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Abstract

Compact and interpretable structural feature representations are required for accurately predicting
properties and function of proteins. In this work, we construct and evaluate three-dimensional feature
representations of protein structures based on space-filling curves. We focus on the problem of enzyme
substrate prediction, using two ubiquitous enzyme families as case studies: the short-chain
dehydrogenase/reductases (SDRs) and the S-adenosylmethionine dependent methyltransferases (SAM-
MTases). Space-filling curves such as the Hilbert curve and the Morton curve generate a reversible mapping
from discretized three-dimensional to one-dimensional representations and thus help to encode three-
dimensional molecular structures in a system-independent way and with only a few adjustable parameters.
Using three-dimensional structures of SDRs and SAM-MTases generated using AlphaFold2, we assess the
performance of the SFC-based feature representations in predictions on a new benchmark database of
enzyme classification tasks including their cofactor and substrate selectivity. Gradient-boosted tree
classifiers yield binary prediction accuracy of 0.77-0.91 and AUC (area under curve) characteristics of
0.83-0.92 for the classification tasks. We investigate the effects of amino acid encoding, spatial orientation,
and (the few) parameters of SFC-based encodings on the accuracy of the predictions. Our results suggest
that geometry-based approaches such as SFCs are promising for generating protein structural
representations and are complementary to the existing protein feature representations such as ESM

sequence embeddings.



Introduction

The function of the vast majority of proteins in general, and enzymes in particular, remains unknown. For
example, according to the UniProt Knowledgebase (UniProtKB) !, = 60% of human proteins have the

lowest annotation category (1-out-of-5), while only = 3% have functional annotations with experimentally
evidence that merit the highest annotation score . While recent advances in protein structure prediction **
will accelerate protein functional annotation, how best to map structure to function remains a challenging
and open problem.

Different representations of protein structure can be used to map structure to function. One common
approach uses 3D convolutional neural networks >. Concentric shells surrounding specific protein sites
can also be used to represent the spatial distribution of biochemical properties *. Other methods use graph
representations of enzymes and their active sites *'°. For example, Gligorijevi¢ et al. ° generate amino
contact maps from protein structures, and use the resulting adjacency matrix as input for a graph
convolutional network. The distribution of torsion angles and pairwise distances, extracted for each amino
acid type separately, can also generate feature maps for downstream protein or enzyme functional prediction
7,11.

A specific challenge in predicting function from protein structure is incorporating the full three-dimensional
structure in addition to the amino acid sequence and the topological properties, as expressed, for example,
by the residue contact maps '*"'”. Two possible paths towards this goal are using raw or minimally processed
three-dimensional structural data together with specialized machine learning models capable of processing

18,19

multidimensional data, such as convolutional neural networks "*"”, or using one-dimensional (“flattened’)

feature representations in combination with predictive models operating on conventional vector inputs—a

much broader class of machine learning models that includes such popular and versatile methods as

20-22 23-25

gradient-boosted trees and support vector machines (SVM) . Here we focus on the second
alternative, which allows to decouple the task of obtaining features out of the raw structural data from that

of learning the functional relationship between the extracted features and the target properties, while the



convolutional methods must perform both tasks at once. If the generation of one-dimensional feature
representations is performed in a separate step and is independently optimized, one may expect predictions
that generalize well, are easier to interpret, and possibly require smaller training sets. A variety of
approaches for “flattening” multidimensional data have been developed for efficient storage and retrieval

2627 embeddings **, and fractal geometry-based methods

in databases, for example, random projections
2930 " All these methods aim to generate a linear ordering of objects in multidimensional space while
approximately preserving near-neighbor relationships. The linear ordering serves as an index for similarity
and range queries. The fractal geometry-based methods using space-filling curves (SFCs) ***' are
particularly attractive for our purposes because their constructions are reversible and deterministic.
Moreover, they can incorporate the invariances of protein structures such as rigid translations, rotations,
and atom renumbering in a straightforward way.

In this paper we explore the generation of SFC-based feature representations of protein structures and their
applications for enzyme substrate predictions. SFCs denote a class of curves in d-dimensional Euclidean
space R? (d > 2) with the property that they pass through every point of a square (for d = 2) or cube (for d
= 3) 23 Specifically, a SFC is defined by a continuous mapping of the (one-dimensional) unit interval [0,
1] onto an n-dimensional object with non-zero area (for d = 2), volume (for d = 3), or its higher-dimensional
equivalent (for d > 3). The SFC thus “linearizes” the set of points in R¢ (d > 2) by prescribing a well-defined
order of their traversal. The first SFC was described by Peano in 1890 *. In the following year, Hilbert
published the definition and the geometric procedure for generating the eponymous curve **. The Morton
curve (also named Z-order curve) first appeared in a technical report in 1966 **. SFCs are constructed by
recursive geometric procedure, which is schematically shown in Figure 1 for the Hilbert and Morton curves
in the d = 2 case. The construction of the Hilbert curve proceeds by successively partitioning the square
into subsquares and arranging them such that the curve passes through subsquares that share an edge. The
same procedure is iteratively repeated for each subsquare. The Morton curve differs in the order of the
traversal of the subsquares. The approximations to the two-dimensional SFC at finite resolution are the

piecewise linear curves with 2% segments (approximating polygons), where w = 1, 2, ... is the resolution



index. The SFC results in the limit w — oo. The construction can be generalized to d dimensions (d > 2), in
which case the approximating polygon at resolution index w has 2% segments and traverses the entire
(hyper)cube in R?. By varying the relative orientations of the basic patterns and the approximating polygons
in the recursion, a family of related d-dimensional SFCs of each curve type results for d > 2 ', The SFC
encoding is reversible, that is, for every segment of the SFC, we can determine the corresponding location
in the d-dimensional space.

The self-similar construction of SFCs approximately preserves proximity, that is, points that are close in
the linear SFC ordering are mapped to near points in RY. Conversely, most pairs of near points in R? are

also close to each other in the SFC ordering. SFCs have found applications in optimization *>*,
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multidimensional indexing , numerical simulations , and parallel algorithms ***. The locality
preservation of the inverse mapping R — [0, 1] is necessarily imperfect—one can always find a pair of
points in R that are far apart in the SFC ordering ***'. Consider, for example, the turning points on the
opposite sides of the two-dimensional Hilbert curve in Figure 1. Locality measures corresponding to the
average and worst-case distance in R for neighboring points in the SFC ordering have been evaluated for
different curve types and dimensionalities *'*>*6, The Hilbert curve is optimal with respect to the worst-
case locality measure in the two-dimensional case and has been shown to perform well in practice. SFCs
thus offer a straightforward and reversible scheme of encoding three-dimensional protein structures as one-
dimensional vectors with good information fidelity. At the same time, as we show below, the construction
of SFC-based encodings is controlled by only a few system-independent adjustable parameters, which helps
avoiding overfitting and improving interpretability.

As protein function can be described in multiple ways *’, we focus here on the enzyme-to-substrate mapping
problem as a specific instance of the larger protein functional annotation challenge. Predicting enzyme
function is of practical value in the context of metabolic engineering, where it can extend the set of enzymes

d ™35! approaches to

to support novel pathways **2. Several structure-based **~* and/or sequence-base
enzyme function prediction have been reported. The large majority of these methods focus only on

predicting the enzyme family, typically in the form of its Enzyme Commission (EC) number, a four-digit



number that maps enzymes to a hierarchical classification scheme. The information obtained from
predictions at this level of classification is often already encoded in the protein domains found within a

sequence *?, which are readily accessible in protein databases such as UniProt '

, even for orphan, poorly
annotated proteins. As an illustration, querying a recent enzymatic function prediction software *° with the
sequence for an orphan oxidoreductase in Mycobacterium tuberculosis (Rv3502c¢) as input, the output is
the predicted EC class 1.1.1.-. This EC number corresponds (hierarchically) to: oxidoreductases (EC 1);
acting on the CH-OH group of donors (EC 1.1); with nicotinamide adenine dinucleotide (NAD) or
nicotinamide adenine dinucleotide phosphate (NADP) as acceptor (EC 1.1.1). The two predictions reported
by the first and third EC number digits (EC 1 and EC 1.1.1) are encoded in the fact that the protein belongs
to the “Short-chain dehydrogenase/reductase SDR” family (IPR002347), as per its “Family and Domains”
annotation in UniProt and InterPro. However, the categorization of the orphan protein in question as a
member of the EC class 1.1.1.- leaves its native substrate (secondary alcohol) and electron donor (NAD or
NADP) unspecified and is too loose to determine its role in metabolism. In particular, enzymes of the short-
chain dehydrogenase/reductases (SDRs) family are involved in metabolism of fatty acids, steroids, amino
acids, xenobiotics, chromophores of visual perception, among others. ' As this example shows, functional
prediction must often be extended to include more granular predictions of enzyme substrates and cofactors
within a protein family, as these can help generate testable hypotheses and guide downstream experimental
efforts. Furthermore, despite the importance of functional predictions in enzymes, structured training and
test data for machine learning models of enzymatic function are difficult to obtain.

In this work, we introduce a standardized dataset of annotated enzymes from two important protein families
—SDRs and S-adenosylmethionine-dependent methyltransferases (SAM-MTases)—and a set of labels that
classify them according to their cofactor and substrate structural class preference. We chose these enzyme
families because of their size and of the chemical variability of their substrates, which necessitates more
specific function predictions than enzyme class. At the same time, these enzyme families are structurally
very different, thus providing us with a test of transferability of SFC-based feature representations. This

dataset can be used to assess different protein representations and their use as input for machine learning



methods that predict enzyme-substrate associations. We then show that a representation of protein structure
using SFCs can be used to accurately predict enzyme cofactor and substrate structural class preference
across a wide range of tasks. We find that orientational sampling of protein structural conformations
increases the accuracy of both cofactor and substrate structural class predictions. Comparisons to ESM
sequence embeddings of SDRs and SAM-MTases *>** show that ESM feature representations have better
performance than SFC-based structure encodings within the logistic regression classification model,
however, SFC-based feature representations still provide very good predictions in combination with

gradient-boosted trees 2* %,

Methods

Enzyme Selection and Benchmark Set

Enzymes belonging to the SDR and SAM-dependent methyltransferases were obtained from the UniProt
database '. Specifically, we performed queries using InterPro protein family/domain identifiers
corresponding to each family: IPR002347 for short-chain dehydrogenase/reductase (SDRs) and [PR029063
for S-adenosylmethionine-dependent methyltransferases (SAM-MTases). The resulting tables contain each
enzyme’s UniProt entry name, amino acid sequence and UniProt annotation score, a heuristic measure of
annotation favoring literature-curated entries with experimental evidence *°. In addition for experimentally
well-annotated enzymes, it includes Rhea *® and ChEBI 7 database identifiers mapping each enzyme to the
catalyzed biochemical reaction and its substrate and products structure represented as SMILES strings **.
We filtered the full set of enzymes in each family, keeping only those with UniProt annotation scores above
“4-out-of-5”, to obtain the subset of well-annotated enzymes with known substrates for inclusion in the
benchmark set. The lists of protein structures were de-duplicated by their amino acid sequences, leaving

358 distinct SDR and 953 distinct SAM-MTase structures. The compiled benchmark dataset is available

from Zenodo online repository under the Creative Commons 4.0 license *°.



Labeling Enzymes Using Substrate Clustering

Our first approach to classify enzymes according to the structural properties of the compounds they act on
is based on structural clustering of the substrates and products of all annotated enzymes within a family.
Broadly, we reasoned that one way to frame a machine learning classification task is to predict whether a
given enzyme can catalytically act on substrates that belong to a structurally-related group of compounds,
with the relevant clusters of compounds defined in an unsupervised manner. To implement this approach,
we first removed all cofactors (NAD(H), NADP(H) for SDRs and S-adenosylmethionine for SAM-
MTases), which appear in every reaction within each enzyme family, from the list of reaction components.
Then, using RDKit ', we took as input the SMILES string representations of all enzymatic substrates and

101 a5 bit vectors with radius = 3. We then

products and obtained their corresponding Morgan fingerprints
generated a 2-dimensional projection of the Morgan fingerprints using the UMAP algorithm ', with the
Jaccard metric for binary vectors. Since we eventually trained separate machine learning classifiers for each
enzyme family, we note that the SDR and SAM-MTase substrates and products were processed separately

103,104 e clustered the compounds according to their 2D

at this stage. Finally, using k-means clustering
UMAP projection '*2, choosing the optimal number of clusters that maximized the silhouette score '®. This
clustering procedure generated 9 structure clusters for SDR substrates (numbered 0-8, as shown in Figure

2) and 13 structure clusters for SAM-MTase substrates (numbered 0—12). The substrate structures and
enzyme clusters are included in the Supporting Information (SI).

Labeling Enzymes Using Substructure Search on Substrates and Products

Our second approach to label enzymes according to the type of compound they act on is based on searching
for broad classes of substrates represented by molecular substructures. We used RDKit to search for
molecular patterns (phenol, sterol, or acyl-CoA) encoded as SMARTS strings '°. The presence or absence
of these substructures in the substrates or products was treated directly as a classification label. The number
of SAM-MTases acting on sterols was too small for making statistically significant predictions. Thus we

did not consider this classification task further.



Three-Dimensional Structure Generation

We constructed three-dimensional feature representations of 358 unique SDR and 953 unique SAM-MTase
structures and assessed their performance on a set of binary classification tasks related to their cofactor and
substrate specificity. The initial all-atom structures were generated by the public version of the AlphaFold2
protein folding approach * via the ColabFold notebook '”’. MMSeq2 multiple sequence alignment algorithm
108,109

was used instead of the original AlphaFold2 homology search due to its faster execution times '’
The protein sequences and generated protein structures in PDB format are available from Zenodo *.
Structural Encoding

To generate feature representations of three-dimensional protein structures, the all-atom input coordinates
were first preprocessed to remove translational and rotational degrees of freedom and coarse-grained at the
amino acid residue level. Each residue was represented by its center of mass coordinates (computed using
non-hydrogen atoms) and its type. The preprocessed coordinates were converted to the SFC-based feature
representation by discretizing the space coordinates, SFC-based encoding, and subsequent binning. The
resulting representation is a sparse fixed-length binary vector that is easy to use in machine learning tasks,
for example, classification, regression, or similarity calculations. The structural encoding procedure is

summarized in Table 1. All coordinates are in atomic units (au).

Table 1. Scheme of protein three-dimensional structure encoding algorithm.

1 Preprocessing

1A  Translation/Rotation (XM Y 24 eER,A=1,..,N

1B Coarse Graining {xi, vipziy ER,i=1,...,n

1C  Orientation Sampling xU,y7 2 ERi=1,..,n,j=1,..5

2 Discretization



2A  Space Coordinate Binning {xi, vi,zit €[0,2"-1],i=1,...,n

2B Amino Acid Encoding {oa;} €10,2"-1],i=1,...,n

3 SFC Encoding ¢y ef0,2"-1],i=1,...,n
={Z})€e[0,1],k=1,...,2" n1’s

4 Binning (b} EN,k=1,...,2""

The translation/rotation preprocessing step (1A) removes the dependence of the input coordinates on
arbitrary translations and rotations of the coordinate axes by transforming them to the structure’s inertial
frame coordinate system. The coordinate origin is moved to the center of mass (computed using non-
hydrogen atoms), and the coordinate axes are oriented along principal axes of inertia in the order of
decreasing moment of inertia. The resulting all-atom coordinates {X,*, Y4, Z{*},4=1, ..., N, where N is
the number of atoms, only depend on the internal degrees of freedom. We note that for a series of similar
proteins, the use of inertial-frame coordinates improves the superposition of their three-dimensional
structures but does not guarantee optimal alignment. The use of orientation sampling (see step 1C below)
alleviates this issue, however, dedicated methods for multiple three-dimensional alignment should also be
considered ''°.

The following coarse-graining step (1B) represents each amino acid residue by its center-of-mass
coordinates (based on non-hydrogen atoms) {x;, yi, z:}, i = 1, ..., n, where n is the number of amino acids,
and its residue type. Coarse graining is convenient in protein studies ''' because it encodes the internal
structure of each residue as a single discrete variable (see 2B below) but all-atom approaches are more
appropriate in other classes of molecules.

The exact SFC encoding can be approximated at different finite resolutions, which we identify by their bit
width w. For a given value of w, each input coordinate (both spatial and residue type) is represented on a

discrete grid of 2" points. The continuous spatial coordinates are first discretized as integer indices {x;, v,



zi},i=1, ..., n, by placing the protein structure on a uniform cubic grid with 2" cells per Cartesian direction
and side length L (step 2A). The amino acid residue type is also encoded by an integer index {o.},i=1, ...,
n, in the range [0, 2" — 1] using a procedure described in the next section (step 2B). The SFC encoding
algorithm requires all coordinates to have the same number of grid points. The range of values for the
residue type is thus rescaled if necessary to the same number of grid cells as the spatial coordinates.

The SFC-based encoding (step 3) converts each quadruple {o;, x;, vi, z;} of w-bit integers losslessly to a 4w-
bit integer coordinate ; that gives its location index along the space-filling curve in the four-dimensional
space. In this work, we use both the Hilbert SFC **** and the Morton curve * for structure encoding. We
note that the encoding is not invariant with the respect to the ordering of the Cartesian coordinates: the
change in the first coordinate o; is weighted more strongly than the changes in the subsequent coordinates
Xi, Vi, and z; (in order of decreasing weight).

The SFC coordinate ; indicates the presence of an amino acid residue of type a; at the location given by
the integer indices {x;, v;, z:}. It follows that we can alternatively view the vector of  integer coordinates
of 4w bit length as an extremely sparse binary vector {Z}, k=1, ..., 2%, which contains only # non-zero
elements. This alternative view represents the protein structure as an unordered set of n locations (out of
2% possible) that are occupied by amino acid residues. This representation has several useful properties. It
is that it is invariant with respect to a renumbering of the residues. Moreover, it enables comparisons
between proteins of different length #. Finally, it can be used to construct feature representations at different
resolutions by binning (see below). The mapping of the ordered vector {{;},i=1, ..., n, to the binary vector
(unordered set) {Z;} may seem to lose information about the order of amino acid residues in the protein
sequence. However, this is not the case because the residue locations (and types) are encoded in the indices
{ and can be reconstructed when needed. Additionally, two different residues are extremely unlikely to
share an index {; unless the box size L is too small. In the absence of these improbable collisions, the vector
{¢;} and the binary vector {Z;} are equivalent.

Finally, the binning (step 4) compresses the vector Z by aggregating its entries consecutively in bins of

width 2°. The resulting integer vector {b;} is of fixed length 2*""* with at most # non-zero elements. Due to



the locality-preserving property of SFCs, each bin maps to a contiguous subset of the four-dimensional

space, and consecutive bins correspond to neighboring subsets.

Amino Acid Encoding
Several numerical encodings of natural amino acids (AA) have been proposed, of which the most common

ones are based on substitution frequencies in proteins ''*"''®

or the physical or conformational properties of
amino acids ''*"'*’. The first group of encodings is based on the evolutionary notion that amino acids are
more likely to be homologous with similar amino acids. The amino acid encoding from the substitution
frequency matrix ''>!'3!113128 by embedding in low-dimensional Euclidean spaces ''*''*!''. The second
group of encodings starts from an empirical set of physical and chemical properties of AAs and reduces
them to low-dimensional vectors by principal component analysis (PCA) '2%-12127,

In this work, we used a discretized version of the five-dimensional encoding of Li and Koehl (LK), which
was obtained from the BLOSUMS62 similarity matrix by including the 5 largest principal components ''’.
To obtain an integer representation compatible with the discretized spatial coordinates, the LK feature
vectors for the 20 natural AAs were arranged in the order of their decreasing PCA eigenvalues and encoded
as integers o' = (ao, a1, a2, a3, as) in the range [0, 2°~1 = 31] with the j-th bit g; = 0 if the j-th PCA component
in the LK encoding was negative and 1 if it was positive. This approach generated several duplicates for
similar amino acids, which were resolved manually, giving the encoding shown in Table 2. To generate a

compatible grid to the spatial coordinates for SFC encoding, the 5-bit encodings o’ were uniformly scaled

aso=2""ao'

Table 2. Modified Li—-Koehl AA encoding (5-bit).

AA o | AA o | AA o | AA

Ala 21 | GIn 25 | Leu 0 Ser 22
Arg 26 | Glu 24 | Lys 17 | Thr 23

Asn 31 | Gly 29 | Met 1 Trp 13




Asp 30 | His 27 | Phe 11 | Tyr 10

Cys 7 Ile 2 Pro 20 | Val 3

Additionally, we investigated an encoding based on the five-dimensional z-scales of Wold and co-workers
124125 The results are described in the SI.

Orientation Sampling

For a given pair of three-dimensional structures of the same composition, optimal alignment in terms of the
root-mean-squared deviation can be efficiently computed '**'*°. However, extensions to multiple alignment
and different compositions are non-trivial. Instead of trying to find a single best alignment, we replicated
the input protein structure under a fixed set of orientations {x7, y7,z/},i=1,...,n,j=1, ..., s, which are
chosen to uniformly sample the space SO(3) of rotations in R*. The underlying assumption in our approach
is that, for any given pair of structures, one or more sampled orientations will be reasonably close to the
optimal superposition. A deterministic and computationally simple approach to uniform sampling of
rotations is the method of successive orthogonal images (SOI) "*'. The base grid generated by the SOI
method consists of s = 72 orientations, which can be progressively refined. In this work, we limited
ourselves to considering only the base SOI grid. The SFC encoding was carried out independently for each
orientation to generate the binary vectors {Z%/}, j=1, ..., s, which were subsequently combined into sparse
binary vector {Z:}, k =1, ..., 2*" by binary OR operations. The resulting vector contains ns non-zero
elements, barring collisions, and can be further aggregated to give the fixed-width integer vector {b:}, k =

1, ..., 2" as in the base case.

Results

Benchmark Datasets
Our standardized enzymes-substrate dataset contains reference data for 358 unique short-chain
dehydrogenase reductases (SDRs) and 953 unique S-adenosylmethionine dependent methyltransferases

(SAM-MTases) structures. For SDRs, the reference data includes the preference for the redox cofactor



(NAD(H) or NADP(H)) and the specificity with respect to a broad substrate class (e.g., sterols, and acyl-
CoA substrates). For SAM-MTases, the enzymes acting on biopolymers (proteins or nucleic acids) or on
small molecules are distinguished. The enzyme specificity with respect to two substrate classes (phenols
and N-heterocycles) is also classified. Additionally, the binary classifications of substrate specificities of
SDRs and SAM-MTases by substrate clusters from unsupervised clustering are included in the benchmark
set 7.

The performance of the three-dimensional feature representations was assessed in enzymatic function
predictions using our benchmark set. For SDRs, the benchmark set contains binary classification tasks with
respect to the redox cofactor (NAD(H) or NADP(H)) and to substrate class (phenols, sterols, and acyl-
CoA). For SAM-MTases, the classification of enzymes acting on biopolymers (proteins or nucleic acids)
or on small molecules and substrate specificity with respect to phenols and N-heterocycles are included in
the benchmark set. Additionally, binary classifications of enzyme specificity of SDRs and SMT-MTases
based on substrate clusters from unsupervised clustering are part of the benchmark set.

The protein structures were preprocessed and converted to three-dimensional feature representations as
described in the Methods section. Both Hilbert and Morton SFCs were studied for the SFC encoding. The
discretization box was of side length L =200 au (100 au for SAM-MTases) and of w = 8 bit width resolution.
The residue types were encoded using a discretized version of the Li-Koehl (LK) amino acid encoding '"’.
The binary vectors were binned using 2° = 256, 4096, and 65536 bins. Orientation sampling using the SOI
method at the base grid level (s = 72 orientations) was applied. In the following, we evaluate the
performance of three-dimensional feature representations as a function of the classification task, SFC type,
and orientation sampling. We compare the full encodings containing the three-dimensional protein structure
representations including the residue types with simplified encodings containing only amino acid types
(bag-of-amino acids representation) or only the residue positions, regardless of amino acid type (structure-
only representation).

The classifications were performed using the XGBoost binary classifier with GBTree booster, maximum

depth 8, learning rate 0.2, and L, = 1 regularization *'. For each classification task, we report the 5-fold



cross validated accuracy (percentage of correct predictions) and the receiver operator characteristic (ROC)
area under curve (AUC). All classifications were performed using the scikit-learn library, version 1.0.2 '¥.
The results of hyperparameter optimization using Bayesian optimization methods are included in the SI.
We find that the results are not strongly dependent on the parameter choice. Classifications using logistic
regression, support vector machine classification (SVMC) *** and LightGBM methods ** produced similar

results and are reported in the SI.

Classification Task

The accuracy and AUC characteristics of 4 binary classification tasks for SDRs and 3 binary classification
tasks for SAM-MTases using Hilbert space-filling curve are given in Table 3. Figure 3 (left panel) shows
the ROC curve for the NAD/NADP classification with and without random shuffling of the labels. We
obtain accuracy values (percentage of correctly predicted classes) between 0.77—0.91 for the classification
tasks. The AUC characteristics for these binary classification tasks are between 0.83-0.92. The
classification performed using randomly shuffled labels shown in Figure 3 (right panel) serves as a null
hypothesis and predicts the AUC close to the theoretically expected value of 0.5 for a random binary

classifier.

Table 3. Accuracy and ROC area under curve (AUC) of structure encodings of SDRs and SAM-MTases using 8-bit
Hilbert SFC, modified LK encoding, 4096 bins, orientation sampling using SOI (s = 72) for binary classification

tasks (5-fold cross validated).

SDR Accuracy AUC SAM Accuracy AUC

NAD/NADP 0.77 0.84 Biopolymer/ 0.85 0.92
small molecule

Phenols 0.81 0.83 Phenols 0.83 0.88

Sterols 0.83 0.83 N-Heterocycles 0.79 0.84

Acyl-CoA 0.91 0.90




The results of binary classification tasks for substrate specificity to substrate clusters obtained from
unsupervised clustering are shown in Table 4. Only clusters including 5 or more molecules (6 clusters for
SDRs and 7 clusters for SAM-MTases) were included in classification tasks. The accuracy values of
classification tasks with respect to clusters are in the range of 0.73—0.94 and the AUC values are 0.72—0.98.

We note that the classification results are similar for SDRs and SAM-MTases.

Table 4. Accuracy and ROC area under curve (AUC) of structure encodings of SDRs and SAM-MTases using 8-bit
Hilbert SFC, modified LK encoding (Table 2), 4096 bins, orientation sampling using SOI (s = 72) for binary
classification tasks from unsupervised clustering (5-fold cross validated). Only tasks with at least 5 examples per

class were considered.

SDR Accuracy AUC SAM Accuracy AUC
Cluster 0 0.93 0.75 Cluster 0 0.86 0.88
Cluster 1 0.90 0.85 Cluster 1 0.94 0.91
Cluster 2 0.82 0.84 Cluster 5 0.88 0.72
Cluster 4 0.86 0.84 Cluster 6 0.92 0.89
Cluster 5 0.95 0.98 Cluster 7 0.89 0.84
Cluster 7 0.73 0.76 Cluster 8 0.93 0.96

Cluster 11 0.88 0.92

Space-Filling Curve Type
Using the Morton curve instead of Hilbert SFC for the encoding gave very similar binary classification
results, which are shown in Table 5. The accuracy values were in the range of 0.76—0.90, while the AUC

values were between 0.83—0.92, almost all of them within one percent point of the results obtained with

Hilbert SFC.



Table 5. Accuracy and ROC area under curve (AUC) of structure encodings of SDRs and SAM-MTases using 8-bit
Morton SFC, modified LK encoding (Table 2), 4096 bins, orientation sampling using SOI (s = 72) for binary

classification tasks (5-fold cross validated).

SDR Accuracy AUC SAM Accuracy AUC
NAD/NADP 0.76 084 | [Dopolymer g5 0.92
Phenols 0.83 0.83 Phenols 0.83 0.88
Sterols 0.83 0.83 N-Heterocycles 0.79 0.85
Acyl-CoA 0.90 0.90

Bag-of-Amino Acids and Structure-Only Representations

As described above, the SFC encoding imposes an ordering in the d-dimensional representation in that a
change in the first coordinate of the d-dimensional representation induces a larger difference in the SFC
ordering than a change in the second coordinate, etc. Since we apply the SFC encoding to the tuple {o;, x;,
Vi, zi}, the residue type o; has by design the largest weight in the encoded vector. In fact, in the limit of an
infinitely large discretization box (side length L — o0), all atomic positions are mapped to the origin and
only the residue type information remains. The SFC encoded vector approaches a very simple model of the
protein structure, which can be denoted as a bag-of-amino acids. This representation contains only the
counts of residue types and no spatial or sequence information. Interestingly, this feature representation
produces quite similar results to the full SFC encoding, as shown in Table 6. The accuracy values for the
binary classification tasks were between 0.81-0.91 and the AUC values were found to be in the range 0.79—

0.92.

Table 6. Accuracy and ROC area under curve (AUC) of bag-of-amino acids encodings of SDRs and SAM-MTases

using modified LK encoding (Table 2), 32 bins for binary classification tasks (5-fold cross validated).

SDR Accuracy AUC SAM Accuracy AUC




NAD/NADP 0.81 0.88 S fl;‘l’ffr}gf‘ef;/le 0.84 0.92
Phenols 0.82 0.86 Phenols 0.81 0.88
Sterols 0.86 0.86 N-Heterocycles 0.75 0.79

Acyl-CoA 091 0.86

To test the importance of the residue type and spatial information, we also considered the converse case of
the structure-only encoding, which contains only the three-dimensional coordinates of the residue but no
residue type information. The results are shown in Table 7 and again perform similarly to those obtained
with the full SFC encoding. The accuracy values were between 0.77-0.86 and the AUC values were 0.73—

0.92.

Table 7. Accuracy and ROC area under curve (AUC) of structure-only encodings of SDRs and SAM-MTases using

8-bit Hilbert SFC, 4096 bins, orientation sampling using SOI (s = 72) for binary classification tasks (5-fold cross

validated).
SDR Accuracy AUC SAM Accuracy AUC
NAD/NADP 0.77 0.82 Biopolymer/ 0.85 0.92
small molecule
Phenols 0.77 0.73 Phenols 0.83 0.88
Sterols 0.78 0.76 N-Heterocycles 0.78 0.79
Acyl-CoA 0.86 0.80
Discussion

As our results show, enzymatic function can be predicted from feature representations based on the three-
dimensional structures of SDRs and SAM-MTAses with good accuracy (> 80% binary classification
accuracy, > 0.8 AUC). Moreover, the predictive power is not strongly dependent on the parameters of the

representation, for example, type of the SFC encoding. As we show in the SI, other encoding parameters



such as the amino acid encoding and the number of bins do not affect the accuracy of the predictions. The
consistence of the findings across unrelated protein families indicates that the performance of SFC-based
encodings is not tied to similarities between related proteins. As a result, the methodology described here
should generalize well to other protein families and other functional prediction tasks. In addition, the
reversibility of the SFC encoding allows the importance of the original three-dimensional structural features
to be evaluated, aiding interpretability. The predictions in this work were made with the XGBoost
classification model, which has been shown to generalize well and to be relatively insensitive to model
parameters. In the SI, we show the results of hyperparameter optimization of the XGBoost model for the
NAD/NADP cofactor specificity of SDRs. Interestingly, the results obtained using optimized
hyperparameters do not differ strongly from the parameter set used through this work.

We have also investigated the accuracy of the predictions with different binary classification methods. We
find that logistic regression underperforms the XGBoost results somewhat, while the SVMC and
LightGBM models give similar accuracy to XGBoost. For the NAD/NADP cofactor specificity, logistic
regression yield an accuracy of 0.64 (AUC = 0.67), SVM classification gives 0.71 accuracy (AUC = 0.78),
and LightGBM gives 0.77 accuracy (AUC = 0.83), compared to 0.77 accuracy (AUC = 0.84) with XGBoost
classification. The model parameters and complete results are shown in the SI.

The results obtained without orientational sampling are slightly worse, which suggests that structure
alignment is important to the prediction. However, the differences between the results obtained with and
without orientational sampling are not very large. Additionally, global structural alignment may not be
optimal for proteins with very different compositions, while methods for aligning active site regions may
produce further improvements.

The fidelity of the 3D to 1D mapping can be analyzed in terms of the correlation between the inter-residue
distances in three-dimensional space and along the SFC ordering. The average Pearson correlation
coefficients for the Euclidean inter-residue distances and their encoding using the Hilbert SFC are R* = 0.45
for SDRs and 0.47 for SAM-MTases. For the encoding using the Morton curve, the correlation coefficients

are similar, giving R* = 0.43 for SDRs and 0.50 for SAM-MTases. The correlation is affected by its



dependence on the ordering of the x, y, z Cartesian components, in that the influence of the change in the
Cartesian coordinates decreases with x > y > z. Orientation-invariant encodings might be helpful in
addressing this issue.

The greatest surprise in our results was a significant amount of redundancy contained in the feature
representations. The bag-of-amino acids representation, which consists of the counts of different amino
acid types, yields predictions that are quite similar to the full feature representation containing both amino
acid types and their spatial locations. On the other hand, the structure-only representation, which elides the
amino acid types and only shows the presence of some amino acid at a location in space, also produces
predictions with comparable accuracy. Two possible explanations may be responsible for this behavior.
First, the sequence and the corresponding three-dimensional structure may be more strongly correlated with
respect to the protein function than thus far appreciated. The correlations seem to be present within each
SDR and SAM-MTase protein families. This can be understood since the three-dimensional structures are
obtained by applying the AlphaFold2 model to the protein sequence. While this work is focused on naturally
occurring protein structures, it might be useful to consider synthetic data sets with a lesser degree of
correlation between the structure and sequence in order to explore this phenomenon. Second, the uniform
discretization of the three-dimensional structure might be insufficiently sensitive to the active site structure,
which would require finer resolution. In order to better explore this hypothesis, multiscale features
representation should be explored, which are not based on an encoding of a regular grid in three- (or four-
dimensional) space but instead on an adaptive-resolution grid.

In order to better understand the performance of SFC-based feature representations, it is instructive to
compare their predictions with the current state-of-the art methods. In a parallel study, we have generated
enzyme sequence embeddings of the SDRs and SAM-MTases of our data set using the ESM protein
language model ** with pre-trained weights (ESM-1b) and 1280 length **. These sequence embeddings have
been used to train a logistic regression model for the same binary classification tasks as in this work. The
ESM sequence embeddings demonstrate excellent performance with AUC = 0.98 obtained for the

NAD/NADP classification task, compared to AUC = 0.67 using SFC-based feature representations with



logistic regression and AUC = 0.84 with XGBoost binary classification. In the small molecule/biopolymer
classification task for SAM-MTases, AUC = 0.99 with ESM sequence embeddings, compared to AUC =
0.78 for SFC-based encodings with logistic regression and AUC = 0.92 with XGBoost. The reader is
referred to Ref. ** for details of the sequence encoding and additional results. Within the logistic regression
model, the ESM sequence embeddings outperform SFC-based structure encodings, however, the results of
SFC-based feature representations still provide very good predictions in combination with XGBoost binary
classification. The comparison of ESM and SFC feature representations is particularly interesting because
these models are completely different in their design and implementation. Whereas ESM sequence
embeddings utilize protein language models and were generated using unsupervised learning on a very
large protein data set *, the SFC-based feature representations are not data-driven and rely only on a
geometric construction. An advantage of SFC-based encodings is that they are reversible and deterministic
and thus allow for a bidirectional transformation between one-dimensional feature vector and the full three-
dimensional coordinates and residue types. In this aspect, they complement the existing toolbox of protein

feature representations.

Supporting Information

Protein sequences, AlphaFold2-generated three-dimensional structures, substrate structures and enzyme
clusters, and labels for classification tasks. Accuracy of classification tasks using different sets of encoding
parameters and classification algorithms. Training and test sizes for the classification tasks. Hyperparameter

optimization of the XGBoost algorithm.

Data and Software Availability

The compiled benchmark data are available from Zenodo online repository using Creative Commons 4.0
license %°. Substructure definitions, labels for classification tasks, and substrate cluster definitions are in the

SI. The structure encoding algorithm is implemented in the molz Python library and is released under the



Apache 2 open-source license '**. The implementation of the classification tasks and the evaluation of their

accuracy using the open-source scikit-learn package '*? are reported in the SI.
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Figure Captions

Figure 1. Recursive construction of the two-dimensional Hilbert curve (top) and Morton curve (bottom). Dashed

lines indicate subsquare boundaries.

Figure 2. Structural clustering of substrates and products of annotated short-chain dehydrogenase / reductase (SDR)
enzymes. Each circle represents a unique substrate or product. These compounds were clustered according to their
chemical structure by (1) obtaining Morgan fingerprints from their SMILES representation, (2) projecting the Morgan

fingerprints to 2-dimensions using UMAP; and (3) grouping compounds using k-means clustering.

Figure 3. ROC curves for NAD/NADRP classification of SDRs using 8-bit Hilbert SFC with modified LK encoding,

4096 bins, orientation sampling using SOI (s = 72, left), same after random label shuffle (right).
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TOC Graphic

This work introduces a novel type of molecular feature representations based on space-filling curves
(SFC) that provide discrete, reversible, and interpretable mappings from (3+1)-D protein structure and
amino acid type to 1D encodings. Using a new database of enzymatic functional data in two large enzyme
families (short-chain dehydrogenase/reductases (SDRs) and S-adenosylmethionine-dependent
methyltransferases (SAM-MTases), SFC-based classification models generate predictions that go beyond
enzyme categories (EC classes) and yield specific structural and experimentally testable hypotheses.



