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Abstract

We consider transversely modulated fronts in a directionally quenched Cahn-Hilliard
equation, posed on a two-dimensional infinite channel, with both parameter and source-
term type heterogeneities. Such quenching heterogeneities travel through the domain,
excite instabilities, and can select the pattern formed in their wake. We in particular
study striped patterns which are oblique to the quenching direction and checkerboard
type patterns. Under generic spectral assumptions, these patterns arise via an O(2)-Hopf
bifurcation as the quenching speed is varied, with symmetries arising from translations
and reflections in the transverse variable. We employ an abstract functional analytic
approach to establish such patterns near the bifurcation point. Exponential weights are
used to address neutral continuous spectrum, and a co-domain restriction is used to
address neutral mass-flux. We also give a method to determine the direction of bifurcation
of fronts. We then give an explicit example for which our hypotheses are satisfied and for
which bifurcating fronts can be investigated numerically.
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1 Introduction

1.1 Motivation

The Cahn-Hilliard equation

@tu = ��(�u+ f(u)), f(u) = u� u3, u(x, t) 2 R, (x, t) 2 Rd
⇥ R, (1.1)

is a prototypical and well-studied model for phase separation processes in two-phase systems

in a variety of contexts; see for example [13] for a mathematical review with many references.
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Through di↵erent initial conditions and boundary conditions, this equation can exhibit many

di↵erent types of patterns. In particular, small random initial data, say on the unbounded

domain, tends to lead to the formation of a random assortment of layers, stripes, spots, and

defects, most of which are unstable via local coarsening. We remark that this equation is a

H�1 gradient-flow with respect to the following free-energy

E [u] =

Z

⌦

1

2
|ru|2 + F (u)dx,

defined on a generic domain ⌦, with symmetric double-well potential F (u) = 1
4(1�u2)2 which

favors the states u = ±1.

In several experimental and phenomenological settings we can observe phase separation in a

binary phase alloy, or a model thereof [3, 8, 9, 12, 21]. In many of these experiments, a process

known as directional quenching has been used to induce phase separation in a controlled

manner and select the pattern formed in the wake. Indeed, depending on the initial data,

and the shape and speed of the quench, a variety of patterns can be formed including regular

spot arrangements, stripes of di↵erent orientations and wavenumbers, layers between pure ±1

states, as well as square and rhomb patterns. Here a quench travels through the spatial domain

inciting instability in a given homogeneous equilibrium state, typically by spatiotemporally

mediating the potential F between single-well and double-well configuration, the latter of

which is given above. In our work, and in parallel with several of the above mentioned

references, we consider quenched patterns on a two-dimensional spatial domain.

Recent work in this area includes [4], which studied quenched stripe formation in one spatial

dimension for a variety of quenching and source type heterogeneities with spinodally unstable

regions which are bounded in x. The work [14] studies two-dimensional directional quenched

fronts with unbounded quenching domain in both the Allen-Cahn and Cahn-Hilliard equa-

tions showing that with zero quenching speed pure phase selection, vertical stripes, horizontal

interfaces, and horizontal stripes can be formed, though oblique stripes cannot be formed.

Existence results can also be obtained for non-zero quenching speeds for many of the afore-

mentioned structures, but interestingly, these works did not address the formation of stripes

which are oblique to the quenching interface in the moving interface case. Such an ambi-

guity motivates and is one the main focuses of our work. Results from [6], which studied

the Swift-Hohenberg equation, showed that weakly oblique stripes exist as perturbations of

parallel stripes. Because of this, and results of numerical simulations (discussed below), we

expect oblique stripes to exist in the quenched Cahn-Hilliard equation. Our work also reveals

cellular, or “checkerboard” type patterns which biurcate with oblique stripes.

Following the functional analytic methods of [4], we study the bifurcations of transversely

modulated patterns in the presence of quenching terms which have localized or bounded

spinodal unstable regimes. That is we look for bifurcating fronts which are spatially patterned

but are still asymptotically constant, with the pattern state lying in a potentially moving

localized spatial region. This modeling assumption allows us to focus on the pattern forming

dynamics and behavior just behind the quenching line. One hopes to build upon these results

to establish large amplitude patterns, as well as fronts which converge to these patterns
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asymptotically in the far-field.

We seek to understand how a spatial heterogeneity can select patterns in the Cahn-Hilliard

equation in two spatial dimensions under directional quenching. Our assumptions are roughly

as follows. We consider nonlinearities of the form f(x � ct, u) with a given front solution

u⇤(x� ct), both of which converge exponentially fast in the co-moving frame x̃ := x� ct with

quenching speed c, to states f±(u) and u±. Further we assume for ũ± close to u± there exist

a family of smooth asymptotically constant front solutions asymptotic to ũ±. We further

assume a generic transverse Hopf instability of the associated linearization L about u⇤. In

particular, we assume that an isolated, semi-simple pair of complex conjugate eigenvalues with

transversely modulated eigenfunctions cross the imaginary axis as the quench speed c varies

while there are no other resonant spectrum at integer multiples of the Hopf frequency. As the

quenched equation, with heterogeneity varying only in the x direction, possesses a reflection

symmetry y 7! �y in the vertical direction along the quenching line, we generically assume

that the Hopf eigenvalues have algebraic and geometric multiplicity two. As there is also a

translation symmetry in y, we hence study Hopf-instabilities in the presence of a transverse

O(2) symmetry. We mention the works [2, 15], which study O(2)-Hopf bifurcations in viscous

slow magnetohydrodynamic shocks and in viscous shock waves in a channel, respectively, and

handle similar problems to ours in di↵erent ways.

Under these assumptions, we establish the existence a pair of one-parameter families of time-

periodic solutions which bifurcate from the front solution u⇤. These branches, which take

the form of oblique stripe and checkerboard patterns, respectively correspond to “rotating”

and “standing” waves under the O(2) symmetry group. Our results also give computable

bifurcation coe�cients which can be used determine whether these bifurcations are subcritical

or supercritical.

The proof is done through an abstract functional analytic approach. We use exponentially

weighted spaces to push neutral continuous spectrum away from the imaginary axis and,

along with co-domain restriction which takes into account mass-conservation, we obtain a

linearization of (1.4) which is a Fredholm operator of index 0. This allows us to perform

a Lyapunov-Schmidt reduction to produce a set of finite-dimensional bifurcation equations,

which we can then use to establish bifurcating solutions, obtain their leading order expansions,

and determine their bifurcation direction.

The rest of the introduction is devoted to developing our setting, stating our hypotheses, and

finally stating the theorem we wish to prove.

1.2 Our Setting

We consider the following modified Cahn-Hilliard equation with spatiotemporal heterogeneities

in both the nonlinearity f (corresponding to changes in the potential well) as well as a moving

source term � which adds mass to the system as it travels. We consider heterogeneities which

rigidly propagate in the horizontal direction with fixed speed c, leaving a front solution its
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wake. Our equation takes the form,

@tu = ��(�u+ f(x� ct, u)) + c�(x� ct; c), x = (x, y) 2 R2, t 2 R, � = @2x + @2y . (1.2)

Before continuing with our general hypotheses on the heterogeneities, front solutions, and

their spectra, we give a specific example which will motivate and guide our work.

Example 1. Tophat quench

Consider a cubic-quintic nonlinearity,

f(x� ct, u) = h(x� ct)u+ �u3 � u5, � 2 R, (1.3)

with a parameter heterogeneity h(x � ct) on the linear term. Here h is 1 in the interval

[�K+ �,K� �], -1 outside the interval [�K,K], and smoothly and monotonically transitions

between the two states in between the intervals; see (3.2) for an approximate example.

When h ⌘ 1, the sign of the parameter �, roughly speaking, mediates between supercritical

(� < 0) and subcritical (� > 0) pattern-forming dynamics. Indeed in this situation, local

perturbations of the trivial state u ⌘ 0 will grow, invade, and form patterned states in di↵erent

manners for these two cases, with the former corresponding to pulled front invasion where

the linear dynamics about u ⌘ 0 govern front dynamics, and pushed front invasion where the

nonlinear dynamics behind the interface accelerate invasion. For both parameter domains,

one finds patterned states in the quenched system for quenching speeds c approximately below

the free invasion speed. We remark that in the pushed case such quenches have been observed

to form patterns for quenching speeds faster than the free invasion speed; see [5].

Figure 1.1 gives snapshots of numerical simulations of such a quenched nonlinearity inducing

oblique stripes and checkerboard patterns in a periodic channel in the pulled case, � = �1.

We note these solutions are time-periodic so that a y cross-section of u resembles a traveling,

or rotating, wave in the former and a standing wave in the latter. This example is investigated

Figure 1.1: Numerically, one can find these checkerboards (right) and oblique stripes (left) arising from Example

1. Here � = �1, and patterns arise from the trivial front u⇤ = 0. The quench speed was chosen to be c = 1.

in more detail in Section 3.

General Setting In the general case, we consider solutions u(x, y, t) of (1.2) which are

periodic in both t and y. In particular we have t 2 [0, 2⇡/!) and y 2 [0, 2⇡/k), where ! is
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the frequency in time and k is the frequency in the second spatial variable. We then rescale

time to the new variable ⌧ = !t, we rescale the vertical spatial variable to ỹ = ky, and put

the system into the co-moving frame x̃ = x � ct. Simplifying our notation by removing the

tildes and writing �k := @2x + k2@2y , we can then write the Cahn-Hilliard equation as

!@⌧u = ��k(�ku+ f(x, u)) + c@xu+ c�(x; c)

u(x, y, ⌧) = u(x, y, ⌧ + 2⇡)

u(x, y, ⌧) = u(x, y + 2⇡, ⌧).

(1.4)

Note that there are symmetries in the y variable. In particular (1.4) is invariant under

translations y 7! y + ✓ and reflections y 7! �y. Hence any bifurcating fronts will occur in

the presence of spatial symmetries. In particular, the symmetry group will be O(2), being

the semidirect product of SO(2) (which contains rotations) with Z2 (which represents the

reflections). With these preliminaries set, we are now ready to present our hypotheses.

1.3 Hypotheses and Main Result

We begin our hypotheses by specifying restrictions on the form of the nonlinearity f and

an associated traveling front solution, which propagates with fixed speed, and is asymp-

totically constant in space, u⇤. We remark that these hypotheses are an extension of the

one-dimensional setting of [4] to the two-dimensional case. The quenching speed c will serve

as the main bifurcation parameter of our study.

Hypothesis 1.1. The nonlinearity f is smooth in both x and u, and converges with an

exponential rate to smooth functions f± := f±(u) as x ! ±1. This convergence is uniform

for u in bounded sets.

Hypothesis 1.2. There exists a front solution u⇤(x; c⇤) of (1.4) for some c⇤ > 0 with

lim
x!±1

u⇤(x; c⇤) = u±.

Moreover, u⇤ 2 C
4(R) and

|u⇤(x)� u±|+
3X

j=1

|@jxu⇤(x)|  Ce��|x|

for some C,� > 0. We refer to this front solution as the primary front.

This primary front will be the solution to the Cahn-Hilliard equation from which our patterns

bifurcate. In our previous example, the trivial solution u⇤ ⌘ 0 plays this role.

Next, we assume that there are no additional neutral modes of the spatial linearization at the

origin, and thus that the Hopf instability is the sole neutral mode at the bifurcation speed c⇤

Hypothesis 1.3. The point 0 2 C is not contained in the extended point spectrum of the

linearization L : H4(R⇥ T) ⇢ L2(R⇥ T) ! L2(R⇥ T) defined as

Lv = ��k(�kv + @uf(x, u⇤(x))v) + c⇤@xv.
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Furthermore, we assume that fronts persist for perturbations of asymptotic states of the front

which preserve the di↵erence between values at x = ±1.

Hypothesis 1.4. Assuming the above hypotheses, for ũ± in a small neighborhood of u± with

ũ+ � ũ� = u+ � u�, and c close to c⇤, there exists a family of smooth front solutions u⇤(x; c)

asymptotic to ũ± satisfying Hypothesis 1.2.

This implies that our assumptions are open; that we can vary u± and still be able to find a

front solution. The next hypothesis ensures that there exists a generic Hopf-instability, with

transversely modulated eigenfunctions, in the presence of a y-reflection symmetry.

Hypothesis 1.5. The operator L defined on L2(R ⇥ T) as above has an isolated pair of

eigenvalues, �±(c) = µ(c)±i(c), with algebraic and geometric multiplicity two and L2(R⇥T)-
eigenfunctions eiyp(x), e�iyp(x) along with their images under the reflection symmetry y 7!

�y, such that for some !⇤ 6= 0 and c⇤ > 0

µ(c⇤) = 0, µ0(c⇤) > 0 (c⇤) = !⇤. (1.5)

Here we note that the geometrically double eigenvalues are induced by the y-reflection sym-

metry, and the above assumption guarantees that they are semi-simple. The higher multi-

plicity of the Hopf modes precludes application of the standard Hopf Theorem and, due to

the presence of symmetry, requires the application an equivariant Hopf theorem. For more

information see Appendix B.

Recall our symmetries are the SO(2) action y 7! y+ ✓, and Z2 reflection action y 7! �y. The

action of SO(2) leads to rotating, or traveling, waves, which appear in our system as oblique

striped patterns. The Z2-action produces standing waves, which appear as checkerboard

patterns.

We also define the L2-adjoint eigenfunctions to p and p, as  + and  � respectively, whose

corresponding eigenvalues must have the same algebraic and geometric multiplicity as the

eigenvalues �±(c). We further normalize  + and  � such that hp, +iL2 = hp, �iL2 = 1.

Finally, we make a non-resonance assumption which guarantees that there are no point or

essential spectrum touching the imaginary axis at frequencies which are non-zero multiples of

the Hopf frequency !⇤. Here � = 0 is not included to take into account the neutral continuous

spectrum which touches the origin in a quadratic tangency induced by the neutral mass

flux/conservation structure of (1.2).

Hypothesis 1.6. For all � 2 i!⇤(Z\{0,±1}), the operator L�� is invertible when considered

on the unweighted space L2(R⇥ T).

With these hypotheses, we are now ready to state our result.

Theorem 1. Assume Hypotheses 1.1 through 1.6. Then there exist a pair of one-parameter

families of time-periodic solutions which bifurcate from the front solution u⇤(x; c) as the speed

c varies through c⇤. The bifurcation equation has, to leading order, the form

⇥(a, b; c̃, !̃) =

✓
�c̃(0)c̃+ i!̃ +

✓1 + ✓2
2

N

◆ 
a

b

!
+
✓2 � ✓1

2
�

 
a

�b

!
, (1.6)

6



with amplitudes a, b 2 C, N = |a|2 + |b|2, � = |b|2 � |a|2, and

✓1 =

⌧
��k

✓
1

2
@3uf(x, u⇤)p

2p+ @2uf(x, u⇤)[p�aa + p�aa]

◆
, +

�

L2

, (1.7)

✓2 =
⌦
��k(@

3
uf(x, u⇤)p

2p+ @2uf(x, u⇤)[p�bb + p�
ab

+ p�ab]), +
↵
L2 . (1.8)

Here, the �ij’s are particular functions of x which can be obtained using the linear operator and

evaluations of derivatives of f on the front u⇤ (see equations (2.7) to (2.16)), and a and b are

the coordinates of the kernel of (2.3), the time-dependent linearization of the Cahn-Hilliard

equation. The direction of the bifurcation can be determined by examining the relationship

between
✓1+✓2

2 and
✓2�✓1

2 .

• If Re
⇣
✓1+✓2

2

⌘
> 0, then standing waves (checkerboard patterns) will bifurcate as c in-

creases through c⇤

• If Re
⇣
✓1+✓2

2

⌘
< 0, then standing waves will bifurcate as c decreases through c⇤

• If Re
⇣
✓2�✓1

2

⌘
< Re

⇣
✓1+✓2

2

⌘
, then rotating waves (oblique stripe patterns) will bifurcate

as c increases through c⇤

• If Re
⇣
✓1+✓2

2

⌘
< Re

⇣
✓2�✓1

2

⌘
, then rotating waves bifurcate as c decreases through c⇤

The family of oblique stripe and checkerboard solutions can be parameterized in terms of the

amplitude a as

uos = u⇤ + 2aRe (ei(⌧+y)p(x)) +O(a2), (1.9)

ucb = u⇤ + 4a cos(y)Re (ei⌧p(x)) +O(a2), (1.10)

and the bifurcation parameter c can also be parameterized in terms of the amplitude a for both

oblique stripes and checkerboards as

cos = c⇤ �
Re (✓1)

µ0(c⇤)
a2 +O(|a|3), (1.11)

ccb = c⇤ �
Re (✓1 + ✓2)

µ0(c⇤)
a2 +O(|a|3). (1.12)

This theorem tells us when patterns bifurcate from our front solution u⇤, as well as giving

computable coe�cients which determine the direction of bifurcation of patterns.

We prove this theorem in Section 2. In Section 3 we provide an example of a specific non-

linearity and heterogeneity for which we observe this behavior. In Section 4 we discuss our

work and mention a few open areas of research stemming from it. Finally, in the appendices

we provide proofs establishing Fredholm properties of the linearization we consider, and give

a short summary of the abstract theory of Hopf bifurcation with O(2) symmetry.
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2 Abstract Results

In this section, we seek to prove our theorem. We approach (1.4) as an abstract nonlinear

equation, for which the primary front u⇤ is a zero. We first establish Fredholm properties of

the linearization at u⇤ in a space of y, t periodic functions. The independence of the front u⇤
in y and t allows for a Fourier decomposition of the operator and its Fredholm index. We use

exponentially weighted spaces to push neutral continuous spectrum away from the imaginary

axis in the t, y-independent component. Then, using a co-domain restriction which projects o↵

of the constants to address neutral mass flux in x, we obtain an operator which has Fredholm

index 0, with kernel spanned by time-modulated forms of the transverse eigenfunctions. We

then perform a Lyapunov-Schmidt decomposition to reduce the infinite-dimensional equation

to a finite dimensional bifurcation equation in terms of the kernel variables, which can be

put into O(2)-Hopf normal form, allowing us to establish bifurcating transversely patterned

solutions and give expressions for the direction of bifurcation. To begin, we introduce some

useful notation.

Function spaces Recall, we consider the domain (x, y, ⌧) 2 R ⇥ Ty ⇥ T⌧ , where Ty,⌧ =

[0, 2⇡). We let

X := L2(T⌧ ), Y := H1(T⌧ ).

We then define the exponentially weighted L2-space

X := L2
⌘(R⇥ Ty, X) = {v : R⇥ Ty ! X | kvk22,⌘ < 1}

with weighted norm

kvk22,⌘ :=

Z

R⇥Ty

ke⌘hxiv(x, y, ·)k2Xdxdy, hxi =
p
1 + x2. (2.1)

Given the following inner product, X becomes a Hilbert space:

hu, viX :=
1

4⇡2

Z 2⇡

0

Z 2⇡

0

Z 1

�1
u(x, y, ⌧)v(x, y, ⌧)e2⌘hxidxdyd⌧.

We can similarly define Sobolev spaces Hk
⌘ as

Hk

⌘ (R⇥ T, X) = {v : R⇥ T ! X | kD↵vk22,⌘ < 1, |↵|  k}.

Finally, we define the Banach space

Y := L2
⌘(R⇥ Ty, Y ) \H4

⌘ (R⇥ Ty, X),

with norm

kuk2Y :=

Z 2⇡

0

Z 1

�1
ku(x, y, ·)k2Y +

X

|↵|4

kD↵u(x, y, ·)k2Xdxdy.
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Abstract nonlinear equation We consider perturbations u = u⇤+ v of the front solution

u⇤(x) in (1.4) at the parameters (!, c) = (!⇤, c⇤). Defining !̃ = ! � !⇤, c̃ = c � c⇤, and

⌦ = (!̃, c̃), and subtracting o↵ v-independent parts, we obtain:

0 = (!̃ + !⇤)@⌧v +�k(�kv + g(x, v;u⇤))� (c̃+ c⇤)@xv =: F(v;⌦) (2.2)

where g(x, v;u⇤) := f(x, u⇤ + v) � f(x, u⇤). This defines a locally smooth mapping F :

Y⇥R2
! X with (0; 0, 0) corresponding to the base front solution u⇤ and general zeros (v;⌦)

of F corresponding to y, ⌧ -periodic solutions of (1.4). The smoothness of F in the v variable

is dependent on the smoothness of f in the same variable. By Hypothesis 1.1 we have that f

is smooth in v, and hence so is F .

2.1 Linear Properties

Linearizing F at the front solution (v; !̃, c̃) = (0; 0, 0), we obtain the following closed and

densely defined linear operator

L : Y ⇢ X ! X ,

v 7! !⇤@⌧v +�k(�kv + @uf(x, u⇤)v)� c⇤@xv. (2.3)

We can further define the (formal) L2-adjoint to be

L
⇤ = �!⇤@⌧ + (�k + @uf(x, u⇤))�k + c⇤@x.

By restricting its co-domain, the operator L has the following Fredholm properties.

Proposition 2.1. Let X̊ := {u 2 X|hu, e�2⌘hxi
iX = 0}. Then for ⌘ > 0 small, L : Y ! X̊ is

Fredholm of index 0, with four dimensional kernel.

We leave the proof of this proposition to Appendix A. The general scheme is to decompose

the space X into various Fourier subspaces, study the Fredholm properties on each, and then

use Fredholm algebra to determine the index of the full operator. We find on all but one

subspace that L is a Fredholm operator with Fredholm index 0, while on the t, y-independent

subspace L has index �1 when considered as a mapping into X . Restricting the codomain to

X̊ , which projects o↵ constants, then yields an index 0 operator. We find the kernel of L lies

in the subspaces spanned by the base modes of the form e±iye±i⌧ .

As we wish to perform a Lyapunov-Schmidt reduction on F , the first step is to decompose

the domain and codomain of L. Recall that eiyp(x), e�iyp(x), along with their y-reflections,

give Hopf eigenfunctions of the linear operator Lv = ��k(�kv + @uf(x, u⇤)v) + c⇤@xv. We

then define

P+ = ei(⌧+y)p(x), P� = P+,

Q+ = ei(⌧�y)p(x), Q� = Q+.
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Then, by Hypotheses 1.3 and 1.5, kerL = span{P+, P�, Q+, Q�}, and hence any u0 2 kerL

is given by

u0 = aP+ + aP� + bQ+ + bQ�,

with a, b 2 C. We similarly have elements of the L2-adjoint kernel:

 + = ei(⌧+y) +,  � =  +, �+ = ei(⌧�y) +, �� = �+.

Then we can decompose the domain and codomain of L as

Y = kerL�M X̊ = N � kerL⇤,

where N = (kerL⇤)? and M = (kerL)?. We then define projections E : X̊ ! kerL⇤ and

1� E with

EF =
X

i=+,�
hF , iiX · i + hF ,�iiX · �i.

Finally, for u0 2 kerL and uh 2 M , we obtain the decomposed system of equations

EF(u0 + uh;⌦) = 0 (2.4)

(1� E)F(u0 + uh;⌦) = 0. (2.5)

Since (1 � E)F has invertible linearization in uh at u0 = 0, the implicit function theorem

gives that there exists a smooth mapping w : kerL⇥ R2
! M satisfying

(1� E)F(u0 + w(u0;⌦);⌦) = 0.

Furthermore, this solution satisfies w(0;⌦) = 0. We also have

0 =
@F

@u0

���
(0;0,0)

= !⇤@⌧
@w

@u0
+�k

✓
�k

@w

@u0
+ @uf(x, u⇤)

@w

@u0

◆
� c⇤@x

@w

@u0
= L

@w

@u0

and so we have that @w

@u0
2 kerL, while w 2 (kerL)?. Hence @w

@u0
(0; 0, 0) is both tangent and

normal to w, and so @w

@u0
(0; 0, 0) = 0. So we can expand w in terms of the kernel coordinates

a and b as

w(a, a, b, b;⌦) = a2e2i(⌧+y)�aa(x) + |a|2�aa(x) + abe2i⌧�ab(x) + abe2iy�
ab
(x)+

a2e�2i(⌧+y)�aa(x) + abe�2iy�ab(x) + abe�2i⌧�
ab
(x) + b2e2i(⌧�y)�bb(x) + |b|2�

bb
(x)+

b
2
e�2i(⌧�y)�

bb
(x) +O(u30)

Here �ij 2 M ⇢ Y for all i, j 2 {a, a, b, b}. Rearranging (1� E)F = 0, we obtain

L(u0 + w(u0;⌦)) = ��k(f(x, u⇤ + u0 + w(u0;⌦))� f(x, u⇤)� @uf(x, u⇤)(u0 + w(u0;⌦)))

= ��k

✓
1

2
@2uf(x, u⇤)(u0 + w(u0;⌦))

2 +
1

6
@3uf(x, u⇤)(u0 + w(u0;⌦))

3 +O(ku0k
4
Y)

◆
. (2.6)
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Substituting in the above expansion and projecting onto the di↵erent Fourier modes e2i(j⌧+`y)

with j, ` 2 {0,±1}, we find the following system of equations at quadratic order in u0, after

dividing out constants:

L(e2i(⌧+y)�aa) = ��k

✓
1

2
@2uf(x, u⇤)e

2i(⌧+y)p2(x)

◆
, (2.7)

L(�aa) = ��k

✓
1

2
@2uf(x, u⇤)|p(x)|

2

◆
, (2.8)

L(e2i⌧�ab) = ��k

✓
1

2
@2uf(x, u⇤)e

2i⌧p2(x)

◆
, (2.9)

L(e2iy�
ab
) = ��k

✓
1

2
@2uf(x, u⇤)e

2iy
|p(x)|2

◆
, (2.10)

L(e�2i(⌧+y)�aa) = ��k

✓
1

2
@2uf(x, u⇤)e

�2i(⌧+y)p2(x)

◆
, (2.11)

L(e�2iy�ab) = ��k

✓
1

2
@2uf(x, u⇤)e

�2iy
|p(x)|2

◆
, (2.12)

L(e�2i⌧�
ab
) = ��k

✓
1

2
@2uf(x, u⇤)e

�2i⌧p2(x)

◆
, (2.13)

L(e2i(⌧�y)�bb) = ��k

✓
1

2
@2uf(x, u⇤)e

2i(⌧�y)p2(x)

◆
, (2.14)

L(�
bb
) = ��k

✓
1

2
@2uf(x, u⇤)|p(x)|

2

◆
, (2.15)

L(e�2i(⌧�y)�
bb
) = ��k

✓
1

2
@2uf(x, u⇤)e

�2i(⌧�y)p2(x)

◆
. (2.16)

Lemma 2.2. Equations (2.7) to (2.16) can be uniquely solved for the functions �ij 2 M ,

i, j 2 {a, a, b, b}.

Proof. First, the right hand side in each of (2.7) - (2.16) is contained in X̊ . We note each

right-hand side takes the form �k(H) for some function H. As p(x) is exponentially localized,

so is H. Hence, integration by parts gives that h�kH, e�2⌘hxi
iL2

⌘
= h�kH, 1iL2 = 0.

Next, we claim that each right hand side of (2.7) - (2.16) is contained in the range of L.

This is seen by observing that kerL⇤ is spanned by the functions  +, �,�+, and ��, all of

which have ⌧ -dependence of the form e±i⌧ , while the right hand sides of (2.7) - (2.16) contain

⌧ dependence of the form e0i⌧ or e±2i⌧ and hence must lie in (kerL⇤)?. Uniqueness follows

from the fact that each �ij 2 M = (kerL)?.

Thus we can solve equations (2.7)-(2.16) for �ij , which in turn will give the leading-order

expansion of w(u0;⌦). Plugging this into the bifurcation equation (2.4) we obtain

0 = EF(u0+w(u0;⌦);⌦) =
X

i=+,�
hF(u0+w(u0;⌦);⌦), iiX · i+hF(u0+w(u0;⌦);⌦),�iiX ·�i,
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which, since  +, �,�+, and �� are linearly independent, is equivalent to the finite dimen-

sional system of equations

0 = ⇥1(u0;⌦) := hF(u0 + w(u0;⌦);⌦), +iX (2.17)

0 = ⇥2(u0;⌦) := hF(u0 + w(u0;⌦);⌦), �iX (2.18)

0 = ⇥3(u0;⌦) := hF(u0 + w(u0;⌦);⌦),�+iX (2.19)

0 = ⇥4(u0;⌦) := hF(u0 + w(u0;⌦);⌦),��iX . (2.20)

Then by the definitions of  i and �i we have that the only terms which are nonzero in the

inner product will be terms of the form ei`⌧ ⌧ei`yy for `⌧ , `y = ±1. Each of the functions ⇥i is

zero trivially when a = b = 0, and so we can decompose each equation as ⇥i = ri(a, a, b, b;⌦) ·

hi(a, a, b, b), where h(0, 0, 0, 0) = 0. In the coordinates (a, ā, b, b̄) 2 C4, the reduced equations

are equivariant under the following actions induced by the symmetries of the original nonlinear

equation: time translation induces the action (a, b) 7! (ei✓a, ei✓b), ✓ 2 [0, 2⇡), y-translation

induces (a, b) 7! (ei�a, e�i�b),� 2 [0, 2⇡), while y-reflection induces (a, b) 7! (b, a). Under

these symmetries, we readily conclude that ri can be written as a function of |a|2, |b|2 and

⌦. Because of the inner product with the adjoint kernel elements  +, �,�+, and ��, each

hi will be linear in exactly one of the kernel coordinates, and will not depend on any of the

others. Thus, possibly after redefinition by a constant, we can write

⇥1 = r1(|a|
2, |b|2; !̃, c̃)a

⇥2 = r2(|a|
2, |b|2; !̃, c̃)a

⇥3 = r3(|a|
2, |b|2; !̃, c̃)b

⇥4 = r4(|a|
2, |b|2; !̃, c̃)b.

We note that expansions of each ri are determined by taking derivatives of F and taking

inner products with the appropriate  i or �i. We consider these in cases by the signs of `⌧
and `y, in the following way:

In the case `⌧ = `y = 1, we must consider hF , ei(⌧+y) +iX , and so the only nonzero terms in

the inner product will be terms with the mode ei(⌧+y) by the orthogonality of the exponential.

To find @c̃r1: We consider Fac̃, and we will then take the appropriate inner product, finding

Fac̃|0 =

"
(c̃+ c⇤)@x

 
aei(⌧+y)p(x) + ae�i(⌧+y)p(x)

+ bei(⌧�y)p(x) + be�i(⌧�y)p(x) + w(a, a, b, b;⌦)

!#

ac̃

= ei(⌧+y)p0(x). (2.21)

So @c̃r1(0) = hei(⌧+y)p0(x), ei(⌧+y) +iX = �c̃(0).
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To find @!̃r1: We consider Fa!̃ and take the appropriate inner product, finding

Fa!̃|0 =

"
(!̃ + !⇤)

 
aei(⌧+y)p(x) + ae�i(⌧+y)p(x) + bei(⌧�y)p(x)+

+ be�i(⌧�y)p(x) + w(a, a, b, b;⌦)

!

⌧

#

a!̃

= iei(⌧+y)p(x), (2.22)

and so @!̃r1(0) = hiei(⌧+y)p(x), ei(⌧+y) +iX = i.

To find @|a|2r1: We must consider all the di↵erent ways one can produce nonzero terms of the

correct mode, ei(⌧+y). From the right-hand sides of the equations defining the �ij ’s, this can

only occur from terms of the form u30 or u0 ·w(u0;⌦). By considering these terms and taking

the appropriate inner products, we will find that

@|a|2r1 =

⌧
��k

✓✓
3

2, 1

◆
1

6
@3uf(x, u⇤)e

i(⌧+y)p2(x)p(x)+

+

✓
2

1, 1

◆
1

2
@2uf(x, u⇤)e

i(⌧+y)p(x)�aa +

✓
2

1, 1

◆
1

2
@2uf(x, u⇤)e

i(⌧+y)p(x)�aa

◆
, ei(⌧+y) +

�

X
=

=

⌧
��k

✓
ei(⌧+y) 1

2
@3uf(x, u⇤)p

2p+ ei(⌧+y)@2uf(x, u⇤)[p�aa + p�aa]

◆
, ei(⌧+y) +

�

X
+ h.o.t.

where
�

N

n1...nk

�
= N !

n1!···nk!
.

To find @|b|2r1: Similar to how we found @|a|2r1, we look for nonzero terms with the correct

mode, which will only occur in the right-hand sides from u30 or u0 · w(u0;⌦). By taking the

appropriate inner products of these terms and rewriting the Laplacian as �k = @2x � k2 so

that the term ei(⌧+y) commutes with the Laplacian, we find

@|b|2r1 =
⌦
��k

�
@3uf(x, u⇤)p

2p+ @2uf(x, u⇤)[p�bb + p�
ab

+ p�ab]
�
, +

↵
L2 + h.o.t.

Thus in total we have (with �k = @2x � k2)

⇥1 = (�c̃(0)c̃+ i!̃)a+ a|a|2
⌧
��k

✓
1

2
@3uf(x, u⇤)p

2p+ @2uf(x, u⇤)[p�aa + p�aa]

◆
, +

�

L2

+ a|b|2
⌦
��k

�
@3uf(x, u⇤)p

2p+ @2uf(x, u⇤)[p�bb + p�
ab

+ p�ab]
�
, +

↵
L2 + h.o.t. (2.23)

Employing similar computations for the subspaces `⌧ = `y = �1, `⌧ = �`y = 1, and �`⌧ =

`y = 1 we respectively find

⇥2 = ⇥1 = (�c̃(0)c̃� i!̃)a+ a|a|2
⌧
��k

✓
1

2
@3uf(x, u⇤)p

2p+ @2uf(x, u⇤)[p�aa + p�aa]

◆
, �

�

L2

+ a|b|2
⌦
��k

�
@3uf(x, u⇤)p

2p+ @2uf(x, u⇤)[p�bb + p�
ab

+ p�ab]
�
, �

↵
L2 + h.o.t. (2.24)

⇥3 = (�c̃(0)c̃+ i!̃)b+ b|a|2
⌦
��k

�
@3uf(x, u⇤)p

2p+ @2uf(x, u⇤)[p�aa + p�ab + p�ab]
�
, +

↵
L2

+ b|b|2
⌧
��k

✓
1

2
@3uf(x, u⇤)p

2p+ @2uf(x, u⇤)[p�bb + p�bb]

◆
, +

�

L2

+ h.o.t. (2.25)

⇥4 = ⇥3 = (�c̃(0)c̃� i!̃)b+ b|a|2
⌦
��k

�
@3uf(x, u⇤)p

2p+ @2uf(x, u⇤)[p�aa + p�
ab

+ p�
ab
]
�
, +

↵
L2

+ b|b|2
⌧
��k

✓
1

2
@3uf(x, u⇤)p

2p+ @2uf(x, u⇤)[p�bb + p�
bb
]

◆
, +

�

L2

+ h.o.t. (2.26)
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2.2 Reduced Equations

Following [7, Ch. 17, Prop. 2.1], we suppress the complex conjugate equations and put our

bifurcation equations in the form
 
⇥1(a, b)

⇥3(a, b)

!
= (p+ iq)

 
a

b

!
+ (r + is)�

 
a

�b

!
, (2.27)

where p, q, r, s are polynomials in the variables N = |a|2 + |b|2 and D = �2 = (|b|2 � |a|2)2.

This will allow us to determine the direction of the bifurcation for both the standing and

rotating waves, whether supercritical or subcritical. We have

⇥1(a, b) = (�c̃(0)c̃+ i!̃)a+ ✓1a|a|
2 + ✓2a|b|

2 +O(|u0|
4 + |u0|

2
· |w|+ |w|2),

with

✓1 =

⌧
��k

✓
1

2
@3uf(x, u⇤)p

2p+ @2uf(x, u⇤)[p�aa + p�aa]

◆
, +

�

L2

, (2.28)

✓2 = h��k(@
3
uf(x, u⇤)p

2p+ @2uf(x, u⇤)[p�bb + p�
ab

+ p�ab]), +iL2 . (2.29)

Since we can write |a|2 = 1
2N �

1
2� and |b|2 = 1

2N + 1
2�, this gives us the leading order form

⇥1 ⇡ a


�c̃(0)c̃+ i!̃ +

✓1 + ✓2
2

N +
✓2 � ✓1

2
�

�
.

Using this, we can deduce the leading order forms of the polynomials p, q, r, and s as

p ⇡ µc̃(0)c̃+Re

✓
✓1 + ✓2

2

◆
N, (2.30)

q ⇡ !̃ + c̃(0)c̃+ Im

✓
✓1 + ✓2

2

◆
N, (2.31)

r ⇡ Re

✓
✓2 � ✓1

2

◆
, (2.32)

s ⇡ Im

✓
✓2 � ✓1

2

◆
. (2.33)

However this selection of p, q, r, and s must also hold for ⇥3. ⇥3 can be written similarly to

⇥1 as

⇥3 ⇡ b
⇥
�c̃(0)c̃+ i!̃ + ⌘1|a|

2 + ⌘2|b|
2
⇤
=

= b


�c̃(0)c̃+ i!̃ +

⌘1 + ⌘2
2

N +
⌘1 � ⌘2

2
�

�
,

with ⌘1 and ⌘2 being the appropriate inner products from ⇥3 in (2.25). We can perform

similar assignments as above to get forms for p, q, r, and s in terms of ⌘1 and ⌘2.

We claim that �aa = �
bb
, �

ab
= �ab, and �aa = �bb. Then it follows that ⌘2 = ✓1 and ⌘1 = ✓2

and hence that ✓1 + ✓2 = ⌘1 + ⌘2 and ✓2 � ✓1 = ⌘1 � ⌘2, which in turn shows that

 
⇥1

⇥3

!
can

be written in the form (2.27). We show the claimed equalities next.
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2.2.1 �aa = �
bb

Returning to equations (2.8) and (2.15), we note that �aa and �
bb

solve the same equation

and hence are equal since the equations can be solved uniquely.

2.2.2 �
ab

= �ab

Here we compare (2.10) and (2.12). Recall we have Lv = !⇤@⌧v +�k(�kv + @uf(x, u⇤)v) �

c⇤@xv. From (2.10) we have

�k(�ke
2iy�

ab
+ @uf(x, u⇤)e

2iy�
ab
)� c⇤@xe

2iy�
ab

=

= ��k

✓
1

2
@2uf(x, u⇤)e

2iy
|p(x)|2

◆
.

We then note that because we have functions e2iy�
ab

and e2iy|p(x)|2, the Laplacian becomes

�k = @2x + k2@2y = @2x � 4k2. Dividing by e2iy, this leaves us with

(@2x � 4k2)((@2x � 4k2)�
ab

+ @uf(x, u⇤)�ab)� c⇤@x�ab =

=
1

2
(4k2 � @2x)(@

2
uf(x, u⇤)|p(x)|

2).

For (2.12), note that again the Laplacian becomes �k = @2x � 4k2 because of the form of the

functions. Evaluating the y dependence and dividing by e�2iy, we find:

(@2x � 4k2)((@2x � 4k2)�ab + @uf(x, u⇤)�ab)� c⇤@x�ab =

= �
1

2
(@2x � 4k2)(@2uf(x, u⇤)|p(x)|

2) =
1

2
(4k2 � @2x)(@

2
uf(x, u⇤)|p(x)|

2).

then we can see that �
ab

and �ab solve the same equation. Thus they are equal by the same

reasoning as before.

2.2.3 �aa = �bb

This follows a similar procedure as the previous case, though now there is dependence on ⌧ .

We can show that �aa and �bb solve the same equation, and thus must be equal. Thus we

have shown that ⌘2 = ✓1 and ✓2 = ⌘1, and so we can assign the polynomials p, q, r, and s as

desired.

2.3 Bifurcations

With our bifurcation equation in the desired form, we can now conclude the existence of the

desired solutions and determine the bifurcation directions from the front solution u⇤. The

results of [7, Ch. 17] readily give the existence of the pair of bifurcating solution branches,

solving for ⌦ as a function of the solution amplitude. Furthermore, all that is required to

15



determine the direction of bifurcation is @p

@N
(0) and r(0), where p and r are the polynomials

from the normal form. Straightforward calculation gives

pN (0) = Re

✓
✓1 + ✓2

2

◆
=: ↵, r(0) = Re

✓
✓2 � ✓1

2

◆
=: �.

Using these, we can then determine the direction of bifurcation of the two branches of solu-

tions. If ↵ < 0 and � > 0, then both solution branches bifurcate as c moves below c⇤, which

we refer to as a type 1 bifurcation. In contrast, if ↵ > 0 and � < 0, then both branches

bifurcate to the right, which we will call a type 3 bifurcation.

If ↵,� > 0, then we must consider two cases: ↵ < � and ↵ > �. If ↵ > �, then both branches

bifurcate to the right, a type 3 bifurcation. If ↵ < �, then rotating waves, corresponding

to oblique stripes, bifurcate to the left, and standing waves, corresponding to checkerboard

patterns, to the right, a type 2 bifurcation.

If ↵,� < 0, then we again must consider two cases: ↵ < � and ↵ > �. If ↵ < �, then both

branches bifurcate to the left, a type 1 bifurcation. If ↵ > �, the standing waves bifurcate

to the left, and rotating waves to the right, a type 4 bifurcation.

Figure 2.1: Here we see examples of all the di↵erent bifurcations possible: Type 1 (left), Type 2 (second),

Type 3 (third), and Type 4 (right). S represents the branch of standing waves (checkerboard patterns), and R

denotes the rotating waves (oblique stripe patterns). Here c is our bifurcation parameter, the quench speed,

and kuk is an L2 norm.

2.4 Leading Order Forms of the Solutions

Using the decomposition v = u0 + w, and the fact that w is higher order, we obtain the

following expansion for the full patterned front solution

u = u⇤ + (aP+ + aP� + bQ+ + bQ�) +O(|a|2 + |b|2).

Following [7, Ch. 17, Sec. 3], in order to find zeros of the normal form (2.27) it su�ces

to take the real representatives from the O(2) ⇥ S1-orbit of solutions and thus restrict to

a, b 2 R. Here rotating waves correspond to a > b = 0, arising from the isotropy subgroup
gSO(2) = {(✓, ✓) | ✓ 2 S1

}, while standing waves correspond to a = b > 0, arising from the

isotropy subgroup Z2 � Zc

2. Using this information, we can determine the particular leading

order form for both the rotating and standing waves, again which correspond to oblique and

16



checkerboard patterns. This gives the solution forms

uos = u⇤ + a(P+ + P�) +O(|a|2)

= u⇤ + 2aRe
⇣
ei(⌧+y)p(x)

⌘
+O(|a|2), (2.34)

ucb = u⇤ + (aP+ + aP� + aQ+ + aQ�) +O(|a|2)

= u⇤ + 4a cos(y)Re
�
ei⌧p(x)

�
+O(|a|2). (2.35)

The expansions for the bifurcation parameter in terms of the amplitude, Equations (1.11)

and (1.12), come from [7, Ch. 17, Sec. 3]. This concludes the proof of Theorem 1.

3 Example

In this section, we lay out an explicit example of a nonlinearity and heterogeneity which

give rise to such bifurcations. We will show using both rigorous and numerical evidence that

these satisfy our hypotheses in Section 3.1, and we numerically determine the direction of the

bifurcation in Section 3.2. In Section 3.3 we examine what happens as we vary the transverse

wavenumber k.

3.1 Nonlinearity and Heterogeneity

We fix k = 1
2 and define the nonlinearity

f(x� ct, u) = h(x� ct)u+ �u3 � u5, (3.1)

with top-hat heterogeneity

h(x̃) = tanh(�(x̃�K)) tanh(��(x̃+K)), (3.2)

and � � 1 and K large. In our numerics, described below, we set � = 5 and K = 10⇡.

To understand this nonlinearity, we briefly discuss free invasion fronts in the unquenched,

homogeneous coe�cient nonlinearity

f̃(u) = u+ �u3 � u5. (3.3)

In the regime � < 0, invasion fronts into the unstable state u ⌘ 0 are determined by linear

information of the state ahead of the front, and are known as pulled fronts. In the regime

� > 1, fronts are governed by the strong nonlinear growth and travel faster than the linear

information ahead of the front predicts, commonly referred to as pushed fronts. An example

of such behavior can be found in [5], and more detail can be found in [20, Sec. 2.6].

We now verify that equation (1.4) with nonlinearity (3.1) satisfies our hypotheses. Clearly f

is smooth in both x and u and, as x ! ±1, f±(u) = �u + �u3 � u5 with the appropriate

convergence rate. Thus Hypothesis 1.1 is satisfied.

For Hypothesis 1.2, our primary front will be the trivial solution u⇤ ⌘ 0.
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For the spectral assumptions, Hypotheses 1.3 - 1.6, we first note that essential spectrum of

the linearized operator

Lv := ��k(�kv + @uf(x, u⇤)v) + c⇤@xv

can be calculated explicitly. We insert the ansatz u(x, y, ⌧) = e�⌧+⌫x+i`y into the linearized

equation, vt = Lv with h ⌘ �1, to obtain the dispersion relation

d(�, ⌫; k, `, c) = �(⌫2 � k2`2)[(⌫2 � k2`2)� 1] + c⌫ � �. (3.4)

To determine the essential spectrum (on a space which is not exponentially weighted), we

solve d(�, im) = 0 for � in terms of m and all parameters, obtaining

⌃ess = {�(�m2
� k2`2)[(�m2

� k2`2)� 1] + icm | m 2 R}. (3.5)

Computation of such curves readily gives that the essential spectrum is contained in the

left half-plane, and only touches the imaginary axis in a quadratic tangency at the origin.

Furthermore, one can readily calculate that the real part of the numerical point spectrum

corresponding to ⌃ess also does not vary with c. Hence there is no resonant essential spectrum

away from � = 0 for c near the Hopf point.

We study point spectrum numerically. We truncate the linear operator

Lv := ��k(�kv + @uf(x, u⇤)v) + c⇤@xv,

to a bounded computational domain (x, y) 2 [�M,M ]⇥ [0, 2⇡) with periodic boundary condi-

tions, discretize it spectrally, and evaluate it using the Fast Fourier Transform. Approximate

eigenvalues and eigenfunctions are then calculated using the MATLAB command ‘eigs’. See

Figure 3.1 for a depiction of the numerical spectrum near the bifurcation speed. Here, as the

system possesses periodic boundary conditions, the work [17] implies that the point spectrum

of the truncated operator accumulate onto the essential and point spectrum of the unbounded

domain operator as M ! +1. We thus conjugate the operator with an exponential weight

which pushes the essential spectrum ⌃ess into the left half-plane, leaving only numerical

eigenvalues which approximate the point spectrum of the unbounded domain operator. In

the exponentially weighted case, there are no eigenvalues at 0 due to the lack of translation

symmetry in x and that the front u⇤ is trivial. This gives Hypothesis 1.3.

In numerically solving for the spectrum of the operator L, we are able to also find discretized

approximations of eigenfunctions. Three such eigenfunctions are shown in Figure 3.2 left.

The first eigenfunction corresponds to the patterns found in one dimension and comes from

the most unstable branch, which reaches furthest into the right half-plane. The other two

eigenfunctions, which are transversely modulated, correspond to the rightmost eigenvalues of

the next most unstable branch. Varying c, we find the corresponding eigenvalues cross the

imaginary axis generically for some unique c⇤. Thus we can see numerically that there is

an isolated pair of generic Hopf eigenvalues with algebraic and geometric multiplicity two,

crossing at some non-zero speed c⇤, indicating that Hypothesis 1.5 is satisfied; see Figure 3.2

center.
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Figure 3.1: 100 eigenvalues (dots) of the discretized and exponentially conjugated operator nearest the origin

at approximately the time of bifurcation with k = 1/2 and exponential weight ⌘ = 0.2. Overlaid are the

essential spectrum of the weighted operator on an unbounded domain (solid curve), and the absolute spectrum

(dashed curves).
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Figure 3.2: (Left) Eigenfunctions: one depicting vertical stripes, and two others depicting transverse patterns.

(Center) The real parts of the first 10 unstable eigenvalues varying with c, indicating leading order Hopf

bifurcation locations. (Right) The real part of the branch points of the absolute spectrum varying with c. The

` = 1 (lower) branch is neutral at c⇤ ⇡ 1.35, and the ` = 0 (upper) branch is neutral at c⇤ ⇡ 1.6.
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Moving back to the unbounded domain problem, with x 2 R, we note that for K large, point

spectrum can be located by computing the absolute spectrum [16] of the plateau state, where

h ⌘ 1. Indeed, the work of [18] implies that all but finitely many of the point spectrum of L,

posed on the unbounded domain, accumulate onto the absolute spectrum of the trivial state

with h ⌘ 1 with rate O(1/K2) as K ! +1. Hence branch points of the absolute spectrum

give leading-order predictions for the onset of instabilities.

To compute the absolute spectrum, we once again use the linear dispersion relation. For each

` 2 Z, we seek curves (�(�), ⌫(�)), � 2 R, which solve d(�, ⌫; k, `, c) = d(�, ⌫ + i�; k, `, c) = 0;

see Figure 3.1 for computations using Mathematica. Branch points of the absolute spectrum

can then be located by evaluating solutions at � = 0. As c is decreased, we find that the

branch points destabilize. In Figure 3.1, the most unstable dashed line corresponds to ` = 0,

and the next most unstable dashed line to ` = ±1. We can see from the figures that as

the quench speed c is decreased, the ` = 0 mode, corresponding to the y-independent mode,

bifurcates first, followed by the ` = ±1 transverse modes. Plotting c versus Re(�(0)) we find

good agreement with the numerical eigenvalues.

Further, we can compute the speeds at which these branch points will cross the imaginary axis

using the linear spreading speed calculations of [20, Sec. 2.11]. Linear spreading speeds for the

homogeneous system with h ⌘ 1 can be obtained in the 2D channel by Fourier decomposing

in y and studying the spreading speed for each transverse modulation ei`y, ` 2 Z. We obtain

the following family of linearized equations

@⌧v = �(@2x � k2`2)[(@2x � k2`2)v + v], ` 2 Z, (3.6)

Expanding this with k = 1/2, [20] gives the ` = 0 and ` = ±1 linear spreading speeds

respectively as

c⇤,0 =
2

3
p
6
(2 +

p
7)(

p
7� 1)1/2 = 1.622..., c⇤,1 =

7

3
p
3
= 1.347...

We find branch points for |`| > 1 lie in the open left half-plane and are bounded away from

the imaginary axis for speeds c near the transverse Hopf speed c⇤,1 = 1.347.... Since we have

control of all other branch points near the transverse Hopf-speed c⇤,1 = 1.347, we can conclude

strong numerical evidence that no other resonant point spectra bifurcate at the same c as

the Hopf-instability. This, along with our numerical computations and the discussion on the

essential spectrum above, indicates Hypothesis 1.6 also holds.

3.2 Bifurcations

Calculation of the bifurcation coe�cients ✓1 and ✓2, and thus the direction of bifurcation,

requires evaluation of the eigenfunctions, the corresponding adjoint eigenfunctions, as well as

the evaluation of u⇤ in the derivatives of f (which is trivial in this case). Instead of expanding

these coe�cients theoretically, we instead investigate the direction of bifurcation numerically.

Using the transverse eigenfunctions described in Figure 3.2 above as initial conditions, we

use direct numerical simulation, with spectral discretization in space and a Crank-Nicholson
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method in time, to simulate the bifurcated nonlinear states. We then continue these solutions

adiabatically, varying c and letting the end-time solution of the previous c value relax to a

steady state for the new c value before incrementing again. This is done for both � = �1

and � = 2, the di↵erence of which we find as being mediation between super- and subcritical

bifurcations of standing and rotating waves. In doing so, we produce Figure 3.3. As these are

direct numerical solutions, only locally stable states are observed.
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Figure 3.3: Numerical bifurcation diagram depicting the branching for both the pushed and pulled nonlinear-

ities.

For the � = �1, or pulled, case, we note that there is bifurcation around c = 1.4 where the L2

norm of the solution u begins branching o↵ from 0. We would expect that the pushed case,

here � = 2, would bifurcate from the same point, around c = 1.4, with unstable subcritical

branch bifurcating in c > 1.4. While not observed, we expect this branch to continue up to

some c where it hits a fold point connecting with the large-amplitude nonlinear state observed

in our numerics. We also remark that the adiabatic continuations given by Figure 3.3 indicate

that the folds for checkerboard and oblique stripes occur at di↵erent speeds.

3.3 Varying k

We now wish to explore what happens as we vary the parameter k, which controls the vertical

wavenumber of patterns. To do this, we vary k between 0 and 0.9 and find the 100 eigenvalues

closest to 0 for a fixed speed, c = 1.2. We then find the most unstable (or least stable)

transverse mode and plot its real part against k. In doing so, we obtain Figure 3.4 left.

For c fixed positive, we find that as k increases, and thus the vertical period decreases, the

transverse mode stabilizes, indicating that no transverse patterns arise and that the transverse

Hopf location happens for smaller speeds c. In Figure 3.4 right, we depict the numerical

spectrum for k = 94/99, observing that the transverse branches of spectrum have moved to
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Figure 3.4: (Left) The real parts of the transverse eigenvalues as k varies in [0, 0.9]. (Right) The spectrum

with transverse wavenumber k = 94/99 at speed c = 1.2 with exponential weight ⌘ = 0.2.

the left of the essential spectrum, which itself is shifted due to the exponential weight.

4 Discussion

We have shown in Section 2 that, in the wake of a quench, the 2-dimensional Cahn-Hilliard

equation can produce a pair of one-parameter families of time- and y-periodic solutions bifur-

cating from a given front solution under Hypotheses 1.1-1.6. Our results give leading-order

forms for these solution families as well as computable formulas for the bifurcation coe�-

cients, allowing the determination of the bifurcation direction. In Section 3, we have given

an explicit example of this behavior, and shown numerically what happens as the vertical

wavenumber k increases.

There are several avenues of subsequent inquiry which could follow from our work. First of all,

one naturally would wish to study how the local bifurcating branches established here continue

globally in the quench speed c and the vertical wavenumber k. Indeed in the subcritical pushed

case, � > 1, considered in Section 3, one would seek to locate the secondary fold bifurcation

to the large amplitude nonlinear states. We expect such a location to be mediated by the

interaction of the oscillatory tail of the patterned state with the quenching interface [5]. Next

it would be of interest to study pattern selection in a domain with large y period (i.e., k ! 0+)

where possibly several transverse modes can be excited. We expect the mode with the largest

period to bifurcate first, but it would be interesting to see if subsequent bifurcations of higher

harmonics lead to multi-mode interactions or defect nucleation.

In another direction, one could seek to establish transverse patterns where the spinodally

unstable region is unbounded and bifurcating solutions are asymptotically periodic as x !

�1, for example taking a step-function like quench h(x̃) = � tanh(�x̃) in (3.1). One possible

approach would be to first consider a heterogeneity of the form hK(x̃) = tanh(�x̃) tanh(��(x̃+

K)), covered by our hypotheses, and take the large plateau limit K ! +1 to establish a full
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pattern forming front.

Next, there are several unanswered questions on stability of such fronts. Indeed, the stability

of the parallel striped fronts, posed in either 1- or 2-dimensional spatial domains, has not been

established. We expect a reduced stability principle [11] to provide a relatively straightforward

approach to establishing stability in one dimension. Moving to the transversely modulated

patterns studied in this work, one cannot use such reduced stability principles as the trivial

state from which they bifurcate is already unstable due to the parallel striped Hopf instability.

Hence we expect the transverse patterns to be unstable or metastable near the bifurcation

point. Indeed, since we do observe these patterns numerically, it would be of interest to

understand how initial conditions starting near the transverse patterns dynamically evolve,

and how or whether they converge to another state such as the parallel striped fronts for long

times. It would also be of interest to periodically extend both the parallel and transverse

patterns in y 2 R and consider stability to localized L2(R2) perturbations.

A Fredholm Properties

In this appendix, we provide the proof of Proposition 2.1. The general approach will be to

apply an abstract closed range lemma to the linear operator and its X -adjoint to obtain that

the linearization L is Fredholm. We then compute its index via a Fourier decomposition in

⌧ and y. To begin, for J > 0, let X (J) and Y(J) denote the spaces of functions, in X and Y

respectively, which have x-support in the interval [�J, J ]. Since the embedding Y(J) ,! X (J)

is compact, we have the following:

Lemma A.1. There exist constants C > 0 and J > 0 such that the operator L as defined in

Section 2 satisfies

k⇠kY  C(k⇠kX (J) + kL⇠kX ), ⇠ 2 Y. (A.1)

Proof. We remark that the proof of this result follows a similar approach as [4, Lem. 2.3]

but we include it for completeness. Throughout C > 0 will be a changing constant, possibly

dependent on the weight ⌘, the front u⇤, parameters c⇤,!⇤ and the nonlinearity f , but not ⇠.

Step 1: We begin by proving that the estimate holds for J = 1. Assume for the moment

that we have the exponential weight ⌘ = 0. Then

kL⇠kX � k(@⌧ +�
2
k
)⇠kX � k�k(@uf(x, u⇤)⇠)� c⇤@x⇠kX . (A.2)

Since f and u⇤ are smooth, we have for all ✏ > 0

k�k(@uf(x, u⇤)⇠)� c⇤@x⇠kX  Ck⇠kH2(R⇥T,X)

 Ck⇠k1/2X · k⇠k1/2
H4(R⇥T,X)

 C(✏k⇠kH4(R⇥T,X) +
1

4✏
k⇠kX ). (A.3)
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By combining the two inequalities, we see that for ✏ su�ciently small

kL⇠kX +
C

4✏
k⇠kX � k(@⌧ +�

2
k
)⇠kX � C✏k⇠kH4(R⇥T,X)

� C1k⇠kY . (A.4)

For ⌘ > 0, one follows a similar procedure with the conjugated operator L⌘ := e⌘hxiLe�⌘hxi.

Additional terms which arise from the conjugation are small because the weight ⌘ is small.

Step 2: Next, we wish to show that the estimate holds for the constant coe�cient operators

L±⇠ = !⇤@⌧⇠ +�k(�k⇠ + f 0
±(u±)⇠)� c⇤@x⇠. (A.5)

Again, we must work with the conjugated operators L±,⌘ := e⌘hxiL±e�⌘hxi. If L±,⌘⇠ = h,

then by taking the Fourier transform in x, y, and ⌧ we see that

ĥ(i⇣, i�, i⇢) =
h
i⇢!⇤ � i(⇣ � ⌘)c⇤ +

�
(⇣ � ⌘)2 + k2�2

�2
�
�
(⇣ � ⌘)2 + k2�2

�
f 0
±(u±)

i
⇠̂(i⇣, i�, i⇢), (A.6)

⇣ 2 R,�, ⇢ 2 Z.

By Hypothesis 1.6, for ⌘ > 0 the essential spectrum of the time-independent portion of the

operator will not intersect i!⇤Z. Thus both equations L±,⌘⇠ = h are invertible, and thus so

are their Fourier transforms. Using this, we get

⇠̂ = [i⇢!⇤ � i(⇣ � ⌘)c⇤ + ((⇣ � ⌘)2 + k2�2)2 � ((⇣ � ⌘)2 + k2�2)f 0
±(u±)]

�1ĥ. (A.7)

The coe�cient on the right-hand side must be bounded by our assumptions, and so we have

k⇠̂kY  sup
⇣,�,⇢

��[i⇢!⇤ � i(⇣ � ⌘)c⇤ + ((⇣ � ⌘)2 + k2�2)2 � ((⇣ � ⌘)2 + k2�2)f 0
±(u±)]

�1
�� kĥkX

= Ck\L±,⌘⇠kX . (A.8)

By Plancherel’s Theorem, this gives us k⇠kY  CkL±⇠kX .

Step 3: Finally, we seek to complete the proof by using the estimates previously established

to perform a patching argument. For J > 1, let ⇠± 2 Y be such that ⇠+(x, y) = 0 for all

x  J � 1 and ⇠�(x, y) = 0 for all x � 1 � J . The exponential convergence rates from

Hypotheses 1.1 and 1.2 as x ! ±1 give the following: for every ✏ > 0 there is some J > 0

su�ciently large such that

k(L± � L)⇠±kX  ✏k⇠±kH2
⌘(R⇥Ty ,X). (A.9)

From this and the estimate from Step 2, we get that

k⇠±kY  CkL±⇠
±
kX

 C(k(L± � L)⇠±kX + kL⇠±kX )

 C(✏k⇠±kH2
⌘(R⇥Ty ,X) + kL⇠±kX ). (A.10)
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Choosing ✏ < 1
C
, we see that

k⇠±kY  CkL⇠±kX . (A.11)

Next we consider an element ⇠ 2 Y with ⇠ = 0 for all |x|  J � 1. Then, we can decompose

⇠ = ⇠+ + ⇠�, where

⇠+ =

(
⇠(x), x � 0

0, x < 0
, ⇠� =

(
0, x � 0

⇠(x), x < 0
.

Applying estimate (A.11) and the triangle inequality, we obtain

k⇠k2Y  k⇠+k2Y + k⇠�k2Y

 C(kL⇠+k2X + kL⇠�k2X )

 C(kL⇠k2X + kL⇠k2X ) = CkL⇠k2X . (A.12)

Lastly, for a general ⇠ 2 Y, we choose a smooth bump function � such that � = 1 when

|x|  J � 1 and � = 0 for |x| � J . From the triangle inequality (first line), the results of Step

1 (second line), and estimate (A.12) (second line), we see that

k⇠kY  k�⇠kY + k(1� �)⇠kY

 C(k�⇠kX + kL(�⇠)kX + kL((1� �)⇠)kX )

 C(k⇠kX (J) + kL⇠kX ).

We then have the following corollary:

Corollary A.2. L has closed range and finite dimensional kernel.

Proof. Since the embedding Y(J) ,! X (J) is compact, we have that the identity operator is

compact. Then, the proof follows by applying an abstract closed range lemma, such as in [19,

Ch. 6, Prop 6.7].

We can define the L2-adjoint by integration by parts, finding L⇤ = �!⇤@⌧+�2
k
+@uf(x, u⇤)�k+

c⇤@x. Since we wish to work with exponentially weighted spaces, we must define the L2
⌘-

adjoint. This is done by once again working with conjugated operators posed on L2. Recall

the conjugated operator L⌘, posed on L2, is given by L⌘ := e⌘hxiLe�⌘hxi. Because of this, we

have

hL⌘u, viL2 = he⌘hxiLe�⌘hxiu, viL2 =

=
1

4⇡2

Z 2⇡

0

Z 2⇡

0

Z 1

�1
e⌘hxiL(e�⌘hxiu)vdxdyd⌧ =

=
1

4⇡2

Z 2⇡

0

Z 2⇡

0

Z 1

�1
e�⌘hxiuL⇤(v̄e⌘hxi)dxdyd⌧ =

= hu, e�⌘hxi
L
⇤e⌘hxiviX = hu,L⇤

⌘viX (A.13)
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and hence

L
⇤
⌘ := e�⌘hxi

L
⇤e⌘hxi.

Hence L⇤ is defined on a weighted L2 space with weight e�⌘hxi. This conjugated operator can

be run through the same estimates as in Lemma A.1 for ⌘ su�ciently small, and we reach

the conclusion of the corollary. Thus L : Y ! X is a Fredholm operator.

To find the Fredholm index, we first form the Fourier series in ⌧ and y to get

u(x, y, ⌧) =
X

`⌧ ,`y

ei`⌧ ⌧ei`yyû`⌧ ,`y(x), (A.14)

where û`⌧ ,`y 2 L2
⌘(R), as well as the decomposition of X as

L
`⌧ ,`y

X`⌧ ,`y , where X`⌧ ,`y :=

{ei`⌧ ⌧ei`yyû`⌧ ,`y(x), | û`⌧ ,`y 2 L2
⌘(R)}; see [1] for more detail. This induces a decomposition

of Y as Y =
L

`⌧ ,`y
Y \ X`⌧ ,`y =

L
`⌧ ,`y

Y`⌧ ,`y . We then define

L`⌧ ,`y : Y`⌧ ,`y ⇢ X`⌧ ,`y ! X`⌧ ,`y

û 7! (@2x � k2`2y)[(@
2
x � k2`2y)û+ @uf(x, u⇤)û]� (c⇤@x + i!⇤`⌧ ) û.

We first organize this decomposition into three subspaces, X0,0,
L

|`⌧ |=1,|`y |=1X`⌧ ,`y , and their

complement, Xh = X1,0 �X0,1 �X2,1 �X1,2 �

⇣L
|`y |,|`⌧ |�2X`y ,`⌧

⌘
, in X .

Lemma A.3. indL0,0 = �1.

Proof. Recall, L0,0 = @2x[@
2
x + @uf(x, u⇤)] � c⇤@x = �L = �@x � L̃, where L̃ := �@x(@2x +

@uf(x, u⇤)) + c⇤ converges to the constant coe�cient operators L̃± as x ! ±1 by our hy-

potheses. For c > 0, each of the polynomials ⌫3 + f 0
±(u±)⌫ � c = 0 has two positive roots

and one negative root. Thus the di↵erence between the number of unstable eigenvalues is

zero and so L̃ has Fredholm index 0. Then since @x has Fredholm index -1, we have that

indL0,0 = �1.

Lemma A.4. For |`⌧ | = |`y| = 1, indL`⌧ ,`y = 0.

Proof. There are four index pairs considered here, depending on the signs of `⌧ and `y. We

only show the case `⌧ = `y = 1, as the other three cases follow the same reasoning. Here we

have

L1,1 = (@2x � k2)[(@2x � k2) + @uf(x, u⇤)]� c⇤@x + i!⇤@⌧ = �L1,1 + i!⇤@⌧

with the spatial operator L1,1 := �(@2x � k2)[(@2x � k2) + @uf(x, u⇤)] + c⇤@x. Hypothesis

1.5 implies that L1,1 has a eigenvalue � = i! with one-dimensional eigenspace spanned by

ei(y+⌧)p(x), and similarly for the adjoint L⇤
1,1 for the eigenvalue �i!⇤; see [10, section 1.5.5].

Thus the kernel of both L1,1 and its adjoint operator L
⇤
1,1 is one-dimensional and hence

indL1,1 = 0.

Lemma A.5. Defining Lh := L
��
Xh

, we have indLh = 0.
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Proof. First, we recall that for � 2 iZ�{±i!⇤, 0}, L� � and thus L⇤
� � is invertible. This

implies that for any `⌧ 2 Z�{0,±1} and `y 2 Z, that indL`t,`y = 0.

Next, operators L`t,`y with `⌧ = 0 also have index 0 due to Hypothesis 1.3 which gives that

� = 0 is not in the extended point spectrum. Finally, operators with `⌧ = ±1 but |`y| 6= 1

have index 0 due to Hypothesis 1.5 which gives that the Hopf eigenfunctions lie in the `y = ±1

subspaces.

Combining the above Lemmas, we use standard Fredholm algebra results [19] to conclude

Proposition A.6. indL = �1 for L : Y ! X .

Now we consider a closed subset defined X̊ := {u 2 X|hu, e�2⌘hxi
iX = 0}. We note that for

any exponential weight ⌘ > 0 and for any u 2 X

hu, e�2⌘hxi
iX =

1

4⇡2

Z 2⇡

0

Z 2⇡

0

Z 1

�1
u(x, y, ⌧)e�2⌘hxie2⌘hxidxdyd⌧ =

1

4⇡2

Z 2⇡

0

Z 2⇡

0

Z 1

�1
u(x, y, ⌧)dxdyd⌧

For any v = Lu, u 2 Y we have hv, e�2⌘hxi
iX=0 by integration by parts, and so v 2 X̊ . Thus

we have that L maps Y into X̊ . Finally, by composing L : Y ! X with the index 1 orthogonal

projection P : X ! X̊ , Fredholm algebra gives that L : Y ! X̊ has Fredholm index 0.

This concludes the proof of Proposition 2.1.

B Hopf Bifurcation with O(2) symmetry

The contents of this section can be found in detail in [7, Ch. 16]. As was stated in the

hypotheses, the presence of symmetry forces generic Hopf eigenvalues to have algebraic and

geometric multiplicity 2. Hence an equivariant Hopf theorem is needed. In this appendix, we

lay out an introduction to this theorem.

Suppose we have a bifurcation problem with �-symmetry, i.e., we have

@⌧u+G(u; c) = 0

where G : Rn
⇥ R ! Rn, and G(� · u; c) = � ·G(u; c) for � 2 �, with c being our bifurcation

parameter. We say that the space Rn is �-simple if either of the following conditions holds:

(1) we can write Rn = V � V for some subspace V where linear mappings F : V ! V such

that

F (� · v) = � · F (v), 8 v 2 V, � 2 �

are multiples of the identity (called absolutely irreducible), or (2) Rn is such that the only �-

invariant subspaces are {0} and Rn, but it does not meet condition (1) (called non-absolutely

irreducible).

Lemma B.1. Suppose that Rn
is �-simple, that G commutes with the action of �, and that

(dG)0;0 has i as an eigenvalue. Then
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(a) The eigenvalues of (dG)0;c consist of a complex conjugate pair µ(c)± i(c), each of mul-

tiplicity m = n/2. Moreover, µ and  are smooth functions of c.

(b) There is an invertible linear map S : Rn
! Rn

, commuting with �, such that

(dG)0;0 = SJS�1
where J =

 
0 �Im
Im 0

!
.

For a proof, see [7, Ch. 16]. Lemma B.1(a) gives that eigenvalues of multiplicity m cross with

nonzero speed. For m > 1, an extension of the standard Hopf theorem is needed.

The amount of symmetry present in a solution u to the system is measured by the isotropy

subgroup

⌃u = {� 2 � |� · u = u}.

We also have the space of solutions fixed by the isotropy subgroups,

Fix(⌃u) = {v 2 Rn
|� · v = v 8� 2 ⌃u}.

Using these, we then have the following theorem:

Theorem 2. Let ⌃u be an isotropy subgroup of a group � such that dimFix(⌃u) = 2. Assume

that

(dG)0;0 = J

meaning that � acts absolutely irreducibly. Further assume that the eigenvalue crossing con-

dition µ0(0) 6= 0 holds. Then there is a unique branch of small-amplitude periodic solutions

to the bifurcation problem of period near 2⇡ whose spatial symmetries are given by ⌃u.

For a proof, see [7, Ch. 16]. Because this theorem has found solutions which are periodic in

time, the symmetry group of the solutions is not just ⌃u, but ⌃u ⇥ S1, taking into account

the time translation symmetry. This tells us that the full group of symmetries of the problem

will be �⇥S1, which now not only accounts for the spatial symmetries, but also the temporal

periodicity.

In our problem of the Cahn-Hilliard equation in two dimensions we note that from the reduced

equations achieved by the Lyapunov-Schmidt reduction, our bifurcation equation becomes real

four dimensional (considering !̃ to be constant and taking c̃ as our bifurcation parameter),

mapping R4
⇥ R ! R4. Thus we have n = 4, and hence m = 2. Additionally, there are

two di↵erent symmetries in the transverse spatial variable: the translation symmetry which

corresponds to rotations, and the y-reflection symmetry, which corresponds to the standing

waves. Thus we have the symmetry group � = O(2) in our case, and we must consider the

isotropy subgroups of O(2)⇥ S1.

Notably, there are two maximal isotropy subgroups of O(2) ⇥ S1: one corresponding to

rotations denoted gSO(2) = {(✓, ✓) | ✓ 2 S1
}, and one corresponding to reflections denoted

Z2 � Zc

2. The rotation corresponds to rotating waves, which appear as oblique stripes. The

reflection corresponds to standing waves, which appear as checkerboard patterns.
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and Uwe Thiele. Modelling pattern formation in dip-coating experiments. Mathematical

Modelling of Natural Phenomena, 10(4):44–60, 2015.

31


