detect substantial changes (falling droplet) in the 

rames (see Appendix A and Fig. A1). A Gaussian filter having a 

ernel size of 16 and standard deviation of 2.5 was applied to each 

rame to smooth out the images and minimize noise [51] . These 

alues were chosen via experimentation. However, the MSE de- 

ends strongly on the image intensity scaling (e.g., lighting con- 

ition), and outliers such as local noise or objects with varying 
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Fig. 4. Optical images of condensate droplets when hanging to the bottom of a copper tube undergoing DWC (a, c) before falling and (b, d) while falling. Video recordings are 

done at (a, b) 30 fps using a DSLR camera (EOS Rebel T3i, Canon) and (c, d) 300 fps using a high-speed camera (Phantom v7.1, Vision Research). Blue solid outlines identify 

droplets prior to and after falling in the 30 fps video, while red solid lines identify droplets prior to and after falling in the 300 fps video. The tube sample is made of copper 

and promoted to ensure DWC of steam via deposition of a Parylene C thin film having thickness of 500 nm ± 100 nm. Experimental conditions: q ′′ = 200 ± 30 kW/m 

2 , steam 

vapor pressure P = 4 ± 0.2 kPa, coolant flow rate ˙ V = 15 ± 0.15 LPM, D o = 6.35 mm, D i = 4.7 mm coolant inlet temperature T in = 7 ± 0.16 °C. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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ocation in the frames. Furthermore, setting a constant threshold 

alue is not robust enough for many experimental conditions. For 

xample, it is not feasible to find out if more than one droplet is 

alling. 

As another image similarity assessment method, we imple- 

ented the structural similarity index metric ( SSIM ) which has 

ained a lot of attention in the image processing community since 

ts introduction in 2004 [52] . In contrast to MSE, SSIM is a simi-

arity metric that varies between -1 and 1, with smaller values in- 

icating lower similarity between the images. SSIM compares local 

atterns of pixel intensities that are luminance and contrast nor- 

alized. The SSIM is defined as: 

SIM 

(
ˆ I , I 

)
= 

(
2 λˆ I 

λI + C 1 
)(

2 σˆ I I 
+ C 2 

)(
λ2 

ˆ I 
+ λ2 

I 
+ C 1 

)(
σ 2 

ˆ I 
+ σ 2 

I 
+ C 2 

) , (23) 

here λˆ I 
and λI are the mean intensity of the reference and the 

ew image/patch, σˆ I 
and σI are the standard deviation of the ref- 

rence and the new image/patch, respectively, and C 1 and C 2 are 

ncluded to avoid instability when λ2 
ˆ I 

+ λ2 
I 

is close to zero [52] . 

The SSIM tends to be a better metric when compared to the 

SE for falling droplet detection through frame comparison. This 

s because SSIM is more robust to changes in illumination, contrast, 

nd outliers. The SSIM tries to find any structural changes within 

he frames, which is more useful when applied locally rather than 

lobally. Accordingly, we cropped out a window of full length and 

idth of 100 pixels from each frame and calculated the SSIM with 

he reference frame (see Appendix B and Fig. B1). SSIM works 

etter when compared to MSE when used with a fixed threshold 

alue, especially for cases with low frequency of droplet shedding. 

ere, values smaller than a specified SSIM threshold corresponds to 

 passing droplet. For high frequency droplet shedding cases (e.g., 

igh condensation heat flux), SSIM is more prone to failure. 
9 
Two common failure modes exist for SSIM . First, it is not feasi- 

le to detect simultaneous droplet shedding, which is a common 

cenario for high condensation heat fluxes. This inability to detect 

ultiple droplets might lead to lower heat flux prediction. Second, 

n some cases, same droplets in consecutive frames are counted 

wice and lead to a higher condensation heat flux prediction. Al- 

hough this error could be minimized by proper choice of window 

ocation from which SSIM is calculated, complexity of the shedding 

henomena (e.g., different droplet velocity and size, droplet coa- 

escence) makes the second error unavoidable. An example of the 

ailure modes is shown in Fig. B1 (d) in Appendix B. 

Both MSE and SSIM methods lack reliability to be considered 

s alternatives to the conventional experimental coolant enthalpy 

hange method ( Section 3 ). Motivated by the recent progress in 

achine learning (ML) based computer vision techniques for object 

etection, we developed a framework that takes advantage of the 

fficientDet algorithm [53] for falling droplet detection. Efficient- 

et is a DCNN that uses ImageNet-pretrained EfficientNets [54] as 

he backbone network and adds a bidirectional feature pyramid 

etwork (BiFPN) on top to extract hierarchy of features from in- 

ut images. Then, it passes the features to the two CNNs respon- 

ible for class prediction and bounding box localization. We froze 

he first two stages of these DCNNs and used them as feature ex- 

ractors from the condensation videos and retrained the final stage 

hich is responsible for detection and localization of the falling 

roplets within the frames. Our framework uses the EfficientDet 

etwork with three BiFPN layers for hierarchical feature extraction 

nd three convolutional layers in the shared box/class prediction 

ection. It is possible to increase the number of layers for more 

omplex detection and localization problems. However, for our sin- 

le object detection, three layers were enough to achieve accuracy 

f more than 97%. 



S. Khodakarami, K. Fazle Rabbi, Y. Suh et al. International Journal of Heat and Mass Transfer 194 (2022) 123016 

Fig. 5. Machine vision framework for falling droplet detection and robust counting (object tracking) for shedding droplet frequency calculation. Videos of the condensation 

process were recorded at 30 fps and fed into the droplet detection module frame by frame where each frame is processed through the EfficientDet algorithm which uses 

the: EfficientNet-B0 as its backbone, 3 layers of BiFPN for scale-invariant feature extraction, and 3 layers of additional convolutional layers as the head for falling droplet 

detection and localization through bounding boxes. Every detection result is post-processed further for robust shedding frequency estimation. 

F

d

c

o

e

t

e

t

d

c

d

m

l

t  

c

b

A

b

i

i

E

t

p

f

s

o

p

a

t

d

n

s

d

d

s

o

i

f

o

d

o

s

n

f

s

f

s

t

f

l

o

f

u

As shown in Fig. 5 , our framework consists of two modules. 

irst module (droplet detection module) is responsible for falling 

roplet detection where the experimental condensation videos are 

onverted to a tensor containing all frames. Then, a constant area 

f interest below the condensing tube with size of 100 × 1420 pix- 

ls is cut from each frame with size of 1080 × 1920 pixels with 

hree channels (RGB color space). The location of the area of inter- 

st is chosen with some experimentation. If the area is too close 

o the tube, hanging droplets may be wrongly detected as falling 

roplets. Another concern is that a single falling droplet might be 

ounted a few times due to its low initial droplet velocity imme- 

iately after tube departure. The second module (object tracking 

odule) in our method is proposed to fully alleviate the later chal- 

enge. If the cut area is too far away from the condensing surface, 

hen the velocity of some of the droplets might be too high to be

aptured by a 30 fps video recording and the 1/30 second interval 

etween the frames would not be enough to capture the droplet. 

fter some experimentation, the area of interest was chosen to 

e slightly beneath ( ≈ 8 mm) the condensing tube so that hang- 

ng droplets would not appear in these areas. The area of interest 

s further resized to 224 × 224 pixels to be compatible with the 

fficientNet-B0 input. 

Another issue is when a single droplet is counted twice or 

hrice because the velocity of droplet is not high enough to com- 

letely pass the area of interest from one frame to its consecutive 

rame. Therefore, a single droplet is captured in two or three con- 

ecutive frames which results in heat flux overestimation. Our sec- 

nd module (object tracking module) is designed to alleviate this 
10 
roblem. When a droplet is detected, it will check if there were 

ny droplets detected in the previous frame. If detected, it will find 

he coordinates of the bounding boxes associated with each of the 

roplets and calculate the Euclidean distance between the coordi- 

ates. Here, the Euclidean distance is defined as the length of the 

egment connecting two points on the plane [55] . If the Euclidean 

istance is smaller than a pre-set threshold value ( ε < 4 pixels), it 

emonstrates that the two coordinates are close to each other, and 

ame droplet is captured by consecutive frames and therefore only 

ne of the droplets should be counted. If the pre-set threshold 

s too large, it forces the module not to count droplets that are 

ar and distinct from each other. Conversely, if the pre-set thresh- 

ld is too small, it loses its ability to detect and reject identical 

roplets. The threshold should be similar to the localization error 

f the bounding boxes in the droplet detection module. When the 

ame droplet is detected in two consecutive frames, the coordi- 

ates of the bounding boxes around the droplets may slightly vary 

rom each other based on this localization error. Our experiments 

howed that threshold values between 3 to 6 lead to similar per- 

ormance. 

The convolutional layers and BiFPN layers in EfficientDet are re- 

ponsible to extract features at different levels of resolution from 

he input which are passed to the final prediction network for 

alling droplet detection and localization. Although, convolutional 

ayers alone have been used extensively for feature extraction in 

bject detection networks, recent studies have shown that the dif- 

erent levels of feature hierarchy in convolutional layers could be 

sed to build feature pyramids that will make the network more 
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Table 2 

Advancing contact angle ( θ a ), receding contact angle ( θ r ), and contact angle hys- 

teresis ( �θ = θ a - θ r ) of water droplets on flat Cu samples coated with Parylene C 

thin films having different thicknesses. Measurements were conducted on five spots 

on each surface and the average is reported. Standard deviation of the 5 measure- 

ments is reported as the uncertainty. 

Parylene thickness [ μm] θ a [deg] θ r [deg] �θ [deg] 

0.5 88.4 ± 3.1 71.2 ± 4.7 17.2 ± 5.7 

1 89.4 ± 0.2 73.6 ± 0.4 15.7 ± 0.5 

5 86.0 ± 0.6 69.6 ± 2.2 16.4 ± 2.3 
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obust to detection at different scales which will increase detection 

erformance [56] . Therefore, we could ensure that falling droplets 

re detected at different scales with extremely high accuracy. 

The swish activation function was used after each layer to 

mpose non-linearity to the network [57] and the network was 

rained end to end with a training dataset of 350 images with 

ne tuning based on the results achieved on a validation dataset 

f 220 images. Finally, performance of the network was evaluated 

n an unseen dataset (test dataset) having 190 images. The dataset 

ontained images of blurry droplets captured from videos at low 

rame rates ( ∼30 fps). As the network performed well with these 

lurry images, it showed that even out of focus droplets can be 

etected with this network. Intersection over union (IoU) [58] of 

he detected bounding boxes and ground truth boxes was used as 

he metric for true or false positive criteria. As the purpose of our 

ethod is mainly counting the droplets and not identifying the ex- 

ct localization of each droplet, we relaxed the IoU criteria to 0.5, 

here detections with IoU value of 0.5 or greater were considered 

s true positives. At this IoU criteria, the final test precision and 

ecall were 97%. 

. Results and discussion 

.1. Validation of the ML-based method 

We conducted two different sets of experiments to evaluate the 

erformance of the developed machine vision framework for real 

ondensation heat transfer measurements. First, we tested three 

ifferent smooth copper (Cu) tubes having constant external di- 

meter, internal diameter, and length of D o = 0.63 cm, D i = 0.47 cm, 

nd L = 28 cm, respectively. Each tube was coated with a hydropho- 

ic promoter through chemical vapor deposition (CVD) of Parylene 

 in reduced pressure conditions. 

Briefly, commercial Cu tube samples (Multipurpose Cu, 

8967K88, McMaster-Carr) were purchased and cut to length 

 L ≈ 28 cm). Then, cleaning of the internal and external surfaces 

as completed using sonication in acetone (CAS #179124, Sigma 

ldrich), ethanol (CAS #443611, Sigma Aldrich), and DI water (in 

equence) for 10 min each. After cleaning, the tubes were placed 

n a commercial Parylene C deposition chamber (Labcoater 2 

arylene deposition system, Specialty Coating Systems) with an 

pproximate deposition rate of 17 nm/minute. Parylene C was cho- 

en as the promoter of choice mainly due to its ability to achieve 

onformal depositions, its low surface energy (hydrophobic), and 

ts very reasonable durability during moisture exposure or steam 

ondensation [ 59 , 60 ]. Parylene C is highly durable and possess 

igh chemical stability allowing the surface to keep the same 

ondition over the several steam condensation experiments which 

ssure repeatability of the results [59] . We conducted condensa- 

ion experiments on each surface at least two independent times 

o ensure repeatability of the results and data consistency. Micro- 

oniometric water contact angle measurements on flat Parylene C 

oated Cu tabs are summarized in Table 2 below. 
11
Each individual tube was coated to have a different thickness 

f Parylene C (500 nm, 1 μm, and 5 μm) and was tested sepa- 

ately in the experimental facility ( Fig. 1 , Table 1 ). Condensation 

eat flux was calculated using both the conventional coolant en- 

halpy change method ( Section 3 ) and the machine vision method 

 Section 4 ). The frequency of droplet shedding from the condens- 

ng tube was calculated by dividing the number of droplets de- 

ected by the total condensation time of each video ( > 5 min at 

ach vapor pressure) using the framework ( Fig. 5 ) proposed in 

his work. For an accurate frequency estimation, each video was 

aken for a long time to make sure that at least 10 0 0 droplets

re counted. This frequency value was then used to estimate the 

ondensation heat flux using Eq. (24) , where ˙ m c is the condensate 

ass flux, ρ is the condensate density, V is the average shedding 

roplet volume, F is the droplet shedding frequency, and h fg is the 

atent heat of vapor-to-liquid phase change. 

 

′′ = 

˙ m c h fg 

A o 
= 

ρV F h fg 

A o 
. (24) 

The heat flux measurement results using both methods includ- 

ng uncertainty bars are shown in Fig. 6 . The uncertainty of our de- 

eloped machine vision method was < 10% and did not vary with 

he condensation heat flux. The overall uncertainty of the machine 

ision technique includes uncertainties associated with the droplet 

hedding frequency, droplet volume calculation, and sample outer 

urface area. The droplet volume calculation has the highest con- 

ribution to the overall uncertainty ( > 60%). The uncertainty of 

he droplet shedding frequency was assumed to be 3% based on 

he accuracy of the framework shown in Fig. 5 . The uncertainty of 

urface area was calculated based on the measurement accuracies 

eported in Table 1 , and uncertainty of droplet volume was esti- 

ated based on the standard deviation over at least 10 droplets 

t each steam pressure ( Fig. C1 , Appendix C). We note that tem- 

erature sensor and flow meter uncertainties are excluded here as 

hey are not required in this method. The heat flux uncertainty 

lso did not depend on the internal coolant condition and elim- 

nates the uncertainty associated with using the Petukhov corre- 

ation for convective heat transfer coefficient estimation ( Eq. 5 ). 

herefore, our machine vision method can be used for all internal 

ow regimes (laminar, transitional, and turbulent) and also for the 

oolant flow Re ranges where correlations are not accurate enough 

r are non-existent. Furthermore, developed or developing flow is 

nvariant and not a necessity for the machine vision approach. Fi- 

ally, the uncertainty for heat flux quantification of our method is 

ot a function of the tube length, diameter, cross-section, or over- 

ll shape. Therefore, the proposed machine vision method is highly 

esirable for conditions where building a large vacuum chamber is 

 challenge or the tube size is limited by the coating fabrication 

ethod. 

Fig. 6 shows the results of the heat fluxes measured with ex- 

erimental enthalpy-based measurement method (Exp) and the 

isualization-based machine learning (ML) method. Heat fluxes 

ary with Parylene C layer thickness with the 1 μm thick Pary- 

ene C coated Cu tube showing the best performance. The 500 nm 

ayer was not thick enough to fully cover the substrate defects 

nd form a conformal layer. Therefore, droplet pinning was higher 

n this surface resulting into lower water droplet shedding fre- 

uency ( Fig. 6 a). The results from Table 2 also confirms this as 

he Cu surface having a 500 nm layer of Parylene C had the high- 

st contact angle hysteresis of the three studied surfaces. For the 

 μm Parylene C coated Cu surface, film uniformity was not an 

ssue. The decreased performance when compared to the 1 μm 

hick film promoted tube is due to the low thermal conductivity ( ∼
.08 W/(m �K)) of the Parylene C material imposing a high conduc- 

ion thermal resistance which further reduces the heat flux [61] . 

hick promoter layers reduce the overall condensation heat trans- 
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Fig. 6. (a) Water droplet shedding frequency from the hydrophobic Parylene C promoted Cu tubes during DWC of steam obtained using the machine learning framework. 

Connection lines represent guiding lines to guide the reader. (b-d) Heat flux measurement for the hydrophobic Cu tubes using the coolant enthalpy change method (Exp) 

and the visualization-based machine learning (ML) method. Experimental conditions: D o = 6.35 mm, D i = 4.7 mm, L = 28 cm, ˙ V = 15 LPM, T in = 7 °C. The error bars for x axis 

are smaller than the symbols and are not shown here for better clarity. 
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er [62] resulting in the lowest performance for the surfaces stud- 

ed here ( Fig. 6 ). 

As shown in Fig. 2 , shorter length tubes result in higher relative 

rrors due to the smaller temperature difference across the tubes. 

or these cases, final uncertainty values could be as high as 100%. 

ur method alleviates this challenge by removing the dependence 

n tube size or geometry. The main contribution to the uncertainty 

f our machine vision method is in the estimation of the aver- 

ge droplet volume. This challenge can be overcome through the 

se of a single high speed imaging experiment to visualize falling 

roplets. The falling droplet diameters for different Parylene C film 

hicknesses and steam pressures are shown in Fig. C1 in Appendix 

. The average departing droplet size depends on the surface en- 

rgy and coating roughness/chemistry and was observed to remain 

elatively constant throughout the condensation process for a con- 

tant tube diameter ( D o ). 

The high speed imaging experiment was done with the same 

etup used for condensation experiments. The chamber was fit- 

ed with optical viewports on each side of the chamber ( Fig. 1 a)

nd therefore, regular imaging (30 fps) and high speed imaging 

300 fps) of the condensing tube were conducted simultaneously. 

ince the coating chemistry and surface energy of our tubes were 

imilar, falling droplet diameters had negligible variation on tubes 

aving different Parylene C thicknesses and for experiments con- 

ucted at different vapor pressures ( Fig. C1 ). Therefore, only a sin- 

le high speed imaging experimentsuffices to conduct a falling 
c

12 
roplet size characterization. However, this one-time high speed 

maging experiment needs to be re-conducted if surface properties 

re varied. 

.2. Local condensation heat transfer measurement on a hybrid tube 

Since our machine vision method is not dependent on temper- 

ture difference measurement, it can be used for local heat flux 

easurement on condensing tubes. To demonstrate the capability 

or local heat flux measurement using our method, we fabricated 

 separate aluminum (Al) tube having three different wettabilities 

hybrid tube) at different axial locations. We estimated the heat 

ux at each individual wettability section through only one experi- 

ent by capturing the condensation on the three different sections 

n one video. Then, we fabricated three separate Al tubes, each 

aving different wettability level identical to each of the sections 

n the hybrid tube. We compared the results using the coolant en- 

halpy change condensation heat transfer measurement method. 

To fabricate the hybrid tube, we used crystallographic acid 

tching of Al with hydrochloric acid (HCl) to form porous mi- 

rostructures [63] . An Al tube section (general purpose Al tub- 

ng, #89965K431, McMaster) having length L = 9 cm, outer diame- 

er D o = 6.35 mm, and wall thickness of 1.6 mm was axially divided 

nto three different regions (each one with approximate 3 cm ax- 

al length). Prior to surface fabrication, the Al tube was thoroughly 

leaned. First, the tube sample was sonicated in acetone for 10 min. 
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Fig. 7. Local heat flux measurement using the visualization-based machine learning method (ML). The values are compared with the experimental method (Exp) where each 

tube with a single wettability was tested separately for validation of the local measurements. (a) Photograph of the hybrid tube consisting of three regions defined as 15 min 

etched (15E), no etching, and 10 min etched (10E). (b) Photograph of the boundary between two of the regions (15E and no etching) during a condensation experiment. (c-e) 

SEM images of 15 min etched 6061 aluminum, 6061 aluminum, and 10 min etched 6061 aluminum. (f) Heat flux variation along the axial length of the hybrid tube (x-axis) 

as measured with the ML method in a single experiment. Sub-figures show droplets on each surface during condensation experiment. (g-i) Heat flux measurement results. 

Here, ML represents local heat flux measurements on a single tube in a single experiment, while Exp represents global measurements from three different experiments on 

three different tubes. The error bars in the experimental data (Exp) stem from uncertainty analysis ( Section 3 ) while the error bars for the ML method data stem from the 

uncertainty analysis of Eq. (24) . Scale bars in (a and b): 5 mm, scale bars in (c-e): 100 μm, scale bars in sub-figures in (f): 2 mm. 

Table 3 

Advancing contact angle ( θ a ), receding contact angle ( θ r ), and contact angle hys- 

teresis ( �θ = θ a - θ r ) on plain Al (No Etching), 10 min etched Al (10E), and 15 min 

etched Al (15E). All samples were conformally coated with a 2 μm Parylene C film. 

Measurements were conducted on five spots on each surface and the average is 

reported. Standard deviation of the 5 measurements is reported as the uncertainty. 

Surface θ a [deg] θ r [deg] �θ [deg] 

No Etching 91.4 ± 0.3 76.3 ± 0.5 15.1 ± 0.6 

10E 130.7 ± 4.5 102 ± 4.9 28.7 ± 6.7 

15E 121 ± 5.8 97.7 ± 5.7 23.3 ± 8.2 
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fter sonication, the sample was sequentially rinsed with acetone, 

sopropanol, DI water, and again isopropanol followed by drying 

ith a clean nitrogen gas flow. A 2 M HCl solution was used as 

he etchant. The first region was etched for 10 min ( Fig. 7 a, 10E),

he middle region was masked with Kapton polyimide plastic tape 

# 7648A861, McMaster) and was not etched ( Fig. 7 a, No Etching), 

nd the last region was etched for 15 min ( Fig. 7 a, 15E). Selec-

ive etching was achieved by partial immersion of the tube in the 

tchant solution. Then, all the three regions were coated with a 

 μm thick layer of Parylene C to fabricate surfaces with varying 

evels of hydrophobicity and droplet adhesion (depending on the 

xial region). Goniometric measurements using water droplet re- 

ealed that the apparent advancing and receding contact angles of 

he surfaces varied ( Table 3 ). The thickness of the Parylene C de-
13 
osition was rationally chosen in order to fill the roughness cavi- 

ies while maintaining roughness on the finished surface. A thinner 

eposition would have promoted superhydrophobicity and droplet 

umping, while a thicker deposition would have resulted in sim- 

lar droplet shedding behavior between the etched and smooth 

urfaces due to complete filling (and overfill) of the structures. A 

 μm thick Parylene C deposition ensured DWC on all sections with 

learly differing droplet departure sizes and distributions ( Fig. 7 b). 

Due to the different roughness at each axial region, droplet 

dhesion was different depending on where droplets condensed. 

he unetched (No Etching) region was the smoothest region, fol- 

owed by the 10 min etched (10E) and 15 min etched (15E) regions, 

esulting in different condensation performance on each section. 

hese three regions on the same tube were tested during a sin- 

le condensation experiment using the facility shown in Fig. 1 . 

or comparison, three different tubes with identical wettabilities 

o each independent region on the hybrid tube were tested sepa- 

ately (3 separate experiments) with results shown in Fig. 7 . The 

ocal measurements using the ML approach were consistent with 

he three separate coolant enthalpy-change measurements. This is 

n important benefit of the ML method as it makes the local heat 

ux measurement rapid and reliable in a non-intrusive manner. 

Given the recent progress in the ML models and methods, more 

tudies in the thermofluidic field will take advantage of ML [64] . 

ne of the drawbacks of these models is the black box approach 

aken for the development of ML methods that suffer from poor 
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nderstanding of what the method is really doing and reporting. 

owever, ML does not need to be a black box approach. ML can 

e used to learn and identify previously unexplored features from 

omplex physical phenomena that are not yet well-understood. ML 

an also be used for physical feature extraction that could be post- 

rocessed for parameter estimation (similar to this work). Nev- 

rtheless, ML models are promising alternatives to conventional 

ethods that lack reliability, have high cost, and are time consum- 

ng. 

Here we developed a framework consisting of a DCNN for 

alling droplet detection from 30 fps videos and a post-processing 

tep for robust droplet shedding frequency and heat flux esti- 

ation. The uncertainties in the conventional coolant enthalpy- 

hange condensation heat flux measurement methods are typi- 

ally > 20% with many approaching 100% depending on the tem- 

erature sensors used, data acquisition accuracy, coolant flow rate, 

nd tube geometry. Our method achieves lower uncertainty for 

eat flux estimation ( ∼10%). More importantly, the uncertainty of 

he proposed method is not a function of many of the aforemen- 

ioned experimental parameters. Therefore, it enables reliable con- 

ensation heat flux measurement at any flow rate, any tube length 

nd diameter, tube cross sectional geometry, and without any tem- 

erature measurement for the coolant or tube surface. The falling 

roplet detection module ( Fig. 5 ) takes advantage of a state-of-the- 

rt DCNN (EfficientDet) with ImageNet-pretrained EfficientNet-B0 

s the backbone coupled to three layers of BiFPN for hierarchical 

eature extraction which helps to detect droplets at different length 

cales. This network achieved 97% accuracy over the test dataset 

onsisting of 190 images with varying lighting conditions, tube sur- 

aces (varying surface reflectance), heat fluxes, and droplet shed- 

ing frequency. The uncertainty of conventional methods is depen- 

ent to heat flux, and it is smaller at higher heat fluxes. Therefore, 

dvantages of our ML method are seen at lower heat fluxes ( < 500 

W/m 

2 ). However, our ML method possesses similar uncertainty 

evels at higher heat fluxes while eliminating the requirement for 

emperature sensors, specified tube geometries, and high coolant 

ow rates. 

Since our ML method only relies on visual data and is not based 

n temperature difference measurement, it can be used for local 

ondensation heat flux measurement. Therefore, heat fluxes across 

 tube having homogeneous or different wetting properties (e.g., 

ifferent coatings) can be measured in a single experiment. This 

ot only saves time by compiling several experiments into one, but 

lso provides opportunity for clearer comparison between differ- 

nt tube designs by ensuring that the experimental condition is 

dentical for all sections on the tube. Although it is possible to en- 

ure consistent experimental conditions by taking precautions from 

ne experiment to another, discrepancies between experiments can 

rise (e.g., NCGs levels). Hence, comparison within a single test run 

s always more rigorous when compared to different and indepen- 

ent experimental runs. 

The reported method is developed for the dropwise condensa- 

ion mode where discrete droplets fall down from the bottom of 

ondensing tubes or samples. However, the method can be adapted 

o handle hybrid dropwise and filmwise condensation that occurs 

n biphilic surfaces with varying wettability [65–68] . During hy- 

rid condensation, the size of the departing droplets is gener- 

lly larger when compared to the dropwise condensation mode. 

he current droplet detection module ( Fig. 5 ) was trained us- 

ng blurry and deformed droplets having different sizes. However, 

ore images with bigger droplet sizes can be included in the train- 

ng dataset to ensure that the network learns to detect droplets 

ver a wider range of sizes. Another condensation mode of inter- 

st is jumping droplet condensation on superhydrophobic surfaces 

here droplets can undergo coalescence-induced droplet jumping 

ndependent of gravity [69–71] . Our current model is not accurate 
14 
nough to analyze the jumping droplet condensation mode due 

o out of plane droplet departure. However, we emphasize that 

he present ML method can be improved to be more robust by 

dding readily available features. For example, multi-sectional ex- 

eriments can be realized by training the ML model to learn ad- 

itional texture-specific visual features such as jumping droplets 

rom superhydrophobic nanotextured surfaces. Recent studies have 

emonstrated that ML models are easily adapted to new surfaces, 

ven more so under similar visualization conditions [ 36 , 38 , 72 ].

urthermore, our droplet counting module can be extended to ac- 

ommodate high heat flux (e.g., 100 W/cm 

2 ) cases that are typified 

y high shedding frequencies. High shedding frequencies pose a 

hallenge for the current droplet counting module because two dif- 

erent droplets that are shed from the same nucleation site could 

ave the same Euclidean distance in consecutive frames as that of 

 single droplet passing through the specified window. This chal- 

enge can be addressed by adding spatial features (e.g., area, orien- 

ation, eccentricity) in addition to the Euclidean distance screening 

lgorithm to further distinguish droplets based on higher-level vi- 

ual similarity. 

Finally, while a high-speed camera is still used within this work 

o measure the shedding droplet diameter, high speed imaging can 

e fully eliminated in the future by employing image reconstruc- 

ion techniques [ 73 , 74 ]. For demonstrative purposes, we show that 

ur framework is robust even for low (30 fps) frame rates. Un- 

er these conditions, droplets have high distortion ( Fig. 4 ) and are 

ifficult to analyze using conventional methods. However, recent 

orks have demonstrated the successful reconstruction of images 

ith similar motion blur as observed in our experimental data 

75] . Since most commercial devices including smartphones sup- 

ort at least 60 fps, we expect accelerated progress in developing 

eblurring techniques with higher quality image datasets. This will 

llow reconstruction of high quality images typically obtained from 

igh frame rate imaging ( ∼ 300 fps) from videos operating at lower 

rame rates ( ∼ 60 fps). This can in turn be used for falling droplet 

ize characterization resulting into exclusion of high speed cameras 

or this required task. 

Here, we showed the application of our ML method for DWC. 

owever, our method requires re-training with additional visual 

ata for condensation on superhydrophobic surfaces containing 

roplets as small as 100 μm for applicability with the jumping 

roplet condensation mode. 

Among the previous works that use ML models for characteriz- 

ng phase change heat transfer phenomena, the majority of studies 

re based on using a non-linear regression model such as artificial 

eural networks (ANN) that are trained on data from experimen- 

al measurements [ 76 , 77 ]. Therefore, these data contain measure- 

ents uncertainties. Using visual data can alleviate this problem. 

owever, fewer studies have investigated using visual data with 

L models for condensation heat transfer characterization. 

Future work is needed to modify our developed ML frame- 

ork to enable direct condensation heat transfer coefficient es- 

imation. One potential approach could use recurrent neural net- 

orks (RNNs) [78] that can learn from sequences of data contain- 

ng droplet nucleation, growth and coalescence on tubes as well 

s shedding from tubes while taking into account the frequency of 

he repetition of these stages. 

onclusions 

In this study, a visualization-based machine learning framework 

s developed for high fidelity condensation heat flux characteriza- 

ion. A thorough uncertainty analysis of current condensation ex- 

erimental methods is provided with effects of different parameter 

ariables such as sample size, coolant mass flow rate, and tem- 

erature sensor uncertainty discussed. Motivated by the relatively 
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igh uncertainties of current heat flux measurement approaches, 

e developed a new framework that takes advantage of deep con- 

olutional neural networks for feature extraction from condensa- 

ion videos and estimation of droplet shedding frequency which 

s further processed for robust estimation of the heat flux. For 

raining, validation, and testing of the proposed detection mod- 

le, we collected our own data using an experimental setup. Here, 

50, 220, and 190 images were used for training, validation, and 

esting, respectively. All condensation experiments were conducted 

n the absence of non-condensable gases. Several Parylene C pro- 

oted hydrophobic Cu tubes were tested and the results from the 

onventional coolant enthalpy-change method and the ML method 

re reported and compared. Many sources of uncertainty are elim- 

nated by using our ML framework, with uncertainties being in- 

ariant to heat flux, tube length, tube diameter, or coolant flow 

ate. The droplet detection accuracy of the deep network used in 

ur method is 97% and the overall heat flux uncertainty associ- 

ted with this method was shown to be < 10%. As our method 

elies only on visual data, it can be used for local heat transfer 

easurement across the sample. To demonstrate this added ben- 

fit, we conducted a set of experiments on a hybrid tube hav- 

ng three different wettabilities, with heat flux at each region pre- 

icted using only one experiment. Our work provides a reliable, 

nd cost-effective method for condensation characterization by re- 

oving constraints associated with classical methods such as the 

equirement for high coolant flow rates, long tube samples, and 

ccurate temperature sensors. 
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ppendices 

ppendix A: MSE results 

An example of the MSE results is shown in Fig. A1 . The first

ow contains the results when no smoothing is applied to the im- 

ges (e.g., Gaussian filter). The MSE between the reference frame 

nd the frame with a falling droplet is 0.0914. The MSE values be- 

ween the reference frame and two other randomly chosen frames 

re 0.0518 and 0.138. One of these values are bigger and the other 

ne is smaller than the MSE of the falling droplet frame and there- 

ore it is not feasible to use a fixed threshold. The MSE method is 

ensitive to lighting conditions and outliers, and therefore cannot 

e used as a universal model. 

ppendix B: SSIM results 

The SSIM results are shown for two cases demonstrating low 

nd high droplet shedding frequency. The low frequency case is an 

luminum tube coated with heptadecafluorodecyltrimethoxy-silane 

HTMS, Gelest, CAS No. 83048-65-1) through chemical vapor de- 

osition (CVD) at atmospheric pressure. The high frequency case 

s an aluminum tube coated with a conformal layer of Parylene 

 which is deposited via CVD at vacuum condition. The coatings 

roperties and deposition procedure are explained elsewhere [59] . 

ig. B1 (d) shows an image of the condensing tube inside the ex- 

erimental chamber (low frequency case) with the specified win- 

ow below the tube and the SSIM results for this tube and also 

he high frequency case (tube image is not shown here) are shown 

n Fig. B1 (b) and B1(c). Fig. B1 (d) shows the two common failure

odes for the SSIM method. 

ppendix C: Falling droplet diameters 

Average falling droplet diameters on Cu tubes coated with 

00 nm, 1 μm, and 5 μm thick Parylene C films during steam con- 

ensation at pressures of 3 kPa and 7 kPa ( Fig. C1 ). As shown, the

verage droplet diameters are reasonably constant for all tested 

ases. 

https://doi.org/10.13039/100000001
https://doi.org/10.13039/100000001
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123016
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Fig. A1. (a) Background images (reference) used in the MSE method. (b) Other frames containing or not containing falling droplets. (c) MSE results. First row shows the 

results before applying the smoothening filter (Gaussian filter). All scale bars are identical for all images and represent 1 cm. 

Fig. B1. (a) Photograph of the condensing tube with the specified window (red dashed rectangle box) which is used for SSIM calculation. (b) SSIM result for a low fre- 

quency droplet shedding case. (c) SSIM results for a high frequency droplet shedding case. (d) Photographs showing two common failure modes of the SSIM method. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. C1. (a) Average falling droplet diameter during steam SWC at steam pressures ranging from 3 kPa to 7 kPa on Cu tubes promoted with 500 nm, 1 μm, and 5 μm thick 

Parylene C films. (b- g) Photographs of falling droplets taken from videos recorded at 300 fps for: (b) 500 nm Parylene C thickness and P = 3 kPa, (c) 500 nm Parylene C 

thickness and P = 7 kPa, (d) 1 μm Parylene C thickness and P = 3 kPa, (e) 1 μm Parylene C thickness and P = 7 kPa, (e) 5 μm Parylene C thickness and P = 3 kPa, and (g) 5 μm 

Parylene C thickness and P = 7 kPa. 
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