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Measuring condensation heat transfer and its associated heat transfer coefficient is not trivial. Rigorous
measurements require careful experimental design and tradeoff studies to properly select sensor type,
sample geometry and size, coolant fluid and flow rate, operating conditions, working fluid purity, purge
methodology, and measurement protocol. Conventional tube-based condensation heat transfer measure-
ments quantify the change in the enthalpy of a single-phase coolant flow via measurement of the inlet
and outlet bulk coolant temperatures. The uncertainties associated with this classical and well-established
experimental method are high. The high uncertainty stems from the high characteristic heat transfer co-
efficient or heat flux associated with the condensation process, making the thermal resistance on the
external tube side typically on the same order of magnitude as the internal single-phase coolant con-
vective heat transfer thermal resistance. Even when taking the utmost care and using extremely accu-
rate sensors having low uncertainty, the relative uncertainties of heat flux and heat transfer coefficient
can be in the range of 20% to 100%. Here, we take advantage of machine learning (ML) to develop an
optical visualization method for dropwise condensation heat transfer characterization. Using state-of-the-
art intelligent vision, we demonstrate a previously-unexplored method for characterizing the condensate
droplet shedding frequency, droplet shedding size, and heat flux without the need for high-speed imag-
ing. We verify our technique by conducting rigorous steam condensation measurements on Parylene C
coated smooth copper tube samples having 500 nm, 1 xm, and 5 ;#m Parylene C thicknesses. We validate
our ML predictions with data obtained simultaneously using the enthalpy-change method on a custom
and well-established condensation chamber. In contrast to conventional heat transfer measurement meth-
ods, the uncertainty of our ML method is constant (~10%) and does not vary with heat flux. We finally
demonstrate the key advantage of our ML measurement technique on a custom-made tube having axi-
ally varying surface properties resulting in differing local heat transfer coefficient. Our ML heat transfer
measurement method enables the high fidelity characterization of phase change heat flux, reduction in
relative measurement uncertainty, resolution of local effects, and elimination of the need for temperature
measurement across samples.
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1. Introduction

Condensation is an important phase-change phenomenon to a
plethora of industries. In particular, dropwise condensation (DWC)
has been the topic of great interest in the past century due to its
potential to enhance the thermal efficiency of applications such
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as high heat flux electronics thermal management [1], the steam
power cycle used for power generation [2], and building heating
and cooling [3]. The key to efficient DWC is the rapid removal of
condensate droplets from the condensing surface. Efficient droplet
removal minimizes the conduction thermal resistance of the con-
densate liquid remaining on the surface. DWC mainly occurs on
nonwetting surfaces where contact angle hysteresis is typically
low [4]. This droplet removal relies on gravity or vapor shear and
typically happens when the droplet size approaches the capillary
length (~2.7 mm for water) of the condensate [5].
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Nomenclature

Symbols

A Surface area

Al Aluminum

ANN Artificial neural network

BiFPN  Bi-directional feature pyramid network

c Specific heat

Cu Copper

d Used to refer to parameters uncertainty
D Diameter

DAQ Data acquisition system

DCNN  Deep convolutional neural network
DI Deionized

DWC Dropwise condensation

EES Engineering Equation Solver
ESEM Environmental scanning electron microscopy
Exp Experimental

f Friction factor

F Droplet shedding frequency

fps Frame per second

FWC Filmwise condensation

g Acceleration due to gravity

h Heat transfer coefficient

H Image height

HCl Hydrochloric acid

[ Image (pixel) intensity

loU Intersection over union

k Thermal conductivity

L Length

LMTD  Log mean temperature difference
m Mass flow rate

ML Machine learning

MSE Mean square error

NCG Non-condensable gas

P Pressure

Pr Prandtl number

q”’ Heat flux

Re Reynolds number

Ref Refrigerant

RGB Red-Green-Blue color space
RNN Recurrent neural network

RTD Resistance thermal detector
SSIM Structural similarity index metric
T Temperature

U Overall heat transfer coefficient
Vv Droplet volume

1% Volumetric flow rate

w Image width

Greek symbols

A Difference

nw Dynamic viscosity

A Mean image intensity

o Standard deviation

0 Density

0 Droplet contact angle

Subscripts

a Advancing (droplet contact angle)
b At bulk

C Coolant

con Condensation

fg Associated with latent heat of vaporization

in Inlet

0 Outer or outside

out Outlet

r Receding (droplet contact angle)
s At surface

sat Saturated state

tube tube

For both filmwise condensation on bare surfaces or DWC on
promoted surfaces, the experimental characterization of condensa-
tion heat transfer requires particular attention to be paid to sensor
selection and measurement protocols. Condensation experiments
are usually conducted in vacuum-compatible chambers to limit the
presence of non-condensable gases (NCGs) that greatly degrade
the heat transfer measurement. Even trace amounts of NCGs, as
low as a few PPM, can degrade the measured heat transfer co-
efficient by as much as 50% [6,7]. When testing condenser tube
surfaces, heat flux is calculated by measuring the coolant bulk in-
let and bulk outlet temperatures inside of the tube. Knowledge
of the coolant inlet and outlet temperatures as well as the satu-
rated vapor temperatures enables the use of the log mean tem-
perature difference [8] to determine the overall vapor-to-coolant
heat transfer coefficient (U). This overall quantity can then be
used with the internal heat transfer coefficient (h;) on the coolant
side to estimate the external condensation heat transfer coefficient
(hCOI'l)-

The typical uncertainties associated with condensation heat flux
(q") and heat transfer coefficient estimations are relatively high.
Small errors in temperature measurements propagate into high un-
certainties in the estimations. Many past studies have measured
the condensation heat transfer on flat surfaces by carefully in-
serting several temperature sensors at specified locations inside
a copper block on which the sample is mounted. Assuming one-
dimensional steady-state heat conduction, and knowing the dis-
tance between the thermocouples, the heat flux can be calcu-
lated. A separate temperature sensor is required at a location close
to the surface of the sample and inside the copper block in or-
der to estimate the condensing surface temperature and to calcu-
late heon [9,10]. The temperature differences measured are quite
small (AT=1 - 3K) and may lie within the uncertainty of the
temperature sensors used [11]. Furthermore, carful installation of
the sensors to ensure good thermal contact and orthogonality to
the surface normal is challenging. To ameliorate these difficul-
ties, researchers have also attempted to quantify the condensation
heat transfer on tube geometries. Similar challenges exist on tubes
where sensors need to be placed at the centerline of the tube to
measure the bulk fluid temperature. Furthermore, highly turbulent
coolant flow having high Reynolds number (Rey>20,000) is re-
quired to minimize the radial temperature gradient in the coolant
flow at the inlet and outlet.

Recently, an innovative approach called the thermal amplifica-
tion technique [12] was created to reduce condensation heat trans-
fer measurement uncertainty. The approach uses a high coolant
flow rate in the primary test section to ensure that the govern-
ing thermal resistance is on the condensation side as opposed to
the coolant side. Then, the method uses a heat exchanger to cou-
ple the primary loop to a secondary loop having a cooling water
stream with a much lower flow rate in order to measure higher
temperature differences and achieve higher signal-to-noise ratio.
The measured temperature difference in the secondary loop was
two orders of magnitude larger than the primary loop due to the
reduction in flow rate. Although thermal amplification was able to
achieve uncertainties of 10%, it is complex.
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A significant source of error of coolant enthalpy-change-based
condensation heat transfer measurement techniques, including the
thermal amplification technique, is the importance of spatial lo-
cation of the temperature sensor inserted inside the coolant flow.
This particular sensitivity to probe location stems from the fact
that the coolant temperature profile is not uniform for develop-
ing or fully-developed internal pipe flows [13]. As such, it is very
important to install both the inlet and outlet sensor at the same ra-
dial location inside the tube in reference to the tube inner wall lo-
cation. Moreover, cases exist where measuring the bulk fluid tem-
perature is not feasible. For example, when the flow is laminar and
a flow mixer is not present [14].

A lack of accurate correlations for internal heat transfer coef-
ficient for more complex geometries and conditions (e.g., inter-
nally enhanced tubing, thermally and hydrodynamically developing
flow) is yet another limitation of conventional methods. Therefore,
a need exists to develop a more robust, raid, and simple approach
to measure the condensation heat transfer which can be applicable
at different flow conditions, for different tube geometries, and that
is insensitive to temperature sensor accuracy or position.

A common alternative method to the coolant enthalpy-change
approach eliminates the use of temperature sensors and uses col-
lected condensate mass or volume falling from the condensing sur-
face to estimate the condensation heat transfer rate [15,16]. How-
ever, the precise collection of condensates from the condensing
surface of interest over time is challenging as condensation can
occur on tertiary surfaces such as chamber walls, fittings, and con-
nections, resulting in accumulation error. To alleviate these errors,
the condensate collector needs to be installed inside the condensa-
tion chamber and at the proper position relative to the condensing
surface, adding additional complexity and a source of uncertainty.
Moreover, the collector should possess real-time measurement ca-
pability as the condensation rate varies with vapor pressure and
takes time to reach to steady-state. These challenges result in rel-
atively high uncertainty in the measurements and therefore the
enthalpy change-based method has been the preferred method of
choice in the past decade when compared to the mass collection
method.

In the past decade, many studies have focused on developing
surfaces to increase droplet-shedding frequency and decrease the
droplet shedding size during DWC. These surfaces can be classi-
fied as hydrophobic [17], superhydrophobic [18], hybrid or biphilic
[19,20], liquid infused [21], and slippery hydrophilic [4]. Despite
the progress in surface design and DWC heat transfer enhance-
ment, much less attention has been given to improving charac-
terization methods for reducing the condensation heat transfer
measurement uncertainty. Although reporting uncertainty values is
pivotal to understand, compare, and contrast surface heat trans-
fer performance, many studies report only the heat flux and heat
transfer coefficient values without conducting error propagation
analysis to evaluate the uncertainty of their results [11]. Among
the studies which have reported the uncertainty values for their
heat transfer measurements, uncertainties range from 12% to 60%
for heat flux and 20% to 80% for condensation heat transfer coeffi-
cient [5,22-26].

In an effort to simplify and speed up heat transfer quantifi-
cation, several studies have developed visualization techniques to
gain understating of DWC droplet dynamics. Environmental scan-
ning electron microscopy (ESEM) represents an appropriate ap-
proach for investigating micro/nanoscale droplet growth dynamics
during DWC [27,28]. Although ESEM represents a powerful obser-
vation tool, it is expensive and cannot be used for the heat flux
and heat transfer coefficient measurement mainly due to time res-
olution challenges.

A second visualization method used to study droplet dynam-
ics during DWC is high-speed optical imaging. By recording videos
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of DWC at a very high frame rate (> 200frame per second (fps))
using a high-speed camera, the heat transfer characteristics can be
studied. This was done in the past using high-speed images to cap-
ture 10s duration DWC videos at 200 fps. These images were then
converted to black and white to facilitate the detection of falling
droplets in order to estimate the falling droplet frequency on tubes
having hybrid wettability [29]. Drawbacks exist when using high
frame rate videos for heat flux estimation. First, a high-speed cam-
era is required, which is expensive. Second, recording high speed
videos at high frame rates results in large data file sizes. There-
fore, the real-time video duration is limited to only tens of seconds
(~10s). As a result, the frequency of shedding droplets is calcu-
lated by averaging over a short time period which results in poor
time-averaged accuracy. Therefore, it would be beneficial to have
high-fidelity heat flux estimation using shedding droplet detection
at relatively low frame rates (< 60fps). This remains a challenge
as falling droplets from condensing tubes move too quickly to be
resolved accurately at low frame rates, resulting in deformed or
blurry images.

A promising pathway to overcome this imaging challenge is to
use recently developed learning-based computer vision techniques
to detect and resolve deformed droplets. Remarkable progress has
been made in computer vision techniques using deep convolutional
neural networks (DCNNs) for classification [30], object detection
[31], semantic and instance segmentation [32]. DCNNs do not re-
quire hand-crafted feature selection. Instead, a hierarchy of fea-
tures at different scales is extracted by using several convolutional
layers that are activated by non-linear functions such as sigmoid,
ReLU, and Leaky ReLU and are connected to each other through
pooling layers [33]. Therefore, DCNNs are invariant to translation
and objects can be detected at spatially varying locations. Also, a
well-trained DCNN can be illumination-invariant [34] and therefore
desirable for characterization of condensation experiments that are
done at different lighting conditions and with differing optical
properties of the condensing surface.

Recently, multiple thermofluidic studies have investigated the
combination of visual data along with deep neural network models
for two-phase heat transfer prediction. One study custom designed
a CNN with two convolutional layers followed by a fully connected
layer to enable nucleate pool boiling heat flux estimation [35]. The
study reported a mean average percentage error as low as 10% over
the validation and test datasets for nucleate boiling heat flux. Al-
though demonstrating promising results, the model developed was
system-dependent and not universal. Follow on work developed a
hybrid physics-informed framework for boiling heat flux prediction
using visual data [36]. The model consisted of a combination of the
VGG16 DCNN [37] and Mask R-CNN [32] algorithms for feature ex-
traction. The outputs of these two networks were additionally pro-
cessed through a fully connected layer for heat flux prediction. Us-
ing the hybrid framework, they reported a pool boiling curve pre-
diction with a mean error of 6%.

Although promising, intelligent-vision techniques for external
condensation have been less explored. Potential exists to use these
state-of-the-art techniques for condensation characterization, espe-
cially during DWC and jumping droplet condensation [38]. In this
work, we first conduct a rigorous uncertainty analysis for conven-
tional methods for external condensation characterization, demon-
strating the necessity of using more reliable measurement methods
to attain higher certainty levels as well as simplified characteriza-
tion. We then propose a simple, yet powerful, learning-based al-
gorithm that requires low frame rate (~ 30fps) video imaging as
the input to the falling droplet detection network. The output of
the network is then processed for robust and accurate condensa-
tion heat flux measurement. We verified our method by conduct-
ing rigorous steam condensation measurements on a Parylene C
coated copper tube samples having 500 nm, 1 um, and 5 um thick-
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Fig. 1. (a) Schematic and (b) photograph of the test facility used for condensation heat transfer measurement and visualization. Schematic not to scale. Inset of (a): cross
sectional view at the dash-dot line in (a) depicting the optical access of the sample. (c) Photograph of the chamber when opened showing the tube sample with internal
components. A summary of instrumentation with span and corresponding uncertainty are shown in Table 1.

nesses in a custom condensation chamber. We validated the data
using the classical coolant enthalpy-change method using water as
the coolant fluid. In contrast to the conventional method where the
uncertainty varied with tube geometry, flow condition, sensors un-
certainty, and condensation heat flux, our method achieved a con-
stant relative uncertainty of ~10% for all cases tested. Using only
optical visualization data, we show that our technique is also capa-
ble of achieving local heat transfer measurement. To demonstrate
the utility of our technique for local axially varying heat fluxes on
a tube sample, we fabricated a single tube with axially varying
wetting properties, leading to different condensation heat transfer
modes for each section on a single sample. Using our approach,
we measured the local heat fluxes on the three different surfaces
having differing wetting properties using a single experiment.

2. Experimental setup

To obtain visualization data, and to conduct classical coolant
enthalpy-change heat transfer measurements, experiments were
conducted in the test facility shown in Fig. 1. The facility was built
as part of past condensation heat transfer experiments, the de-
tails of which can be found here [39,40]. Briefly, the facility con-
sists of a custom developed stainless steel vacuum/pressure cham-

ber (Gladwin Tank) in which condensation occurs (shell) on an in-
ternal sample (tube). The system also consists of a steam supply
system (Kurt J. Lesker) and an independent coolant flow loop. The
internal diameter of the chamber (shell) is 30.5cm and the max-
imum straight tube length tested inside the chamber can be as
long as 30cm. Each end of the chamber is sealed with 44.5 mm
thick stainless steel flanges. Both flanges have several feedthrough
fittings allowing thermocouple, resistance temperature detector
(RTDs), fluidic, and pressure transducer installation. Two indepen-
dent pressure transducers (MicroPirani, MKS Instruments and Bara-
tron 728A) were installed on the chamber to monitor the pressure
inside when vacuuming the chamber and throughout DWC exper-
iments. Finally, 6 optical viewports (5.08 cm diameter ports from
MPF Products and 6.35 dimeter ports from MDC Vacuum) were in-
stalled on the chamber for ease of visualization. The viewports are
designed for internal pressures up to 2.75MPa and can operate in
vacuum conditions. Next to the chamber, the steam supply system
(Standard CF TEE, Kurt J. Lesker with 20.3cm outer diameter) is
filled with deionized (DI) water which is heated by tape heaters
(Part #AWH-101-040DP, ETS Equipment) that are installed on the
outer surface of the vapor generator. The heating rate of the tape
heaters is controlled by connecting the tape heaters to a variable
voltage regulator (Model PM-1220B, ETS Equipment). The DI wa-
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ter temperature was monitored during the heating process by a
T-type thermocouple (Part #SCPSS-032, Omega) which was passed
into the vapor generator. The vapor generator had four ports on
top that were manufactured into a custom made CF blank by Kurt
J. Lesker. These ports were used to connect the vapor generator to
the line connecting to the main chamber, a pressure relief valve set
at 300 kPa (Part #SS-RL4S8, Swagelok), a vapor vent line to avoid
over-pressurization, and a fill line used to fill the vapor generator
with DI water.

At the coolant flow loop, water is cooled using a large capacity
chiller (Part #327005091602, System IIl TU7 Pump, Thermo Fisher
Scientific) and routed to the test section inside the chamber. The
coolant flow rate was measured using an electromagnetic flow me-
ter (Part #FMG93, Omega). The coolant inlet and outlet tempera-
tures were measured using two RTDs (Part #AT-PX1123Y-LR4S1T2T,
ReoTemp) located at the entrance and exit of the test tube sample.
All auxiliary connections and tubing inside the chamber were insu-
lated to prevent condensate formation and to limit condensation to
occur on the test tube only. Also, the chamber itself was wrapped
with tape heaters (Part #AWH-101-040DP, ETS Equipment) that
were controlled with a voltage regulator (Model PM-1220BE, ETS
Equipment) to gently heat the chamber and prevent condensate
formation on the internal side of the chamber wall and viewports.
The pressure of the condensing vapor was controlled by throttling
a manual valve (Model #6L-LD8-BBXX, Swagelok) connecting the
vapor generator to the chamber (labeled V1 in Fig. 1).

Non-condensable gases were removed from the system by us-
ing a vacuum pump (Model Alcatel 2005) that was turned on
prior to each experiment. A liquid nitrogen cold trap (Model
#TLR4 x 1100QF, Kurt ]. Lesker) was installed in line between the
chamber and the vacuum pump to remove any moisture from the
air, which improves the quality of the vacuum and protects the
pump. While pumping down the chamber, the heaters around the
vapor generator were also turned on to boil the DI water. How-
ever, the valve (Model #6L-LD8-BBXX, Swagelok) connecting the
vapor generator the chamber was kept closed at this stage. After
the chamber pressure reached 200 Pa, the coolant line was ini-
tiated to work so that the coolant inlet and outlet temperature
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mentation with span and corresponding uncertainty are shown in
Table 1.

3. Uncertainty analysis

In conventional heat transfer experiments, the heat flux on the
outside of the tube is measured by calculating the enthalpy change
of the coolant flowing inside of the tube, as described in Eq. (1),
where ¢p ¢ is the coolant specific heat capacity, mc is the coolant
mass flow rate, T out is the coolant outlet temperature, T ;, is the
coolant inlet temperature, and A, is the external surface area of
the tube. The outer area of the smooth tube is calculated with
Eq. (2), where D, and L are the outer diameter and length of
the tube, respectively. Using the log mean temperature difference
(ATypmtp) method, the overall heat transfer coefficient (U) of the
tube can be computed by Eq. (3), where ATy is calculated us-
ing Eq. (4). Here, Ts is the saturated vapor temperature. The cal-
culated U contains the convective resistances on the inner and
outer walls of the tube as well as the heat conduction resistance
through the tube wall and any applied coating layer to promote
DWC. The coolant-side convective heat transfer coefficient (h;,) is
usually calculated using the Petukhov correlation [41] for turbulent
flow using Egs. (5) and (6), where Re represents the internal flow
Reynolds number based on the internal tube diameter (D;) and is
defined by Eq. (7), Pr is the coolant Prandtl number, f is the pipe
friction factor, k is the coolant thermal conductivity, i, and s are
the dynamic viscosities of the coolant at the bulk fluid tempera-
ture and at the tube wall temperature, respectively, and n=0.11
when the fluid is heated and n=0.25 when the fluid is cooled
[42]. Knowing h;,, we can divide the U into three different ther-
mal resistance components of internal convection, tube wall heat
conduction, and external condensation as shown in Eq. (8), where
heon is the condensation heat transfer coefficient, ke is the ther-
mal conductivity of the tube material, and A; is the internal surface
area of the tube. Therefore, a closed form solution can be obtained
for hcon Which is shown in Eq. (9).

q// _ Cp,cmc(Tc,out - Tc.in)

would reach to the steady values before the measurement started. Ao
After the chamber pressure reached below 2 Pa, the DI wa- Ao = TD,L . (2)
ter was allowed to boil for at least 10 min, and the coolant inlet
and outlet reached steady state, the condensation experiment was q’
started. At this point, the valve (Model #6L-LD8-BBXX, Swagelok) = N (3)
connecting the vacuum pump to the chamber (labeled V2 in Fig. 1) (Toat = Toin) — (Toae — T
was closed and the vapor was let into the chamber with pressure ATy = ~2t — “cin (Tsat — Tc.out) ) (4)
set by adjusting the valve position on the valve between the vapor IH[M]
generator and the chamber (labeled V1 in Fig. 1). For every mea- et
surement made at a certain vapor pressure, we made sure to reach k (%)RePr Uy \"
steady state (£ 50Pa pressure oscillation) and report steady state hin = D-) N o2 (E) : (5)
values. All measurements were collected through a special high- "/ 1.07 + 12-7(§) (Pr? - 1)
accuracy data acquisition system (DAQ, PXle 1073, National Instru- f=10.791In (Re) — 1.64]’2 ) (6)
ments) and analyzed with LabVIEW. The PXle DAQ was specifically
chosen to provide the highest possible fidelity in enthalpy mea- 40V
. - . . oV
surements with minimal DAQ uncertainty. A summary of instru- Re = ) (7)
1
Table 1
Details of test facility instrumentation and uncertainty of each sensor. Numbering in the measurement column corresponds to the locations identified in
Fig. 1(a).
Measurement Instrument Loc. Span Uncertainty
Coolant temperatures Class AA RTD t1, t2 7-20°C 0.15°C+0.12%
Vapor temperature T-type thermocouple t3 20-100°C + 0.5°C
Coolant flow rate Electromagnetic flow meter f1 11-30 L/min + 1%
Chamber pressure Pressure transducer (Pirani) p2 0-17 kPa + 1%
Chamber pressure Pressure transducer (Baratron) p1 0.133-133 kPa 0.5-1%
Tube length Caliper 0-30cm + 0.5mm
Tube diameter Provided by vendor - + 0.1 mm
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L ) .
UA  heonfo  27LKybe  hinAi
D -1
1 A, Aln(f)
hcon = 7 - S5 0L . (9)
U hinAi 2w thube

The uncertainty of the measured heat flux is dependent to the
uncertainties of the inlet and outlet temperatures, mass flow rate,
diameter and length of the tube measurements. The relative uncer-
tainty of the heat flux can be calculated by Eq. (10). Uncertainty of
the temperature difference is defined in Eq. (11), where dT is the
coolant inlet and outlet temperature measurement error:

dg’ | (dinc\" (Ao =Tew) | (Do), (dL)’
q’ - me (Tc.out_Tc,in) Do L

(10)

d(Tc,out - Tc,in) = \/de (11)

Analyzing Eq. (10), we see that the heat flux relative uncer-
tainty is very sensitive to the accuracy of the mass flow rate, and
inlet/outlet temperatures measurements. Furthermore, at a fixed
mass flow rate and fixed inlet temperature, the outlet tempera-
ture increases with increasing heat flux and the ratio of the out-
let temperature measurement error to the measured temperature
value reduces, resulting in a smaller relative uncertainty for the
heat flux measurement.

Longer tubes with higher diameters are also preferred in order
to increase the temperature difference across the tube leading to
higher signal-to-noise ratio. A similar uncertainty analysis could
be conducted for measured hcn. The uncertainty analysis on U
which is necessary for conducting the uncertainty analysis of hcon
is shown in Eq. (12), where d ATy is shown in Egs. (13) to (16).
The error of the saturation temperature (dTs;:) could be defined by
the error of the thermocouple installed inside the chamber or the
pressure sensor measuring the chamber saturation pressure. Here,
to simplify Eq. (13), we assume that this error is comparable to
the dT (dTy,s =~ dT). Therefore, a simplified version of Eq. (13) is
shown in Eq. (16).
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dATimrp

\/(Tc,out - Tc,in)4 + (Tsat - Tc.out)ZA + (Tsat - chn)zB
=dT
ATLMTD

- 2
7-S<'|[7T( in
(Tt = Teou) (Tt — Tein) (1n [ 257222 ]

(16)

Conducting the uncertainty analysis for U, the uncertainty anal-
ysis of heon is done using Eq. (9) and is shown in Eq. (17), where
B_4 are defined by Egs. (18) to (21). The relative uncertainty of the
internal convective heat transfer coefficient (dh;,/h;,) is dependent
to the accuracy of the correlation used for estimating the internal
heat transfer coefficient (h;,). In case of the Petukhov correlation
(Eq. 5), the uncertainty of h;, is reported to be 6% [24,41].

2./B1+ By +B3+By (17)

(UDoD; In (B2) + 2UDok — 2Dihink)”

By = 4U*D2D?k* (dhy,)? . (18)
4n21,212 2 DO z

B, = U“D?I®H2, (dD,)? (Dihiy <1n (E) +1)+2k ) . (19)

Bs = U2k?h2,(dD;)*(UD,Dihy, + 2UDok)* . (20)

By = 4Dk (dU)* . (21)

It is important to note, the aforementioned analysis is predi-
cated on ensuring that the internal coolant flow is highly turbu-
lent (Re>10,000) and the flow is hydrodynamically fully devel-
oped, both of which are necessary conditions to ensure high accu-
racy for the Petukhov correlation (Eq. 5). Turbulence in particular
is of upmost importance as any laminar flow results in significant
radial temperature profile development within the internal coolant
flow, making the measurement of bulk fluid temperature difficult
unless highly efficient flow mixers are installed. To achieve reason-
able results, Re > 10,000 is necessary.

Fig. 2 shows the uncertainty analysis results for the condensa-
tion heat flux as a function of tube length (L) and outer diameter
(Do), heat flux (g”), and the absolute uncertainty of the temper-
ature sensor (dT). Fig. 2(a) and 2(b) show the relative heat flux
uncertainty (dq”) when the uncertainty of the temperature mea-
surement sensor is dT =0.1°C, corresponding to the uncertainty of
the class AA RTDs used in the experimental results of this work
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(Table 1). Fig. 2(c) and (d) show dq” when the uncertainty of
the temperature sensor is dT = 0.5 °C, corresponding to an approx-
imated case where a calibrated thermocouple is used, which com-
prises of a combination of the uncertainty due to data fitting (stan-
dard deviation) combined with the uncertainty of the instrument
(typically an RTD) used for calibration. We note that the uncer-
tainty of the thermocouples can vary based on the thermocouple
type and quality of the manufacturing and can be as high as 42 °C.
Here, we chose a value which is at the low range of common ther-
mocouple uncertainties [43]. The results show that the dq” is very
sensitive to the accuracy of the temperature sensors. For example,
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Fig. 2. Uncertainty analysis results for external tube condensation heat flux. (a) Condensation heat flux relative uncertainty (dq”) as a function of tube length (L) and heat
flux (q”) for a fixed tube outer diameter of D, =6.35mm (1/4” DIA tubing) and temperature sensor uncertainty dT =0.1°C. (b) dq” as a function D, and g” for fixed L=28 cm
and dT=0.1°C. (c) and (d) show the same dq” analysis presented in (a) and (b) but for dT =0.5°C temperature uncertainty. For this analysis, the coolant was tap water, and
the coolant flow rate was 15 LPM for all cases. This corresponds to Re =48833 for D; =4.7 mm. The legends on top of the figures are valid for all graphs. Tube wall thickness

is 1.6 mm for all cases.

the heat flux uncertainty is 3 to 4 times higher when dT increases
from 0.1°C to 0.5°C for a fixed tube length and tube diameter.

It is important to note that our analysis is conservative in that
it completely ignores the uncertainty component from the data
collection process and the DAQ system itself. In fact, DAQ uncer-
tainty must be accounted for any measurement, with DAQ un-
certainty components for temperature measurements using high
quality DAQ cards (NI 9217 4-Ch PT100 RTD 24-bit card or a NI
9213 Spring, 16-ch TC, 24-bit card) approaching +1°C. Even the
PXIe DAQ used in our experimental setup has a DAQ uncertainty
of +0.1 °C for associated RTD measurements.

Common tubes lengths used for testing condensation perfor-
mance of promoter coatings and nanoengineered surfaces are typ-
ically less than L=50cm with diameters D, < 1.3 cm [40,44-47].
Therefore, heat flux uncertainties up to dq” ~ 100% are unavoid-
able for conventional experimental measurement methods.

The relative uncertainty analysis of the condensation heat
transfer coefficient (dheon) for a variety of tube sizes (L and D)
and heon as a function of coolant volumetric flow rate (V) is shown
in Fig. 3. The dhcon generally decreases with increasing coolant
flow rate because higher flow rates result in higher h;,. The higher
h;, reduces the internal convective thermal resistance, enhancing
the relative contribution of the external condensation heat trans-
fer resistance to the overall steam-to-coolant thermal resistance.
However, for some cases (e.g., low heopn) where the heat transfer

is mainly limited by the external condensation side, increasing the
flow rate negatively affects the relative error because the absolute
error for h;, increases with marginal effect on the temperature dif-
ference across the tube due to the limits from the external condi-
tion. Higher coolant flow rates (higher Re) are required for higher
values of heop in order to maintain a reasonable thermal resistance
ratio with the external condensation heat transfer thermal resis-
tance.

Fig. 3(a) shows the uncertainty analysis of the dhcn Where un-
certainty levels are higher for higher hcon values at low coolant
flow rates. This trend occurs because heat transport is mainly lim-
ited by the internal coolant thermal resistance rather than the con-
densation itself. However, uncertainty decrease faster with increas-
ing coolant flow rate for higher hcon values. This indicates the im-
portance of lowering the internal heat transfer resistance via utiliz-
ing higher coolant flow rates, enhanced (finned) internal surfaces
[48,49], or flow perturbation or modification [50], in order to at-
tain reliable external condensation heat transfer measurements.

Fig. 3(b) shows the effect of tube length (L) and coolant
flow rate on dheon. As expected, longer tube length is prefer-
able to increase the coolant inlet-to-outlet temperature difference
and signal-to-noise ratio. Analysis of the tube diameter on dhcon
(Fig. 3c) reveals a similar result as that observed in Fig. 3(a),
where higher coolant flow rates are required for larger diame-
ter tubes to achieve the same internal flow thermal resistance.
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Fig. 3. Uncertainty analysis of the tube condensation heat transfer coefficient (hcon ).
(a) Condensation heat transfer coefficient relative uncertainty (dhen) as a function
of volumetric coolant flow rate (V) for varying hcon. Results shown are for fixed
dT =0.1°C, L=28cm, and D,=6.35mm. The shaded regions show four different
uncertainty ranges for typical hen for four different conditions: refrigerant con-
densation (Ref, gray shade), steam filmwise condensation (FWC, red shade), steam
dropwise condensation (DWC, blue shade), and steam jumping droplet condensa-
tion (Jumping, teal shade). (b) Condensation heat transfer coefficient relative un-
certainty dheon as a function of V for varying tube length (L). Results shown are
for fixed dT =0.1°C, D, =6.35 mm, and heo, =50 kW/(m?2-K). (c) Condensation heat
transfer coefficient relative uncertainty dheon as a function of V for varying D,. Re-
sults are for fixed dT =0.1°C, L=28cm, and hcop =50 kW/(m?-K). Tube wall thick-
ness is 1.6 mm for all cases. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

For extremely small tubes (D, =2 mm), an optimum is present in
Fig. 3(c), whereby increasing the coolant flow rate would increase
uncertainty. Looking at Eq. (5), with a fixed volumetric flow rate
(V), hy is directly proportional to Re and inversely proportional to
D;. At fixed V, Re increases for smaller tube diameter (Eq. 21) re-
sulting in higher h;,, although at the expense of larger pressure
drop. Thus, the dhcop is initially lower for smaller tube diameters.
However, with the increase in the flow rate, larger tubes become
more preferable due to the increased temperature difference across
the tube and higher signal-to-noise ratio.

We note that the Petukhov correlation is most accurate for
10* <Re <5 x 10%, however, a larger range of Re is considered here
(Figs. 2 and 3), only for our theoretical analysis. In the experiments,
we ensured that Re lies in the proper range to achieve reliable heop
estimation. Furthermore, all results shown in Figs. 2 and 3 were
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further verified by conducting uncertainty propagation in the en-
gineering equation solver (EES) software.

The uncertainty analysis reveals the difficulties of using the
classical coolant enthalpy change method in order to accurately de-
termine the condensation heat flux and heat transfer coefficient:

i) The need to utilize highly turbulent coolant flow (Re > 10,000)
in order to enable accurate bulk coolant temperature estimation
and to minimize the coolant side thermal resistance.

ii) The need for large tube lengths (L > 50 cm) especially for steam
dropwise condensation in order to achieve reasonable un-
certainty in heat flux measurement (< 20%). Excessive tube
lengths are not always possible simply due to manufacturing
constraints of DWC promoter coatings. For example, deposition
chamber size, coating scale up limitations, chemical availability,
and cost.

iii) The inability to obtain reasonable uncertainty (< 10%) due to
fundamental limitations associated with the use of an internal
heat transfer coefficient correlation having a minimum uncer-
tainty of 6% (Petukhov correlation, Eq. 5).

iv) The need for excessive coolant volumetric flow rate (> 30 LPM)
in order to achieve reasonable uncertainties (< 20%) resulting
in excessive pressure drop though the tube section.

v) The inability to measure local condensation heat transfer coef-
ficient along the tube axis.

vi) The need to ensure hydrodynamically fully developed flow to
reliably utilize the Petukhov correlation (Eq. 5).

vii) The need for highly accurate temperature sensors (e.g., class AA
RTDs) to ensure reasonable uncertainty (< 20%).

4. Intelligent vision based heat transfer measurement method

Motivated by the uncertainty analysis conducted in Section 3,
we propose a simple, yet powerful visualization-based method for
DWOC heat transfer characterization. First, we discuss two classical
image processing methods implemented for our purpose and dis-
cuss their failure modes. Then, we propose our robust learning-
based method for falling droplet detection which is further post-
processed for high-fidelity shedding droplet frequency and conden-
sation heat flux quantification.

Falling droplets from a condensing tube have been detected us-
ing high speed video recording at high frame rates (> 200 fps)
[29]. However, droplets look deformed when the capture rate is
not high enough (~ 30fps). Therefore, simple visualization meth-
ods fail to detect and count these droplets (Fig. 4). One of the tra-
ditional methods to compare two images at the same illumination
condition analyses the mean square error (MSE) of pixel intensities.
Taking this idea into account, all the frames (including the refer-
ence frame) are first converted from the RGB (red, green, and blue
color) space to the gray space and are compared pixel by pixel
from left to right and top to bottom with the reference frame to
calculate the MSE as shown in Eq. (22):

1 L a . 2
WH S [iw. hy —1w. ],

=1 h=1

MSE(I.1) = (22)
where W and H are the image width and height, respectively, I is
the reference image and [(w, h) refers to the pixel intensity of the
reference image at the (w, h) location, and I(w, h) is the pixel in-
tensity of the new image at the (w, h) location. A threshold value
could be used to detect substantial changes (falling droplet) in the
frames (see Appendix A and Fig. A1). A Gaussian filter having a
kernel size of 16 and standard deviation of 2.5 was applied to each
frame to smooth out the images and minimize noise [51]. These
values were chosen via experimentation. However, the MSE de-
pends strongly on the image intensity scaling (e.g., lighting con-
dition), and outliers such as local noise or objects with varying
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Fig. 4. Optical images of condensate droplets when hanging to the bottom of a copper tube undergoing DWC (a, c) before falling and (b, d) while falling. Video recordings are
done at (a, b) 30fps using a DSLR camera (EOS Rebel T3i, Canon) and (c, d) 300 fps using a high-speed camera (Phantom v7.1, Vision Research). Blue solid outlines identify
droplets prior to and after falling in the 30 fps video, while red solid lines identify droplets prior to and after falling in the 300 fps video. The tube sample is made of copper
and promoted to ensure DWC of steam via deposition of a Parylene C thin film having thickness of 500 nm+ 100 nm. Experimental conditions: ¢”= 200+ 30 kW/m?, steam
vapor pressure P=4+ 0.2 kPa, coolant flow rate V =15+0.15 LPM, D, =6.35 mm, D; =4.7 mm coolant inlet temperature T,,=7 +0.16 °C. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

location in the frames. Furthermore, setting a constant threshold
value is not robust enough for many experimental conditions. For
example, it is not feasible to find out if more than one droplet is
falling.

As another image similarity assessment method, we imple-
mented the structural similarity index metric (SSIM) which has
gained a lot of attention in the image processing community since
its introduction in 2004 [52]. In contrast to MSE, SSIM is a simi-
larity metric that varies between -1 and 1, with smaller values in-
dicating lower similarity between the images. SSIM compares local
patterns of pixel intensities that are luminance and contrast nor-
malized. The SSIM is defined as:

(2221 +Gr) (203 + G)
()”12 =+ )\,IZ =+ C1)(O'iz + 0'12 + C2) )

SSIM(I.1) = (23)

where A; and A; are the mean intensity of the reference and the
new image/patch, o; and oj are the standard deviation of the ref-
erence and the new image/patch, respectively, and C; and C, are
included to avoid instability when Al? + A2 is close to zero [52].

The SSIM tends to be a better metric when compared to the
MSE for falling droplet detection through frame comparison. This
is because SSIM is more robust to changes in illumination, contrast,
and outliers. The SSIM tries to find any structural changes within
the frames, which is more useful when applied locally rather than
globally. Accordingly, we cropped out a window of full length and
width of 100 pixels from each frame and calculated the SSIM with
the reference frame (see Appendix B and Fig. B1). SSIM works
better when compared to MSE when used with a fixed threshold
value, especially for cases with low frequency of droplet shedding.
Here, values smaller than a specified SSIM threshold corresponds to
a passing droplet. For high frequency droplet shedding cases (e.g.,
high condensation heat flux), SSIM is more prone to failure.

Two common failure modes exist for SSIM. First, it is not feasi-
ble to detect simultaneous droplet shedding, which is a common
scenario for high condensation heat fluxes. This inability to detect
multiple droplets might lead to lower heat flux prediction. Second,
in some cases, same droplets in consecutive frames are counted
twice and lead to a higher condensation heat flux prediction. Al-
though this error could be minimized by proper choice of window
location from which SSIM is calculated, complexity of the shedding
phenomena (e.g., different droplet velocity and size, droplet coa-
lescence) makes the second error unavoidable. An example of the
failure modes is shown in Fig. B1(d) in Appendix B.

Both MSE and SSIM methods lack reliability to be considered
as alternatives to the conventional experimental coolant enthalpy
change method (Section 3). Motivated by the recent progress in
machine learning (ML) based computer vision techniques for object
detection, we developed a framework that takes advantage of the
EfficientDet algorithm [53] for falling droplet detection. Efficient-
Det is a DCNN that uses ImageNet-pretrained EfficientNets [54] as
the backbone network and adds a bidirectional feature pyramid
network (BiFPN) on top to extract hierarchy of features from in-
put images. Then, it passes the features to the two CNNs respon-
sible for class prediction and bounding box localization. We froze
the first two stages of these DCNNs and used them as feature ex-
tractors from the condensation videos and retrained the final stage
which is responsible for detection and localization of the falling
droplets within the frames. Our framework uses the EfficientDet
network with three BiFPN layers for hierarchical feature extraction
and three convolutional layers in the shared box/class prediction
section. It is possible to increase the number of layers for more
complex detection and localization problems. However, for our sin-
gle object detection, three layers were enough to achieve accuracy
of more than 97%.
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Fig. 5. Machine vision framework for falling droplet detection and robust counting (object tracking) for shedding droplet frequency calculation. Videos of the condensation
process were recorded at 30fps and fed into the droplet detection module frame by frame where each frame is processed through the EfficientDet algorithm which uses
the: EfficientNet-BO as its backbone, 3 layers of BiFPN for scale-invariant feature extraction, and 3 layers of additional convolutional layers as the head for falling droplet
detection and localization through bounding boxes. Every detection result is post-processed further for robust shedding frequency estimation.

As shown in Fig. 5, our framework consists of two modules.
First module (droplet detection module) is responsible for falling
droplet detection where the experimental condensation videos are
converted to a tensor containing all frames. Then, a constant area
of interest below the condensing tube with size of 100 x 1420 pix-
els is cut from each frame with size of 1080 x 1920 pixels with
three channels (RGB color space). The location of the area of inter-
est is chosen with some experimentation. If the area is too close
to the tube, hanging droplets may be wrongly detected as falling
droplets. Another concern is that a single falling droplet might be
counted a few times due to its low initial droplet velocity imme-
diately after tube departure. The second module (object tracking
module) in our method is proposed to fully alleviate the later chal-
lenge. If the cut area is too far away from the condensing surface,
then the velocity of some of the droplets might be too high to be
captured by a 30fps video recording and the 1/30 second interval
between the frames would not be enough to capture the droplet.
After some experimentation, the area of interest was chosen to
be slightly beneath ( 8 mm) the condensing tube so that hang-
ing droplets would not appear in these areas. The area of interest
is further resized to 224 x 224 pixels to be compatible with the
EfficientNet-BO input.

Another issue is when a single droplet is counted twice or
thrice because the velocity of droplet is not high enough to com-
pletely pass the area of interest from one frame to its consecutive
frame. Therefore, a single droplet is captured in two or three con-
secutive frames which results in heat flux overestimation. Our sec-
ond module (object tracking module) is designed to alleviate this

10

problem. When a droplet is detected, it will check if there were
any droplets detected in the previous frame. If detected, it will find
the coordinates of the bounding boxes associated with each of the
droplets and calculate the Euclidean distance between the coordi-
nates. Here, the Euclidean distance is defined as the length of the
segment connecting two points on the plane [55]. If the Euclidean
distance is smaller than a pre-set threshold value (& <4 pixels), it
demonstrates that the two coordinates are close to each other, and
same droplet is captured by consecutive frames and therefore only
one of the droplets should be counted. If the pre-set threshold
is too large, it forces the module not to count droplets that are
far and distinct from each other. Conversely, if the pre-set thresh-
old is too small, it loses its ability to detect and reject identical
droplets. The threshold should be similar to the localization error
of the bounding boxes in the droplet detection module. When the
same droplet is detected in two consecutive frames, the coordi-
nates of the bounding boxes around the droplets may slightly vary
from each other based on this localization error. Our experiments
showed that threshold values between 3 to 6 lead to similar per-
formance.

The convolutional layers and BiFPN layers in EfficientDet are re-
sponsible to extract features at different levels of resolution from
the input which are passed to the final prediction network for
falling droplet detection and localization. Although, convolutional
layers alone have been used extensively for feature extraction in
object detection networks, recent studies have shown that the dif-
ferent levels of feature hierarchy in convolutional layers could be
used to build feature pyramids that will make the network more
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Table 2

Advancing contact angle (6,), receding contact angle (6;), and contact angle hys-
teresis (AO =6, - 0;) of water droplets on flat Cu samples coated with Parylene C
thin films having different thicknesses. Measurements were conducted on five spots
on each surface and the average is reported. Standard deviation of the 5 measure-
ments is reported as the uncertainty.

Parylene thickness [um] 6, [deg] 0, [deg] AQ [deg]
0.5 88.4+3.1 71.2+4.7 17.2+£5.7
1 89.4+0.2 73.6+0.4 15.7+0.5
5 86.0+0.6 69.6+2.2 16.4+2.3

robust to detection at different scales which will increase detection
performance [56]. Therefore, we could ensure that falling droplets
are detected at different scales with extremely high accuracy.

The swish activation function was used after each layer to
impose non-linearity to the network [57] and the network was
trained end to end with a training dataset of 350 images with
fine tuning based on the results achieved on a validation dataset
of 220 images. Finally, performance of the network was evaluated
on an unseen dataset (test dataset) having 190 images. The dataset
contained images of blurry droplets captured from videos at low
frame rates (~30fps). As the network performed well with these
blurry images, it showed that even out of focus droplets can be
detected with this network. Intersection over union (IoU) [58] of
the detected bounding boxes and ground truth boxes was used as
the metric for true or false positive criteria. As the purpose of our
method is mainly counting the droplets and not identifying the ex-
act localization of each droplet, we relaxed the IoU criteria to 0.5,
where detections with IoU value of 0.5 or greater were considered
as true positives. At this IoU criteria, the final test precision and
recall were 97%.

5. Results and discussion
5.1. Validation of the ML-based method

We conducted two different sets of experiments to evaluate the
performance of the developed machine vision framework for real
condensation heat transfer measurements. First, we tested three
different smooth copper (Cu) tubes having constant external di-
ameter, internal diameter, and length of D, =0.63 cm, D; = 0.47 cm,
and L =28 cm, respectively. Each tube was coated with a hydropho-
bic promoter through chemical vapor deposition (CVD) of Parylene
C in reduced pressure conditions.

Briefly, commercial Cu tube samples (Multipurpose Cu,
#8967K88, McMaster-Carr) were purchased and cut to length
(L ~ 28cm). Then, cleaning of the internal and external surfaces
was completed using sonication in acetone (CAS #179124, Sigma
Aldrich), ethanol (CAS #443611, Sigma Aldrich), and DI water (in
sequence) for 10 min each. After cleaning, the tubes were placed
in a commercial Parylene C deposition chamber (Labcoater 2
Parylene deposition system, Specialty Coating Systems) with an
approximate deposition rate of 17 nm/minute. Parylene C was cho-
sen as the promoter of choice mainly due to its ability to achieve
conformal depositions, its low surface energy (hydrophobic), and
its very reasonable durability during moisture exposure or steam
condensation [59,60]. Parylene C is highly durable and possess
high chemical stability allowing the surface to keep the same
condition over the several steam condensation experiments which
assure repeatability of the results [59]. We conducted condensa-
tion experiments on each surface at least two independent times
to ensure repeatability of the results and data consistency. Micro-
goniometric water contact angle measurements on flat Parylene C
coated Cu tabs are summarized in Table 2 below.

1
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Each individual tube was coated to have a different thickness
of Parylene C (500nm, 1um, and 5um) and was tested sepa-
rately in the experimental facility (Fig. 1, Table 1). Condensation
heat flux was calculated using both the conventional coolant en-
thalpy change method (Section 3) and the machine vision method
(Section 4). The frequency of droplet shedding from the condens-
ing tube was calculated by dividing the number of droplets de-
tected by the total condensation time of each video (> 5min at
each vapor pressure) using the framework (Fig. 5) proposed in
this work. For an accurate frequency estimation, each video was
taken for a long time to make sure that at least 1000 droplets
are counted. This frequency value was then used to estimate the
condensation heat flux using Eq. (24), where m is the condensate
mass flux, p is the condensate density, V is the average shedding
droplet volume, F is the droplet shedding frequency, and hy, is the
latent heat of vapor-to-liquid phase change.

,OVFhfg
A A

The heat flux measurement results using both methods includ-
ing uncertainty bars are shown in Fig. 6. The uncertainty of our de-
veloped machine vision method was < 10% and did not vary with
the condensation heat flux. The overall uncertainty of the machine
vision technique includes uncertainties associated with the droplet
shedding frequency, droplet volume calculation, and sample outer
surface area. The droplet volume calculation has the highest con-
tribution to the overall uncertainty (> 60%). The uncertainty of
the droplet shedding frequency was assumed to be 3% based on
the accuracy of the framework shown in Fig. 5. The uncertainty of
surface area was calculated based on the measurement accuracies
reported in Table 1, and uncertainty of droplet volume was esti-
mated based on the standard deviation over at least 10 droplets
at each steam pressure (Fig. C1, Appendix C). We note that tem-
perature sensor and flow meter uncertainties are excluded here as
they are not required in this method. The heat flux uncertainty
also did not depend on the internal coolant condition and elim-
inates the uncertainty associated with using the Petukhov corre-
lation for convective heat transfer coefficient estimation (Eq. 5).
Therefore, our machine vision method can be used for all internal
flow regimes (laminar, transitional, and turbulent) and also for the
coolant flow Re ranges where correlations are not accurate enough
or are non-existent. Furthermore, developed or developing flow is
invariant and not a necessity for the machine vision approach. Fi-
nally, the uncertainty for heat flux quantification of our method is
not a function of the tube length, diameter, cross-section, or over-
all shape. Therefore, the proposed machine vision method is highly
desirable for conditions where building a large vacuum chamber is
a challenge or the tube size is limited by the coating fabrication
method.

Fig. 6 shows the results of the heat fluxes measured with ex-
perimental enthalpy-based measurement method (Exp) and the
visualization-based machine learning (ML) method. Heat fluxes
vary with Parylene C layer thickness with the 1 um thick Pary-
lene C coated Cu tube showing the best performance. The 500 nm
layer was not thick enough to fully cover the substrate defects
and form a conformal layer. Therefore, droplet pinning was higher
on this surface resulting into lower water droplet shedding fre-
quency (Fig. 6a). The results from Table 2 also confirms this as
the Cu surface having a 500 nm layer of Parylene C had the high-
est contact angle hysteresis of the three studied surfaces. For the
5um Parylene C coated Cu surface, film uniformity was not an
issue. The decreased performance when compared to the 1um
thick film promoted tube is due to the low thermal conductivity (~
0.08 W/(m-K)) of the Parylene C material imposing a high conduc-
tion thermal resistance which further reduces the heat flux [61].
Thick promoter layers reduce the overall condensation heat trans-

" mchfg _

(24)



S. Khodakarami, K. Fazle Rabbi, Y. Suh et al.

(@)
o0 * 500 nm
¢ 1um *
501 a 5 um ’ <&
= 'S
UE) 40 . * *
= 30_ y N
- ¢
20 &
2
1C T T T T T
3 4 5 6 7 8
(C) P [kPa]
500
o Exp
450 - o ML %
400- %
“E 350 i
= 300-
= 9
- o.250+
200 ¢
150 © b
m raryiene
100l ThmTaver
3 4 5 6 7 8
P [kPa]

International Journal of Heat and Mass Transfer 194 (2022) 123016

3504 O Exp
o ML {]
300+ % ;
E 2501 %
=
=200+ %
o
150+
1001 500 nm Parylene
3 4 5 6 7 8
300
o Exp
250 ¢ ML %
E 2001 % %
z
—150
’ :
100 - %
5 um Parylene
50l O HMreen
3 4 5 6 7 8
P[kPa]

Fig. 6. (a) Water droplet shedding frequency from the hydrophobic Parylene C promoted Cu tubes during DWC of steam obtained using the machine learning framework.
Connection lines represent guiding lines to guide the reader. (b-d) Heat flux measurement for the hydrophobic Cu tubes using the coolant enthalpy change method (Exp)
and the visualization-based machine learning (ML) method. Experimental conditions: D, =6.35mm, D;=4.7 mm, L=28cm, V=15 LPM, T,, =7 °C. The error bars for X axis

are smaller than the symbols and are not shown here for better clarity.

fer [62] resulting in the lowest performance for the surfaces stud-
ied here (Fig. 6).

As shown in Fig. 2, shorter length tubes result in higher relative
errors due to the smaller temperature difference across the tubes.
For these cases, final uncertainty values could be as high as 100%.
Our method alleviates this challenge by removing the dependence
on tube size or geometry. The main contribution to the uncertainty
of our machine vision method is in the estimation of the aver-
age droplet volume. This challenge can be overcome through the
use of a single high speed imaging experiment to visualize falling
droplets. The falling droplet diameters for different Parylene C film
thicknesses and steam pressures are shown in Fig. C1 in Appendix
C. The average departing droplet size depends on the surface en-
ergy and coating roughness/chemistry and was observed to remain
relatively constant throughout the condensation process for a con-
stant tube diameter (D).

The high speed imaging experiment was done with the same
setup used for condensation experiments. The chamber was fit-
ted with optical viewports on each side of the chamber (Fig. 1a)
and therefore, regular imaging (30fps) and high speed imaging
(300fps) of the condensing tube were conducted simultaneously.
Since the coating chemistry and surface energy of our tubes were
similar, falling droplet diameters had negligible variation on tubes
having different Parylene C thicknesses and for experiments con-
ducted at different vapor pressures (Fig. C1). Therefore, only a sin-
gle high speed imaging experimentsuffices to conduct a falling
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droplet size characterization. However, this one-time high speed
imaging experiment needs to be re-conducted if surface properties
are varied.

5.2. Local condensation heat transfer measurement on a hybrid tube

Since our machine vision method is not dependent on temper-
ature difference measurement, it can be used for local heat flux
measurement on condensing tubes. To demonstrate the capability
for local heat flux measurement using our method, we fabricated
a separate aluminum (Al) tube having three different wettabilities
(hybrid tube) at different axial locations. We estimated the heat
flux at each individual wettability section through only one experi-
ment by capturing the condensation on the three different sections
in one video. Then, we fabricated three separate Al tubes, each
having different wettability level identical to each of the sections
on the hybrid tube. We compared the results using the coolant en-
thalpy change condensation heat transfer measurement method.

To fabricate the hybrid tube, we used crystallographic acid
etching of Al with hydrochloric acid (HCl) to form porous mi-
crostructures [63]. An Al tube section (general purpose Al tub-
ing, #89965K431, McMaster) having length L=9cm, outer diame-
ter Do =6.35 mm, and wall thickness of 1.6 mm was axially divided
into three different regions (each one with approximate 3 cm ax-
ial length). Prior to surface fabrication, the Al tube was thoroughly
cleaned. First, the tube sample was sonicated in acetone for 10 min.
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Fig. 7. Local heat flux measurement using the visualization-based machine learning method (ML). The values are compared with the experimental method (Exp) where each
tube with a single wettability was tested separately for validation of the local measurements. (a) Photograph of the hybrid tube consisting of three regions defined as 15 min
etched (15E), no etching, and 10 min etched (10E). (b) Photograph of the boundary between two of the regions (15E and no etching) during a condensation experiment. (c-e)
SEM images of 15 min etched 6061 aluminum, 6061 aluminum, and 10 min etched 6061 aluminum. (f) Heat flux variation along the axial length of the hybrid tube (x-axis)
as measured with the ML method in a single experiment. Sub-figures show droplets on each surface during condensation experiment. (g-i) Heat flux measurement results.
Here, ML represents local heat flux measurements on a single tube in a single experiment, while Exp represents global measurements from three different experiments on
three different tubes. The error bars in the experimental data (Exp) stem from uncertainty analysis (Section 3) while the error bars for the ML method data stem from the
uncertainty analysis of Eq. (24). Scale bars in (a and b): 5mm, scale bars in (c-e): 100 ;um, scale bars in sub-figures in (f): 2 mm.

Table 3

Advancing contact angle (6,), receding contact angle (6;), and contact angle hys-
teresis (A9 =6, - 0;) on plain Al (No Etching), 10 min etched Al (10E), and 15 min
etched Al (15E). All samples were conformally coated with a 2 um Parylene C film.
Measurements were conducted on five spots on each surface and the average is
reported. Standard deviation of the 5 measurements is reported as the uncertainty.

Surface 0, [deg] 0, [deg] AQ [deg]
No Etching 91.4+03 76.3+0.5 15.1+£0.6
10E 130.7+4.5 102+4.9 28.7+6.7
15E 121+£5.8 97.7+5.7 23.3+8.2

After sonication, the sample was sequentially rinsed with acetone,
isopropanol, DI water, and again isopropanol followed by drying
with a clean nitrogen gas flow. A 2 M HCI solution was used as
the etchant. The first region was etched for 10min (Fig. 7a, 10E),
the middle region was masked with Kapton polyimide plastic tape
(# 7648A861, McMaster) and was not etched (Fig. 7a, No Etching),
and the last region was etched for 15min (Fig. 7a, 15E). Selec-
tive etching was achieved by partial immersion of the tube in the
etchant solution. Then, all the three regions were coated with a
2pum thick layer of Parylene C to fabricate surfaces with varying
levels of hydrophobicity and droplet adhesion (depending on the
axial region). Goniometric measurements using water droplet re-
vealed that the apparent advancing and receding contact angles of
the surfaces varied (Table 3). The thickness of the Parylene C de-

13

position was rationally chosen in order to fill the roughness cavi-
ties while maintaining roughness on the finished surface. A thinner
deposition would have promoted superhydrophobicity and droplet
jumping, while a thicker deposition would have resulted in sim-
ilar droplet shedding behavior between the etched and smooth
surfaces due to complete filling (and overfill) of the structures. A
2um thick Parylene C deposition ensured DWC on all sections with
clearly differing droplet departure sizes and distributions (Fig. 7b).
Due to the different roughness at each axial region, droplet
adhesion was different depending on where droplets condensed.
The unetched (No Etching) region was the smoothest region, fol-
lowed by the 10 min etched (10E) and 15 min etched (15E) regions,
resulting in different condensation performance on each section.
These three regions on the same tube were tested during a sin-
gle condensation experiment using the facility shown in Fig. 1.
For comparison, three different tubes with identical wettabilities
to each independent region on the hybrid tube were tested sepa-
rately (3 separate experiments) with results shown in Fig. 7. The
local measurements using the ML approach were consistent with
the three separate coolant enthalpy-change measurements. This is
an important benefit of the ML method as it makes the local heat
flux measurement rapid and reliable in a non-intrusive manner.
Given the recent progress in the ML models and methods, more
studies in the thermofluidic field will take advantage of ML [G4].
One of the drawbacks of these models is the black box approach
taken for the development of ML methods that suffer from poor
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understanding of what the method is really doing and reporting.
However, ML does not need to be a black box approach. ML can
be used to learn and identify previously unexplored features from
complex physical phenomena that are not yet well-understood. ML
can also be used for physical feature extraction that could be post-
processed for parameter estimation (similar to this work). Nev-
ertheless, ML models are promising alternatives to conventional
methods that lack reliability, have high cost, and are time consum-
ing.

Here we developed a framework consisting of a DCNN for
falling droplet detection from 30fps videos and a post-processing
step for robust droplet shedding frequency and heat flux esti-
mation. The uncertainties in the conventional coolant enthalpy-
change condensation heat flux measurement methods are typi-
cally > 20% with many approaching 100% depending on the tem-
perature sensors used, data acquisition accuracy, coolant flow rate,
and tube geometry. Our method achieves lower uncertainty for
heat flux estimation (~10%). More importantly, the uncertainty of
the proposed method is not a function of many of the aforemen-
tioned experimental parameters. Therefore, it enables reliable con-
densation heat flux measurement at any flow rate, any tube length
and diameter, tube cross sectional geometry, and without any tem-
perature measurement for the coolant or tube surface. The falling
droplet detection module (Fig. 5) takes advantage of a state-of-the-
art DCNN (EfficientDet) with ImageNet-pretrained EfficientNet-BO
as the backbone coupled to three layers of BiFPN for hierarchical
feature extraction which helps to detect droplets at different length
scales. This network achieved 97% accuracy over the test dataset
consisting of 190 images with varying lighting conditions, tube sur-
faces (varying surface reflectance), heat fluxes, and droplet shed-
ding frequency. The uncertainty of conventional methods is depen-
dent to heat flux, and it is smaller at higher heat fluxes. Therefore,
advantages of our ML method are seen at lower heat fluxes (< 500
kW/m?). However, our ML method possesses similar uncertainty
levels at higher heat fluxes while eliminating the requirement for
temperature sensors, specified tube geometries, and high coolant
flow rates.

Since our ML method only relies on visual data and is not based
on temperature difference measurement, it can be used for local
condensation heat flux measurement. Therefore, heat fluxes across
a tube having homogeneous or different wetting properties (e.g.,
different coatings) can be measured in a single experiment. This
not only saves time by compiling several experiments into one, but
also provides opportunity for clearer comparison between differ-
ent tube designs by ensuring that the experimental condition is
identical for all sections on the tube. Although it is possible to en-
sure consistent experimental conditions by taking precautions from
one experiment to another, discrepancies between experiments can
arise (e.g., NCGs levels). Hence, comparison within a single test run
is always more rigorous when compared to different and indepen-
dent experimental runs.

The reported method is developed for the dropwise condensa-
tion mode where discrete droplets fall down from the bottom of
condensing tubes or samples. However, the method can be adapted
to handle hybrid dropwise and filmwise condensation that occurs
on biphilic surfaces with varying wettability [65-68]. During hy-
brid condensation, the size of the departing droplets is gener-
ally larger when compared to the dropwise condensation mode.
The current droplet detection module (Fig. 5) was trained us-
ing blurry and deformed droplets having different sizes. However,
more images with bigger droplet sizes can be included in the train-
ing dataset to ensure that the network learns to detect droplets
over a wider range of sizes. Another condensation mode of inter-
est is jumping droplet condensation on superhydrophobic surfaces
where droplets can undergo coalescence-induced droplet jumping
independent of gravity [69-71]. Our current model is not accurate
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enough to analyze the jumping droplet condensation mode due
to out of plane droplet departure. However, we emphasize that
the present ML method can be improved to be more robust by
adding readily available features. For example, multi-sectional ex-
periments can be realized by training the ML model to learn ad-
ditional texture-specific visual features such as jumping droplets
from superhydrophobic nanotextured surfaces. Recent studies have
demonstrated that ML models are easily adapted to new surfaces,
even more so under similar visualization conditions [36,38,72].
Furthermore, our droplet counting module can be extended to ac-
commodate high heat flux (e.g., 100 W/cm?2) cases that are typified
by high shedding frequencies. High shedding frequencies pose a
challenge for the current droplet counting module because two dif-
ferent droplets that are shed from the same nucleation site could
have the same Euclidean distance in consecutive frames as that of
a single droplet passing through the specified window. This chal-
lenge can be addressed by adding spatial features (e.g., area, orien-
tation, eccentricity) in addition to the Euclidean distance screening
algorithm to further distinguish droplets based on higher-level vi-
sual similarity.

Finally, while a high-speed camera is still used within this work
to measure the shedding droplet diameter, high speed imaging can
be fully eliminated in the future by employing image reconstruc-
tion techniques [73,74]. For demonstrative purposes, we show that
our framework is robust even for low (30fps) frame rates. Un-
der these conditions, droplets have high distortion (Fig. 4) and are
difficult to analyze using conventional methods. However, recent
works have demonstrated the successful reconstruction of images
with similar motion blur as observed in our experimental data
[75]. Since most commercial devices including smartphones sup-
port at least 60 fps, we expect accelerated progress in developing
deblurring techniques with higher quality image datasets. This will
allow reconstruction of high quality images typically obtained from
high frame rate imaging (~ 300 fps) from videos operating at lower
frame rates (~ 60 fps). This can in turn be used for falling droplet
size characterization resulting into exclusion of high speed cameras
for this required task.

Here, we showed the application of our ML method for DWC.
However, our method requires re-training with additional visual
data for condensation on superhydrophobic surfaces containing
droplets as small as 100 um for applicability with the jumping
droplet condensation mode.

Among the previous works that use ML models for characteriz-
ing phase change heat transfer phenomena, the majority of studies
are based on using a non-linear regression model such as artificial
neural networks (ANN) that are trained on data from experimen-
tal measurements [76,77]. Therefore, these data contain measure-
ments uncertainties. Using visual data can alleviate this problem.
However, fewer studies have investigated using visual data with
ML models for condensation heat transfer characterization.

Future work is needed to modify our developed ML frame-
work to enable direct condensation heat transfer coefficient es-
timation. One potential approach could use recurrent neural net-
works (RNNs) [78] that can learn from sequences of data contain-
ing droplet nucleation, growth and coalescence on tubes as well
as shedding from tubes while taking into account the frequency of
the repetition of these stages.

Conclusions

In this study, a visualization-based machine learning framework
is developed for high fidelity condensation heat flux characteriza-
tion. A thorough uncertainty analysis of current condensation ex-
perimental methods is provided with effects of different parameter
variables such as sample size, coolant mass flow rate, and tem-
perature sensor uncertainty discussed. Motivated by the relatively
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high uncertainties of current heat flux measurement approaches,
we developed a new framework that takes advantage of deep con-
volutional neural networks for feature extraction from condensa-
tion videos and estimation of droplet shedding frequency which
is further processed for robust estimation of the heat flux. For
training, validation, and testing of the proposed detection mod-
ule, we collected our own data using an experimental setup. Here,
350, 220, and 190 images were used for training, validation, and
testing, respectively. All condensation experiments were conducted
in the absence of non-condensable gases. Several Parylene C pro-
moted hydrophobic Cu tubes were tested and the results from the
conventional coolant enthalpy-change method and the ML method
are reported and compared. Many sources of uncertainty are elim-
inated by using our ML framework, with uncertainties being in-
variant to heat flux, tube length, tube diameter, or coolant flow
rate. The droplet detection accuracy of the deep network used in
our method is 97% and the overall heat flux uncertainty associ-
ated with this method was shown to be < 10%. As our method
relies only on visual data, it can be used for local heat transfer
measurement across the sample. To demonstrate this added ben-
efit, we conducted a set of experiments on a hybrid tube hav-
ing three different wettabilities, with heat flux at each region pre-
dicted using only one experiment. Our work provides a reliable,
and cost-effective method for condensation characterization by re-
moving constraints associated with classical methods such as the
requirement for high coolant flow rates, long tube samples, and
accurate temperature sensors.
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Appendices
Appendix A: MSE results

An example of the MSE results is shown in Fig. Al. The first
row contains the results when no smoothing is applied to the im-
ages (e.g., Gaussian filter). The MSE between the reference frame
and the frame with a falling droplet is 0.0914. The MSE values be-
tween the reference frame and two other randomly chosen frames
are 0.0518 and 0.138. One of these values are bigger and the other
one is smaller than the MSE of the falling droplet frame and there-
fore it is not feasible to use a fixed threshold. The MSE method is
sensitive to lighting conditions and outliers, and therefore cannot
be used as a universal model.

Appendix B: SSIM results

The SSIM results are shown for two cases demonstrating low
and high droplet shedding frequency. The low frequency case is an
aluminum tube coated with heptadecafluorodecyltrimethoxy-silane
(HTMS, Gelest, CAS No. 83048-65-1) through chemical vapor de-
position (CVD) at atmospheric pressure. The high frequency case
is an aluminum tube coated with a conformal layer of Parylene
C which is deposited via CVD at vacuum condition. The coatings
properties and deposition procedure are explained elsewhere [59].
Fig. B1(d) shows an image of the condensing tube inside the ex-
perimental chamber (low frequency case) with the specified win-
dow below the tube and the SSIM results for this tube and also
the high frequency case (tube image is not shown here) are shown
in Fig. B1(b) and B1(c). Fig. B1(d) shows the two common failure
modes for the SSIM method.

Appendix C: Falling droplet diameters

Average falling droplet diameters on Cu tubes coated with
500nm, 1 um, and 5 um thick Parylene C films during steam con-
densation at pressures of 3kPa and 7 kPa (Fig. C1). As shown, the
average droplet diameters are reasonably constant for all tested
cases.
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Fig. Al. (a) Background images (reference) used in the MSE method. (b) Other frames containing or not containing falling droplets. (c¢) MSE results. First row shows the
results before applying the smoothening filter (Gaussian filter). All scale bars are identical for all images and represent 1cm.
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Fig. B1. (a) Photograph of the condensing tube with the specified window (red dashed rectangle box) which is used for SSIM calculation. (b) SSIM result for a low fre-
quency droplet shedding case. (c) SSIM results for a high frequency droplet shedding case. (d) Photographs showing two common failure modes of the SSIM method. (For
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Fig. C1. (a) Average falling droplet diameter during steam SWC at steam pressures ranging from 3 kPa to 7kPa on Cu tubes promoted with 500nm, 1 um, and 5 um thick
Parylene C films. (b- g) Photographs of falling droplets taken from videos recorded at 300fps for: (b) 500 nm Parylene C thickness and P=3kPa, (c) 500 nm Parylene C
thickness and P=7kPa, (d) 1 um Parylene C thickness and P=3kPa, (e) 1 um Parylene C thickness and P=7kPa, (e) 5 um Parylene C thickness and P=3kPa, and (g) 5 «m

Parylene C thickness and P= 7 kPa.
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