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Abstract—GPUs are widely used in accelerating computation-
intensive applications. Performance models are important for
designing high-performance and cost-efficient GPUs. In this
work, we developed machine learning models that can accurately
predict GPU system performance. Our model can identify impor-
tant features that can provide insights to designers on the most
important hardware system parameters when executing their
applications. We also developed a model for predicting minimum
system configuration parameters based on performance. Our
model can provide system configuration recommendations for
users to meet their performance requirements.

Index Terms—GPU, performance prediction, system recom-
mendation, system parameters, system configuration

I. INTRODUCTION

General Purpose Graphics Processing Units (GPGPUs) have
become a strong challenger to the conventional workhorse
of computing, i.e., the CPUs. Nowadays, we can find GPUs
in various systems, from mobile devices to high end servers
[3], [6]-[8], [15], [16], [18]. GPUs can be either lightweight
and power efficient, or performance-centric and power hungry.
Studies have shown that changes in hardware configurations
(such as the memory capacity and number of cores) can lead to
significant changes in GPU performance. This presents chal-
lenges to customers who needs to find an optimal GPU that can
fit their performance requirements within their budget. There-
fore, it is important to develop some models for performance
prediction and system configuration recommendation that can
provide customers with some insight about the systems they
want to select.

Machine learning techniques have been used to interpret
patterns from training data and make decisions (such as classi-
fication and prediction) with reduced interaction from humans.
A machine learning model can be used to predict the system
performance and this can help with design space exploration.
Prediction of accelerator performance has been explored by
prior work [4], [12], [14], [20]. Such techniques include
analytical model-based prediction [20], source code with idiom
recognition [4], [14], and automatically constructed prediction
models [12]. Most of these approaches use performance as the
predictor output, that is, given a system configuration, they can
predict the performance. However, they do not provide more
insights about which system parameters have more significant
impact on the performance. In addition, they require a user
to have a knowledge of the system but cannot recommend a
system parameter configuration given the desired performance
from the user.
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Fig. 1. High level architecture of our proposed prediction model.

In this work, we developed machine learning methods that
can predict GPU performance, provide feature importance
analysis, and give system configuration recommendations. In
particular, we first built prediction models using SVM for GPU
performance prediction. Then, feature importance was derived
from the prediction models using random forest to evaluate
the impact of different features on system performance. A
SVC machine learning model for reverse engineering is also
built to recommend system parameter configuration in order
to meet user requirements in performance. Our results show
that our performance prediction model has a normalized root
mean square error (RMSE) lower than 0.07, and the R2 score
varies from 79% to 94%. Our model for system configuration
recommendation also has high accuracy (up to 97%).

Our major contributions in this work include:

e We created machine learning models to predict GPU
system performances with high accuracy.

o We provided a detailed feature importance analysis. Our
analysis can provide insights on what impact different
system parameters can have on the system performance.

« We developed a prediction model for system configura-
tion recommendation. Our recommendation model can
help users to find a system configuration that can reach
their performance target.

II. APPROACH

A. Prediction Model Overview

Figure 1 shows the high level view of our proposed frame-
work. The first stage is to select GPU system configuration
parameters that can impact the performance. The next step
is to configure the GPU systems using these parameters and
collect the training data through benchmark execution. We se-
lected several representative applications from the benchmark
suit ispass-2009 [9] in our experiments. Further details are
discussed in the following subsections. After the training data
is collected, it is fed into the prediction model for training. We
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Fig. 2. GPGPU architecture

also go through steps to tune the model accuracy. After the
model is trained, we can use it to either predict the system per-
formance or generate system configuration recommendations.
The model also generate the correlation between the inputs
and output so that we can analyze the importance of each
system parameter (which is also called feature in this paper).

B. Approach

We used a supervised machine learning model for performance
prediction. A unique feature of our model is that we also
provided feature importance information that can help users
to understand the role of an input feature in determining the
output, i.e. system performance in this case. While there have
been several models proposed for performance prediction in
CPUs and GPUs [4], [12], [14], [20], they do not provide
the feature importance analysis. In fact, such information is
very important to both system designers and users because
this can help them to build or find an optimal product. Other
than predict performance using system parameters, our model
can also perform the reverse prediction. That is, given a target
performance and part of the input features (system configura-
tion parameters), we can predict the remaining parameters so
that a system configured with these parameters can reach the
performance target. This technique is in fact a kind of reverse
engineering and it has use cases in reality. For instance, a
customer wants to purchase a GPU and there are different
categories of GPUs to select from with different costs. He has
some requirements in execution time and can select a GPU
with large memory but fewer Streaming Multiprocessors, or
smaller memory with more Streaming Multiprocessors. Using
our model, he can find a product that can meet his performance
requirement and then select the most economic system.
Feature selection is a important part of machine learning, it
is a way of trimming down the number of input variables when
devising a prediction model. The reduction in the number
of input variables can decrease the computational cost and
improve the model accuracy. In our case, the features are
from the configurations in GPU systems. Figure 2 shows
the architecture of a modern GPGPU. It consists of mul-
tiple Streaming Multiprocessors (SMs), and several layers
of memory partitions. Inside each Streaming Multiprocessor,
there are control units, registers, execution pipelines, scratch-
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TABLE I
CONFIGURATION SETTINGS

[ Configuration | Settings |
SM 2,3,6-8,12-15,20-24,30-35,42-48,56-63,72-80,90-99
MM 1-10

8KB, 16KB, 32KB, 64KB
12288, 24576, 49152
2048:32, 1024:32, 1536:32
32KB / 64KB, 4-way set assoc, 64B lines, LRU
64KB / 128KB, 8-way set assoc, 64B lines, LRU

Shared Memory
Shader Register
Shader Core
L1
L2

Number of Streaming Multiprocessors (SM), Number of Memory Controllers
(MM), Size of shared memory per SIMT core (Shared memory), Number of
registers per shader core (Shader Register), Shader core pipeline configuration
(Shader Core), L1 cache (L1), L2 cache (L2).

pad memory, and caches. Through experiments, we found
that the most important features for our prediction models
are the number of Streaming Multiprocessors, number of
Memory Controllers, Shader Register File size, number of
Shader Cores, L1 Configuration, and L2 Configuration. We use
Instruction per Cycle (IPC) as an indicator for performance.

C. Data Collection

Table I lists our selected system configuration parameters as
the feature inputs for our machine learning model. It also
shows the parameters’ possible values and ranges. In our
experiments, we created system settings using different combi-
nations of these parameters. Different configuration parameters
can lead to different IPC for a benchmark. Note that some
of the configuration options are not continuous, such as the
number of Streaming Multiprocessors. These are constraints
from the GPGPU-sim simulator. There also exists some
interrelations between certain parameters. For example, the
number of Streaming Multiprocessors and Memory controllers
is related. This is because the number of Memory controllers
and Streaming Multiprocessors is determined by the mesh
interconnection network size. All our training data is collected
using the benchmarks suite of ispass-2009 [9]. This benchmark
suite is widely used in GPU performance evaluation. Among
all the benchmarks in the suite, we select five that are repre-
sentative of different types of GPU applications. The amount
of training data collected for each benchmark is determined by
the possible configurations’ variations. Instead of real GPUs,
we used GPGPU-sim [2] to simulate the benchmark executions
because it is not feasible to find hardware systems that match
all the configurations we want to test.

Data collected from each benchmark are extracted directly
from the configuration file. Streaming Multiprocessors, Mem-
ory Controllers, Shader Register, and IPC are stored as in-
tegers. Shader Core, L1 Configuration, and L2 Configuration
data are stored as strings. Ideally, we would want them to
be of the same type so that we changed the strings to an
integer representation. Shader core, L1 Configuration, and L2
Configuration are classified as different classes then saved.

III. MACHINE LEARNING MODEL DESIGN

In this section, we provide design details of our machine
learning models.
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A. Support Vector Machines and Support Vector Regression

A very popular classification and regression technique used
in machine learning is the support vector machines (SVM).
The SVM algorithm creates a line or a hyperplane which
tries to separate the data into classes, often after the data
has been transformed using nonlinear kernels, allowing the
borders between classes to be nonlinear in the original feature
space. The data is separated so that the maximum margin is
the optimal hyperplane.

However, SVM can only deal with binary data. In order to
predict a discrete value such as the performance, we choose to
use support vector regression (SVR). Support vector regression
is based on the same principles as SVM. As described in
prior work [1], the regression problem can be seen as a
generalization of the classification problem. Therefore, instead
of returning a finite set in classification, the model returns
a continuous-valued output. Unlike other simple regression
models, SVR tries to find the best fit hyperplane with the
maximum number of points.

B. Feature Importance with Random Forest

To design a prediction model, it is important to have an
accurate and interpretable model in many cases. A good
way of understanding what causes the model to perform the
way it does is feature importance. Feature importance can
help understand a problem by providing which features are
relevant. As a supervised learning algorithm, random forest
takes advantage of ensemble learning for classification and
regression. There is a built-in feature importance computation
based on Gini importance (or mean decrease impurity) and
mean decrease accuracy in random forests. Gini importance
is derived from the random forest structure. Based on the
average of all trees in the forest, we can then determine the
importance of each feature. Sklearn’s implementation for both
random forest regressor and random forest classifier is based
on this idea [17].

We used Scikit-learn’s (sklearn) implementation of SVM,
SVR, and random forest for our prediction model. Sklearn
[17] is a machine learning library in Python. It features a
collection of classification, regression, and clustering algo-
rithms. It also incorporates widely used numerical Python
libraries such as NumPy. We experimented with several dif-
ferent classification (Lasso, Ridge Classification, K-Nearest
Neighbors Classifier) and regression (Bayesian Regression,
Naive Bayes) algorithms and settled on SVM and SVR for the
prediction model. Compared to the other algorithms that we
have tried, SVM and SVR were selected because they fit best
with our input data structure and have the best accuracy. The
random forest algorithm in sklearn was selected for our feature
importance portion. The algorithm provided by sklearn has a
feature_importances_ property that can be used to retrieve the
relative importance scores of each input feature.

C. Validation of Machine Learning Models

Cross-validation is a validation technique for assessing how
well the results generalize on an independent data set by
rotating which portion of a data set is used for training and

255

which is used for testing. It is a commonly used statistical
method in machine learning to evaluate the accuracy of the
given prediction model. However, when using cross-validation
to tune hyperparameters or select among many models, the
same data are used to tune and evaluate a model when using
Cross-validation. This can lead to inflated accuracy of the
prediction model due to potential overfitting. To avoid this,
one can keep a hold-out test set with cross-validation used for
hyperparameter tuning. However, the hold-out test sets needs
to be large enough to be reliable, which is difficult with limited
data. One approach to overcoming this problem is to use nested
cross-validation. Nested cross-validation is a variant of cross-
validation which also rotates the test set while cross-validation
is performed on the training and validations sets used for
hyperparameter tuning. In other words, nested cross-validation
‘nests’ the optimization of the hyperparameter into the model
selection. Nested cross-validation separates the data into a
series of test, train, and validation data. It runs a grid search on
each of the training sets to get an approximately maximized
score by fitting the model. Then this score is maximized by
selecting the hyperparameters in the validation set. Finally, by
averaging the test set scores over the dataset splits, it’ll get
the estimate of the generalization error.

In this study, we use nested k-fold cross-validation for
the performance prediction model and nested stratified k-fold
cross-validation for the system recommendation prediction
model. k-fold cross-validation is a validation technique that
separates the data into k consecutive folds. Each fold is used
only once as the test/validation set, while the remaining k-1
folds are used as the training sets. Stratified k-folds cross-
validation is a variation of the k-fold cross-validation by
returning stratified folds. Unlike traditional k-fold, stratified k-
fold preserves the percentage of each group for each fold. This
ensures that each fold of the dataset has the same proportion
of observations with a given label, which can be helpful with
imbalanced class distributions. The reason that we choose
nested k-folds for the performance prediction model is due to
both our model type and data. For our system recommendation
prediction model, we used nested stratified k-fold. Some of the
configurations in our data are not equally distributed. This can
result from either the configuration not being executed on the
benchmark or the distribution among the configuration setting
is not equal. For example, MM has ten different values, with
1 appearing over 1000 times and 10 appearing only 144 times.
Using nested stratified k-fold can eliminate the inaccuracy
caused by imbalanced class distribution.

D. Feature Importance Analysis

Feature importance is a technique that calculates a score
for each feature representing its importance. We used the
random forest algorithm provided by sklearn to implement
this function. We ran the feature importance when predicting
the IPC with our benchmarks, which turns out to be highly
representative and can better serve the purpose of our model.
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IV. EXPERIMENTAL EVALUATION

This section consists of three parts: performance prediction,
feature importance analysis and system configuration rec-
ommendation. As mentioned in the previous sections, the
training data we collected is not equally distributed, and
the configurations for each of the benchmarks also differ.
However, our evaluation shows this does not affect the ac-
curacy of our model. All of our experiments were run on the
computing nodes on the Lonestar6 system in TACC’s high-
performance computing systems. Each compute node has two
AMD EPYC 7763 processors and 256 GB of DDR4 memory.
Each processor has 64 with 128 cores in total. All the cores
are running at 2.45 GHz, which can be boosted up to 3.5 GHz.
We ran our benchmarks with CUDA 9.1 and Ubuntu version
16.04 on GPGPU-sim 4.0 [2].

A. Performance Prediction

The purpose of our model is to predict a performance value
(IPC) with the given configurations. IPC values are collected as
we ran each benchmark with different configuration settings.
We used a regression model as the IPC values we collected are
continuous. A model was constructed for every benchmark.
The root mean square error (RMSE) was used to optimize
the regressor and assess the performance of our regression
model. Coefficient of determination (R2 scores) was used as an
alternative measure of how well our model works. R2 scores
are used to determine the variance of the regression model.
For instance, a 0.8 R2 score indicates that the variance of
the independent variable explains 80% of the variance of the
dependent variable.

As shown in Table II, all of the benchmarks have a
normalized RMSE of 0.077 or lower. normalization of the
RMSE is calculated by using the average RMSE/(Max value
- Min value). This produces a value between 0 and 1, with
values near 0 being better fitting values. BFS has an R2
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TABLE II
PERFORMANCE PREDICTION

[ Benchmarks [ Avg. RMSE [ Normalized RMSE | Avg. R2 | Best R2 |

BFS 0.684 0.071 0.798 0.820
LPS 2.862 0.058 0.943 0.947
NQU 0.335 0.059 0.928 0.936
STO 54.173 0.077 0.905 0.908
MUM 0.109 0.046 0911 0.916

Avg. RMSE: The average Root Mean Square Error for each benchmark
(range differs); Normalized RMSE: Normalized Root Mean Square Error
with 1 being worst and O being best; Avg. R2 score: Average Coefficient
of determination with 1 being best and 0 being worst; Best R2 score: Best
Coefficient of determination with 1 being best and 0 being worst.

score of 0.798, while all other benchmarks are over 0.9.
The reason for BFS’s R2 score being low is due to the
data gathered. Some of the features show no relevance to
the performance. For example, the L2 configuration has no
influence on the performance. This is because many variations
of the L2 configurations are not important to this benchmark’s
performance. In other words, the L2 configuration is not the
bottleneck for the performance of BFS.

The predicted vs. the actual value scatter plots for each
benchmark, as shown in Figure 3, were created to show
the prediction ability of our model. The dots are created as
transparent for each point for easier viewing or overlapping
dots. The figures show that our points are close to the fitted
line, with a confident band to narrow to show. The dots are
plotted as transparent. The range of values for each benchmark
is different, as seen in the figure, with STO having a wide
range and MUM having the least variation in range. While
other benchmarks are distributed quite equally, MUM clusters
in the range of 1.4 to 2.0 with a few outliers, hence the figure
skewing to the left.

A residual plot is shown in Figure 4. A residual plot is a
good way of showing if our data is suited for a regression
model. The data shows a fairly random, uniform distribution
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Fig. 6. SM Confusion matrix for the benchmark NQU

TABLE III
RANDOM FOREST FEATURE IMPORTANCE RANKINGS
[ Rank ‘ BFS LPS MUM ‘ NQU ‘ STO ‘
1 L1 MM MM SM MM
2 SM SM Registers MM SM
3 Registers | Registers SM L1 L1
4 MM. L2 L1 Registers L2

The top four important features, with rank 1 being the most important, are
shown with the random forest feature importance ranking. We used short
names for system parameters, including the number of Streaming Multiproces-
sor (SM), the number of Memory Controllers (MM), L1 Configuration (L1),
L2 Configuration (L2), the number of registers per shader core (Registers).

around the horizontal axis (target) for all the benchmarks,
suggesting that our choice of the model is an appropriate one.
MUM has a few outliers, skewing the graph toward the top.
The distribution of the residuals of each benchmark can be
seen in the histogram left of the residual plot. The histogram
shows that our data for all benchmarks are normally distributed
around 0, indicating that our model fits well with the data. The
R2 scores for both training and test sets are calculated with
the residual plot. We observed a slightly higher R2 for training
sets and high R2 scores for training and testing sets. For the
benchmarks LPS, MUM, NQU, and STO, both R2 scores for
training and testing sets are over 0.9, indicating a very good fit
for our model. Although for BFS, we have a lower R2 score of
0.824 (training set) and 0.791(test set), it still shows that our
model performs well. This observation shows that our model
generalizes well with all of the tested benchmarks.

B. Feature Importance

The feature importance, also known as variable importance,
helps to improve the understanding of a problem by indicating
relevant features. This can direct us on where to improve the
model during feature selection and provide the relevance infor-
mation to users. Random Forest feature importance was used
in our design to describe the importance of each feature when
predicting the performance. We first used cross-validation to
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get the best parameter for our estimator (random forest re-
gressor). This is done with the GridSearch() function provided
by sklearn. We then ran the property feature_importances_ in
RandomForestRegressor() 20 times with the best parameters
for our estimator. Finally, we calculate the average for all
the runs and gather the results. Table III shows the top four
features we gathered from running Random Forest feature im-
portance for each benchmark. As seen in Table III, Streaming
Multiprocessors (SM) and Memory Controllers (MM) appear
in the top 4 features on every benchmark. This observation
somewhat aligns with what we were expecting. The increase or
decrease in SMs or MMs affects the performance drastically.
The number of registers per shader core (Register) and the
L1 Configuration (L1) are the following most commonly
important features. However, our results show that different
parameters show different important to these benchmarks.

C. System Configuration Parameter Recommendation

The previous sections evaluated the prediction models for
performance and the significant features when predicting the
performance (feature importance). In this section, we evaluate
the prediction model for system recommendation. This is a
very useful feature of our model and it can have useful appli-
cations in the real world. This section presents the accuracy
for two of our configurations with our model trained on each
of the benchmarks with SVM. In our reverse prediction model,
given a target performance and part of the system parameters,
we can predict the remaining parameter so that the system can
achieve the performance goal. As mentioned in the previous
section, we found that SM and MM are the two most important
features when predicting performance. Therefore, we develop
our model to predict the SMs and MMs, given the performance
and some of the other configurations.

We use the support vector classifier (SVC) provided by
sklearn [17] as the supervised learning method with nested
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cross-validation to train our model. Our training data shows
data imbalances in the configurations SM and MM, making
it unsuitable to use KFold for the nested cross-validation.
Stratified K-Fold is chosen here as it is the improved version of
the K-fold by ensuring each fold of the dataset has the same
proportion of observations with a given label. A confusion
matrix was plotted for each benchmark to help us understand
how well our model is performing in predicting both SM and
MM. However, a confusion matrix is very large and we can
only show part of it. Figure 6 is an example of a portion of
SM’s confusion matrix for benchmark NQU. Figure 7 shows
the entirety MM’s confusion matrix for benchmark STO.
Figure 5 shows the results we collected from our training.
The average accuracy when predicting SM varies between 73-
97%, with the highest average being the benchmark STO and
the lowest being BFS. The highest accuracy can reach 99%
accuracy when predicting SM. The average accuracy varies
more when predicting MM, with LPS, MUM, and STO having
higher accuracy and BFS having a less accuracy. The highest
accuracy can go up to 100% when predicting MM. The low
accuracy of BFS is due to our training data because BFS needs
relatively lower resource compared with other benchmarks.
Therefore, some features do not affect the performance are still
collected to make our training process consistent. However,
BFS has many different configurations generating the same
performance and this compromised the accuracy of our model.
In general, our results match with the observation we have
with feature importance, indicating that we have a reliable
prediction model.

V. RELATED WORK

Machine learning approaches have been used to analyze micro-
architectural designs in design space exploration [5], [13].
Simulation tools such as GPGPU-Sim [2] are widely used
to estimate GPU performance. By constructing power and
performance regression models from a limited number of
training points, techniques proposed in Stargazer [10] and
Starchart [11] can decrease the number of simulation points
required to explore a GPU’s design space. Baldini et al.
demonstrated that machine learning approaches can be used
to create accurate GPU acceleration prediction models. [3]
Wu et al. used performance counter values from hardware
configurations to estimate a GPGPU kernel’s performance and
power on various hardware configurations [19]. Our approach
differs from these techniques because our machine learning
model can not only predict GPU performances but also support
parameter importance analysis and system recommendation to
meet performance requirements.
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