
Improving GPU Throughput through Parallel
Execution Using Tensor Cores and CUDA Cores

Khoa Ho, Hui Zhao, Adwait Jog∗, and Saraju Mohanty
Department of Computer Science and Engineering, University of North Texas

∗Department of Computer Science, William & Mary

khoaho@my.unt.edu, hui.zhao@unt.edu, ajog@wm.edu, saraju.mohanty@unt.edu,

Abstract—To accelerate the execution of Machine Learning
applications, recent GPUs use Tensor cores to speed up the
general matrix multiplication (GEMM), which is the heart of
deep learning. The Streaming Processors in such GPUs also
contain CUDA cores to implement general computations. While
the Tensor cores can significantly improve the performance of
GEMM, the CUDA cores remain idle when Tensor cores are
running. This leads to inefficient resource utilization. In this
work, we propose to offload part of the GEMM operations from
Tensor cores to CUDA cores to fully utilize GPU resources.
We investigated the performance bottleneck in such offloading
schemes and proposed architectural optimization to maximize the
GPU throughput. Our technique is purely hardware-based and
does not require a new compiler or other software support. Our
evaluation results show that the proposed scheme can improve
performance by 19% at the maximum.

Index Terms—Accelerator, GPU, Machine Learning, Tensor
core, GEMM, throughput, parallel scheduling

I. INTRODUCTION

In recent years, GPUs have become one of the most widely

used accelerators for deep learning, especially following

NVIDIA’s introduction of Tensor cores in the Volta GPU

architecture [1], [16], [22] in 2017. Today, multiple NVIDIA’s

GPU architectures support Tensor cores, including Volta [1],

Turing [3], and Ampere [4]. By trading off some precision,

Tensor cores can achieve an order of magnitude of speed-up

for general matrix multiplication (GEMM) operations. This

leads to a significant acceleration in the overall performance

of neural network applications.

A GPU consists of multiple Streaming Multiprocessors

(SMs) that run CUDA kernels. For instance, there are 80

SMs in V100 and 108 SMs in A100 NVIDIA’s GPUs. Each

SM contains thousands of registers, several caches, warp

schedulers, and execution cores. CUDA cores exist in all SMs

and each CUDA core contains functional units to perform

general integer and floating-point operations. Using the V100

GPU as an example, each SM is partitioned into four sub-

cores with each sub-core having a single warp scheduler

and dispatch unit. Each SM sub-core has its dedicated L0

instruction cache and a branch unit (BRU). In every clock

cycle, a sub-core can process one warp instruction and feeds

into the shared MIO unit which contains the Texture Cache,

L1 Data Cache, and Shared Memory.

The CUDA programming model provides an abstraction of

the GPU architecture, acting as a bridge between an applica-

TABLE I
GPU SYSTEM CONFIGURATION

GPU Type Volta TitanV Turing RTX2060

Number of SMs 80 30

Number of CUDA
cores

64 per SM (64 FP32, 64
INT32, 32 FP64), 5120 to-
tal

64 per SM (64 FP32, 64
INT32, 32 FP64), 1920 to-
tal

Number of Tensor
cores

8 per SM (work in pair of
2), 640 total

8 per SM (work in pair of
2), 240 total

tion and its implementation on hardware. In a GPU, thousands

of threads can run in parallel, and a function executed by

different threads at the same time is called a kernel. A kernel

launches an array of thread blocks and each thread block

is a set of concurrently executing threads that reside in the

same SM. Once a thread block is assigned to an SM, it will

be further divided into a set of warps. Each group of 32

consecutive threads constitutes a warp which is the primary

execution unit in an SM. Each SM contains warp schedulers

that are responsible for scheduling the warps to the computing

cores.

Designed specifically for deep learning, Tensor cores are

recently introduced to NVIDIA’s GPUs to accelerate Machine

Learning/AI applications. Tensor cores enable mixed-precision

matrix multiplication and can greatly improve the performance

for neural network training and inference. For instance, a Tesla

V100 GPU has 640 Tensor cores in total, with 8 Tensor cores

in each of its 80 SMs. Such a single Tensor core can perform

64 half-precision fused-multiply–add (FMA) operations per

clock cycle. In total, the 8 Tensor cores in one V100 SM can

perform 512 FMAs per clock cycle. Table I shows the numbers

of different computing units (cores) in the Volta TitanV and

the Turing RTX2060 GPUs.

Current approaches in enhancing Tensor core’s performance

include: 1 faster next generations of Tensor cores, such as

the second and third generations in Turing [3] and Ampere

architectures [4]; 2 multiple modes of operation precision

such as F64, TF32, F16, INT8, and INT4 modes to allow for a

flexible tradeoff between precision and speed; and 3 optimiza-

tion in supporting sparse tensors [15], [17], [24]. However,

these techniques focused on Tensor cores only. In the current

NVIDIA CUDA execution model, one SM can only execute

one kernel at a time. If this is a GEMM kernel for a Machine

Learning application, the computation will be only allocated to

Tensor cores. It has been demonstrated by Zhao et al. [25] that

CUDA cores are mostly idle when Tensor cores are running,

223

2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

2159-3477/22/$31.00 ©2022 IEEE
DOI 10.1109/ISVLSI54635.2022.00051

20
22

 IE
EE

 C
om

pu
te

r S
oc

ie
ty

 A
nn

ua
l S

ym
po

siu
m

 o
n

VL
SI

 (I
SV

LS
I)

|
97

8-
1-

66
54

-6
60

5-
9/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
VL

SI
54

63
5.

20
22

.0
00

51

Authorized licensed use limited to: University of North Texas. Downloaded on May 24,2023 at 05:00:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Volta SM Sub-core Architecture [20].
*Turing uses a similar architecture with different numbers of functional units.

except for occasional light computation such as addressing.

This leads to low utilization of the hardware resources in

CUDA cores while also incurring power overheads since idling

CUDA cores still consume energy.
To solve this problem, some researchers proposed a tech-

nique to exploit intra-SM parallelism by running other HPC

kernels on CUDA cores while Tensor cores are executing

GEMM kernels [25]. However, this technique has several

limitations: firstly, compiler support is needed to modify

the programming model; secondly, separate HPC applications

running on CUDA cores need to be available to share the

same SM. Therefore, it does not work if there is only a

single machine learning application running on the GPU;

thirdly, co-running GEMM and HPC kernels contend for

shared SM resources, such as shared memory, which can cause

performance degradation in both types of applications.
In this work, we propose to improve the intra-SM resource

utilization by offloading part of GEMM kernels’ workload

from the Tensor cores to the CUDA cores. Our technique

can increase CUDA cores’ utilization and reduce the GEMM

kernel execution time, effectively increasing the GPU’s overall

throughput. This technique is a hardware-based method and

is transparent to the programmers. No compiler support or

ISA modification is needed. This technique can also avoid

the resource contention issue since only one kernel is running

in one SM. We designed the micro-architecture to support

the offloading, investigated bottlenecks in the offloading and

performed experiments to evaluate its effectiveness.

II. ARCHITECTURES FOR PARALLEL EXECUTION OF

GEMM USING TENSOR AND CUDA CORES

A. WMMA API
The warp-level matrix-multiply-and-accumulate (WMMA)

API was introduced in CUDA 9 [2] to enable the programming

of GPU Tensor cores [12]. The WMMA API allows GPU

programmers to directly use Tensor cores to perform the

computation D = A × B + C, where A, B, C, and D are tiles

of larger matrices. Threads in a warp cooperatively perform

a matrix-multiply and accumulate operation. The size of the

tile A, B, C, and D are denoted as M × N × K, where M × K

is the dimension of tile A, K × N is the dimension of tile B,

and M × N is the dimension of tile C and tile D. In CUDA 9

with PTX ISA 6.0, the fundamental tile size is 16×16×16.

PTX ISA 6.1 introduces more tile size variants, 8x32x16 and

32x8x16 [2].

There are three functions related to WMMA in the CUDA

API: load matrix sync, store matrix sync, and mma sync.

The load matrix sync and store matrix sync functions load

and store part of the input matrices into the registers, so

that each thread can access the data. The matrix multiply-

accumulate operation is performed by the mma sync func-

tion. The result is an M × N (e.g., 16 × 16) tile for the

D matrix, which is then saved in the register file. Besides

the WMMA API, NVIDIA also provides support in other

high-level programming interfaces to program Tensor cores,

including cuBLAS [6], cuDNN [7], and CUTLASS [9].

B. Offloading from Tensor cores to CUDA cores
As the CUDA cores are mostly idle during the Tensor cores’

execution of matrix multiplication instructions within the

GEMM kernels, we design an architecture to offload some

parts of the workload from the Tensor cores by translating

some of the WMMA instructions into multiple MAC instruc-

tions and sending them to be scheduled on CUDA cores –

particularly, the FP32 compute units. The number of resulting

MAC instructions will depend on the matrix-tile-size (m-n-k)

of the respective MMA instruction.

For example, an MMA instance in our experiment has a

tile size of m16n16k16, i.e., matrix multiplication of two

16x16 square tiles. The whole matrix multiplication operation

contains a total of 4096 multiply-accumulate operations. Given

that the CUDA cores execute in a SIMD model with 32

threads per warp, this MMA instruction can be translated into

4096/32 = 128 MAC warp instructions. Algorithm 1 shows

224

Authorized licensed use limited to: University of North Texas. Downloaded on May 24,2023 at 05:00:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Scheduling scenarios for Warp Scheduler with Offloading.

Fig. 3. One MMA instruction to multiple MAC instructions.

the scheduling procedure we designed to offload Tensor cores’

work to CUDA cores.

The Warp Scheduler will need two functional sub-units to

perform the offloading: a counter and an instruction translator

to translate an MMA instruction into multiple MAC instruc-

tions working on the same set of registers. Fig. 2 shows

two scenarios: one in which the Warp Scheduler schedules

an MMA instruction to the Tensor cores in the normal way,

and one in which it translates the MMA instruction and

sends the resulting MAC instructions to CUDA cores. Fig. 3

illustrates the procedure of translating an MMA instruction

into corresponding MAC instructions.

Most GEMM kernels running on Tensor cores use half-

precision data type, i.e., FP16, which is also the case in our

Cutlass benchmarks. Some newer applications, which arose

after the release of Ampere architecture, may also use the

smaller INT8 and INT4 data types that are supported by

Ampere. CUDA cores use mainly F32 and INT32 operations,

so it will need some conversion between the data types.

The conversion function is already supported in most current

GPUs. NVIDIA’s GPUs from the Pascal generation and CUDA

8 already support inherent datatype conversion within the

pipelined instruction execution, without the need for separate

data conversion operations [11]. For instance, depending on

the applications’ requirement, Pascal GPUs, which do not have

Algorithm 1: Algorithm for Warp Scheduler to offload

task from Tensor cores to CUDA cores
Input: mma inst=decoded mma instruction;

mma counter=count of mma instructions since

last offload

m, n, k = mma inst.mnk

mma latency = 64

mac latency = 4

// instructions’ latencies can change
depending on hardware architecture
version
// the used latencies are from Volta

TitanV & Turing RTX2060
configurations on GPGPU-Sim 4.0.1

threads per warp = 32

// NVIDIA has always used 32 threads
per warp

num of mac inst = (m*n*k) / threads per warp

offload rate = 1 + (num of mac inst * mac latency) /

mma latency

// in our case, with m = n = k = 16,
offload_rate = 9

if ((mma counter+1) == offload rate) &&
cuda cores is available() then

translate and issue to cuda cores(mma inst)

mma counter = 0

// reset the counter
else

issue to tensor cores(mma isnt)

if mma counter ¡ offload rate then
mma counter++

// only increase counter when
"counter < rate"

// if "counter==rate" while CUDA
fp32 pipelines are occupied, then
issue the MMA to Tensor cores but
keep the counter

end

Tensor cores, already can accept input under FP32, FP16, or

INT8 format to produce both FP32 and FP16 output without

any impact on performance.

C. Additional load-store unit
Another bottleneck in the execution of the GEMM kernels

is the long data path between global memory and shared

memory, which causes significant stall time for all computation

units, i.e., Tensor cores and CUDA cores. In the Volta and

Turing architecture, when loading data from global memory

to shared memory, the data must be first loaded into registers

before being written into shared memory. Similarly, when

writing data from shared memory back to global memory, the

data must go through the registers again. Later architectures,

starting from Ampere, resolved this issue by designing new

direct asynchronous data paths between global and shared

225

Authorized licensed use limited to: University of North Texas. Downloaded on May 24,2023 at 05:00:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Datapath between Global and Shared Memory before and after Ampere
Architecture.

memory [14]. Fig. 4 illustrates the global-shared memory data

paths in architectures before and after Ampere.

In our experiments, we found the load-store units are the

performance bottleneck in offloading tasks from Tensor cores

to CUDA cores as in the baseline design shown in Fig. 5(a).

We developed two design optimizations to relieve this bottle-

neck. In the first design, we added a common ldst-unit, which

effectively increases the bandwidth for all memory operations

as shown in Fig. 5(b). In terms of hardware, this means adding

extra data pipelines parallel to the current ones. The added

links between L1D and ldst-units will provide extra bandwidth

when data needs to flow through L1D → LDST → registers

to get to shared memory.

However, with Ampere’s new direct link between L1D

and shared memory, the extra bandwidth between L1D and

LDST may not be fully utilized. Due to this reason, we

also devised another alternative. We designed a special load-

store unit that only handles data transactions between shared

memory and registers, which is shown in Fig. 5(c). Only extra

data pipelines are needed here between shared memory and

registers. This design option is more applicable to Ampere and

later architectures because redundant pipelines are removed in

those architectures.

To implement our proposed offloading from Tensor cores,

extra hardware is needed. This include counters, an MMA

instruction converter, and extra links. Extra ldst units are also

needed if higher performance is desired and larger perfor-

mance improvement requires more complicated ldst units.

III. EVALUATION

A. Experiment Setup
We used GPGPU-Sim 4.0.1 [18] with CUDA Toolkit and

Cutlass 1.3 to simulate the proposed offloading architecture.

We have two baseline configurations that are the TitanV, which

represents Volta architecture, and the RTX2060 for Turing

Fig. 5. Load-Store Unit(s) controlling the Datapath within the SM in the
baseline and proposed architectures.

architecture. We evaluated the proposed technique against

each of their baselines separately. Table II shows the con-

figurations we used for our experiments for Volta and Turing

architectures respectively. We used the cutlass performance

test benchmark – mainly the WMMA-GEMM kernels from

Cutlass 1.3 benchmark suite [8] to evaluate the baseline and

our proposed architecture performance. GEMM kernels are the

building-blocks that carry the most weight of computations in

neural network applications. The performance improvement in

GEMM kernels’ can be used to represent that of the high-level

neural network applications.

B. Evaluation Metrics
We evaluated GEMM kernels with square-matrices of variable

size, from 128x128 to 2048x2048. The most important eval-

uation metric in our experiment is normalized performance,

which is calculated as the inverse of execution time, nor-

malized against the baseline. Another key metric we used

to evaluate the offloading architecture’s performance is the

occupancy rates of the cores. There are two different occu-

pancy measures that we evaluated: 1 occupancy as the ratio

of each core’s occupied time over the kernel’s total execution

time. A core’s “occupied time” is the time that it is executing

an instruction; and 2 the occupancy rate as the ratio of the

core’s occupied time over its “online” time. Here, “online

time” is the difference between a core’s first activated time and

its last instruction completion time. Of those two occupancy

rates, the first one is the overall evaluation of performance,

whereas the second one can provide some insights into power-

related issues. For both metrics, higher values indicate better

utilization and less wasted resources.

C. Normalized Performance of GEMM Kernels
Our evaluation results in Fig. 6 show that the offloading

architecture achieved up to 5.71% increase in normalized

performance for the Volta TitanV GPU. When combined with

an additional shared memory side ldst-unit, we can achieve

up to 13.07% performance improvement. If we replace the

shared-memory side ldst-unit with a general full ldst-unit, up

to 29.03% performance improvement can be achieved.

For Turing RTX2060, the offloading design achieved up to

9.07% improvement alone as shown in Fig. 7. Up to 17.77%

and 22.72% performance gain is observed when the shared

memory ldst-unit and full ldst-unit are applied respectively.

226

Authorized licensed use limited to: University of North Texas. Downloaded on May 24,2023 at 05:00:10 UTC from IEEE Xplore. Restrictions apply.

TABLE II
GPU SYSTEM CONFIGURATION

GPU Type Volta TitanV Turing RTX2060

Device Limit Kernel launch latency = 0 Kernel launch latency = 0

SM 80 SMs in 40 clusters, 1.2GHz, 4 sub-cores per SM 30 SMs in 30 clusters, 1.365 GHz, 4 sub-cores per SM

Warp Scheduler 4 W-Schedulers per SM (1 per sub-core), policy: Greedy-Then-Oldest 4 W-Schedulers per SM (1 per sub-core), policy: Greedy-Then-Oldest

Shared Memory 96 KB, limit 64 KB max per thread-block 64 KB, limit 64 KB max per thread-block

Cache 128 KB L1-I-Cache (64 sets/16 ways LRU) per SM, 32 KB L1-D-Cache
(1 sets/256 ways LRU) per SM, 96 KB L2-Cache for each memory sub-
partition (32 sets/24 ways LRU) (total 4.5 MB L2-Cache)

128 KB L1-I-Cache (64 sets/16 ways LRU) per SM, 64 KB L1-D-Cache
(1 sets/512 ways LRU) per SM, 128 KB L2-Cache for each memory sub-
partition (64 sets/16 ways LRU) (total 3 MB L2-Cache)

Memory Model 24 Memory Controllers with sub-partition=2, 850 MHz 12 Memory Controllers with sub-partition=2, 3.5GHz

NoC topology: fly (k=88, n=1), subnets=2, 40-byte flits, dest-tag routing, num
of VCs=1, VC buffer size=256

topology: fly (k=52, n=1), subnets=2, 40-byte flits, dest-tag routing, num
of VCs=1, VC buffer size=64

Fig. 6. Normalized Performance on GEMM Kernels – Volta TitanV.

For the TitanV GPU, the proposed offloading architecture

improved performance on average by 4.5%, 10.86%, and

21.16% respectively with no extra ldst-unit, with an extra

shared memory ldst-unit, and with a full ldst-unit respectively.

For the RTX2060 GPU, the corresponding performance gain

is 7.27%, 13.53%, and 18.25%.

We also observed more performance gain when offloading is

combined with each kind of the ldst-units as compared with

the sum of performance gain from applying the techniques

individually. For instance, on the TitanV configuration, the

improvement is 12.75% for adding a full ldst-unit and 4.50%

for offloading respectively. Therefore, the total improvement

is 17.82%. However, combining those two techniques at the

same time can improve the performance by 21.16%. This

indicates the combination of two techniques can provide more

opportunities to improve resource utilization.

D. Utilization of CUDA cores during GEMM Execution
Fig. 8 and 9 show the occupancy rates for CUDA cores under

the baseline and under the proposed offloading schemes. We

observed that the baseline systems’ CUDA cores (FP32/SP-

units and their pipelines) have a utilization rate close to zero.

For larger matrices and longer kernels, this number gets even

smaller. We also observe that the CUDA cores’ occupancy

over its online time can vary a lot depending on the number

of “rounds” the selected SM needs to work during the GEMM

kernel execution. For larger kernels, the SMs do not have

enough resources to complete all tasks in one round, and they

need to split the tasks into multiple rounds.

The SMs first activate their SP-units (CUDA cores) near

the end of their first round of execution for a small workload

Fig. 7. Normalized Performance on GEMM Kernels – Turing RTX2060.

– most likely to support the Tensor cores in finalizing their

work. However, if the SM has a second round of tasks, the

SP-units will stay online and remain idle through most of the

second round. If the SM has multiple rounds to execute, the

SP-units’ idle time will keep increasing while the occupancy

rate will keep dropping to near zero.

For our proposed offloading design and with the additional

load-store unit, both occupancy measures for the CUDA

cores increase significantly. In particular, the CUDA cores’

utilization jumped from near-zero to as high as 83.06% for

the TitanV, and 94.34% for the RTX2060, with an average

of 73.44%, and 72.76% respectively. The CUDA cores’ occu-

pancy over their online time also increases significantly, to as

high as 97.07% for TitanV, and 95.95% for RTX2060, with

an average of 92.62% and 91.11%. That is because the SMs

activate their CUDA cores earlier in our design, instead of near

the end of their first work round. The CUDA cores are also

able to load more instructions to keep executing throughout

most of their online time.

IV. RELATED WORK

There have been plenty of works on improving GPU perfor-

mance [10], [25]–[27]. To improve GPU throughput, Adriaens

et al. explored spatial multitasking and proposed to partition

GPU stream multiprocessors (SM) among different applica-

tions. Their technique works at the inter-SM level [26]. For

intra-SM optimization, Zhao et al. explored the opportunity to

take advantage of the idling and underutilized CUDA cores

during Tensor cores’ execution [25].

They proposed a method to improve the utilization of

CUDA cores in parallel with Tensor cores by running a non-

227

Authorized licensed use limited to: University of North Texas. Downloaded on May 24,2023 at 05:00:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. CUDA cores’ occupancy during GEMM Kernels – Volta TitanV.

Fig. 9. CUDA cores’ occupancy during GEMM Kernels – Turing RTX2060.

GEMM kernel from a different application in parallel with the

GEMM kernel on Tensor cores.

Their technique can improve the GPU throughput. However,

their technique has limitations in applicability because it

requires different types of applications, i.e., both GEMM and

non-GEMM types. Furthermore, the multiple applications in-

volved need to have long kernels so that they can be scheduled

to run over a long period of time to offset the profiling

and scheduling overheads. This limits their techniques to be

useful to only data centers. In contrast, our approach of

offloading does not need parallel non-GEMM kernels while

still improving the GPU throughput. In addition, we do not

need compiler or software support for running multiple kernels

in the same SM.

V. CONCLUSION

In this work, we explored schemes to improve the GPU

throughput by running GEMM-based applications on Tensor

cores and CUDA cores in parallel. We proposed architecture

optimization for effective task offloading from Tensor cores

to CUDA cores when executing a GEMM kernel. Without

modifying software, our technique can achieve a performance

improvement by as much as 19.69%.

VI. ACKNOWLEDGMENTS

This work is supported in part by NSF Grants 1828105,

2046186, 2008911.

REFERENCES

[1] NVIDIA, ”NVIDIA Tesla V100 GPU Architecture,” 2017.

[2] NVIDIA, ”CUDA Toolkit Documentation v9.1,” 2018.

[3] NVIDIA, ”NVIDIA Turing GPU Architecture,” 2018.

[4] NVIDIA, ”NVIDIA A100 Tensor Core GPU Architecture,” 2020.

[5] NVIDIA, ”NVIDIA Ampere GA102 GPU Architecture,” 2020.

[6] NVIDIA Corporation, “cuBLAS Developer Guide.”
https://docs.nvidia.com/cuda/cublas/index.html, Aug 2008.

[7] NVIDIA Corporation, “cuDNN Developer Guide.”
https://docs.nvidia.com/deeplearning/sdk/cudnn-developerguide/
index.html, Aug 2014.

[8] NVIDIA, ”CUTLASS: CUDA Templates for Linear Algebra
Subroutines,” v1.3, https://github.com/accel-sim/gpu-app-
collection/tree/release/src/cuda/cutlass-bench, 2019.

[9] NVIDIA, ”CUTLASS: CUDA Templates for Linear Algebra Subrou-
tines,” v2.8, https://github.com/NVIDIA/cutlass, 2022.

[10] X. Cheng, Y. Zhao, H. Zhao and Y. Xie, ”Packet Pump: Overcoming Net-
work Bottleneck in On-Chip Interconnects for GPGPUs,” Proceedings
of the 55th ACM/ESDA/IEEE Design Automation Conference (DAC),
2018.

[11] M. Harris, ”Mixed-precision programming with CUDA 8,” NVIDIA
Developer Technical Blog, https://developer.nvidia.com/blog/mixed-
precision-programming-cuda-8, 2016.

[12] J. Appleyard and S. Yokim, ”Programming Tensor
cores in CUDA 9,” NVIDIA Developer Technical Blog,
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9,
2017.

[13] A. Kerr, T. Liu, M. Hagog, J. Demouth, and J. Tran, ”Programming
Tensor cores: Native Volta Tensor cores with CUTLASS,” NVIDIA GPU
Tech Conference (GTC), 2019.

[14] M. Tardy and C. Edwards, ”Controlling data movement to boost
performance on the NVIDIA Ampere architecture,” NVIDIA Devel-
oper Technical Blog, https://developer.nvidia.com/blog/controlling-data-
movement-to-boost-performance-on-ampere-architecture, 2020.

[15] T. Yamaguchi and F. Busato, ”Accelerating matrix multiplication with
block sparse format and NVIDIA Tensor cores,” NVIDIA Developer
Technical Blog, https://developer.nvidia.com/blog/accelerating-matrix-
multiplication-with-block-sparse-format-and-nvidia-tensor-cores, 2021.

[16] X. Cheng, H. Zhao, M. Kandemir, B. Jiang and G. Mehta, ”AMOEBA:
a coarse grained reconfigurable architecture for dynamic GPU scaling,”
Proceedings of the 34th ACM International Conference on Supercom-
puting (ICS), 2020.

[17] J. Pool, A. Sawarkar, and J. Rodge, ”Accelerating inference
with sparsity using the NVIDIA Ampere architecture and
NVIDIA TensorRT,” NVIDIA Developer Technical Blog,
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-
using-ampere-and-tensorrt, 2021.

[18] M. Raihan, N. Goli, and T. Aamodt, ”Modeling Deep Learning Accel-
erator Enabled GPUs,” IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2019.

[19] V. Kandiah et al., ”AccelWattch: A Power Modeling Framework for
Modern GPUs,” IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2021.

[20] J. Choquette, O. Giroux, and D. Foley, ”Volta: Performance and pro-
grammability,” IEEE Micro, vol. 38, no. 2, pp. 42–52, 2018.

[21] Z. Jia, M. Maggioni, B. Staiger, and D. Scarpazza, ”Dissecting the
NVIDIA Volta GPU architecture via microbenchmarking,” 2018.

[22] X. Cheng, H. Zhao, M. Kandemir, S. Mohanty and B. Jiang, ”Alleviating
Bottlenecks for DNN Execution on GPUs via Opportunistic Computing,”
Proceedings of the 21st International Symposium on Quality Electronic
Design (ISQED), 2020.

[23] Z. Jia, M. Maggioni, J. Smith, and D. Scarpazza, ”Dissecting the
NVIDIA Turing T4 GPU via microbenchmarking,” 2019.

[24] M. Zhu, T. Zhang, Z. Gu, and Y. Xie, ”Sparse Tensor core: Algorithm
and hardware co-design for vector-wise sparse neural networks on mod-
ern GPUs,” IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2019.

[25] H. Zhao, W. Cui, Q. Chen, J. Zhao, J. Leng, and M. Guo, ”Exploiting
Intra-SM Parallelism in GPUs via Persistent and Elastic Blocks,” IEEE
International Conference on Computer Design (ICCD), 2021.

[26] J. Adriaens, K. Compton, N. Kim, and M. Schulte, ”The case for
GPGPU spatial multitasking,” IEEE International Symposium on High-
Performance Comp Architecture (HPCA), 2012.

[27] X. Cheng, Y. Zhao, M. Robaei, B. Jiang, H. Zhao and J. Fang, ”A Low-
Cost and Energy-Efficient NoC Architecture for GPGPUs,” Proceedings
of the ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), 2019.

228

Authorized licensed use limited to: University of North Texas. Downloaded on May 24,2023 at 05:00:10 UTC from IEEE Xplore. Restrictions apply.

