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Abstract

We consider transversely modulated fronts in a directionally quenched Cahn-Hilliard
equation, posed on a two-dimensional infinite channel, with both parameter and source-
term type heterogeneities. Such quenching heterogeneities travel through the domain,
excite instabilities, and can select the pattern formed in their wake. We in particular
study striped patterns which are oblique to the quenching direction and checkerboard
type patterns. Under generic spectral assumptions, these patterns arise via an O(2)-Hopf
bifurcation as the quenching speed is varied, with symmetries arising from translations
and reflections in the transverse variable. We employ an abstract functional analytic
approach to establish such patterns near the bifurcation point. Exponential weights are
used to address neutral continuous spectrum, and a co-domain restriction is used to
address neutral mass-flux. We also give a method to determine the direction of bifurcation
of fronts. We then give an explicit example for which our hypotheses are satisfied and for
which bifurcating fronts can be investigated numerically.
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1 Introduction

1.1 Motivation
The Cahn-Hilliard equation
atu = —A(AU + f(u))a f(u) =u-—- U3, U(X,t) € Rv (th) € Rd X Ra (11)

is a prototypical and well-studied model for phase separation processes in two-phase systems
in a variety of contexts; see for example [13] for a mathematical review with many references.



Through different initial conditions and boundary conditions, this equation can exhibit many
different types of patterns. In particular, small random initial data, say on the unbounded
domain, tends to lead to the formation of a random assortment of layers, stripes, spots, and
defects, most of which are unstable via local coarsening. We remark that this equation is a
H~! gradient-flow with respect to the following free-energy

Elu] = /Q %\w? + Flu)dx,

defined on a generic domain €2, with symmetric double-well potential F'(u) = $(1—u?)? which
favors the states u = £1.

In several experimental and phenomenological settings we can observe phase separation in a
binary phase alloy, or a model thereof [3, 8, 9, 12, 21]. In many of these experiments, a process
known as directional quenching has been used to induce phase separation in a controlled
manner and select the pattern formed in the wake. Indeed, depending on the initial data,
and the shape and speed of the quench, a variety of patterns can be formed including regular
spot arrangements, stripes of different orientations and wavenumbers, layers between pure +1
states, as well as square and rhomb patterns. Here a quench travels through the spatial domain
inciting instability in a given homogeneous equilibrium state, typically by spatiotemporally
mediating the potential F' between single-well and double-well configuration, the latter of
which is given above. In our work, and in parallel with several of the above mentioned
references, we consider quenched patterns on a two-dimensional spatial domain.

Recent work in this area includes [4], which studied quenched stripe formation in one spatial
dimension for a variety of quenching and source type heterogeneities with spinodally unstable
regions which are bounded in xz. The work [14] studies two-dimensional directional quenched
fronts with unbounded quenching domain in both the Allen-Cahn and Cahn-Hilliard equa-
tions showing that with zero quenching speed pure phase selection, vertical stripes, horizontal
interfaces, and horizontal stripes can be formed, though oblique stripes cannot be formed.
Existence results can also be obtained for non-zero quenching speeds for many of the afore-
mentioned structures, but interestingly, these works did not address the formation of stripes
which are oblique to the quenching interface in the moving interface case. Such an ambi-
guity motivates and is one the main focuses of our work. Results from [6], which studied
the Swift-Hohenberg equation, showed that weakly oblique stripes exist as perturbations of
parallel stripes. Because of this, and results of numerical simulations (discussed below), we
expect oblique stripes to exist in the quenched Cahn-Hilliard equation. Our work also reveals
cellular, or “checkerboard” type patterns which biurcate with oblique stripes.

Following the functional analytic methods of [4], we study the bifurcations of transversely
modulated patterns in the presence of quenching terms which have localized or bounded
spinodal unstable regimes. That is we look for bifurcating fronts which are spatially patterned
but are still asymptotically constant, with the pattern state lying in a potentially moving
localized spatial region. This modeling assumption allows us to focus on the pattern forming
dynamics and behavior just behind the quenching line. One hopes to build upon these results
to establish large amplitude patterns, as well as fronts which converge to these patterns



asymptotically in the far-field.

We seek to understand how a spatial heterogeneity can select patterns in the Cahn-Hilliard
equation in two spatial dimensions under directional quenching. Our assumptions are roughly
as follows. We consider nonlinearities of the form f(x — ct,u) with a given front solution
us(x — ct), both of which converge exponentially fast in the co-moving frame & := x — ¢t with
quenching speed ¢, to states fi(u) and uy. Further we assume for @4 close to uy there exist
a family of smooth asymptotically constant front solutions asymptotic to @+. We further
assume a generic transverse Hopf instability of the associated linearization L about us. In
particular, we assume that an isolated, semi-simple pair of complex conjugate eigenvalues with
transversely modulated eigenfunctions cross the imaginary axis as the quench speed ¢ varies
while there are no other resonant spectrum at integer multiples of the Hopf frequency. As the
quenched equation, with heterogeneity varying only in the x direction, possesses a reflection
symmetry y — —y in the vertical direction along the quenching line, we generically assume
that the Hopf eigenvalues have algebraic and geometric multiplicity two. As there is also a
translation symmetry in y, we hence study Hopf-instabilities in the presence of a transverse
O(2) symmetry. We mention the works [2, 15], which study O(2)-Hopf bifurcations in viscous
slow magnetohydrodynamic shocks and in viscous shock waves in a channel, respectively, and
handle similar problems to ours in different ways.

Under these assumptions, we establish the existence a pair of one-parameter families of time-
periodic solutions which bifurcate from the front solution wu,. These branches, which take
the form of oblique stripe and checkerboard patterns, respectively correspond to “rotating”
and “standing” waves under the O(2) symmetry group. Our results also give computable
bifurcation coefficients which can be used determine whether these bifurcations are subcritical

or supercritical.

The proof is done through an abstract functional analytic approach. We use exponentially
weighted spaces to push neutral continuous spectrum away from the imaginary axis and,
along with co-domain restriction which takes into account mass-conservation, we obtain a
linearization of (1.4) which is a Fredholm operator of index 0. This allows us to perform
a Lyapunov-Schmidt reduction to produce a set of finite-dimensional bifurcation equations,
which we can then use to establish bifurcating solutions, obtain their leading order expansions,
and determine their bifurcation direction.

The rest of the introduction is devoted to developing our setting, stating our hypotheses, and
finally stating the theorem we wish to prove.

1.2 Our Setting

We consider the following modified Cahn-Hilliard equation with spatiotemporal heterogeneities
in both the nonlinearity f (corresponding to changes in the potential well) as well as a moving
source term x which adds mass to the system as it travels. We consider heterogeneities which
rigidly propagate in the horizontal direction with fixed speed ¢, leaving a front solution its



wake. Our equation takes the form,

O = —A(Au+ f(z —ct,u) + ex(z —ctie), x=(z,y) €R’ t€R, A=0740;. (1.2)

Before continuing with our general hypotheses on the heterogeneities, front solutions, and
their spectra, we give a specific example which will motivate and guide our work.

Example 1. Tophat quench

Consider a cubic-quintic nonlinearity,
f(z —ct,u) = h(z — ct)u + yu® — u®, v € R, (1.3)

with a parameter heterogeneity h(z — ct) on the linear term. Here h is 1 in the interval
[-K + 6, K — 4], -1 outside the interval [- K, K|, and smoothly and monotonically transitions
between the two states in between the intervals; see (3.2) for an approximate example.

When h = 1, the sign of the parameter «y, roughly speaking, mediates between supercritical
(v < 0) and subecritical (v > 0) pattern-forming dynamics. Indeed in this situation, local
perturbations of the trivial state u = 0 will grow, invade, and form patterned states in different
manners for these two cases, with the former corresponding to pulled front invasion where
the linear dynamics about v = 0 govern front dynamics, and pushed front invasion where the
nonlinear dynamics behind the interface accelerate invasion. For both parameter domains,
one finds patterned states in the quenched system for quenching speeds ¢ approximately below
the free invasion speed. We remark that in the pushed case such quenches have been observed
to form patterns for quenching speeds faster than the free invasion speed; see [5].

Figure 1.1 gives snapshots of numerical simulations of such a quenched nonlinearity inducing
oblique stripes and checkerboard patterns in a periodic channel in the pulled case, v = —1.
We note these solutions are time-periodic so that a y cross-section of u resembles a traveling,
or rotating, wave in the former and a standing wave in the latter. This example is investigated
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Figure 1.1: Numerically, one can find these checkerboards (right) and oblique stripes (left) arising from Example
1. Here v = —1, and patterns arise from the trivial front u, = 0. The quench speed was chosen to be ¢ = 1.

in more detail in Section 3.

General Setting In the general case, we consider solutions u(x,y,t) of (1.2) which are
periodic in both ¢ and y. In particular we have t € [0,27/w) and y € [0,27/k), where w is



the frequency in time and k is the frequency in the second spatial variable. We then rescale
time to the new variable 7 = wt, we rescale the vertical spatial variable to § = ky, and put
the system into the co-moving frame & = x — ct. Simplifying our notation by removing the
tildes and writing Ay, := 02 + k28§, we can then write the Cahn-Hilliard equation as

Wi = —Ag( Dy + f(2,u)) + ey + ex(x:¢)
u(z,y,7) = u(z,y, 7+ 2m) (1.4)
u(x,y,7) = u(z,y + 2m, 7).
Note that there are symmetries in the y variable. In particular (1.4) is invariant under
translations y — y + 6 and reflections y — —y. Hence any bifurcating fronts will occur in
the presence of spatial symmetries. In particular, the symmetry group will be O(2), being

the semidirect product of SO(2) (which contains rotations) with Zs (which represents the
reflections). With these preliminaries set, we are now ready to present our hypotheses.

1.3 Hypotheses and Main Result

We begin our hypotheses by specifying restrictions on the form of the nonlinearity f and
an associated traveling front solution, which propagates with fixed speed, and is asymp-
totically constant in space, u,. We remark that these hypotheses are an extension of the
one-dimensional setting of [4] to the two-dimensional case. The quenching speed ¢ will serve
as the main bifurcation parameter of our study.

Hypothesis 1.1. The nonlinearity f is smooth in both x and u, and converges with an
exponential rate to smooth functions fy := fi(u) as x — too. This convergence is uniform
for w in bounded sets.

Hypothesis 1.2. There exists a front solution u.(z;c.) of (1.4) for some c, > 0 with

xgrinoo Us (T o) = ug.

Moreover, u, € C*(R) and
3 .
Jus(2) = us| + ) |0Fun(w)] < Ce™ P
j=1

for some C, B8 > 0. We refer to this front solution as the primary front.

This primary front will be the solution to the Cahn-Hilliard equation from which our patterns
bifurcate. In our previous example, the trivial solution u, = 0 plays this role.

Next, we assume that there are no additional neutral modes of the spatial linearization at the
origin, and thus that the Hopf instability is the sole neutral mode at the bifurcation speed c,

Hypothesis 1.3. The point 0 € C is not contained in the extended point spectrum of the
linearization L : H*(R x T) C L2 (R x T) — L*(R x T) defined as

Lv = =AR(Apv + 0y f (2, us(x))v) + c.0pv.



Furthermore, we assume that fronts persist for perturbations of asymptotic states of the front
which preserve the difference between values at © = +oo.

Hypothesis 1.4. Assuming the above hypotheses, for ti+ in a small neighborhood of u+ with
Ugy — U— = uy —u_, and c close to cy, there exists a family of smooth front solutions u(x;c)
asymptotic to uy satisfying Hypothesis 1.2.

This implies that our assumptions are open; that we can vary u4+ and still be able to find a
front solution. The next hypothesis ensures that there exists a generic Hopf-instability, with
transversely modulated eigenfunctions, in the presence of a y-reflection symmetry.

Hypothesis 1.5. The operator L defined on L*(R x T) as above has an isolated pair of
eigenvalues, A+ (c) = u(c)Eir(c), with algebraic and geometric multiplicity two and L?(R xT)-

eigenfunctions e¥p(x),e~¥p(z) along with their images under the reflection symmetry y
—y, such that for some w, # 0 and ¢, > 0

wles) =0, W (ce) >0 K(Cx) = wa. (1.5)

Here we note that the geometrically double eigenvalues are induced by the y-reflection sym-
metry, and the above assumption guarantees that they are semi-simple. The higher multi-
plicity of the Hopf modes precludes application of the standard Hopf Theorem and, due to
the presence of symmetry, requires the application an equivariant Hopf theorem. For more
information see Appendix B.

Recall our symmetries are the SO(2) action y — y+ 6, and Zs reflection action y — —y. The
action of SO(2) leads to rotating, or traveling, waves, which appear in our system as oblique
striped patterns. The Zs-action produces standing waves, which appear as checkerboard
patterns.

We also define the L?-adjoint eigenfunctions to p and P, as ¢, and 1)_ respectively, whose
corresponding eigenvalues must have the same algebraic and geometric multiplicity as the
eigenvalues Ay (c). We further normalize 14 and ¢_ such that (p, ;)2 = (p,9_)r2 = 1.

Finally, we make a non-resonance assumption which guarantees that there are no point or
essential spectrum touching the imaginary axis at frequencies which are non-zero multiples of
the Hopf frequency w,. Here A = 0 is not included to take into account the neutral continuous
spectrum which touches the origin in a quadratic tangency induced by the neutral mass
flux/conservation structure of (1.2).

Hypothesis 1.6. For all A € iw,(Z\{0,=£1}), the operator L—\ is invertible when considered
on the unweighted space L?>(R x T).
With these hypotheses, we are now ready to state our result.

Theorem 1. Assume Hypotheses 1.1 through 1.6. Then there exist a pair of one-parameter
families of time-periodic solutions which bifurcate from the front solution u.(x;c) as the speed
c varies through c.. The bifurcation equation has, to leading order, the form

O(a,b;&,&) = ()\5(0)6+ i+ 2 ;(’%v) (Z) e ; o1 (_“b) , (1.6)




with amplitudes a,b € C, N = |a|? + |b|?,d = |b|? — |a|?, and

" <_A’“ (éaﬁf (2, w)p’P + O f (2, w.) [pbua +p¢aa}) ,¢+> ’ (1.7)

L2
62 = <—Ak(82f(l“, U*)p2ﬁ =+ 85]0(15‘, U*)[P‘%B + p¢a5 + 17¢ab])> ¢+>L2 . (18)

Here, the ¢;;’s are particular functions of x which can be obtained using the linear operator and
evaluations of derivatives of f on the front u, (see equations (2.7) to (2.16)), and a and b are
the coordinates of the kernel of (2.3), the time-dependent linearization of the Cahn-Hilliard

equation. The direction of the bifurcation can be determined by examining the relationship

between % and %.

o If Re (@) > 0, then standing waves (checkerboard patterns) will bifurcate as ¢ in-
creases through c,

e IfRe (%) < 0, then standing waves will bifurcate as ¢ decreases through c,

e IfRe (%) < Re (@), then rotating waves (oblique stripe patterns) will bifurcate
as ¢ increases through c,

e IfRe (@) < Re (%), then rotating waves bifurcate as ¢ decreases through c.

The family of oblique stripe and checkerboard solutions can be parameterized in terms of the
amplitude a as

Uos = Uy + 2aRe (e p(2)) + O(d?), (1.9)
Uey = Us + 4a cos(y)Re (T p(z)) + O(a?), (1.10)

and the bifurcation parameter ¢ can also be parameterized in terms of the amplitude a for both
oblique stripes and checkerboards as

Cos = Cx — a® + O(lal”), 1.11
e+ Oal (1.11)
=Cy— —————= . 1.12

Ceb = C I +O(|al”) (1.12)

This theorem tells us when patterns bifurcate from our front solution u,, as well as giving
computable coefficients which determine the direction of bifurcation of patterns.

We prove this theorem in Section 2. In Section 3 we provide an example of a specific non-
linearity and heterogeneity for which we observe this behavior. In Section 4 we discuss our
work and mention a few open areas of research stemming from it. Finally, in the appendices
we provide proofs establishing Fredholm properties of the linearization we consider, and give
a short summary of the abstract theory of Hopf bifurcation with O(2) symmetry.



2 Abstract Results

In this section, we seek to prove our theorem. We approach (1.4) as an abstract nonlinear
equation, for which the primary front wu, is a zero. We first establish Fredholm properties of
the linearization at u, in a space of y,t periodic functions. The independence of the front u,
in y and t allows for a Fourier decomposition of the operator and its Fredholm index. We use
exponentially weighted spaces to push neutral continuous spectrum away from the imaginary
axis in the ¢, y-independent component. Then, using a co-domain restriction which projects off
of the constants to address neutral mass flux in x, we obtain an operator which has Fredholm
index 0, with kernel spanned by time-modulated forms of the transverse eigenfunctions. We
then perform a Lyapunov-Schmidt decomposition to reduce the infinite-dimensional equation
to a finite dimensional bifurcation equation in terms of the kernel variables, which can be
put into O(2)-Hopf normal form, allowing us to establish bifurcating transversely patterned
solutions and give expressions for the direction of bifurcation. To begin, we introduce some
useful notation.

Function spaces Recall, we consider the domain (z,y,7) € R x T, x T, where T, ; =
[0,27). We let
X :=L%T,), Y:=HYT,.

We then define the exponentially weighted L?-space
X:=LRxTy,X)={v:RxT, = X ||v]3, < oo}

with weighted norm

ol = /R 1" e, y, Wededy,  (2) = I+ 22 (2.1)
Xy

Y

Given the following inner product, X becomes a Hilbert space:
1 2 27 o0
(u,v)x := el /0 / w(z,y, 7)o(z, y, 7)e?"®) dedydr.
—00

We can similarly define Sobolev spaces Hff as
HYRxT,X)={v:RxT— X | ||D%]|3, <o, |a <k}.
Finally, we define the Banach space
Yi=L2RxT,,Y)NH (R x Ty, X),

with norm

21 oo
lul3 = /0 / (e, )+ S 1D, y, )| dedy.

o] <4



Abstract nonlinear equation We consider perturbations v = u, + v of the front solution
ux(x) in (1.4) at the parameters (w,c) = (w«,cx). Defining @ = w — wy, ¢ = ¢ — ¢, and
Q2 = (@, ¢), and subtracting off v-independent parts, we obtain:

0= (@4 ws)0-v + A (Agv + g, v;us)) — (€ + ¢4)0zv =: F(v;Q) (2.2)

where g(z,v;uy) = f(x,us +v) — f(z,us). This defines a locally smooth mapping F :
Y xR? — X with (0;0,0) corresponding to the base front solution u, and general zeros (v; Q)
of F corresponding to y, 7-periodic solutions of (1.4). The smoothness of F in the v variable
is dependent on the smoothness of f in the same variable. By Hypothesis 1.1 we have that f
is smooth in v, and hence so is F.

2.1 Linear Properties

Linearizing F at the front solution (v;@,¢) = (0;0,0), we obtain the following closed and
densely defined linear operator

L:YCX =X,
v = w070 + Ap(Agv + Oy f (T, us)v) — c20zv. (2.3)

We can further define the (formal) L2-adjoint to be
LY = —w,0r + (Ag + Ouf (2, us)) Ak + €40

By restricting its co-domain, the operator £ has the following Fredholm properties.

Proposition 2.1. Let X := {u € X|(u,e"21%))» = 0}. Then forn >0 small, £L:Y — X is

Fredholm of index 0, with four dimensional kernel.

We leave the proof of this proposition to Appendix A. The general scheme is to decompose
the space X into various Fourier subspaces, study the Fredholm properties on each, and then
use Fredholm algebra to determine the index of the full operator. We find on all but one
subspace that L is a Fredholm operator with Fredholm index 0, while on the ¢, y-independent
subspace £ has index —1 when considered as a mapping into X. Restricting the codomain to
X , which projects off constants, then yields an index 0 operator. We find the kernel of £ lies

in the subspaces spanned by the base modes of the form e*¥e®'",

As we wish to perform a Lyapunov-Schmidt reduction on F, the first step is to decompose
the domain and codomain of £. Recall that e¥p(x),e~%¥p(z), along with their y-reflections,
give Hopf eigenfunctions of the linear operator Lv = —Ag(Agv + Oy f (2, us)v) + c.0zv. We
then define

Py =eTp(x), Po=TPy,
Q+ =" Vp(z), Q- =Qs.




Then, by Hypotheses 1.3 and 1.5, ker £ = span{P+, P_,Q4,Q_}, and hence any uy € ker £
is given by
up = aPy +aP_ +bQ, +bQ_,

with a,b € C. We similarly have elements of the L?-adjoint kernel:
Uy =Ty, U =T, &, =0Vy,, & =3
Then we can decompose the domain and codomain of £ as
Y=kerL&M X =N&kerL",

where N = (ker £*)+ and M = (ker £)*. We then define projections E : X — ker £* and
1 — E with
EF =Y (F,U)x U+ (F,&)x- ;.
i=+,—
Finally, for ug € ker £ and uy, € M, we obtain the decomposed system of equations
EF(ug+up;2) =0 (2.4)
(1 —E)F(up+up; ) = 0.

Since (1 — E)F has invertible linearization in u at ug = 0, the implicit function theorem
gives that there exists a smooth mapping w : ker £ x R? — M satisfying

(1= E)F(up + w(up; Q2);Q2) = 0.

Furthermore, this solution satisfies w(0; ) = 0. We also have

0— OF ow ( Ow Ow ) Oow Oow

=& = w0 oL A (A EY O () S ) — 8ol = S
dug (0;0,0) w dug Ttk kauO + f(:L' Y )8UO ¢ Jug Oug

and so we have that g—% € ker £, while w € (ker £)*. Hence g—%(o; 0,0) is both tangent and

ow

Sug (0;0,0) = 0. So we can expand w in terms of the kernel coordinates

normal to w, and so
a and b as

w(a,a,b,b;Q) = a?e® T o () + |al?daa (@) + abe® pap(x) + abe®™ ¢ 7 (x)+
a2e 1Y) oo(2) + abe 2 gy () + 656_2”%5(96) + b2eP V) gy () + |b|2¢b5(x)—|—
526_2i(7_y)¢g(x) + O(ud)
Here ¢;; € M C Y for all i,j € {a,@,b,b}. Rearranging (1 — E)F = 0, we obtain
L(ug + w(up; Q) = —Ag(f (2, us + up + w(up; Q) — f(,us) — Ouf (2, us) (up + w(ug; N)))

=—Ay (éﬁfbf(x,u*)(uo + w(ug; )% + é@gf(x,u*)(uo + w(ug; )% + O(\|UQH§,)> . (2.6)

10



Substituting in the above expansion and projecting onto the different Fourier modes /(7 +¥)
with j, ¢ € {0,£1}, we find the following system of equations at quadratic order in wug, after
dividing out constants:

£ T0,) =~ (02w u) TR ). 27)
£(0) =~ (oo lplo) ) (2:8)

£ 0) = - (30T )2 ) ) 29)
£9,5) =~ (@) 2 ) ). (2.10)
£l gmg) = - (G0RF () ) ) 2.11)
£l 0m) =~ (301 w)e p(o)l). (2.12)
£ = -0 (3021 (2.0 PP W), (213)
£ om) = - (G 00T )), (2.14)
£0g) =~ (2@ lp)l ) (2.15)

£l o) =~ (302w u)e IR ) (2.10)

Lemma 2.2. Equations (2.7) to (2.16) can be uniquely solved for the functions ¢;; € M,
i,j € {a,a,b,b}.

Proof. First, the right hand side in each of (2.7) - (2.16) is contained in X. We note each
right-hand side takes the form Ay (H) for some function H. As p(z) is exponentially localized,
so is H. Hence, integration by parts gives that (ApH, 6_277(””>>L3] = (ArH,1);2 =0.

Next, we claim that each right hand side of (2.7) - (2.16) is contained in the range of L.

This is seen by observing that ker £* is spanned by the functions W, W_, &, and ®_, all of

which have 7-dependence of the form e*", while the right hand sides of (2.7) - (2.16) contain

7 dependence of the form %7 or e*27 and hence must lie in (ker £*)*. Uniqueness follows

from the fact that each ¢;; € M = (ker £)*.
O

Thus we can solve equations (2.7)-(2.16) for ¢;;, which in turn will give the leading-order
expansion of w(ug; ). Plugging this into the bifurcation equation (2.4) we obtain

0= E.F(u0+w(u0; Q>7 Q) = Z <.7:(UO+’LU(U(); Q), Q), \I/i>;g-\I/i—|—<]:(u0—i—w(u0; Q>7 Q), (I)i>X‘(I>i7
i=+,—

11



which, since V., W_,®, and ®_ are linearly independent, is equivalent to the finite dimen-
sional system of equations

0 = (F(up + w(up; Q); ), ¥
0 = O2(up; Q) (F(up + w(ug; Q);Q), ¥_
0 = O3(uo; ) == (F(uo + w(uo; 2); ), ©
0 = O4(uo; Q) := (F(uo + w(uo; 2); ), P

)X
)x
+)x

)

Then by the definitions of ¥; and ®; we have that the only terms which are nonzero in the
inner product will be terms of the form etrTettyy for {;, 4, = £1. Each of the functions ©; is
zero trivially when a = b = 0, and so we can decompose each equation as ©; = r;(a, @, b, b; 2) -
hi(a,a,b,b), where h(0,0,0,0) = 0. In the coordinates (a,a,b,b) € C*, the reduced equations
are equivariant under the following actions induced by the symmetries of the original nonlinear
equation: time translation induces the action (a,b) — (¢?a, eb), 6 € [0,27), y-translation
induces (a,b) + (e'?a,e™™b), ¢ € [0,2n), while y-reflection induces (a,b) — (b,a). Under
these symmetries, we readily conclude that r; can be written as a function of |a|?,|b? and
Q). Because of the inner product with the adjoint kernel elements ¥, W_ &, and ®_, each
h; will be linear in exactly one of the kernel coordinates, and will not depend on any of the
others. Thus, possibly after redefinition by a constant, we can write

0 = r1(|a|2, |b|2;u~), é)a
O3 = ro(lal?, [b*; @, é)a
O3 = r3(lal®, |b]*; @, )b
O, = 7‘4(]a|2, |b|2;(IJ, 5)5.

We note that expansions of each r; are determined by taking derivatives of F and taking
inner products with the appropriate ¥; or ®;. We consider these in cases by the signs of £,
and £y, in the following way:

In the case ¢; = {, = 1, we must consider (F, Tty ), and so the only nonzero terms in
the inner product will be terms with the mode e!("*t¥%) by the orthogonality of the exponential.

To find Ozr1: We consider F,z, and we will then take the appropriate inner product, finding

aE|O —

@+QW{MWWMmHafWWM@>

+WWMM@+@4WMM@+w@maam> =Y (). (2.21)

ac

So 0zr1(0) = (X7 TV P! (), T ) 1 = A3(0).
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To find Ozr1: We consider F,; and take the appropriate inner product, finding

]:acZz|O:

(Mw*)(ae“”y)p(x)we THP(2) + be' T Yp(x)+

+be™ " YB(2) + w(a,a, b, b; Q)) = ie!TH)p(x), (2.22)

7d a®

and so 9571 (0) = (1Tt p(x), T ) p = i

To find 8)q2r1: We must consider all the different ways one can produce nonzero terms of the
correct mode, /(%) From the right-hand sides of the equations defining the ¢ij’s, this can
only occur from terms of the form u3 or ug - w(up; ). By considering these terms and taking
the appropriate inner products, we will find that

upr = (= ( () gor e w)el P alpta)+

2 1 2 i(T+y) 2 92 i(T+y)= i(T+y) _
#( 7)) g0 ) o + (1)) 3R A ) w0 ) ) =
_ <—Ak (e“”y);azf(x, )PP+ ST (2, 0 pha +p¢>aa1) ,e"<f+y>w+> T hodt.
X
where (nlNTLk) = nl'N'nk'

To find Opj2ry: Similar to how we found )4271, we look for nonzero terms with the correct
mode, which will only occur in the right-hand sides from ug or ug - w(up; ). By taking the
appropriate inner products of these terms and rewriting the Laplacian as Ay = 0% — k% so
that the term e!("t%) commutes with the Laplacian, we find

Apprr = (— A (05 f (2, w )P + 0 f (2, us) [Py + Pdys + Pbar]) s ¥+) 12 + hout.
Thus in total we have (with Ay, = 9% — k?)
01 = \e0)e+ i)a-+alaf* (= (G040 + B oo+ 7ol ) )
+alb]? (= A (93 (z, e )p*P + 02 f (2, us) [pyg + Pd G + Pab)) 4 ) o + hooit.  (2.23)

Employing similar computations for the subspaces ¢, = ¢, = —1, {; = —{, = 1, and —{; =
¢, =1 we respectively find

02 = 81 = (R(0)e — @)+ alf? (= (50005 + 02, ) P + ] ) 0 )

+alb]? (—Ay (04 f (w, w)P?p + 4 f (2, 1) [Py + Pgs + Dbab]) s =) 12 + oot
63 = ()‘5(0)6 + Z('D)b + b|a| <_Ak’ (83f($, u*)pQT) + aﬁf(x7 u*)[quaﬁ +p¢6b + ﬁqbab ) 7¢+ L2

(2.24)
)
+ b|b|? <_Ak (;82]”(90, w)p®P + 02 f (. ui) [Py +p¢bb]> ,w+> + h.o.t. (2.25)
)¢
(

L2
04 = O3 = (Xe(0)¢ — i@)b + bla|* (— Ak (92 f(z,us)P°p + Op f (%, us) [Pbaza + 5 + DD,

P <—Ak (;azﬂx, WP+ 02 (o, ) + p¢bb1) ,w+> +hot

L2

Vi) 2

2.26)
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2.2 Reduced Equations

Following [7, Ch. 17, Prop. 2.1], we suppress the complex conjugate equations and put our
bifurcation equations in the form

o (a7 b) _ . a . a
(@;(a, b)) - (p + ZQ) (b) + (7" + 28)5 (—b) , (2'27)

where p, ¢, r, s are polynomials in the variables N = |a|? + [b|?> and D = 6% = (|b]? — |a|?)?.
This will allow us to determine the direction of the bifurcation for both the standing and
rotating waves, whether supercritical or subcritical. We have

O1(a,b) = (Aa(0)é + i)a + f1alal® + O2alb|* + O([uo|* + |uo|* - |w| + |w]?),
with
6; = <—Ak (;af; flz,u)p*D + 05 f (z, us) [pdaz + p¢aa]> : ¢+>L2 ; (2.28)
02 = (—AR(05 f (2, u)p°P + 02 f (@, u) [Py + PG + PPab)), V) L2- (2.29)
Since we can write |a[? = $N — 1§ and [b> = 1N + 14, this gives us the leading order form

91+02N+92_015].
2 2

@1 ~a |:)\5(0)5 + 1w +

Using this, we can deduce the leading order forms of the polynomials p, g, r, and s as

p~ pe(0)c + Re <01_£92) N, (2.30)
q~ @+ £z(0)é + Im (01 —; 92) N, (2.31)
r ~ Re <02 g 91) : (2.32)

s~ Im (92 ; 91) . (2.33)

However this selection of p, g, r, and s must also hold for ©3. ©3 can be written similarly to
© as
O3 ~ b [Ae(0)¢ + i@ + mi|al® + ma2|b[*] =

=b [ X:(0)c + iw +

n +n2 N — 12
N )
2 Tt ]

with 7; and 7y being the appropriate inner products from O3 in (2.25). We can perform
similar assignments as above to get forms for p, q,r, and s in terms of n; and 7.

We claim that oz = ¢ @5 = Pav, and daa = Ppp. Then it follows that 7o = 61 and 1 = 6,
S
and hence that 01 + 0 = 11 + 1y and 6 — 6 = 11 — 12, which in turn shows that <61> can

3
be written in the form (2.27). We show the claimed equalities next.

14



2.2.1  Gua = Oy

Returning to equations (2.8) and (2.15), we note that ¢z and ¢,; solve the same equation
and hence are equal since the equations can be solved uniquely.

2.2.2  ¢,; = b

Here we compare (2.10) and (2.12). Recall we have Lv = w,0;v + Ap(Agv + Oy f (2, us)v) —
¢x0zv. From (2.10) we have

Ak(Ake%yqbag + auf(ﬂj‘, u*)e%ygbag) — C*ﬁmemyd)ag =

= 0 (GORA )P )

We then note that because we have functions e*¥¢_; and e*¥|p(x)|?, the Laplacian becomes
A =02+ k28§ = 02 — 4k?. Dividing by ¥, this leaves us with

(07 — 4k*)((0F — 4k*) 5 + Ouf (m,us) b 5) — €202 5 =

:%@H—%x%ﬂ%wM@W)

For (2.12), note that again the Laplacian becomes Ay = 9% — 4k? because of the form of the
functions. Evaluating the y dependence and dividing by e 2%, we find:

(0% — 4K*)((9% — 4K*)dap + Ouf (2, ) bap) — CxOpbap =

= —%(&% — 4k (02 f (z,us)|p(x)[?) = %(4]?2 — 02)(0; f (z, u) |p(z) ).

then we can see that ¢ ; and ¢g, solve the same equation. Thus they are equal by the same
reasoning as before.

2.2.3  Paa = Do

This follows a similar procedure as the previous case, though now there is dependence on 7.
We can show that ¢,, and ¢y, solve the same equation, and thus must be equal. Thus we
have shown that 1y = #; and A2 = 1;, and so we can assign the polynomials p, q,r, and s as
desired.

2.3 Bifurcations

With our bifurcation equation in the desired form, we can now conclude the existence of the
desired solutions and determine the bifurcation directions from the front solution wus. The
results of [7, Ch. 17] readily give the existence of the pair of bifurcating solution branches,
solving for € as a function of the solution amplitude. Furthermore, all that is required to
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determine the direction of bifurcation is %(0) and r(0), where p and r are the polynomials

from the normal form. Straightforward calculation gives

pn(0) = Re <91;02> =1, 7(0)=Re <92;91> =: B.

Using these, we can then determine the direction of bifurcation of the two branches of solu-
tions. If & < 0 and 8 > 0, then both solution branches bifurcate as ¢ moves below c¢,, which
we refer to as a type 1 bifurcation. In contrast, if @« > 0 and S < 0, then both branches
bifurcate to the right, which we will call a type 3 bifurcation.

If o, B > 0, then we must consider two cases: o < f and o > 3. If a > (3, then both branches
bifurcate to the right, a type 3 bifurcation. If o < (3, then rotating waves, corresponding
to oblique stripes, bifurcate to the left, and standing waves, corresponding to checkerboard
patterns, to the right, a type 2 bifurcation.

If a, 8 < 0, then we again must consider two cases: a < f§ and a > . If a < 3, then both
branches bifurcate to the left, a type 1 bifurcation. If a > 3, the standing waves bifurcate
to the left, and rotating waves to the right, a type 4 bifurcation.

[ull Iyl Iyl
s s s g Hull

R R / R R

¢ c c c

Figure 2.1: Here we see examples of all the different bifurcations possible: Type 1 (left), Type 2 (second),
Type 3 (third), and Type 4 (right). S represents the branch of standing waves (checkerboard patterns), and R
denotes the rotating waves (oblique stripe patterns). Here ¢ is our bifurcation parameter, the quench speed,
and ||u|| is an L? norm.

2.4 Leading Order Forms of the Solutions

Using the decomposition v = ug + w, and the fact that w is higher order, we obtain the
following expansion for the full patterned front solution

u = u, + (aPy +aP_ +bQy +0Q_) + O(lal* + |b?).

Following [7, Ch. 17, Sec. 3], in order to find zeros of the normal form (2.27) it suffices
to take the real representatives from the O(2) x S'-orbit of solutions and thus restrict to
a,b € R. Here rotating waves correspond to a > b = 0, arising from the isotropy subgroup
SO(2) = {(6,6) | 6 € S'}, while standing waves correspond to a = b > 0, arising from the
isotropy subgroup Zs @ Z5. Using this information, we can determine the particular leading
order form for both the rotating and standing waves, again which correspond to oblique and
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checkerboard patterns. This gives the solution forms

Uos = Ux + a(Py 4+ P_) + O(|al?)

= uy + 2aRe (ei(”y)p(x» + O(Jal?), (2.34)
Ueh = s + (aPy + aP- + aQy + aQ-) + O(|al?)
= u, + 4dacos(y)Re (e""p(z)) + O(|al?). (2.35)

The expansions for the bifurcation parameter in terms of the amplitude, Equations (1.11)
and (1.12), come from [7, Ch. 17, Sec. 3|. This concludes the proof of Theorem 1.

3 Example

In this section, we lay out an explicit example of a nonlinearity and heterogeneity which
give rise to such bifurcations. We will show using both rigorous and numerical evidence that
these satisfy our hypotheses in Section 3.1, and we numerically determine the direction of the
bifurcation in Section 3.2. In Section 3.3 we examine what happens as we vary the transverse
wavenumber k.

3.1 Nonlinearity and Heterogeneity

We fix k = % and define the nonlinearity

f(z —ct,u) = h(z — ct)u + yu® — u®, (3.1)
with top-hat heterogeneity
h(Z) = tanh(§(Z — K)) tanh(—4(Z + K)), (3.2)

and § > 1 and K large. In our numerics, described below, we set 6 = 5 and K = 107.
To understand this nonlinearity, we briefly discuss free invasion fronts in the unquenched,
homogeneous coefficient nonlinearity

f(u) = u+yu® —uP. (3.3)

In the regime v < 0, invasion fronts into the unstable state u = 0 are determined by linear
information of the state ahead of the front, and are known as pulled fronts. In the regime
v > 1, fronts are governed by the strong nonlinear growth and travel faster than the linear
information ahead of the front predicts, commonly referred to as pushed fronts. An example
of such behavior can be found in [5], and more detail can be found in [20, Sec. 2.6].

We now verify that equation (1.4) with nonlinearity (3.1) satisfies our hypotheses. Clearly f
is smooth in both z and u and, as z — +o0, fi(u) = —u + yu® — v’ with the appropriate
convergence rate. Thus Hypothesis 1.1 is satisfied.

For Hypothesis 1.2, our primary front will be the trivial solution u, = 0.
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For the spectral assumptions, Hypotheses 1.3 - 1.6, we first note that essential spectrum of
the linearized operator

Lv = —Ap(Apv + 0u f (2, us)v) 4 030

can be calculated explicitly. We insert the ansatz u(z,y,7) = eATTVEHY into the linearized
equation, vy = Lv with h = —1, to obtain the dispersion relation
A\ vk, 0 c) = —(v2 — K2)[(V? = E*02) — 1] + v — A (3.4)

To determine the essential spectrum (on a space which is not exponentially weighted), we
solve d(A,im) = 0 for X in terms of m and all parameters, obtaining

Yess = {—(—m?* — K203 [(—m? — K*?) — 1] +icm | m € R}. (3.5)

Computation of such curves readily gives that the essential spectrum is contained in the
left half-plane, and only touches the imaginary axis in a quadratic tangency at the origin.
Furthermore, one can readily calculate that the real part of the numerical point spectrum
corresponding to Y.ss also does not vary with c. Hence there is no resonant essential spectrum
away from A = 0 for ¢ near the Hopf point.

We study point spectrum numerically. We truncate the linear operator
Lv = —Ap(Agv + Oy f (2, us)v) + 400,

to a bounded computational domain (x,y) € [-M, M| x [0, 27) with periodic boundary condi-
tions, discretize it spectrally, and evaluate it using the Fast Fourier Transform. Approximate
eigenvalues and eigenfunctions are then calculated using the MATLAB command ‘eigs’. See
Figure 3.1 for a depiction of the numerical spectrum near the bifurcation speed. Here, as the
system possesses periodic boundary conditions, the work [17] implies that the point spectrum
of the truncated operator accumulate onto the essential and point spectrum of the unbounded
domain operator as M — +oo. We thus conjugate the operator with an exponential weight
which pushes the essential spectrum X.ss into the left half-plane, leaving only numerical
eigenvalues which approximate the point spectrum of the unbounded domain operator. In
the exponentially weighted case, there are no eigenvalues at 0 due to the lack of translation
symmetry in z and that the front w, is trivial. This gives Hypothesis 1.3.

In numerically solving for the spectrum of the operator L, we are able to also find discretized
approximations of eigenfunctions. Three such eigenfunctions are shown in Figure 3.2 left.
The first eigenfunction corresponds to the patterns found in one dimension and comes from
the most unstable branch, which reaches furthest into the right half-plane. The other two
eigenfunctions, which are transversely modulated, correspond to the rightmost eigenvalues of
the next most unstable branch. Varying ¢, we find the corresponding eigenvalues cross the
imaginary axis generically for some unique c,. Thus we can see numerically that there is
an isolated pair of generic Hopf eigenvalues with algebraic and geometric multiplicity two,
crossing at some non-zero speed c,, indicating that Hypothesis 1.5 is satisfied; see Figure 3.2
center.
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Figure 3.1: 100 eigenvalues (dots) of the discretized and exponentially conjugated operator nearest the origin
at approximately the time of bifurcation with k& = 1/2 and exponential weight n = 0.2. Overlaid are the
essential spectrum of the weighted operator on an unbounded domain (solid curve), and the absolute spectrum
(dashed curves).

~ Re(n)

Figure 3.2: (Left) Eigenfunctions: one depicting vertical stripes, and two others depicting transverse patterns.
(Center) The real parts of the first 10 unstable eigenvalues varying with ¢, indicating leading order Hopf
bifurcation locations. (Right) The real part of the branch points of the absolute spectrum varying with ¢. The
£ =1 (lower) branch is neutral at ¢, ~ 1.35, and the £ = 0 (upper) branch is neutral at ¢. =~ 1.6.
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Moving back to the unbounded domain problem, with x € R, we note that for K large, point
spectrum can be located by computing the absolute spectrum [16] of the plateau state, where
h = 1. Indeed, the work of [18] implies that all but finitely many of the point spectrum of L,
posed on the unbounded domain, accumulate onto the absolute spectrum of the trivial state
with h = 1 with rate O(1/K?) as K — +oo. Hence branch points of the absolute spectrum
give leading-order predictions for the onset of instabilities.

To compute the absolute spectrum, we once again use the linear dispersion relation. For each
¢ € Z, we seek curves (A(7),v(7)), v € R, which solve d(\,v; k, ¢, c) = d(\, v +iv;k, ¢, c) = 0;
see Figure 3.1 for computations using Mathematica. Branch points of the absolute spectrum
can then be located by evaluating solutions at v = 0. As c is decreased, we find that the
branch points destabilize. In Figure 3.1, the most unstable dashed line corresponds to ¢ = 0,
and the next most unstable dashed line to £ = +1. We can see from the figures that as
the quench speed c is decreased, the £ = 0 mode, corresponding to the y-independent mode,
bifurcates first, followed by the ¢ = £1 transverse modes. Plotting ¢ versus Re(A(0)) we find
good agreement with the numerical eigenvalues.

Further, we can compute the speeds at which these branch points will cross the imaginary axis
using the linear spreading speed calculations of [20, Sec. 2.11]. Linear spreading speeds for the
homogeneous system with h = 1 can be obtained in the 2D channel by Fourier decomposing
in 3 and studying the spreading speed for each transverse modulation ¢*¥, ¢ € Z. We obtain
the following family of linearized equations

Orv = — (9% — K2)[(8? — K22 + 0], (e, (3.6)

Expanding this with k& = 1/2, [20] gives the £ = 0 and ¢ = +1 linear spreading speeds
respectively as

Cx = 1.347...

0= 3\2/6(2 +VH(VT-1DY2=1622.., coq= 3\7/§
We find branch points for |[¢| > 1 lie in the open left half-plane and are bounded away from
the imaginary axis for speeds ¢ near the transverse Hopf speed c, ;1 = 1.347.... Since we have
control of all other branch points near the transverse Hopf-speed ¢, 1 = 1.347, we can conclude
strong numerical evidence that no other resonant point spectra bifurcate at the same c as
the Hopf-instability. This, along with our numerical computations and the discussion on the
essential spectrum above, indicates Hypothesis 1.6 also holds.

3.2 Bifurcations

Calculation of the bifurcation coefficients 1 and 65, and thus the direction of bifurcation,
requires evaluation of the eigenfunctions, the corresponding adjoint eigenfunctions, as well as
the evaluation of wu, in the derivatives of f (which is trivial in this case). Instead of expanding
these coefficients theoretically, we instead investigate the direction of bifurcation numerically.

Using the transverse eigenfunctions described in Figure 3.2 above as initial conditions, we
use direct numerical simulation, with spectral discretization in space and a Crank-Nicholson
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method in time, to simulate the bifurcated nonlinear states. We then continue these solutions
adiabatically, varying ¢ and letting the end-time solution of the previous ¢ value relax to a
steady state for the new ¢ value before incrementing again. This is done for both v = —1
and v = 2, the difference of which we find as being mediation between super- and subcritical

bifurcations of standing and rotating waves. In doing so, we produce Figure 3.3. As these are
direct numerical solutions, only locally stable states are observed.
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Figure 3.3: Numerical bifurcation diagram depicting the branching for both the pushed and pulled nonlinear-
ities.

For the v = —1, or pulled, case, we note that there is bifurcation around ¢ = 1.4 where the L?
norm of the solution u begins branching off from 0. We would expect that the pushed case,
here v = 2, would bifurcate from the same point, around ¢ = 1.4, with unstable subcritical
branch bifurcating in ¢ > 1.4. While not observed, we expect this branch to continue up to
some ¢ where it hits a fold point connecting with the large-amplitude nonlinear state observed

in our numerics. We also remark that the adiabatic continuations given by Figure 3.3 indicate
that the folds for checkerboard and oblique stripes occur at different speeds.

3.3 Varying k&

We now wish to explore what happens as we vary the parameter k, which controls the vertical
wavenumber of patterns. To do this, we vary k between 0 and 0.9 and find the 100 eigenvalues

closest to 0 for a fixed speed, ¢ = 1.2. We then find the most unstable (or least stable)
transverse mode and plot its real part against k. In doing so, we obtain Figure 3.4 left.

For ¢ fixed positive, we find that as k increases, and thus the vertical period decreases, the
transverse mode stabilizes, indicating that no transverse patterns arise and that the transverse
Hopf location happens for smaller speeds ¢. In Figure 3.4 right, we depict the numerical

spectrum for k = 94/99, observing that the transverse branches of spectrum have moved to
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Figure 3.4: (Left) The real parts of the transverse eigenvalues as k varies in [0,0.9]. (Right) The spectrum
with transverse wavenumber k = 94/99 at speed ¢ = 1.2 with exponential weight n = 0.2.

the left of the essential spectrum, which itself is shifted due to the exponential weight.

4 Discussion

We have shown in Section 2 that, in the wake of a quench, the 2-dimensional Cahn-Hilliard
equation can produce a pair of one-parameter families of time- and y-periodic solutions bifur-
cating from a given front solution under Hypotheses 1.1-1.6. Our results give leading-order
forms for these solution families as well as computable formulas for the bifurcation coeffi-
cients, allowing the determination of the bifurcation direction. In Section 3, we have given
an explicit example of this behavior, and shown numerically what happens as the vertical
wavenumber k increases.

There are several avenues of subsequent inquiry which could follow from our work. First of all,
one naturally would wish to study how the local bifurcating branches established here continue
globally in the quench speed ¢ and the vertical wavenumber k. Indeed in the subcritical pushed
case, 7 > 1, considered in Section 3, one would seek to locate the secondary fold bifurcation
to the large amplitude nonlinear states. We expect such a location to be mediated by the
interaction of the oscillatory tail of the patterned state with the quenching interface [5]. Next
it would be of interest to study pattern selection in a domain with large y period (i.e., k — 0T)
where possibly several transverse modes can be excited. We expect the mode with the largest
period to bifurcate first, but it would be interesting to see if subsequent bifurcations of higher
harmonics lead to multi-mode interactions or defect nucleation.

In another direction, one could seek to establish transverse patterns where the spinodally
unstable region is unbounded and bifurcating solutions are asymptotically periodic as x —
—o0, for example taking a step-function like quench h(Z) = — tanh(0z) in (3.1). One possible
approach would be to first consider a heterogeneity of the form hx (z) = tanh(0Z) tanh(—d(Z+
K)), covered by our hypotheses, and take the large plateau limit K — 400 to establish a full
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pattern forming front.

Next, there are several unanswered questions on stability of such fronts. Indeed, the stability
of the parallel striped fronts, posed in either 1- or 2-dimensional spatial domains, has not been
established. We expect a reduced stability principle [11] to provide a relatively straightforward
approach to establishing stability in one dimension. Moving to the transversely modulated
patterns studied in this work, one cannot use such reduced stability principles as the trivial
state from which they bifurcate is already unstable due to the parallel striped Hopf instability.
Hence we expect the transverse patterns to be unstable or metastable near the bifurcation
point. Indeed, since we do observe these patterns numerically, it would be of interest to
understand how initial conditions starting near the transverse patterns dynamically evolve,
and how or whether they converge to another state such as the parallel striped fronts for long
times. It would also be of interest to periodically extend both the parallel and transverse
patterns in y € R and consider stability to localized L?(R?) perturbations.

A Fredholm Properties

In this appendix, we provide the proof of Proposition 2.1. The general approach will be to
apply an abstract closed range lemma to the linear operator and its X'-adjoint to obtain that
the linearization £ is Fredholm. We then compute its index via a Fourier decomposition in
7 and y. To begin, for J > 0, let X'(J) and Y(J) denote the spaces of functions, in X and )
respectively, which have z-support in the interval [—J, J]. Since the embedding Y(J) < X (J)
is compact, we have the following:

Lemma A.1. There exist constants C > 0 and J > 0 such that the operator L as defined in
Section 2 satisfies

1€lly < CUIEllxe + [1£€ENlx),  £€ ). (A1)

Proof. We remark that the proof of this result follows a similar approach as [4, Lem. 2.3]
but we include it for completeness. Throughout C' > 0 will be a changing constant, possibly
dependent on the weight n, the front u,, parameters c,w, and the nonlinearity f, but not &.

Step 1: We begin by proving that the estimate holds for J = co. Assume for the moment
that we have the exponential weight n = 0. Then

1£€]|20 = 1107 + ARl — | Aw(Ouf (2, 1)€) — s |- (A.2)

Since f and wu, are smooth, we have for all ¢ > 0

[Ak(Ouf (2, ux)§) — cx0u€lx < ClIE]l 2 rx,x)

< ClEl - el e mr.x)
1
< C(elléll e, x) + £||f||X)~ (A.3)
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By combining the two inequalities, we see that for e sufficiently small

C
12€lle + el = 107 + ADEx = Celléllmaxr.x)
> Chlélly- (A.4)

For 1 > 0, one follows a similar procedure with the conjugated operator £, := @) Le—nle),
Additional terms which arise from the conjugation are small because the weight 7 is small.

Step 2: Next, we wish to show that the estimate holds for the constant coefficient operators

L€ = we0:& + Ap(Apé + fL(us)f) — cu0x€. (A.5)

Again, we must work with the conjugated operators L4 , := @ Le= @) If Lin€ =h,
then by taking the Fourier transform in z,y, and 7 we see that

h(i¢,ix.ip) =
[ipw- —i(C = me+ (C=m)? + K3 = ((C =) + k32) fius)| (i ixsip),  (A6)
(eR,x,pe.

By Hypothesis 1.6, for 7 > 0 the essential spectrum of the time-independent portion of the
operator will not intersect iw,Z. Thus both equations L. ;,{ = h are invertible, and thus so
are their Fourier transforms. Using this, we get

€ = lipwe —i(C —mes + (=0 + K7 = ((C=0)® + B fawe)]Mhe (AT
The coefficient on the right-hand side must be bounded by our assumptions, and so we have

I1€]ly < sup |lipws — i(C = m)ex + (€= + B2 = ((C—n)* + KX i (u)] 7 1A 2
XoHP

= C||Lx €l x- (A-8)

By Plancherel’s Theorem, this gives us ||£]|y < C||L+€] x-

Step 3: Finally, we seek to complete the proof by using the estimates previously established
to perform a patching argument. For J > 1, let £+ € ) be such that £+ (z,y) = 0 for all
x < J—1and £ (x,y) = 0 for all x > 1 — J. The exponential convergence rates from
Hypotheses 1.1 and 1.2 as x — 400 give the following: for every ¢ > 0 there is some J > 0
sufficiently large such that

I(£s = L)EF || < ell€™ N m2nr, x)- (A.9)

From this and the estimate from Step 2, we get that

5]y < CllLLE* ]
< C(I(Ls = L)EFx + L7 2)
< C(ellEF |z, x) + I1£E5]2)- (A.10)
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Choosing € < %, we see that
IE= 1y < ClILES - (A.11)

Next we consider an element £ € ) with £ = 0 for all |x| < J — 1. Then, we can decompose
£ =¢+ ¢, where

§+: f(.%'), Q?ZO &7: 07 JUZO
0, z<0’ E(x), =<0

Applying estimate (A.11) and the triangle inequality, we obtain

€3 < XI5 + e 13
< O(ILe 3 + Ice11%)
< O(llcellz + l1£€l%) = ClILEll%- (A.12)
Lastly, for a general £ € ), we choose a smooth bump function 8 such that 5 = 1 when

|z| < J—1and 8 =0 for |x| > J. From the triangle inequality (first line), the results of Step
1 (second line), and estimate (A.12) (second line), we see that

1€lly < 18¢lly + (1 = B)Elly
< C(1BEllx + 1L x + [1£((1 = B x)
< Ol + l1£€11x)-

We then have the following corollary:

Corollary A.2. L has closed range and finite dimensional kernel.

Proof. Since the embedding Y(J) < X(J) is compact, we have that the identity operator is
compact. Then, the proof follows by applying an abstract closed range lemma, such as in [19,
Ch. 6, Prop 6.7]. O

We can define the L2-adjoint by integration by parts, finding £* = —w, 0, +A2+0, f (z, u) A+
c+0y. Since we wish to work with exponentially weighted spaces, we must define the L,QI
adjoint. This is done by once again working with conjugated operators posed on L?. Recall
the conjugated operator £, posed on L?, is given by £, := @) L=} Because of this, we
have

(Lyu,v)p2 = (" @) Loy v) 2 =

2T 2w
=12 / / / @) £ (e @y vdadydr =
2

27 27
=1 2/ / / £* (0" dzdydr =
T

= (u, e ") L* M@y = (u, L nU) X (A.13)
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and hence

/;:; — @) pron(@)

Hence £* is defined on a weighted L? space with weight e~*). This conjugated operator can
be run through the same estimates as in Lemma A.1 for n sufficiently small, and we reach
the conclusion of the corollary. Thus £ : )Y — X is a Fredholm operator.

To find the Fredholm index, we first form the Fourier series in 7 and y to get

u(x,y,7) = Z ewﬂewyy@gﬂgy (x), (A.14)
0 by

Where f&gﬂgy € L%(]R), as well as the decomposition of X as @ZT,Zy Xy, 0, where Xy, =
{eiTeltviy 4 (x), |t ., € L7(R)}; see [1] for more detail. This induces a decomposition
of Yas) = GBET,&, YNXy, e, = EBZT,@U Vi, 0, We then define

Lo, Vo, C X, — Xopp,
i (07 — K202 — K*0) i + Oy f (2, u,) 1] — (c20z + iwily) .

We first organize this decomposition into three subspaces, X0, @I Orl=1,t, =1 X, ¢, and their

complement, X = XLO D X071 D X2,1 D XLQ (o) <@‘€y‘7|€_r‘22 ngg_r), in X.

Lemma A.3. ind Lop = —1.

Proof. Recall, Log = 02[02 + Ouf(x,us)] — 0y = —L = —d, o L, where L := —0,(82 +
Ouf(z,uy)) + ¢« converges to the constant coefficient operators Ly as z — 00 by our hy-
potheses. For ¢ > 0, each of the polynomials v® + f} (ux)v — ¢ = 0 has two positive roots
and one negative root. Thus the difference between the number of unstable eigenvalues is

zero and so L has Fredholm index 0. Then since &, has Fredholm index -1, we have that
ind 5010 = —1. ]

Lemma A.4. For |(;]| = |{,| =1, ind Ly, ¢, = 0.

Proof. There are four index pairs considered here, depending on the signs of ¢, and ¢,. We
only show the case £; = £, = 1, as the other three cases follow the same reasoning. Here we
have

L11 = (02— E))[(0% — k) 4 Ouf(,us)] — 0z + iwi0y = —L1 1 + iwsOr

with the spatial operator Li; = —(82 — k*)[(02 — k?) + Ouf(z,us)] + cx0;. Hypothesis
1.5 implies that L;; has a eigenvalue A = iw with one-dimensional eigenspace spanned by
e!W+T)p(z), and similarly for the adjoint L7, for the eigenvalue —iw,; see [10, section 1.5.5].
Thus the kernel of both £y and its adjoint operator L7, is one-dimensional and hence
indL11 =0. O

Lemma A.5. Defining Ly, := E‘Xh, we have ind Ly, = 0.
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Proof. First, we recall that for A € iZ\{+tiws,0}, L — A and thus L* — X is invertible. This
implies that for any £, € Z\{0,£1} and ¢, € Z, that ind Ly, ¢, = 0.

Next, operators Ly, ¢, with £ = 0 also have index 0 due to Hypothesis 1.3 which gives that
A = 0 is not in the extended point spectrum. Finally, operators with ¢, = £1 but |¢,| # 1
have index 0 due to Hypothesis 1.5 which gives that the Hopf eigenfunctions lie in the ¢, = +1
subspaces. ]

Combining the above Lemmas, we use standard Fredholm algebra results [19] to conclude

Proposition A.6. indL=—1 for L:)Y — X.

Now we consider a closed subset defined X := {u € X|(u,e 21}, = 0}. We note that for
any exponential weight n > 0 and for any u € X

1 2 2 (%s) 1 2 2w 00
(u, e—2n<x>>X =2 / / u(a:,y,T)e_2"<x>62"<x>d$dyd7' = — / / u(x,y, 7)dxdydr
™ Jo 0 —00 0 —c0

2
47T 0

For any v = Lu,u € Y we have (v,e27%)) »=0 by integration by parts, and so v € X. Thus
we have that £ maps ) into X. Finally, by composing £ : J — X with the index 1 orthogonal
projection P : X — X , Fredholm algebra gives that £:) — X has Fredholm index 0.

This concludes the proof of Proposition 2.1.

B Hopf Bifurcation with O(2) symmetry

The contents of this section can be found in detail in [7, Ch. 16]. As was stated in the
hypotheses, the presence of symmetry forces generic Hopf eigenvalues to have algebraic and
geometric multiplicity 2. Hence an equivariant Hopf theorem is needed. In this appendix, we
lay out an introduction to this theorem.

Suppose we have a bifurcation problem with [-symmetry, i.e., we have
Oru+ G(u;e) =0

where G : R" x R — R", and G(vy - u;¢) = v- G(u;c) for v € I', with ¢ being our bifurcation
parameter. We say that the space R" is I'-simple if either of the following conditions holds:
(1) we can write R” =V @ V for some subspace V where linear mappings F' : V' — V such
that

F(y-v)=~-Fw),YveV,yel

are multiples of the identity (called absolutely irreducible), or (2) R™ is such that the only I'-
invariant subspaces are {0} and R™, but it does not meet condition (1) (called non-absolutely
irreducible).

Lemma B.1. Suppose that R™ is I'-simple, that G commutes with the action of I', and that
(dG)o0 has i as an eigenvalue. Then
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(a) The eigenvalues of (dQ)o.c consist of a complex conjugate pair ju(c) £ ik(c), each of mul-
tiplicity m = n/2. Moreover, u and r are smooth functions of c.

(b) There is an invertible linear map S : R™ — R"™, commuting with T", such that

0 -1
(dG)o.0 = STS™H where J = .
’ I, 0
For a proof, see [7, Ch. 16]. Lemma B.1(a) gives that eigenvalues of multiplicity m cross with
nonzero speed. For m > 1, an extension of the standard Hopf theorem is needed.

The amount of symmetry present in a solution u to the system is measured by the isotropy
subgroup
Yu={ocel|o-u=u}.

We also have the space of solutions fixed by the isotropy subgroups,
Fix(Xy) ={veR"|c-v=v Vo€ X,}.
Using these, we then have the following theorem:

Theorem 2. Let ¥, be an isotropy subgroup of a group I' such that dim Fix(X,) = 2. Assume
that
(dG)oo = J

meaning that I' acts absolutely irreducibly. Further assume that the eigenvalue crossing con-
dition 1/(0) # 0 holds. Then there is a unique branch of small-amplitude periodic solutions

to the bifurcation problem of period near 2m whose spatial symmetries are given by 3.

For a proof, see [7, Ch. 16]. Because this theorem has found solutions which are periodic in
time, the symmetry group of the solutions is not just ¥,, but 3, x S', taking into account
the time translation symmetry. This tells us that the full group of symmetries of the problem
will be I" x S, which now not only accounts for the spatial symmetries, but also the temporal
periodicity.

In our problem of the Cahn-Hilliard equation in two dimensions we note that from the reduced
equations achieved by the Lyapunov-Schmidt reduction, our bifurcation equation becomes real
four dimensional (considering @ to be constant and taking ¢ as our bifurcation parameter),
mapping R* x R — R* Thus we have n = 4, and hence m = 2. Additionally, there are
two different symmetries in the transverse spatial variable: the translation symmetry which
corresponds to rotations, and the y-reflection symmetry, which corresponds to the standing
waves. Thus we have the symmetry group I' = O(2) in our case, and we must consider the
isotropy subgroups of O(2) x S*.

Notably, there are two maximal isotropy subgroups of O(2) x S!: one corresponding to
rotations denoted SO(2) = {(6,6) | & € S'}, and one corresponding to reflections denoted
Zy @ Z5. The rotation corresponds to rotating waves, which appear as oblique stripes. The
reflection corresponds to standing waves, which appear as checkerboard patterns.
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