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Abstract—Genomic analysis is the study of genes which in-
cludes the identification, measurement, or comparison of genomic
features. Genomics research is of great importance to our society
because it can be used to detect diseases, create vaccines, and
develop drugs and treatments. As a type of general-purpose
accelerators with massive parallel processing capability, GPUs
have been recently used for genomics analysis. Developing GPU-
based hardware and software frameworks for genome analysis
is becoming a promising research area. To support this type of
research, benchmarks are needed that can feature representative,
concurrent, and diverse applications running on GPUs. In this
work, we created a benchmark suite called Genomics-GPU,
which contains 10 widely-used genomic analysis applications. It
covers genome comparison, matching, and clustering for DNAs
and RNAs. We also adapted these applications to exploit the
CUDA Dynamic Parallelism (CDP), a recent advanced feature
supporting dynamic GPU programming, to further improve
the performance. Our benchmark suite can serve as a basis
for algorithm optimization and also facilitate GPU architecture
development for genomics analysis.

Index Terms—genomics, bioinformatics, benchmarking, GPU,
accelerated computing, genome analysis, computer architecture.

I. INTRODUCTION

Genome sequence analysis refers to the study of an organ-
ism’s DNA sequence. This procedure has many important
applications, such as pandemic outbreak tracing, early cancer
detection [79], drug development [43], and genetic disease
identification [87]. To analyze an organism’s genome compu-
tationally, the DNA molecule must first be converted to digital
data in the form of a string of four letters (A, C, T, and G), also
known as bases or nucleotides. The process of determining
the sequence of the bases is known as genome sequencing
[30]. The process of comparing and discovering differences
between biological sequences is known as sequence alignment
[67]. The last decade has seen exponential growth in genomic
databases and a large amount of data needs to be analyzed
with the help of computation tools. As a result, several widely-
used tools for genome analysis have been developed, such as
BLAST [57] and GATK [58].

To improve the performance, SIMD-capable CPUs have
been employed by some genome sequencing frameworks,
such as Parasail [31] and KSW2 [53]. They take advantage
of the parallelism offered by SIMD instructions to execute
matrix computations by running the same vector command on
multiple operands in parallel. FPGASW [39] uses the large
number of execution units in FPGAs to create a linear systolic
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array. Execution units in the systolic array can compute the
value of a single entry of the dynamic programming matrix
in the algorithm. ASIC-based hardware platforms have also
been developed to explore performance, power, and area
tradeoffs, including ASAP [21], and GenAx [41]. However,
systems accelerated with FPGAs or ASICs usually require user
knowledge of the underlying hardware on how to program
them.

In contrast, General Purpose Graphics Processing Units
(GPGPUs) are a type of general-purpose accelerators which
are very efficient in executing SIMD commands. GPU-based
frameworks can significantly reduce the execution time for
genomic analysis. For example, the GPU-based GASAL?2 [15]
can improve the performance by 20x compared to CPU.
CUDA Dynamic Parallelism (CDP) [1] was introduced to the
CUDA programming model. It enables GPU threads to be
launched dynamically, simultaneously, and independently [1],
[25], [47], [52], [81], [83], [88].

To steer the genomics research in the right direction,
benchmarks are of paramount importance to help draw correct
conclusions through rigorous evaluations. There have been
several benchmarks created for GPU computing, such as
ispass-2009 [7], Parboil [75], Rodinia [27] and etc. These
benchmarks target on high-performance computing and do not
focus on genomics applications. Benchmarks such as BioPerf
[19], BioBench [17], and MineBench [60] were developed for
genomics research. However, they were created a decade ago
and do not include today’s popular sequencing techniques.
GenomicsBench [76] is the most recent work on genomics
benchmarking. However, GenomicsBench focuses on CPU-
based applications and only has three GPU benchmarks.
Therefore, there is a dire need to create a GPU-based ge-
nomics benchmark covering concurrent techniques to facilitate
research in this fast-growing area.

In this paper, we compiled ten representative GPU-based
genomics applications. We made adaptations with up-to-date
libraries so that they are compatible with today’s software
and hardware. For each benchmark, we created a second
version to support execution with CDP [1], [4]. We ran the
benchmarks on an NVIDIA RTX 3070 GPU [6] to collect
performance results using hardware performance counters. In
order to provide more in-depth analysis at the microarchi-
tectural level, we also ran them with a state-of-the-art GPU
simulator (Accel-Sim [50]) to collect data not available in
hardware. We performed a comprehensive characterization of



the applications and analyzed the performance bottleneck.
This paper makes the following contributions:

o We present the Genomics-GPU benchmark suite consist-
ing of 10 representative kernels spanning the major algo-
rithms in genomics analysis, such as genome comparison,
matching, scoring, clustering and variant selection. We
also provide input datasets of different sizes.

o For each benchmark, we created an additional version to
support the advanced CUDA Dynamic Parallelism (CDP)
feature. We provided a comparison between the CDP and
non-CDP implementations.

o We performed a detailed evaluation of these benchmarks
on both hardware and software simulators. We made
adaptations to the source code so that they can be
executed with different versions of libraries required by
the hardware and simulator.

o We provided in-depth characterization and analysis of the
benchmarks at microarchitectural levels, such as memory
access pattern, thread scaling behavior, and pipeline stall
breakdown.

II. BACKGROUND
A. GPU architecture
Genomic analysis typically generates a large amount of data
per genome. It requires massive computing power to pro-
cess the data, which poses a challenge to even the fastest
CPUs. GPUs have become a popular platform for acceler-
ating parallel executions due to their extraordinary parallel
computing power. GPU programming models allow users to
create thousands of threads and can significantly improve the
system throughput. The high throughput of GPUs is realized
by grouping threads into fixed-size SIMD batches known as
warps, and then many such warps are concurrently executed on
a single GPU core. Figure 1 shows the general architecture of
a modern GPU. It consists of multiple Streaming Multiproces-
sors (SMs) and several layers of memory partitions. Streaming
processors are connected by the interconnect network. Each
Streaming Multiprocessor contains control units, registers,
execution pipelines, scratchpad memory, and caches.
B. Cuda Dynamic Parallelism (CDP)
Cuda Dynamic Parallelism (CDP) [1], [83] is an advanced
feature in the Nvidia GPU programming model that was first
released with the Kepler GK110 [63] architecture. It enables
kernels to start from GPU devices without returning to the
host, allowing a user to call a global or host function within
a certain global or host function [1], [81], [88]. A parent can
be a kernel, block, or thread that initiates the device launch,
and a child can be a kernel, block, or thread launched by a
parent. cudaDeviceSynchronize is a device runtime API
that synchronizes between the child and parent. Each launch
can be nested, e.g., from parent to child and then from a
child to a child within a child, and so on. Synchronization
depth is how far nesting can go with explicit synchronization.
When an explicit synchronization is called, the parent will
have to halt and yield to the child kernels. However, if there
is no explicit synchronization, the execution order of the child

Streaming Streaming . Streaming Instruction Cache
Multiprocessors | |Multiprocessors Multiprocessors
% ¢ ¢ Warp Scheduler
| Interconnect Network |l Decoder
Memory Memory Memory Constant Cache
Partitions Partitions Partitions |
[ L2 Cache ] [ L2 Cache ] [ L2 Cache ] i || Texture Cache
[ Memory ] Memory ] [ Memory ]
Controllers Controllers Controllers Shared Memory
i f —
v ¥ v
Off Chip DRAM | | Off Chip DRAM | | Off Chip DRAM | |}
Channel Channel Channel [ETEEATE

Fig. 1: General GPGPU architecture
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Fig. 2: Performance Comparison between CPU and GPU.
and parent will be random. Although executing each child
kernel concurrently may still be possible, there is no guarantee
without explicit synchronization. Shared memory and local
memory are exclusive for parent and child kernels, while
global memory can be shared by both. The overheads for CDP
implementations include API calls, kernel parameter parsing,
device runtime setups, and the management of child kernels
[82], [83]. A bigger input size can alleviate these overheads
and result in better performance.

C. Performance comparison between CPUs and GPUs

Many genomic analysis algorithms were developed for CPUs
before GPUs were widely used as accelerators. Only in recent
years have researchers started to create new algorithms or
port previous algorithms to GPUs. Although it might be more
convenient to develop CPU-based implementations using con-
ventional programming models, CPUs can have a big perfor-
mance disadvantage compared with GPUs. We compared the
performance for the algorithms of Smith-Waterman (SW) [74],
Needleman—Wunsch (NW) [62], and Center Star Algorithm
(STAR) [29] using high-performing CPUs and GPUs. The re-
sult is shown in Figure 2. For each algorithm, we collected ex-
ecution time for CPU implementations, GPU implementations,
and a GPU implementation with CDP. The experiments were
run on Lonestar 6 [8], one of the high-performance computing
systems of Texas Advanced Computing Center (TACC) [64].
Same inputs were used for different implementations. The
results are normalized to CPU performance. GPUs can lead to
a huge performance gain and achieve a speedup as much as
20x compared with CPUs. For STAR, CDP can further reduce
the execution time by more than half.

III. METHODOLOGY
A. Genomics application description

Needleman—Wunsch (NW) [45], [62] is used for sequence
alignment and belongs to the global alignment family by



TABLE I: Hardware configuration settings

Configuration [ Settings
Shader Cores 78
Warp Size 32
Constant Cache Size / Core 64KB
(256-way set assoc. 128B lines LRU)
Texture Cache Size / Core 128KB

(64-way set assoc. 128B lines LRU)

Number of Registers / Core

16384, 32768, 65536, 131072, 262144

Number of CTAs / Core
Number of Threads / Core
Shared Memory / Core (KB)

8, 16, 32, 64, 128
384, 768, 1536, 3072, 6144
32, 64, 100, 256, 512

L1 Cache 32KB, 128KB, 256KB, 512KB, 4MB
(256-way set assoc. 128B lines LRU)
L2 Cache 512KB, 4M, 8MB, 16MB, 128MB

(16-way set assoc. 128B lines LRU)
out of order(FR-FCFS),
in order(FIFO)

Memory Controller

Scheduler LRR, GTO, OLD
TABLE II: Interconnect Configuration settings
[ Configuration [ Settings |
Topology Mesh, Local Xbar, Fat Tree, Butterfly
Routing Mechanism Dimension Order, Destination Tag,
Nearest Common Ancestor
Routing delay 0
Virtual channels 2
Virtual channel buffers 4
Flit size (Bytes) 8, 16, 32, 40
Alloc iters 1
VC alloc delay 1
Input Speedup 2

finding the best match in the entire sequence. This algorithm
employs dynamic programming to implement genome align-
ment and can reduce the number of possibilities while still
ensuring the best solution is found [62], [84]. This algorithm
is one of the most widely used in genome alignment.

Smith—Waterman (SW) [56], [74] is a sequence alignment
algorithm that belongs to local alignment. SW is also a
dynamic programming algorithm that can provide conserved
regions between two sequences and can align two partially
overlapping sequences [74], [80], [84]. This algorithm can also
align a sequence’s subsequence to itself. It is also a widely
used genome alignment algorithm.

Center Star Algorithm (STAR) [72], [90] provides a
reliable and efficient Multiple Sequences Alignment (MSA)
solution for large-scale datasets. This algorithm automatically
performs and optimizes multiple sequence alignments for user-
submitted sequences without making any assumptions. STAR
employs a co-running approach to fully leverage both the CPU
and GPU devices. It can quickly and precisely align genomes
for mining single nucleotide polymorphisms (SNPs) and copy-
number variants (CNV) [72], [89], [90].

GASAL2 [15] is an extension of GASAL [16] that is a
CUDA library for DNA/RNA sequence alignment algorithms
[15], [59]. GASAL2 supports four kinds of alignments, in-
cluding global alignment (GG), local alignment (GL and
GKSW), semi-global alignment (GSG), and tile-based banded
alignment with or without traceback. GASAL2 outperforms
the fastest CPU-optimized SIMD implementations, including
SeqAn [66] and Parasail [31], as well as NVIDIA’s own GPU-
based library, NVBIO, with an overall performance speedup of
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Fig. 3: Performance Comparison With CDP and Without CDP.

2x, 21x and 13x respectively [15]. According to Alser et al.
[18], it is one of the most representative genomics algorithms
employing GPUs. Our benchmark suite includes GG, GL,
GKSW, and GSG from GASAL2.

nGIA (CLUSTER) [48] is a precise and efficient greedy
incremental alignment-based (GIA) algorithm and clustering
tool [48], [73]. nGIA is composed of a pre-filter, a modified
short word filter, a new data packing strategy, a modified
greedy incremental method, and is GPU parallelized. nGIA
is much faster compared with other cluster algorithms, such
as CD-HIT [40], Vsearch [69], and Uclust [38] [48].

Pair Hidden Markov Model (PairHMM) [68], [71] is a
variant of the standard HMM [65]. It is particularly effective
for discovering sequence alignments and assessing the rele-
vance of the aligned symbols. In contrast to the traditional
HMM, which produces only a single sequence, Pair-HMM
produces an aligned pair of sequences [86]. Prior research
results show that the GPU-based PairHMM forward algorithm
outperforms existing CPU-based implementations by up to
5.47 times [68].

NVBIO (NvB) [10], [46] is a reusable component library
created by NVIDIA for bioinformatics applications using
CUDA. The program was initially developed to harness the
potential of NVIDIA GPUs, and the majority of its compo-
nents are totally cross-platform and include both host C++
and device CUDA code [46]. We select NvBowtie from the
NVBIO library to add to our Genomics-GPU suite. NvBowtie
is a CUDA implementation of the Bowtie2 [3], which is an
ultrafast and memory-efficient tool for aligning sequencing
reads to long reference sequences [51].

B. CUDA Dynamic Parallelism implementation

Cuda Dynamic Parallelism (CDP) [1], [4] is an important
design feature that enables further exploration of parallelism
and allows the parallelism to be represented more precisely
[35], [36]. For genomics applications with massive datasets,
CDP offers mechanisms for nested kernel launch and can bring
benefits to recursive applications, such as divide-and-conquer
[25]. As shown in Figure 3, we observe that, compared to
non-CDP implementations, using CDP can improve the kernel
execution time by up to 59%, with an average improvement of
14%. In our optimization using CDP, we employed a similar
method as Wang et al. [83] by modifying the original kernels
and converting them to child kernels, as shown in Listing 1.
The key idea is to use the child kernel to replace the original



TABLE III: Benchmark Properties

Shared Constant Mem-

Benchmark ‘ Abr. Input ‘ Grid ‘ CTA CTA/CORE ‘
Memory? ory?
Smith-Waterman [56], [74] SwW 32K bases with 4 types (A/C/G/T) | (3,1,1) (64,1,1) NO YES 30
Needleman—Wunsch [45], [62] NW 32K bases with 4 types (A/C/G/T) | (500, 1, 1) | (128, 1,1) | YES YES 6
Center Star Algorithm [72], [90] STAR protein.txt [72] (12,1, 1) | (256, 1, 1) | NO YES P
GASAL2 GLOBAL [15], [59] GG query_batch.fasta [59] (40,1, 1) | (128,1,1) | NO YES 12
GASAL2 LOCAL [15], [59] GL query_batch.fasta [59] 40, 1, 1) (128, 1, 1) | NO YES 12
GASAL2 KSW [15], [59] GKSW query_batch.fasta [59] 40, 1, 1) (128, 1,1) | NO YES 12
GASAL2 SEMI-GLOBAL [15], [59] GSG query_batch.fasta [59] 40, 1, 1) (128, 1, 1) | NO YES 12
[S’g]ed[%] Incremental — Alignment-based | ¢y ygrER | testData.fasta [73] (128, 1,1) | (128, 1, 1) | YES YES 12
Pair Hidden Markov Model [68], [71] PairHMM Synthetic_data(128_128) [71] (150, 1, 1) | (128,1,1) | YES YES 10
NVBIO [10], [46] NvB 1{1;2119{21] [78],  SRR493095.fastq | o481 1) | (256,1,1) | NO YES 6
parallel loops in the non-CDP implementation. LOE+04 B Kernel Count TPCI Count 5 LoE0d
g £
1 | //For each parent kernel execute child kernel ¢=: 3 1.0E+03
. O1.0E+03 £
2 | argument, ... = kernelOri(parameters, ...); c E
3 |if(condition (argument)) 21.0E+02 } §1'°E+02
. o =1
4 Kernel CDP <<§BLOCKS, THREADS>>> (argument, ...); 1.06401 | 43)1.0&01
5 KernelOri <<<blocks, threads>>> (parameters , o X
. 5 | o
o) §1.0E+00 — 5(5 8 2z9Es e g 1.0E+00 B Total K Time
1<t . : : w 2z 7] - Z B Total PCI Time
Listing 1: Code structure of Cuda Dynamic Parallelism (CDP) 2 2 %4 % = 2 Avg Kernel Time
— o= -
o © O Avg PCI Time
a
C. Experiment environment @) (b)

All of our benchmarks are run with both hardware GPU and
a software simulator (Accel-Sim 4.0 [50]). We run all bench-
marks to completion on both hardware and simulator. Table I
lists the configurations we used in our evaluation. Highlighted
settings represent configurations used by the hardware GPU
which are also the default configurations for simulation. The
rest of the configurations were run with the simulator. The
hardware GPU is Ampere RTX 3070 [6], with over 5500
CUDA cores running at a 1.50 GHz base clock rate. We ran
the Accel-Sim simulator on servers at the Texas Advanced
Computing Center (TACC) [64]. Those servers are equipped
with two AMD EPYC 7763 64-Core Processor (“Milan”)
CPUs [2], with a base clock rate of 2.45 GHz. To maintain
consistency between the hardware and simulation platforms,
we used the same configuration as the baseline for both of
them. Table II shows the configurations for the interconnection
network. We used a detailed interconnection network simulator
called Booksim [32] to collect on-chip network results.

Table III describes the benchmark properties, such as the
CTA dimensions, the grid dimensions, memory types, and
the input datasets. To collect hardware GPU data, we used
NVIDIA’s universal GPU profiler called nvprof [12] and the
NVIDIA Nsight Systems tool [14]. Our experiments were run
with Ubuntu 18.04 and CUDA 11.4.

IV. RESULTS AND ANALYSIS

A. Kernel execution pattern
We first measured the number of kernel function calls the CPU
has invoked on the GPU. We used NVIDIA profiling tools
nvproof [12] and NVIDIA Nsight Systems [14] to collect this
information. Figure 4(a) shows the kernel function invocation
counts. We are only able to collect data for the non-CDP
versions. This is because the NVIDIA profiling tools do
not support the tracing of CDP kernels for Volta (compute
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Fig. 5: Pipeline stall breakdown

capability 7.0) and higher GPU architectures [23]. The GPU
we used is Ampere RTX 3070, which has a compute capability
of 8.6. The ”Kernel count” in Figure 4(a) represents the times
of each application’s kernel function being called during the
execution. PCI count represents the number of cudaMemcpy
function calls in an application. cudaMemcpy function calls
are used to transfer data between the CPU and GPU using
PCI, which is the communication interface between them. We
can observe that the number of kernel function calls, for most
applications, is higher than the number of PCls. For SW and
NW, kernel function calls greatly outnumbered the PCI calls.
This indicates that these applications are more intensive in
computation than communication. GASAL2 applications, on
the other hand, have more PCI transactions than kernel func-
tion calls. This indicates that there is a large communication
overhead when running these applications, and data movement
can become a potential performance bottleneck. Figure 4(b)
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Fig. 8: Distribution of instruction types

shows the total and average execution time spent in kernel and
PCI invocations. In general, the total and average time spent on
PCI is quite significant compared with the time spent in kernel
execution, making the data movement a critical performance
bottleneck in these genomics applications.

B. Performance bottlenecks

In this section, we evaluate different types of pipeline stalls
and their impact on performance. We used Accel-Sim simu-
lator [50] to collect experiment results. Figure 5 shows the
breakdown of each pipeline stall cause. It can be observed
that the breakdown of pipeline stalls between CDP and non-
CDP implementations is similar. The most significant cause
of pipeline stalls is long memory latency, accounting for up to
95% of all pipeline stalls. This is because genome applications
work with very large datasets and frequent off-chip memory
accesses cause pipelines to wait for the data. Control hazards
and pipeline idle are the next two most significant causes for
pipeline stalls. We can also observe that, for NvB and NvB-
CDP, functional done causes over 90% of all their stalls.
Functional done means that GPU cores are waiting to be
initialized to run a new kernel. There exist many CUDA API
calls in NvB and NvB-CDP. Therefore, a lot of time is spent
on switching between the kernels.

C. SRAM structure utilization

SRAMs are the largest resource in GPU processing cores,
including register files, shared memory, and constant memory.
We collected the usage of SRAM resources using the RTX
3070 as our experimental platform. RTX 3070 comes with
a register file of 64KB, a shared memory of 100KB, and
a constant memory of 64 KB. We collected the usage of
these SRAM resources through an NVCC [11] compiler option
”Xptxas=-v”’. The total usage of the SRAM resources is
calculated using the concurrent number of CTAs per Stream

Fig. 9: Distribution of memory instruction types
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Multiprocessors (SM) and the number of threads within each
CTA. The result is shown in Figure 6.

As can be observed, register file is more utilized among
the three types of SRAMs. Constant memory is less used
in comparison. Only a few applications use shared memory,
such as NW, CLUSTER, and PairHMM. The lack of shared
memory usage is related to the programmer’s coding style.
Programming with shared memory is a unique feature for
GPUs, and it takes extra steps rather than using the global
memories directly. We observe that appropriate usage of
shared memory can greatly benefit performance. We compared
the performance between running with and without shared
memory for NW and PairHMM and show the result in Figure
7. Here the execution time is normalized to those using shared
memory. Using shared memory can improve performance by
1.88 times for benchmark NW while the performance can
be improved by 36.92 times for benchmark PairHMM. Many
genomics programs were originally created for CPUs and then
ported to GPUs and shared memory might be neglected during
the porting procedure. Our observation suggests that rather
than straightforward translation, taking advantage of shared
memory can better exploit GPU’s computing power.
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D. Instruction types

Figure 8 shows the different instruction types executed when
running the non-CDP and CDP variants of the applications. As
can be observed, integer instructions are the most commonly
executed instructions, followed by load/store instructions and
floating point instructions. Integer instructions take up more
than 60% of the total instructions executed. Special function
instructions are very rare. A similar behavior can be observed
in the CDP implementations but with a more even distribution
between floating point and load/stall instructions. Figure 9
shows the breakdown of the memory operations. Here we
use Shared, Tex, and Const, to represent the number of
instructions in shared memory, texture memory, and constant
memory, respectively. Param is the number of parameters read
instructions executed. Local is the number of local memory
accesses, and Global is the number of global memory accesses.
The applications’ memory types vary from one another. We
can see that for Gasal2 applications (GG, GL, GKSW, GSG,
and their CDP implementations), local memory accesses are
the most dominant. Over 95% of memory accesses are to the
shared memory for NW and PairHMM, whereas the remaining
applications access global and local memory more frequently.

E. Branch divergence

Fung et al. [42] observed that branch divergence is a major
source of performance loss in multithreaded SIMD architec-
tures. Warp occupancy is defined as the number of active
threads in an issued warp, which can be used to measure how
efficiently the GPU throughput is utilized. We categorized the
occupancy from W1 to W32, with W1 being the least utilized
warp with only one active thread and W32 being the most
utilized warp with 32 active threads (i.e. all threads in a warp
are active).

Figure 10 shows the warp occupancy for both non-CDP and
CDP implementation. The number of large warp occupancy
(W29-32) is more than 60% of all issued warps in NW, GG,
GL, GKSW, and GSG, showing good parallelism. Most non-
CDP implementations share similar distribution of sub-optimal

warp occupancy, with the exception of CLUSTER and STAR.
CLUSTER is mostly dominated by unfulfilled warps (W1-
4), taking up to over 50% of the time, while only half of
the number of threads are active in STAR. Fully occupied
warps take the majority of the time, with some applications
reaching 100% occupancy. The CDP implementations of NW,
CLUSTER, and PairHMM have better utilization of warps
than their non-CDP counterparts, with NW having 100% warp
occupancy. The CDP implementation of STAR is an outlier,
with over 80% of its warps having less than 5 active threads.
In general, better warp utilization in the CDP versions of
the applications proves that CDP can effectively improve
throughput by exploiting dynamic parallelism and avoiding
stalls caused by branch divergence.

F. Thread count and block size

Usually, increasing the number of simultaneously executing
threads will improve performance by concealing memory
access latencies better. However, Bakhoda et al. [20] found
that doing so may result in more competition for shared
resources such as interconnect and memory. We experiment
with cooperative thread arrays (CTA) [13], which defines how
many threads can execute a kernel concurrently [5]. Note that
in order to modify the CTAs per core for the experiment, we
also need to modify shared memory, threads, and registers
accordingly. Figure 11 shows the performance speedups for
CDP and non-CDP when the CTA sizes ( and according
resources) change to 25%, 50%, 150%, and 200% of the
baseline. As shown in Figure 11, most of the applications
exhibit no difference between the different CTA counts, with
CDP and Non-CDP sharing similar behavior. The main reason
is that the resource provided in each configuration is sufficient
that it will not impact the performance very much. We observe
performance increases for the PairHMM-CDP, NvB, and NvB-
CDP as more CTAs per core are used. Except for these
applications, we observe no significant changes in varying the
number of CTAs for most of the applications.
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G. Cache impacts

In this section, we explore the effects of varying cache sizes.
The baseline configuration for cache size is 128KB for L1 and
4MB for L2. We evaluate more cache configurations including,
no L1 +128KB L2, 32KB L1 + 512KB L2, 256KB L1 + 8MB
L2, 512KB L1 + 16MB L2, and 4MB L1 + 128MB L2.

Figure 12 shows the effects on performance when we
change cache sizes. Speedups are calculated by normalizing
the IPC of each cache configuration to the baseline configura-
tion. Performance degrades when the cache size is very small
(e.g., OKB L1 and 128KB L2). When we increase the cache
sizes, several benchmarks can improve performance within the
range of 10%, and others receive no improvement. GKSW
and its CDP implementation receive the most improvement
with increased cache size. Its Non-CDP implementation can
improve by as much as 7 times while its CDP implementation
achieves 2.7 times improvement.

Figure 13 and Figure 14 show the L1 and L2 cache miss
rates with varied cache sizes. For L1 cache misses, as shown
in Figure 13, we observe that most applications’ miss rates
do not change with increased cache sizes. The average L1
miss rate across all the applications is about 30%, with
SW and most GASAL2 applications showing very low miss
rates. NW-CDP, CLUSTER, CLUSTER-CDP, and miss rates
of the GASAL?2 applications slightly reduced when cache size

cache sizes, with GASAL?2 reaching up to 95% L2 miss rate.
However, the cache miss rates do not change significantly with
capacity except GKSW. One reason is we use the same cache
sizes in the baseline as in RTX 3070, which is big enough
for some applications. Another reason why some applications
are not sensitive to cache capacity is that the CPU needs
to do the memory transfer to GPU memory between two
kernel invocations, for example, execute cudaMemcpy after
each kernel. Consequently, cache locality will get lost on each
kernel invocation [85]. As a result, memory read requests will
reload the same data repeatedly and this will compromise the
effectiveness of caches [9].

We also experimented with a perfect memory system that
has zero memory access latency using the Accel-Sim sim-
ulator. Figure 15 shows the performance results. We can
observe different reactions to this ideal memory setting. Some
applications receive no performance improvement, such as
STAR and CLUSTER. Some applications receive about 25%
improvements, such as GG and GL. GKSW can improve
performance by as much as 5x. On average, the applications
can improve performance by 27% with the perfect memory
system.

When comparing the results between CDP and non-CDP
implementations, we can observe that for L1 cache misses,
STAR and SW’s CDP implementation has a higher miss
rate, and PairHMM’s CDP implementation has a lower miss
rate. For L2 cache misses, STAR’s CDP implementation is
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Fig. 18: DRAM utilization

also higher than the non-CDP implementation. SW, NW, and
PairHMM’s CDP implementation have lower miss rates than
its non-CDP implementations. The remaining applications
show little difference between CDP and non-CDP imple-
mentations. We attribute the higher L2 miss rates in CDP
implementations to interrupted spacial locality because CDP
changed loop execution order and cannot access contiguous
addresses in different loop iterations like in non-CDP.

H. DRAM utilization

We investigated the impact that different memory controller
setups have on the application performance, with Figure 16
showing the results. Our baseline configuration uses an FR-
FCFS (First-Row First-Come-First-Serve) memory controller.
Requests to an open row in any of the DRAM banks are given
higher priority. All requests in the queue are scheduled by the
scheduler to open rows first. If no such request exists, a new
row will be opened for the oldest request. We compare with a
simple FIFO (First In First Out) memory controller and Out-
of-Order FR-FCFS controller with a 128-entry buffer (OoO
128). There are no significant changes for both CDP or non-
CDP implementations. However, when using FIFO, up to 15%
slowdown can be observed for GL, GKSW, and GKSW-CDP.

We also measured DRAM efficiency and DRAM utilization.
DRAM efficiency measures the time spent in sending data
across the DRAM pins over the time of the memory controller
being serviced or having pending memory requests. We ob-
serve an average efficiency of 40% across all applications as
shown in Figure 17. NW, PairHMM, NvB, and NvB-CDP have
a higher efficiency ranging from 60%-80%. The baseline and
the OoO 128 memory controller have almost the same results,
whereas FIFO shows a slightly worse efficiency. DRAM
utilization measures how much of the total kernel execution
time is spent transferring data through the DRAM data pins.
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Fig. 19: Scheduler performance

The result is shown in Figure 18. Most applications have low
DRAM utilization, with the exception of GKSW, GKSW-CDP,
NvB, and NvB-CDP, meaning that these applications are more
memory intensive.

1. Scheduler sensitivity

Figure 19 shows the impact of different warp schedulers on
performance. Accel-Sim [50] uses LRR or loose round robin
algorithm as default. Greedy-then-oldest (GTO) is a greedy
algorithm that schedules instructions from a single warp until
it stalls. Oldest-first (OLD) is an algorithm that guarantees the
oldest task to use the resource first. Two-level(2LV) scheduler
employs two levels of scheduling and groups warps into active
warps and pending warps separately. The active warps issue in
the way of loose round robin until it encounters long latency
instructions. We observe no big differences in performance
among these schedulers, with NvB and NvB-CDP having a
slight improvement with the different schedulers over the
baseline LRR. GTO and OLD have better performance on
the CDP implementation for PairHMM. This is because CDP
enables more threads to execute in parallel, allowing more
opportunities to be explored by the schedulers.

J. Interconnect latency and bandwidth

The default RTX 3070 in Accel-Sim [50] uses a local crossbar
as the interconnect backbone. We use it as our baseline.
We also evaluated other network topologies, such as fat-
tree, butterfly, and mesh. We use destination tag routing
for butterfly, dimension-order routing for mesh, and nearest
common ancestor routing for the fattree. Figure 20 shows the
performance results where all performance is normalized to
the baseline local crossbar. For most applications, we observe
a slight performance decrease in the other network topologies
compared with the baseline. There is a drastic decrease in
performance for the CDP variant of SW and NW using mesh
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Fig. 22: Interconnect network bandwidth

topology. This is because they are more sensitive to the
network performance and a mesh network performs worse due
to its large number of hops.

We evaluated how network latency affects performance and
the results are shown in Figure 21. We used mesh as the
network topology. The baseline is an ideal network with zero
router latency. We then add 4, 8, and 16 cycles of delay to
the router pipeline. Except for SW, most applications suffer
significant performance loss due to increased network latency.
The average performance degradation is 36%, 60%, and 78%
when we increase the latency by 4, 8, and 16 cycles. SW-
CDP, NW-CDP, GKSW-CDP, NvB, and NvB-CDP experience
the most significant performance loss. The reason why CDP
implementations are more sensitive to network latency is that
they have higher parallelism and longer network latency can
lead to more performance degradation.

We also experimented with different interconnect band-
widths by varying the channel bandwidth for Mesh topology to
8B, 16B, 32B, and 40B. Figure 22 shows the results where all
performance is normalized to 40B. When network bandwidth
is reduced to 32B, the average performance degradation is
around 10%. However, when we further reduce the bandwidth
to 16B and 8B, there is a drastic decrease in performance
across all benchmarks. For example, the average performance
degraded by 34% when bandwidth is 8B. Similar to latency,
we observe that several CDP implementations receive large
performance loss. This again shows these types of applications
are more sensitive to the network performance.

V. RELATED WORK

There have been many studies on characterization and analysis
for GPU applications [20], [26], [85]. Different metrics were
used by Kerr et al. [49] to describe PTX kernels while also
proposing a methodology for writing effective GPU programs.
Burtscher et al. [24] studied the control flow irregularity and
memory access irregularity on GPU programs. Some represen-
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Fig. 21: Interconnect network latency

tative benchmarks used in GPU studies also include Parboil
[75], Rodinia [28], ispass-2009 [7], and Lonestar [24]. Wang
et al. [81] proposed a CDP implementation of graph-based
substructure pattern mining. DiMarco et al. [34] evaluated
the performance gains of clustering algorithms with dynamic
parallelism. Wang et al. [83] also studied the dynamically
formed parallelism applications and implemented them with
CDP.

Several DNA and protein sequence analysis benchmarks
such as BLAST [57] and HMMER [37] were evaluated by the
BioPerf [19] benchmark suite while also providing precom-
piled Alpha binaries to assist simulations. Further characteriza-
tion for these benchmarks was done by BioBench [17], show-
ing to have a higher ILP (instruction level parallelism). Ge-
nomicsBench [76] then improved the coverage of prior bench-
marks by including dynamic programming kernels and GPU-
optimized dense neural networks. CUDAlign [70] proposed a
GPU-accelerated version of the Smith-Waterman(SW) algo-
rithm resulting in a peak of 20.375 GCUPS (Giga Cells Up-
dates per Second). Other researchers also proposed hardware-
accelerated GPUs or FPGAs for Smith-Waterman algorithms.
[33], [54], [55], [77] Huang et al. [44] proposed the use of
GPUs to accelerate the Pair-HMM algorithm resulting in a
487x improvement on a baseline C++ implementation on CPU
and a 1.56x improvement to the best hardware implementation
at that time. Ren et al. [68] then improved the performance
by 5.47x by accelerating Pair-HMMs forward algorithm on
GPUs with approaches such as intertask and intratask. Li et
al. [52] followed up with a proposed improvement of GPU
implementation by optimizing host-to-device communication,
task parallelization, and memory management.

VI. CONCLUSION

In this paper, we present Genomics-GPU, a benchmark suite
containing 10 GPU-accelerated genome analysis applications.
We also provide an updated version of each application to
support CDP. We use hardware GPU and a software simulator
to evaluate these applications and provide a detailed charac-
terization and analysis of the results. Genomics-GPU is open
source and available on GitHub: https://github.com/Genomics-
GPU/Genomics-GPU.
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