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Abstract. We introduce a notion of round-robin secure sampling that
captures several protocols in the literature, such as the “powers-of-
tau” setup protocol for pairing-based polynomial commitments and zk-
SNARKs, and certain verifiable mixnets.

Due to their round-robin structure, protocols of this class inherently
require n sequential broadcast rounds, where n is the number of partic-
ipants.

We describe how to compile them generically into protocols that
require only O(

√
n) broadcast rounds. Our compiled protocols guarantee

output delivery against any dishonest majority. This stands in contrast to
prior techniques, which require Ω(n) sequential broadcasts in most cases
(and sometimes many more). Our compiled protocols permit a certain
amount of adversarial bias in the output, as all sampling protocols with
guaranteed output must, due to Cleve’s impossibility result (STOC’86).
We show that in the context of the aforementioned applications, this bias
is harmless.

1 Introduction

In many settings it is desirable for a secure multiparty computation (MPC)
protocol to guarantee output delivery, meaning that regardless of the actions
taken by an adversary who may corrupt up to n − 1 parties, all honest parties
always learn their outputs from the computation. This property, for example,
is needed in any use of secure computation that creates a critical public output,
such as securely sampling the setup parameters needed for a blockchain system,
etc. However, the seminal result of Cleve [23] showed that unless a majority of
parties are assumed to be honest, certain functions cannot be computed even
with fairness (meaning that if the adversary learns the output then so do all
honest parties).

In the two-party setting, a series of works culminated with a full charac-
terization of all finite-domain Boolean functions that can be computed with
guaranteed output delivery [2–4,35,49]. Our understanding is limited in the
multiparty setting: only a handful of functions are known to be securely com-
putable with guaranteed output delivery (e.g., the Boolean-OR and majority
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functions) [25,26,36]. In fact, for n > 3, only Boolean OR is known to achieve
guaranteed output delivery against n − 1 corruptions without bias.

The Boolean-OR protocol of Gordon and Katz [36] inherently requires a
linear number of broadcast rounds relative to the party count. It extends the
folklore “player-elimination technique” (originally used in the honest-majority
setting [33,34]) to the dishonest-majority case by utilizing specific properties of
the Boolean-OR function. In a nutshell, the n parties iteratively run a related
secure computation protocol with identifiable abort [25,42], meaning that if the
protocol aborts without output, it is possible to identify at least one dishonest
party. Since the abort may be conditioned on learning the putative output, this
paradigm only works if the putative output is simulatable, which is the case for
Boolean OR. If the protocol aborts, the dishonest party is identified and expelled,
and the remaining parties restart the computation with a default input for the
cheater (0 in case of Boolean OR). Because n−1 dishonest parties can force this
process to repeat n − 1 times, the overall round complexity must be Ω(n).1

The 1/p relaxation. A closer look at Cleve’s attack [23] reveals that any r-
round coin-tossing protocol that completes with a common output bit is exposed
to an inverse-polynomial bias of Ω(1/r); it is a natural line of inquiry to
attempt to achieve as tight a bias in the output as possible. Unfortunately,
as far as we know, this approach creates a dependence of the round complex-
ity on the number of parties that is typically much worse than linear. The
state of the art for coin-tossing is the work of Buchbinder et al. [16] where the
bias is Õ

(
n3 · 2n/r0.5+1/(2n−1−2)

)
, which improves upon prior works [5,23] for

n = O(log log r), i.e., when the number of rounds is doubly exponential in n
(e.g., for a constant number of parties the bias translates to O(1/r1/2+Θ(1))).

Towards generalizing the coin-tossing results, Gordon and Katz [37] relaxed
the standard MPC security definition to capture bias via 1/p-secure computa-
tion, where the protocol is secure with all but inverse-polynomial probability, as
opposed to all but negligible.2 They showed feasibility for any randomized two-
party functionality with a polynomial-sized range and impossibility for certain
functionalities with super-polynomial-sized domains and ranges. Beimel et al. [8]
extended 1/p-secure computation to the multiparty setting and presented proto-
cols realizing certain functionalities with polynomial-sized ranges. However, their
protocols again have round counts doubly exponential in n and only support a
constant number of parties. Specifically, if the size of the range of a function is
g(λ), then the round complexity for computing that function with 1/p-security
is (p(λ) · g(λ))2O(n) .

In sum, the 1/p-relaxation requires many more rounds and is limited to
functionalities with a polynomial-sized range. Many useful tasks, such as the

1 Surprisingly, if a constant fraction of the parties are assumed to be honest, this linear
round complexity can be reduced to any super-constant function; e.g., O(log∗ n) [24].

2 Formally, there exists a polynomial p such that every attack on the “real-world”
execution of the protocol can be simulated in the “ideal-world” computation such
that the output of both computations cannot be distinguished in polynomial-time
with more than 1/p(λ) probability.
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sampling of cryptographic keys (which must be drawn from a range of super-
polynomial size) cannot be achieved via this technique.

Biased-Sampling of Cryptographic Keys. Fortunately, some applications of MPC
that require guaranteed output delivery can indeed tolerate quite large bias. A
long line of works in the literature consider the problem of random sampling
of cryptographic objects in which each party contributes its own public share in
such a way that combining the public shares yields the public output, but even
the joint view of n − 1 secret shares remains useless. Protocols that follow this
pattern give a rushing adversary the ability to see the public contribution of the
honest parties first, and only later choose the secrets of the corrupted parties.
This approach permits the adversary to inflict a statistically large bias on the
distribution of the public output (for example, forcing the output to always end
in 0). However, the effect of this bias on the corresponding secret is hidden from
the adversary due to the hardness of the underlying cryptographic primitive.

For some simple cryptographic objects (e.g., collectively sampling x · G3),
there are single-round sampling protocols, known as Non-Interactive Distributed
Key Generation (NIDKG) schemes [28,54]. Interestingly, a classic construction
for (interactive) distributed key generation by Pedersen [51] in the honest major-
ity setting was found by Gennaro et al. [31] to unintentionally permit adversarial
bias, which the same authors later proved can be tolerated in a number of appli-
cations [32].

For more complex cryptographic objects, the contributions of the parties can-
not come in parallel. A few protocols are known in which the parties must each
contribute only once, but they must contribute sequentially. We refer to these as
round-robin protocols. Among them are the “powers-of-tau” protocol [13,39,47]
and variants of Abe’s verifiable mixnets [1,14], about which we will have more to
say below. The round-robin approach inherently requires Ω(n) broadcast rounds.

For some cryptographic objects, the state-of-the-art sampling protocols
do not guarantee output, but achieve security with identifiable abort. Multi-
party RSA modulus generation [20,21] is a key example. Applying the player-
elimination technique in this setting gives the adversary rejection-sampling capa-
bilities, since the adversary can repeatedly learn the outcome of an iteration of
the original protocol and then decide whether to reject it by actively cheating
with a party (who is identified and eliminated), or accept it by playing honestly.
An adversary that controls n−1 parties can reject n−1 candidate outputs before
it must accept one. This may be different than inducing a plain bias, since the
adversary can affect the distribution of the honest parties’ contributions, but in
this work we show that for certain tasks the two are the same. Regardless, the
broadcast-round complexity of this approach is, again, inherently Ω(n).

To summarize, with the exception of NIDKG protocols a few specific tasks, all
known techniques in the study of guaranteed output delivery with bias inherently
require Ω(n) broadcast rounds. It was our initial intuition that Ω(n) rounds were

3 Where G is a generator of a group of order q written in additive notation, and x is
a shared secret from Zq.
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a barrier. Our main result is overcoming this intuitive barrier for an interesting
class of functionalities.

1.1 Our Contributions

Our main contribution is to develop a new technique for constructing secure
computation protocols that guarantee output delivery with bias using O(

√
n)

broadcast rounds while tolerating an arbitrary number of corruptions. Prior
state-of-the-art protocols for the same tasks require n broadcast rounds. More-
over, our work stands in contrast to the folklore belief that realizing such func-
tionalities with guaranteed output delivery inherently requires Ω(n) rounds.

Our technique applies to the sampling of certain cryptographic objects for
which there exist round-robin sampling protocols, with a few additional prop-
erties. This class is nontrivial: it includes both the powers-of-tau and verifiable
mixnet constructions mentioned previously. The combination of scalability in n
with security against n − 1 corruptions is particularly important as it allows
for better distribution of trust (given that there need only be a single hon-
est party) than is possible with Ω(n)-round protocols. Indeed, well-known real-
world ceremonies for constructing the powers-of-tau-based setup parameters for
zk-SNARK protocols involved just a few participants [10] and later one hundred
participants [13]. Our aim is to develop methods that allow thousands to millions
of participants to engage in such protocols, which naturally requires a sublinear
round complexity.

Though our techniques are model-agnostic, we formulate all of our results in
the UC model. Specifically, we construct a compiler for round-robin protocols,
and formally incorporate the adversary’s bias into our ideal functionalities, as
opposed to achieving only 1/p-security [37].

The Basic Idea. The transformation underlying our compiler uses the “player-
simulation technique” that goes back to Bracha [15] and is widely used in the
Byzantine agreement and MPC literature (e.g., [41,43]) as well as the “player-
elimination framework” [33,34]. We partition the set of n players into

√
n subsets

of size
√

n each, and then construct a protocol that proceeds in at most O(
√

n)
phases, with O(1) rounds per phase. The key invariant of our technique is that
in each phase, either one subset is able to make progress towards an output (and
are thus able to halt), or if no subset succeeds, then at least one player from each
active subset can be identified as cheating and removed from the next phase.

Applying our technique requires two key properties of the original protocol
which we group under the moniker “strongly player-replaceable round-robin.”
We do not know precisely what kinds of functions can be computed by such
protocols, but the literature already contains several examples. This issue is not
new, as prior works in the literature must also resort to describing function
classes by the “presence of an embedded XOR” [35] or the “size of domain or
range” [8]. In our case, the restriction is defined by the existence of an algorithm
with certain properties that can be used to compute the function.



Guaranteed Output for Round-Robin Sampling Protocols 245

Motivating Protocol: Powers of Tau. Before we give a more detailed explanation
of our technique, it will be useful to recall a simplified version of the powers-
of-tau protocol of Bowe, Gabizon, and Miers [13]. Throughout, we assume syn-
chronous communication, and a malicious adversary that can statically corrupt
an arbitrary subset of the parties. The powers-of-tau protocol was designed
for generating setup parameters for Groth’s zk-SNARK [38]. Given an ellip-
tic curve group G generated by the point G, our simplified version will output
{τ · G, τ2 · G, . . . , τd · G}, where d is public and τ is secret.

The protocol’s invariant is to maintain as an intermediate result a vector of
the same form as the output. In each round, the previous round’s vector is reran-
domized by a different party. For example, if the intermediate result of the first
round is a vector {τ1 · G, τ2

1 · G, . . . , τd
1 · G}, then in round two the second party

samples τ2 uniformly and broadcasts {τ1 · τ2 · G, τ2
1 · τ2

2 · G, . . . , τd
1 · τd

2 · G},
which it can compute by exponentiating each element of the previous vector.
It also broadcasts a zero-knowledge proof that it knows the discrete logarithm of
each element with respect to the corresponding element of the previous vector,
and that the elements are related in the correct way.

It is not hard to see that a malicious party can bias the output, as Cleve’s
impossibility requires, and variants of this protocol have attempted to reduce
the bias by forcing parties to speak twice [10,12], using “random beacons” as
an external source of entropy [13], or considering restricted forms of algebraic
adversaries [29,47] in the random oracle model.

Round-Robin Sampling Protocols. The powers-of-tau protocol has a simple struc-
ture shared by other (seemingly unrelated) protocols [1,14], which we now
attempt to abstract. First, observe that it proceeds in a round-robin fashion,
where in every round a single party speaks over a broadcast channel, and the
order in which the parties speak can be arbitrary. Furthermore, the message
that each party sends depends only on public information (such as the tran-
script of the protocol so far, or public setup such as a common random string)
and freshly-tossed private random coins known only to the sending party. The
next-message function does not depend on private-coin setup such as a PKI, or
on previously-tossed coins. Strongly player-replaceable round-robin protocols—
the kind supported by our compiler—share these properties.

Next, we generalize this protocol-structure to arbitrary domains. We denote
the “public-values” domain by V (corresponding to G

d in our simplified exam-
ple) and the “secret-values” domain by W (corresponding to Zq). Consider an
update function f : V × W → V (corresponding to the second party’s “reran-
domization” function, sans proofs) and denote by πRRSample(f, n, u) the cor-
responding n-party round-robin protocol for some common public input value
u ∈ V (corresponding to, e.g., {G, . . . , G}). In addition to the basic powers-of-
tau protocol and its variants [13,39,47], this abstraction captures an additional
interesting protocol from the literature: verifiable mixnets [14], where the parties
hold a vector of ciphertexts and need to sample a random permutation.
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Generalizing to Pre-transformation Functionality. Having defined the class of
protocols, we specify a corresponding ideal functionality that these protocols
realize in order to apply our compiler. This “pre-transformation functionality”
is rather simple and captures the inherent bias that can be induced by the
adversary. Specifically, the functionality starts with the common public input
u, and then samples a uniform secret value w ∈ W and updates u with w
to yield a new public (intermediate) value v ..= f(u,w). The functionality
shows v to the adversary, and allows the adversary free choice of a bias value
x ∈ W with which it updates v to yield the final output y ..= f(v, x). For
the specific case of powers-of-tau, this corresponds to an honest party pick-
ing a secret τ1 and broadcasting {τ1 · G, τ2

1 · G, . . . , τd
1 · G}, and then the adver-

sary choosing τ2 (conditioned on the honest party’s output) and broadcasting
{τ1 · τ2 · G, τ2

1 · τ2
2 · G, . . . , τd

1 · τd
2 · G}.

For update function f : V × W → V and common public input u ∈ V,
we denote by FPreTrans(f, n, u) the n-party variant of the pre-transformation
functionality. Proving that the round-robin protocol realizes this functionality
boils down to realizing the a zero-knowledge proof that f has been correctly
applied. We prove the following theorem:

Theorem 1.1 (Pre-Transformation Security, Informal). Let n ∈ N, let f :
V × W → V be an update function, and let u ∈ V. Under these conditions,
πRRSample(f, n, u) realizes FPreTrans(f, n, u) in the FNIZK-hybrid model
within n broadcast rounds.

Theorem 1.1 gives the first modular analysis in the simulation paradigm of
(a version of) the powers-of-tau protocol; this is opposed to other security anal-
yses (e.g., [13,47]) that give a monolithic security proof and explicitly avoid
simulation-based techniques. On one hand, the modular approach allows the use
of the powers-of-tau protocol to generate setup for other compatible construc-
tions that otherwise rely on a trusted party, such as polynomial commitments
[44]. On the other hand, different instantiations of FNIZK give different security
guarantees for the protocol: a universally composable (UC) NIZK in the CRS
model yields a corresponding UC-secure protocol, a random-oracle-based NIZK
yields security in the random-oracle model, and a knowledge-of-exponent-based
NIZK yields stand-alone, non-black-box security in the plain model.

Round-Reducing Compiler. Let us now return to our main conceptual contribu-
tion: a compiler that reduces the round complexity of the round-robin protocols
described above from n broadcast rounds to O(

√
n).

Let f : V × W → V be an update function and u ∈ V a common
public input as before, and let m < n be integers (without loss of gener-
ality, consider n to be an exact multiple of m). Given an m-party protocol
πRRSample(f,m, u) executed in m rounds by parties Q1, . . . ,Qm (who speak
sequentially), let gj be the next-message function of Qj . The compiled pro-
tocol πCompiler(πRRSample(f,m, u), n, u,m) will be executed by n parties
P1, . . . ,Pn.
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The compiled protocol will organize its parties into m committees, and each
committee will execute a (n/m)-party MPC protocol in order to jointly evaluate
the next-message functions of parties in the original protocol. For ease of expo-
sition, we will say that each committee in this new protocol acts as a virtual
party in the original, which proceeds in virtual rounds. The MPC protocol must
be secure with identifiable abort [25,42] against any number of corruptions; that
is, either all honest parties obtain their outputs or they all identify at least one
cheating party.

Furthermore the MPC must provide public verifiability [6,53] in the sense
that every party that is not in a particular committee must also learn that
committee’s output (or the identities of cheating parties), and be assured that
the output is well-formed (i.e., compatible with the transcript, for some set of
coins) even if the entire committee is corrupted. This is similar to the notions of
publicly identifiable abort [46] and restricted identifiable abort [24].

In the ith round, all of the committees will attempt to emulate the party
Qi of the original protocol, in parallel. If a party is identified as a cheater at
any point, it is excluded from the rest of the computation. At the conclusion
of all MPC protocols for the first round, one of two things must occur: either
all committees aborted, in which case at least m cheating parties are excluded,
and each committee re-executes the MPC protocol with the remaining parties,
or else at least one committee completed with an output. In the latter case, let j
be the minimal committee-index from those that generated output, and denote
the output of committee j by ai. Next, all committees (except for committee j,
which disbands) proceed as if the virtual party Qi had broadcasted ai in the ith

round, and continue in a similar way to emulate party Qi+1 in round i+1. Note
that at a certain point all remaining committees may be fully corrupted, and
cease sending messages. This corresponds to the remaining virtual parties being
corrupted and mute in the virtual protocol; in this case all of the remaining
committee members are identified as cheaters. The compiled protocol proceeds
in this way until the virtualized copy of πRRSample(f,m, u) is complete.

If the generic MPC protocol that underlies each virtual party requires con-
stant rounds, then the entire protocol completes in O(m + n/m) rounds, and if
we set m =

√
n, we achieve a round complexity of O(

√
n), as desired. So long as

there is at least one honest party, one virtual party is guaranteed to produce an
output at some point during this time, which means that the compiled protocol
has the same output delivery guarantee as the original.

Post-Transformation Functionality. Although the compiled protocol
πCompiler(πRRSample(f,m, u), n, u,m) emulates the original πRRSample(f,

m, u) in some sense, it does not necessarily realize FPreTrans(f,m, u) as the
original protocol does, because the adversary has additional rejection-sampling
capabilities that allow for additional bias. We therefore specify a second ideal
functionality FPostTrans(f, n, u, r), where r is a bound on the number of
rejections the adversary is permitted; setting this bound to 0 coincides with
FPreTrans(f, n, u).
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As in FPreTrans(f, n, u), the functionality begins by sampling w ← W,
computing v = f(u,w) and sending v to the adversary, who can either accept
or reject. If the adversary accepts then it returns x ∈ W and the functionality
outputs y = f(v, x) to everyone; if the adversary rejects, then the functionality
samples another w ← W, computes v = f(u,w), and sends v to the adver-
sary, who can again either accept or reject. The functionality and the adversary
proceed like this for up to r iterations, or until the adversary accepts some value.

Theorem 1.2 (Post-Transformation Security, Informal). Let m < n be integers
and let f : V×W → V and u ∈ V be as above. Assume that πRRSample(f,m, u)
realizes FPreTrans(f,m, u) using a suitable NIZK protocol within m broad-
cast rounds, and that the next-message functions of πRRSample(f,m, u)
can be securely computed with identifiable abort and public verifiability in
a constant-number of rounds. Let r = m + �n/m�. Under these condi-
tions, πCompiler(πRRSample(f,m, u), n, u,m) realizes FPostTrans(f, n, u, r)
within O(r) broadcast rounds.

Although πCompiler(πRRSample(f,m, u), n, u,m) does not necessarily
realize FPreTrans(f,m, u) for every f , we show that it somewhat-unexpectedly
does if the update function f satisfies certain properties. Furthermore, we show
that these properties are met in the cases of powers-of-tau and mixnets.

Theorem 1.3 (Equivalence of Pre- and Post-Transformation Security, Infor-
mal). Let n, r ∈ N, let f : V×W → V be a homomorphic update function, and let
u ∈ V be a common public input. If a protocol π realizes FPostTrans(f, n, u, r)
then π also realizes FPreTrans(f, n, u).

Powers of Tau and Polynomial Commitments. A polynomial-commitment
scheme enables one to commit to a polynomial of some bounded degree d, and
later open evaluations of the polynomial. The pairing-based scheme of Kate
et al. [44] requires trusted setup of the form {G, τ · G, τ2 · G, . . . , τd · G} ∈ G

d+1,
for some elliptic curve group G. The security of the scheme reduces to the d-
strong Diffie-Hellman assumption (d-SDH) [11]. We show that if the setup is not
sampled by a trusted party, but instead computed (with bias) by our protocol
(either the round-robin or compiled variation), there is essentially no security
loss.

Theorem 1.4 (Generating Setup for SDH, Informal). If there exists a PPT
adversary that can break a d-SDH challenge generated by an instance of our
protocol in which it has corrupted n−1 parties, then there exists a PPT adversary
that can win the standard (unbiased) d-SDH game with the same probability.

SNARKs with Updateable Setup. Several recent Succinct Non-interactive Argu-
ments (zk-SNARKs) have featured updatable trusted setup, and have security
proofs that hold so long as at least one honest party has participated in the
update process [22,30,39,50]. Since their proofs already account for adversarial
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bias and the form of their trusted setup derives from the setup of Kate et al. [44],
our protocols can be employed for an asymptotic improvement upon the best
previously known update procedure.

Verifiable Mixnets. A verifiable mixnet is a multiparty protocol by which a group
of parties can shuffle a set of encrypted inputs, with the guarantee that no corrupt
subset of the parties can learn the permutation that was applied or prevent the
output from being delivered, and the property that non-participating observers
can be convinced that the shuffle was computed correctly. Prior constructions,
such as the work of Boyle et al. [14], involve random shuffling and re-encryption in
a round-robin fashion, and their security proofs already consider bias of exactly
the sort our protocol permits. Thus, it is natural to apply our compiler, yielding
the first verifiable mixnet that requires sublinear broadcast rounds.

Concrete Efficiency. While our primary goal in this work is optimizing round
complexity, a round-efficient protocol is not useful in practice if it has unfeasibly
high (but polynomially bounded) communication or computation complexity. As
evidence of the practicality of our technique, the full version of this paper will
include an additional, non-generic construction that specifically computes the
powers-of-tau, and an analysis of its concrete costs. We give a summary of this
additional result in Sect. 5.

2 Preliminaries

Notation. We use = for equality, ..= for assignment, ← for sampling from a dis-
tribution, ≡ for distributional equivalence, ≈c for computational indistinguisha-
bility, and ≈s for statistical indistinguishability. In general, single-letter variables
are set in italic font, function names are set in sans-serif font, and string literals
are set in slab-serif font. We use V, W, X, and Y for unspecified domains,
but we use G for a group, F for a field, Z for the integers, N for the natural
numbers, and Σd for the permutations over d elements. We use λ to denote the
computational security parameter.

Vectors and arrays are given in bold and indexed by subscripts; thus ai is the
ith element of the vector a, which is distinct from the scalar variable a. When
we wish to select a row or column from a multi-dimensional array, we place a ∗
in the dimension along which we are not selecting. Thus b∗,j is the jth column
of matrix b, bj,∗ is the jth row, and b∗,∗ = b refers to the entire matrix. We use
bracket notation to generate inclusive ranges, so [n] denotes the integers from
1 to n and [5, 7] = {5, 6, 7}. On rare occasions, we may use one vector to index
another: if a ..= [2, 7] and b ..= {1, 3, 4}, then ab = {2, 4, 5}. We use |x| to denote
the bit-length of x, and |y| to denote the number of elements in the vector y.
We use Pi to indicate an actively participating party with index i; in a typical
context, there will be a fixed set of active participants denoted P1, . . . ,Pn. A
party that observes passively but remains silent is denoted V.

For convenience, we define a function GenSID, which takes any number of
arguments and deterministically derives a unique Session ID from them. For
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example GenSID(sid, x, x) derives a Session ID from the variables sid and x, and
the string literal “x.”

Universal Composability, Synchrony, Broadcast, and Guaranteed Output Deliv-
ery. We consider a malicious PPT adversary who can statically corrupt any
subset of parties in a protocol, and require all of our constructions to guaran-
tee output delivery. Guaranteed output delivery is traditionally defined in the
stand-alone model (e.g., [25]) and cannot be captured in the inherently asyn-
chronous UC framework [17]. For concreteness, we will consider the synchronous
UC modeling of Katz et al. [45], which captures guaranteed termination in UC,
but for clarity we will use standard UC notation. We note that our techniques
do not rely on any specific properties of the model, and can be captured in any
composable framework that supports synchrony, e.g., those of Liu-Zhang and
Maurer [48] or Baum et al. [7].

In terms of communication, we consider all messages to be sent over an
authenticated broadcast channel, sometimes denoted by FBC, and do not consider
any point-to-point communication. This is standard for robust MPC protocols
in the dishonest-majority setting. Our protocols proceed in rounds, where all
parties receive the messages sent in round i − 1 before anyone sends a message
for round i.

3 A Round-Reducing Compiler

The main result of our paper is a round-reducing compiler for round-robin sam-
pling protocols. To be specific, our compiler requires three conditions on any pro-
tocol ρ that it takes as input: ρ must have a broadcast-only round-robin structure,
it must be strongly player-replaceable, and it must UC-realize a specific function-
ality FPreTrans(f, ·, ·) for some function f . We define each of these conditions
in turn, before describing the compiler itself in Sect. 3.1.

Definition 3.1 (Broadcast-Only Round-Robin Protocol). A protocol has a
broadcast-only round-robin structure if the parties in the protocol send exactly
one message each in a predetermined order, via an authenticated broadcast chan-
nel. We often refer to such protocols simply as round-robin protocols.

Definition 3.2 (Strong Player-Replaceability). A protocol is strongly player-
replaceable if no party has any secret inputs or keeps any secret state. That is,
the next-message functions in a strongly player-replaceable protocol may take as
input only public values and a random tape.

Remark 3.3 (Strongly Player-Replaceable Round-Robin Protocols). If a pro-
tocol ρ(n, u) for n parties with some common input u ∈ V conforms to Defini-
tions 3.1 and 3.2, then it can be represented as a vector of functions g1, . . . ,gn+1

such that gi for i ∈ [n] is the next-message function of the ith party. g1 takes
u ∈ V and a vector of η uniform coins for some η ∈ N as input, and each suc-
ceeding function gi for i ∈ [2, n] takes u concatenated with the outputs of all
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previous functions in the sequence, plus η additional uniform coins. The last
function, gm+1, does not take any coins, and can be run locally by anyone to
extract the protocol’s output from its transcript. We refer to protocols that meet
these criteria as SPRRR protocols hereafter.

Note that Definition 3.2 is somewhat more restrictive than the (non-strong)
player-replaceability property defined by Chen and Micali [19]. Their definition
forbids secret state but allows players to use some kinds of secret inputs (in
particular, secret signature keys) in the next-message function, so long as every
player is capable of computing the next message for any given round. We forbid
such secret inputs, giving parties only an ideal authenticated broadcast channel
by which to distinguish themselves from one another.

Finally, we define the biased sampling functionality that any input protocol ρ
is required to realize. This functionality is parameterized by a function f which
takes an input value from some space (denoted V) and a randomization witness
(from some space W) and produces an output value (again in V) determinis-
tically. The functionality models sampling with adversarial bias by selecting a
randomization witness w from W uniformly, rerandomizing the input value using
w, and then providing the resulting intermediate v to the adversary, who can
select a second (arbitrarily biased) randomization witness x from W to apply to
v using f , in order to produce the functionality’s output y. Note that the only
requirement on f is that it has the same input and output domains, so that it
can be applied repeatedly. It is not required to have any other properties (such
as, for example, one-wayness).

Functionality 3.4. FPreTrans(f, n, u). Biased Sampling

This functionality interacts with n actively participating parties denoted
by P1 . . . Pn and with the ideal adversary S. It is also parameterized by an
update function f : V × W → V and an arbitrary value u ∈ V.

Sampling: On receiving (sample, sid) from at least one Pi for i ∈ [n],

1. If a record of the form (unbiased, sid, ∗) exists in memory, then ignore
this message. Otherwise, continue with steps 2 and 3.

2. Sample w ← W and compute v ..= f(u,w).
3. Store (unbiased, sid, v) in memory and send (unbiased, sid, v) to S.

Bias: On receiving (proceed, sid, x) from S, where x ∈ W,

4. If the record (done, sid) exists in memory, or if the record
(unbiased, sid, v) does not exist in memory, then ignore this message.
Otherwise, continue with steps 5 and 6.

5. Compute y ..= f(v, x).
6. Store (done, sid) in memory and broadcast (output, sid, y) to all parties.
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Note that this functionality never allows an abort or adversarially delayed
output to occur, and thus it has guaranteed output delivery.4 Now that all of
the constraints on input protocols for our compiler are specified, and we can
introduce a second functionality, which will be UC-realized by the compiled
protocol, given a constraint-compliant input protocol. This second functionality
is similar to FPreTrans and likewise has guaranteed output delivery, but it takes
an additional parameter r, and allows the adversary to reject up to r potential
honest randomizations before it supplies its bias and the output is delivered.

Functionality 3.5. FPostTrans(f, n, u, r). Rejection Sampling

This functionality interacts with n actively participating parties denoted
by P1 . . . Pn and with the ideal adversary S. It is also parameterized by an
update function f : V × W → V, an arbitrary value u ∈ V, and a rejection
bound r ∈ N.

Sampling: On receiving (sample, sid) from at least one Pi for i ∈ [n],

1. If a record of the form (candidate, sid, ∗, ∗) exists in memory, then ignore
this message. Otherwise, continue with steps 2 and 3.

2. Sample w1 ← W and compute v1
..= f(u,w1).

3. Store (candidate, sid, 1,v1) in memory and send the same tuple to S.

Rejection: On receiving (reject, sid, i) from S, where i ∈ N,

4. If i > r, or if either of the records (done, sid) or (candidate, sid, i +
1,vi+1) exists in memory, or if the record (candidate, sid, i,vi) does
not exist in memory, then ignore this message. Otherwise, continue with
steps 5 and 6.

5. Sample wi+1 ← W and compute vi+1
..= f(u,wi+1).

6. Store (candidate, sid, i+1,vi+1) in memory and send the same tuple to
S.

Bias: On receiving (accept, sid, i, x) from S, where i ∈ N and x ∈ W,

7. If either of the records (done, sid) or (candidate, sid, i+1,vi+1) exists in
memory, or if the record (candidate, sid, i,vi) does not exist in memory,
then ignore the message. Otherwise, continue with steps 8 and 9.

8. Compute y ..= f(vi, x).
9. Store (done, sid) in memory and broadcast (output, sid, y) to all parties.

Finally, we must discuss the property of public verifiability. We model public
verifiability as an abstract modifier for other functionalities. The parties interact-
ing with any particular session of an unmodified functionality become the active

4 Formally, every party requests the output from the functionality, and the adversary
can instruct the functionality to ignore a polynomially-bounded number of such
requests [45].
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participants in the modified functionality, but there may be additional parties,
known as observing verifiers, who may register to receive outputs (potentially
unbeknownst to the active participants) but do not influence the functionality
in any other way. This corresponds to the protocol property whereby a protocol
instance can be verified as having been run correctly by third parties who have
access to only a transcript (obtained, for example, by monitoring broadcasts).

Functionality 3.6. �F �PV. Public Verifiability for F
The functionality �F �PV is identical to the functionality F, except that
it interacts with an arbitrary number of additional observing verification
parties (all of them denoted by V, as distinct from the actively participating
parties P1, P2, etc.). Furthermore, if all actively participating parties are
corrupt, then �F �PV receives its random coins from the adversary S.

Coin Retrieval: Whenever the code of F requires a random value to
be sampled from the domain X, then sample as F would if at least one of
the active participants is honest. If all active participants are corrupt, then
send (need-coin, sid, X) to S, and upon receiving (coin, sid, x) such that
x ∈ X in response, continue behaving as F, using x as the required random
value.

Observer Registration: Upon receiving (observe, sid) from V, remem-
ber the identity of V, and if any message with the same sid is broadcasted
to all active participants in the future, then send it to V as well.

In the introduction, we have omitted discussion of public verifiability for the
sake of simplicity and clarity, but in fact, all known input protocols for our
compiler have this property (that is, they UC-realize �FPreTrans�PV, which
is strictly stronger than FPreTrans). Furthermore, we will show that given
an input protocol that realizes �FPreTrans�PV, the compiled protocol realizes
�FPostTrans�PV.

Note that when proving that a protocol realizes a functionality with public
verifiability, we do not typically need to reason about security against malicious
observing verifiers, since honest parties ignore any messages they send, and there-
fore there can be nothing in their view that the adversary cannot already obtain
by monitoring the relevant broadcast channel directly.

3.1 The Compiler

We now turn our attention to the compiler itself. We direct the reader to Sect. 1.1
for an intuitive view of the compiler, via virtual parties and virtual rounds.
With this intuitive transformation in mind, we now present a compiler which
formalizes it and addresses the unmentioned corner cases. The compiler takes
the form of a multiparty protocol πCompiler(ρ, n, u,m) that is parameterized
by a description of the original protocol ρ for m parties, and by the number of
real, active participants n, the public input u for the original protocol, and the
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number of committees (i.e., virtual parties) m. Before describing πCompiler, we
must formalize the tool that each committee uses to emulate a virtual party. We
do this via a UC functionality for generic MPC with identifiable abort.

Functionality 3.7. FSFE-IA(f, n). SFE with Identifiable Abort [42]

This functionality interacts with n actively participating parties denoted
by P1 . . . Pn and with the ideal adversary S. It is also parameterized by a
function, f : X1 × . . . × Xn → Y.

SFE: On receiving (compute, sid,xi) where xi ∈ Xi from every party Pi

for i ∈ [n],

1. Compute y ..= f
(
{xi}i∈[n]

)
.

2. Send (candidate-output, sid, y) to S, and receive (stooge, sid, c) in
response.

3. If c is the index of a corrupt party, then broadcast (abort, sid, c) to all
parties. Otherwise, broadcast (output, sid, y) to all parties.

In order to ensure that every party can identify the cheaters in committees
that it is not a member of, we must apply �·�PV to FSFE-IA, which gives
us publicly verifiable identifiable abort. We discuss a method for realizing this
functionality in Sect. 3.2; see Lemma 3.12 for more details. We can now give a
formal description of our compiler.

Protocol 3.8. πCompiler(ρ, n, u,m). Round-reducing Compiler

This compiler is parameterized by ρ, which is a player-replaceable round-
robin protocol with two parameters: the number of participants, which may
be hardcoded as m, and a common public input value from the domain V.
Let g1, . . . ,gm+1 be the vector of functions corresponding to ρ as described
in Remark 3.3, and let η be the number of coins that the first m functions
require. The compiler is also parameterized by the party count n ∈ N

+, the
common public input u ∈ V, and the committee count m ∈ N

+ such that
m ≤ n. In addition to the actively participating parties P� for 	 ∈ [n], the
protocol involves the ideal functionality �FSFE-IA�PV, and it may involve
one or more observing verifiers, denoted by V.

Sampling: Let a0
..= u and let C1,∗,∗ be a deterministic partitioning of [n]

into m balanced subsets. That is, for i ∈ [m], let C1,i,∗ be a vector indexing
the parties in the ith committee. Upon receiving (sample, sid) from the
environment Z, each party repeats the following sequence of steps, starting
with k ..= 1 and j1 ..= 1, incrementing k with each loop, and terminating
the loop when jk > m

1. For all i ∈ [m] (in parallel) each party P� for 	 ∈ Ck,i,∗
samples ω� ← {0, 1}η and sends (compute,GenSID(sid, k, i), ω�) to
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�FSFE-IA(γjk , |Ck,i,∗|)�PV, where γjk is a function such that

γjk

({
ω�

}
�∈Ck,i,∗

)
�→ gjk

(
a[0,jk],

⊕

�∈Ck,i,∗

ω�

)

2. For all i ∈ [m] (in parallel) each party P� for 	 ∈ [n] \ Ck,i,∗ sends
(observe,GenSID(sid, k, i)) to �FSFE-IA(γjk , |Ck,i,∗|)�PV (thereby tak-
ing the role of verifier).

3. For all i ∈ [m], all parties receive either (abort,GenSID(sid, k, i), ck,i) or
(output,GenSID(sid, k, i), âk,i) from �FSFE-IA(γjk , |Ck,i,∗|)�PV. In the
latter case, let ck,i

..= ⊥.
4. If any outputs were produced in the previous step, then let 	 be the

smallest integer such that (output,GenSID(sid, k, 	), âk,�) was received.
Let jk+1

..= jk + 1 and let ajk+1
..= âk,� and for every i ∈ [m] let

Ck+1,i,∗ ..=

{
Ck,i,∗ \ {ck,i} if i �= 	

∅ if i = 	

5. If no outputs were produced in Step 3, then let jk+1
..= jk and for every

i ∈ [m] let
Ck+1,i,∗ ..= Ck,i,∗ \ {ck,i}

Finally, each party outputs (output, sid,gm+1(am)) to the environment
when the loop terminates.

Verification: If there is an observing verifier V, then upon receiving
(observe, sid) from the environment Z, it repeats the following sequence of
steps, starting with k ..= 1 and j1 ..= 1, incrementing k with each loop, and
terminating the loop when jk > m.

6. V sends (observe,GenSID(sid, k, i)) to �FSFE-IA(γjk , |Ck,i,∗|)�PV for
all i ∈ [m], and receives either (abort,GenSID(sid, k, i), ck,i) or
(output,GenSID(sid, k, i), âk,i) in response.

7. V determines the value of jk+1 and Ck+1,∗,∗ per the method in Steps 4
and 5.

Finally, V outputs (output, sid,gm+1(am)) to the environment when the
loop terminates.

3.2 Proof of Security

In this section we provide security and efficiency proofs for our compiler. Our
main security theorem (Theorem 3.9) is split into two sub-cases: the case that
there is at least one honest active participant is addressed by Lemma 3.10, and
the case that there are no honest active participants (but there is one or more
honest observing verifiers) is addressed by Lemma 3.11. After this, we give a
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folklore method for realizing �FSFE-IA�PV in Lemma 3.12, and use it to prove
our main efficiency result in Corollary 3.13.

Theorem 3.9. Let f : V × W → V be an update function, let u ∈ V, let
m ∈ N

+, and let ρ be an SPRRR protocol such that ρ(m,u) UC-realizes
�FPreTrans(f,m, u)�PV in the presence of a malicious adversary statically
corrupting any number of actively participating parties. For every integer n ≥
m, it holds that πCompiler(ρ, n, u,m) UC-realizes �FPostTrans(f, n, u,m +
n/m)�PV in the presence of a malicious adversary statically corrupting any num-
ber of actively participating parties in the �FSFE-IA�PV-hybrid model.

Proof. By conjunction of Lemmas 3.10 and 3.11. Since corruptions are static,
a single simulator can be constructed that follows the code of either SCompiler

or SCompilerPV depending on the number of active participants corrupted by the
real-world adversary A.

Lemma 3.10. Let f : V × W → V be an update function, let u ∈ V, let
m ∈ N

+, and let ρ be an SPRRR protocol such that ρ(m,u) UC-realizes
�FPreTrans(f,m, u)�PV in the presence of a malicious adversary statically
corrupting up to m − 1 actively participating parties. For every integer n ≥
m, it holds that πCompiler(ρ, n, u,m) UC-realizes �FPostTrans(f, n, u,m +
n/m)�PV in the presence of a malicious adversary statically corrupting up to
n − 1 actively participating parties in the �FSFE-IA�PV-hybrid model.

Note that the above lemma also holds if the �·�PV modifier is removed from
both functionalities. This is straightforward to see, given the proof of the lemma
as written, so we elide further detail. Regardless, because the proof of this lemma
is our most interesting and subtle proof, upon which our other results rest, we
will sketch it first, to give the reader an intuition, and then present the formal
version in the full version of this paper.

Proof Sketch. In this sketch give an overview of the simulation strategy followed
by the simulator SCompiler against a malicious adversary who corrupts up to n−1
parties, using the same terminology and simplified, informal protocol description
that we used to build an intuition about the compiler in Sect. 1.1. Recall that
with the ith protocol committee we associate an emulated “virtual” party Qi, for
the purposes of exposition. We are guaranteed by the premise of Theorem 3.10,
that there exists an ideal adversary Sρ,D that simulates a transcript of ρ for
the dummy adversary D that corrupts up to m − 1 parties, while engaging in
an ideal interaction with functionality �FPreTrans(f,m, u)�PV on D’s behalf.
The compiled protocol πCompiler(ρ, n, u,m) represents a single instance of the
original protocol ρ, but in each virtual round there is an m-way fork from which
a single definitive outcome is selected (by the adversary) to form the basis of
the next virtual round. The main idea behind SCompiler is that the forking tree
can be pruned in each virtual round to include only the single path along which
the a real honest party’s contribution lies (or might lie, if no honest contribution
has yet become a definitive outcome), and then Sρ,D can be used to translate
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between the protocol instances represented by these path and the functionality
�FPostTrans(f,m, u,m)�PV.

For each fresh candidate vi produced by �FPostTrans(f,m, u,m)�PV, the
simulator SCompiler will invoke an instance of Sρ,D, feed it all the (definitive-
output) messages produced by the protocol thus far, and then feed it vi in
order to generate a corresponding honest-party message that can be sent to the
corrupted parties. It repeats this process until the adversary accepts the honest
party’s contribution in some virtual round κ, whereafter the last instance of Sρ,D
(which was created in round κ) is fed the remaining protocol messages in order
to extract the adversary’s bias y. Let h ∈ [n] index an honest party, and let θ
index the committee in to which it belongs, (corresponding to Qθ). The outline
for SCompiler is as follows (dropping Session IDs for the sake of simplification):

1. Initialize j ..= 1, k ..= 1, a0
..= u, κ ..= ⊥.

2. Obtain a candidate vk by sending either sample (only when k = 1) or
(reject, k − 1) to �FPostTrans�PV, and receiving (candidate, k,vk) in
response.

3. Invoke Sρ,D on protocol transcript a∗ (each message being sent on behalf
of a different corrupt party, and then send it (unbiased,vk) on behalf of
�FPreTrans�PV in order to obtain the tentative protocol message âk,θ of
Qθ.

4. Send (candidate-output, âk,θ) on behalf of �FSFE-IA�PV to the corrupt
parties in the committee indexed by θ, and wait for the adversary to either
accept this output, or abort by blaming a corrupt committee-member.

5. Simultaneously, interact with the fully corrupt committees indexed by [m] \
{θ} on behalf of �FSFE-IA�PV to learn the values of âk,i for i ∈ [m] \ {θ}.

6. If any virtual parties produced non-aborting output during this virtual round,
then let i′ ∈ [m] be the smallest number that indexes such a virtual party.
Let aj

..= âk,i′ (making the output of Qi′ definitive) and if i′ = θ then set
κ ..= j and skip to Step 8; otherwise, increment j and k and return to Step 2,
updating the committee partitioning to remove the committee corresponding
to Qi′ (and to remove any cheating real parties from the other committees)
as per the protocol.

7. If no virtual parties produced non-aborting output during this virtual round,
then increment k (but not j), update the committee partitioning to remove
the cheaters as per the protocol, and return to Step 2.

8. Once Qθ has produced a definitive output (in virtual round κ) and its under-
lying committee has disbanded, continue interacting with the other (fully
corrupt) committees on behalf of �FSFE-IA�PV until they have all either
produced a definitive output (which is appended to a) or become depleted of
parties due to cheating. At this point, a∗ should comprise a full transcript
of protocol ρ. Some prefix of this transcript has already been transmitted to
the final instance of Sρ,D (which was spawned in Step 2 during virtual round
κ); send the remaining messages (those not in the prefix) to the last instance
of Sρ,D as well, and it should output (proceed, x) along with its interface to
�FPreTrans�PV. Send (accept, κ, x) to �FPostTrans�PV and halt.



258 R. Cohen et al.

The only non-syntactic aspect in which the above simulation differs from the
real protocol is as follows: whereas in the real protocol Qθ computes its message
âk,θ by running its honest code as per ρ (recall that this virtual party is real-
ized by an invocation of �FPreTrans�PV by committee θ), in the simulation
this value is produced by Sρ,D in consultation with �FPostTrans�PV. Observe,
first, that the reject interface of �FPostTrans�PV functions identically to an
individual invocation of �FPreTrans�PV and second that the transcript pro-
duced by Sρ,D in its interaction with �FPreTrans�PV is indistinguishable from
a real execution of ρ. From these two observations, we can conclude that the
above simulation is indistinguishable from a real execution of πCompiler to any
efficient adversary.

The formal proof of Lemma 3.10 is given in the full version of this paper,
where we also prove a similar lemma holds when there are no honest participants,
but at least one honest verifier, and sketch a proof for the folklore construction
of secure function evaluation with publicly verifiable identifiable abort.

Lemma 3.11. Let f : V × W → V be an update function, let u ∈ V, let
m ∈ N

+, and let ρ be an SPRRR protocol such that ρ(m,u) UC-realizes
�FPreTrans(f,m, u)�PV in the presence of an honest observing verifier and
a malicious adversary statically corrupting all m actively participating par-
ties. For every integer n ≥ m, it holds that πCompiler(ρ, n, u,m) UC-realizes
�FPostTrans(f, n, u,m + n/m)�PV in the presence of an honest observing ver-
ifier and a malicious adversary statically corrupting all n actively participating
parties in the �FSFE-IA�PV-hybrid model.

Lemma 3.12 (Folklore: NIZK + OT + BC =⇒ �FSFE-IA�PV). The func-
tionality �FSFE-IA�PV can be UC-realized in the (FNIZK,FBC)-hybrid model
using a constant number of sequential authenticated broadcasts and no other
communication, assuming the existence of a protocol that UC-realizes FOT.

Corollary 3.13. If there exists a protocol that UC-realizes FOT and a strongly-
player-replaceable round-robin protocol that UC-realizes �FPreTrans(f,
n, u)�PV using n sequential authenticated broadcasts and no other communi-
cation, then there is a player-replaceable protocol in the (FNIZK,FBC)-hybrid
model that UC-realizes �FPostTrans(f, n, u,m+n/m)�PV and uses O(m+n/m)
sequential authenticated broadcasts and no other communication. Setting m =√

n yields the efficiency result promised by the title of this paper.

Proof. Observe that πCompiler(ρ, n, u,m) requires at most m+n/m sequential
invocations of the �FSFE-IA�PV functionality, and involves no other commu-
nication. Thus the corollary follows from Theorem 3.9 and Lemma 3.12.
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4 A Round-Robin Protocol

In this section we present a simple protocol that meets our requirements (and
therefore can be used with our compiler), which is parametric over a class of
update functions that is more restrictive than the compiler demands, but never-
theless broad enough to encompass several well-known sampling problems. After
presenting the protocol in Sect. 4.1 and proving that it meets our requirements in
Sect. 4.2, we discuss how it can be parameterized to address three different appli-
cations: sampling structured reference strings for polynomial commitments in
Sect. 4.3, sampling structured reference strings for zk-SNARKs in Sect. 4.4, and
constructing verifiable mixnets in Sect. 4.5. We begin by defining the restricted
class of update functions that our protocol supports.

Definition 4.1. (Homomorphic Update Function). A deterministic polynomial-
time algorithm f : V×W → V is a Homomorphic Update Function if it satisfies:

1. Perfect Rerandomization: for every pair of values v1 ∈ V and w1 ∈ W,
{f(f(v1, w1), w2) : w2 ← W} ≡ {f(v1, w3) : w3 ← W}. If distributional
equivalence is replaced by statistical or computational indistinguishability,
then the property achieved is Statistical or Computational Rerandomization,
respectively.

2. Homomorphic Rerandomization: there exists an efficient operation � over W

such that for every v ∈ V, and every pair of values w1, w2 ∈ W, f(v, w1�w2) =
f(f(v, w1), w2). Furthermore, there exists an identity value 0W ∈ W such that
f(v, 0W) = v.

4.1 The Protocol

Our example is straightforward: each party (in sequence) calls the update func-
tion f on the previous intermediate output to generate the next intermediate
output. To achieve UC-security, the protocol must be simulatable even if f is
one-way. We specify that each party uses a UC-secure NIZK to prove that it
evaluated f correctly; this allows the simulator to extract the randomization
witness w for f even in the presence of a malicious adversary. Specifically, we
define a relation for correct evaluation for any update function f :

Rf = {((v1, v2), w) : v2 = f(v1, w)}

We make use of the standard UC NIZK functionality FNIZK, originally formulated
by Groth et al. [40]. For any particular f , there may exist an efficient bespoke

proof system that realizes FRf
NIZK. For example, if there is a sigma protocol for Rf ,

then FRf
NIZK can (usually) be UC-realized by applying the Fischlin transform [27]

to that sigma protocol. There are also a number of generic ways to UC-realize

FRf
NIZK for any polynomial-time function f [18,40,52]. Regardless, we give our

protocol description next.
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Protocol 4.2. πRRSample(f, n, u). Round-robin Sampling

This protocol is parameterized by the number of actively participating par-
ties n ∈ N

+, by a homomorphic update function f : V × W → V (as per
Definition 4.1), and by a common public input u ∈ V. In addition to the
actively participating parties Pp for p ∈ [n], the protocol involves the ideal

functionality FRf
NIZK, and it may involve one or more observing verifiers,

denoted by V.

Sampling: Let v0
..= u. Upon receiving (sample, sid) from the environment

Z, each party Pi for i ∈ [n] repeats the following loop for j ∈ [n]:

1. If j = i, Pi samples wj ← W, computes vj
..= f(vj−1,wj) and sub-

mits (prove, sid,GenSID(sid, j), (vj−1,vj),wj) to FRf
NIZK. Upon receiving

(proof, sid,GenSID(sid, j), πj) in response, Pi broadcasts (vj , πj).a

2. If j �= i, Pi waits to receive (v̂j , πj) from Pj , whereupon it submits

(verify,GenSID(sid, j), (vj−1, v̂j), πj) to FRf
NIZK. If FRf

NIZK replies with

(accept, sid,GenSID(sid, j)), then Pi assigns vj
..= v̂j . If FRf

NIZK replies
with (reject, sid,GenSID(sid, j)) (or if no message is received from Pj),
then Pi assigns vj

..= vj−1.
Finally, when the loop terminates, all actively participating parties out-

put (output, sid,vn) to the environment.b

Verification: If there is an observing verifier V, then on receiving
(observe, sid) from the environment Z, it listens on the broadcast chan-
nel and follows the instructions in Step 2 for all j ∈ [n]. At the end, it
outputs (output, sid,vn) to the environment.

a Note that when our compiler is applied to this protocol, aj = (vj , πj).
b This implies that the “output extraction” function gn+1 described in
Remark 3.3 simply returns vn, given the protocol transcript.

4.2 Proof of Security

In this section, we present the security theorem for the above protocol, a corollary
concerning the application of our compiler under various generic realizations of
FNIZK, and a theorem stating that for the specific class of functions covered by
Definition 4.1, the compiled protocol realizes the original functionality. Proofs
of the theorems in this section are given in the full version of this paper.

Theorem 4.3. Let f : V×W → V be a homomorphic update function per Def-
inition 4.1. For any n ∈ N

+ and u ∈ V, it holds that πRRSample(f, n, u) UC-
realizes �FPreTrans(f, n, u)�PV in the presence of a malicious adversary cor-

rupting any number of actively participating parties in the FRf
NIZK-hybrid model.

Corollary 4.4. Let f : V × W → V be a homomorphic update function per
Definition 4.1. For any u ∈ V and m,n ∈ N

+ such that m ≤ n, there exists a
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protocol in the FCRS-hybrid model that UC-realizes �FPostTrans(f, n, u,m +
n/m)�PV and that requires O(m + n/m) sequential broadcasts and no other
communication, under any of the conditions enumerated in Remark 4.5.

Remark 4.5. FRf
NIZK is realizable for any polynomial-time f in the FCRS-hybrid

model under the existence of enhanced trapdoor permutations, or the existence
of homomorphic trapdoor functions and the decisional linear assumption in a
bilinear group, or the LWE assumption, or the LPN and DDH assumptions.

Theorem 4.6. Let f : V × W → V be a homomorphic update function per
Definition 4.1. For any value of r ∈ N, the ideal-world protocol involving
�FPostTrans(f, n, u, r)�PV perfectly UC-realizes �FPreTrans(f, n, u)�PV in
the presence of a malicious adversary corrupting any number of active partici-
pants.

4.3 Application: Powers of Tau and Polynomial Commitments

In this section we specialize πRRSample to the case of sampling the powers
of tau, which was previously introduced in Sect. 1.1. Specifically, we define an
update function for the powers of tau in any prime-order group G with maximum
degree d ∈ N

+ as follows:

V = G
d

W = Z|G|
f : V × W → V = PowTauG,d(V, τ) �→ {

τ i · Vi

}
i∈[d]

It is easy to see that if G is a generator of G, then PowTauG,d({G}i∈[d], τ)
computes the powers of τ in G up to degree d. Proving that this function satisfies
Definition 4.1 will allow us to apply our results from Sect. 4.2.

Lemma 4.7. For any prime-order group G and any d ∈ N
+, PowTauG,d is a

homomorphic update function with perfect rerandomization, per Definition 4.1.

Proof. It can be verified by inspection that the homomorphic rerandomization
property of PowTauG,d holds if the operator � is taken to be multiplication
modulo the group order. That is, if q = |G|, then for any α, β ∈ Zq and any
V ∈ {G}i∈[d], we have PowTauG,d(PowTauG,d(V, α), β) = PowTauG,d(V, α · β
mod q). If we combine this fact with the fact that {PowTauG,d(V, τ) : τ ← Zq}
is uniformly distributed over the image of PowTauG,d(V, ·), then perfect reran-
domization follows as well.

As we have previously discussed, the powers of tau are useful primarily as
a structured reference string for other protocols. In light of this fact, it does
not make sense to construct a sampling protocol that itself requires a struc-

tured reference string. This prevents us from realizing FRPowTauG,d

NIZK (n) via the
constructions of Groth et al. [40], or Canetti et al. [18]. Fortunately, the NIZK
construction of De Santis et al. [52] requires only a uniform common random
string. Thus we achieve our main theoretical result with respect to the powers
of tau:
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Corollary 4.8. For any prime-order group G and any d ∈ N
+, n ∈ N

+, m ∈ [n],
and V ∈ G

d, there exists a protocol in the FCRS-hybrid model (with a uniform
CRS distribution) that UC-realizes �FPreTrans(PowTauG,d, n,V)�PV and that
requires O(m+n/m) sequential broadcasts and no other communication, under
the assumption that enhanced trapdoor permutations exist.

Proof. By conjunction of Lemma 4.7 and Theorems 4.4 and 4.6 under the restric-
tion that the CRS distribution be uniform.

The above corollary shows that if we set m ..=
√

n, then we can sample
well-formed powers-of-tau structured reference strings with guaranteed output
delivery against n − 1 malicious corruptions in O(

√
n) broadcast rounds. How-

ever, most schemes that use structured reference strings with this or similar
structures assume that the strings have been sampled (in a trusted way) with
uniform trapdoors. Our protocol does not achieve this, and indeed cannot with-
out violating the Cleve bound [23]. Instead, our protocol allows the adversary to
introduce some bias. In order to use a reference string sampled by our protocol
in any particular context, it must be proven (in a context-specific way) that the
bias does not give the adversary any advantage.

Although previous work has proven that the bias in the reference string
induced by protocols for distributed sampling can be tolerated by SNARKs [12,
47], such proofs have thus far been monolithic and specific to the particular com-
bination of SNARK and sampling scheme that they address. Moreover, because
SNARKs are proven secure in powerful idealized models, prior distributed sam-
pling protocols were analyzed in those models as well. Unlike SNARKs, which
require knowledge assumptions, the security of the Kate et al. [44] polynomial-
commitment scheme can be reduced to a concrete falsifiable assumption. This
presents a clean, standalone context in which to examine the impact adversarial
bias in the trapdoor of a powers-of-tau reference string. We do not recall the
details of the polynomial-commitment construction,5 but note that its security
follows from the d-Strong Diffie-Hellman (or d-SDH) Assumption [44, Theorem
1]. We show that replacing an ideal bias-free powers-of-tau reference string with
a reference string that is adversarially biased as permitted by our functional-
ity FPostTrans(PowTauG,d, n, {G}i∈[d], r) yields no advantage in breaking the
d-SDH assumption, regardless of the value of r, so long as no more than n − 1
parties are corrupt. We begin by recalling the d-SDH assumption:

Definition 4.9 (d-Strong Diffie-Hellman Assumption [11]). Let the secu-
rity parameter λ determine a group G of prime order q that is generated by G.
For every PPT adversary A,

Pr
[
(c,G/(τ + c)) = A

({
τ i · G

}
i∈[d]

)
: τ ← Zq

]
∈ negl(λ)

5 Kate et al. actually present two related schemes. The first uses the powers of tau,
exactly as we have presented it, and the second requires the powers, plus the powers
again with a secret multiplicative offset (or, alternatively, relative to a second group
generator). It is easy to modify our construction to satisfy the second scheme, and
so for clarity we focus on the first, simpler one.
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We wish to formulate a variant of the above assumption that permits the
same bias as FPostTrans(PowTauG,d, n, {G}i∈[d], r). In order to do this, we
define a sampling algorithm that uses the code of the functionality. We then
give a formal definition of the biased assumption, which we refer to as the (n, r)-
Biased d-Strong Diffie-Hellman (or (n, r, d)-SDH) assumption.

Algorithm 4.10. AdvSampleZ
FPostTrans(PowTauG,d,n,{G}i∈[d],r)

(1λ)

Let Z be a PPT adversarial algorithm that is compatible with the environ-
ment’s interface to an ideal-world UC experiment involving FPostTrans
and the dummy adversary D. Let Z be guaranteed to corrupt no more than
n − 1 parties, and let it output some state s on termination.

1. Using the code of FPostTrans, begin emulating an instance of the ideal-
world experiment for FPostTrans(PowTauG,d, n, {G}i∈[d], r), with Z as
the environment. Let Ph be the honest party guaranteed in this experi-
ment by the constraints on Z.

2. In the emulated experiment, on receiving (sample, sid) from Z on
behalf of Ph, forward this message to FPostTrans on behalf of Ph

as a dummy party would, and then wait to receive (output, sid, z ={
τ · G, τ2 · G, . . . , τd · G

}
) for some τ ∈ Zq from FPostTrans in reply.

3. Extract τ from the internal state of FPostTrans, and wait for Z to
terminate with output s.

4. Output (s, τ)

Definition 4.11 ((n, r)-Biased d-Strong Diffie-Hellman Assumption).
Let the security parameter λ determine a group G of prime order q that is
generated by G. For every pair of PPT adversaries (Z,A),

Pr

⎡

⎣
A

(
s,

{
τ i · G

}
i∈[d]

)
= (c,G/(τ + c)) :

(s, τ) ← AdvSampleZ
FPostTrans(PowTauG,d,n,{G}i∈[d],r)

(1λ)

⎤

⎦ ∈ negl(λ)

Note that per Canetti [17], the dummy adversary D can be used to emulate
any other adversary. Thus if one were to use an n-party instance of FPostTrans
to generate the structured reference string for a protocol that uses the polynomial
commitments of Kate et al. [44], the hardness assumption that would underlie the
security of the resulting scheme is (n, r, d)-SDH. We show that for all parameters
n, r, the (n, r, d)-SDH assumption is exactly as hard as d-SDH.

Theorem 4.12. For every n, r, d ∈ N
+ and t-time adversary (Z,A) that suc-

ceeds with probability ε in the (n, r, d)-SDH experiment, there exists a t′-time
adversary B for the d-SDH experiment that succeeds with probability ε, where
t′ ≈ t.

The proof of the above theorem appears in the full version of this document.
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4.4 Application: Sampling Updateable SRSes

In this section we discuss the specialization of our protocol to the application of
sampling updateable structured reference strings for SNARKs. The game-based
notion of updateable security with respect to structured reference strings was
defined recently by Groth et al. [39]. Informally, if a SNARK has an updateable
SRS, then any party can publish and update to the SRS at any time, along with
a proof of well-formedness, and the security properties of the SNARK hold so
long as at least one honest party has contributed at some point. We direct the
reader to Groth et al. for a full formal definition. Because the update operation
is defined to be a local algorithm producing a new SRS and a proof of well-
formedness, which takes as input only a random tape and the previous SRS
state, it is tempting to consider the protocol comprising sequentially broadcasted
SRS updates by every party as a pre-existing specialization of πRRSample.

However, we require that the proof of well-formedness be a realization of FRf
NIZK

for whatever f maps the previous SRS to the next one, and the update algorithm
of Groth et al. (also used by later works [22,30,50]) does not have straight-line
extraction. Modifying any updateable SNARK to fit into our model is beyond
the scope of this work. Nevertheless, we discuss two alternatives that do not
involve modifying the SNARK.

First, we observe that if the proofs of well-formedness of the Groth et al.
update procedure [39] are taken to be part of the SRS itself, then the entire
update function (let it be called GrothUpdate) is in fact a homomorphic update
procedure per Definition 4.1, by an argument similar to our proof of Lemma 4.7.
This implies a result similar to Corollary 4.8: for any n,m ∈ N

+ such that
m ≤ n, there exists a protocol in the uniformly distributed CRS model that UC-
realizes FPostTrans(GrothUpdate, n, 1SRS,m + n/m) while using only O(m +
n/m) broadcasts under the assumption that enhanced trapdoor permutations
exist, where 1SRS is the “default” SRS. Furthermore, the well-formedness of
SRSes generated via this protocol can be verified without checking the entire
protocol transcript.

Second, we can define the functions f mapping the previous SRS to the
next one (without the proofs), specialize our protocol πRRSample for that

function (realizing Ff
NIZK generically), and rely on the public verifiability of

�FPostTrans�PV to ensure that the resulting SRS has the well-formedness
property required. In service of this approach, we present the update functions
for three recent zk-SNARKs. The update function BilinearSRSG1,G2,d is a sim-
ple modification of PowTauG,d that is compatible with both Marlin [22] and
Plonk [30]:

V = G
d
1 × G2 W = Zq

f : V × W → V = BilinearSRSG1,G2,d((X, Y ), τ) �→
({

τ i · Xi

}
i∈[d]

, τ · Y
)
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whereas Sonic [50] has a more complex SRS with a more complex update function

V = G
4d
1 × G

4d+1
2 × GT W = Z

2
q f : V × W → V = SonicSRSG1,G2,d

SonicSRSG1,G2,d((X,Y, Z), (τ, β))

�→
⎛

⎝

{
τ i−d−1 · Xi

}
i∈[d]

‖{
τ i · Xi+d

}
i∈[d]

‖{
β · τ i · Xi+3d+1

}
i∈[−d,d]\{0} ,

{
τ i−d−1 · Yi

}
i∈[d]

‖{
τ i · Yi+d

}
i∈[d]

‖{
β · τ i · Yi+3d+1

}
i∈[−d,d]

, β · Z

⎞

⎠

and all three have homomorphic rerandomization per Definition 4.1, by an argu-
ment similar to our proof of Lemma 4.7.

Because SNARKs with updateable SRSes must tolerate adversarial updates,
it seems natural to assume that they can tolerate the adversarial bias induced
by either of the above sampling methods. However, as we have mentioned, their
proofs tend to be in powerful idealized models that are incompatible with UC,
and so formalizing this claim is beyond the scope of this work.

4.5 Application: Verifiable Mixnets

Finally, we discuss the specialization of πRRSample to the mixing procedure of
verifiable mixnets. Most mixnet security definitions, whether game-based or sim-
ulation based, encompass a suite of algorithms (or interfaces, in the simulation-
based case) for key generation, encryption, mixing, and decryption. We reason
only about the mixing function, via an exemplar: the game-based protocol of
Boyle et al. [14]. Though we do not give formal proofs, and argue that the secu-
rity of the overall mixnet construction is preserved under our transformation.

Boyle et al. base their mixnet upon Bellare et al.’s [9] lossy variant of El
Gamal encryption for constant-sized message spaces. Let the message space size
be given by φ. Given a group G (chosen according to the security parameter λ)
of prime order q and generated by G, it is as follows:

KeyGenG(sk ∈ Zq) �→ (sk, pk) : pk ..= sk · G

Encpk(m ∈ [φ], r ∈ Zq) �→ (R,C) : R ..= r · G, C ..= r · pk + m · G

ReRandpk((R,C) ∈ G
2, r ∈ Zq) �→ (S,D) : S ..= R + r · G, D ..= r · pk + C

Decsk((R,C) ∈ G
2) �→ m ∈ [φ] s.t. m · G = C + R/sk

Note that we have given the random values (sk and r) for each function as
inputs, but they must be sampled uniformly and secretly in order to prove that
the above algorithms constitute an encryption scheme. Boyle et al. define the
notion of a (perfectly) rerandomizable encryption scheme and assert that the
above scheme satisfies it. We claim that given any pk ∈ G, if the homomorphic
operator � is taken to be addition over Zq, then ReRandpk is a homomorphic
update function per Definition 4.1. Given ReRandpk, the ciphertext mixing func-
tion for a vector of d ciphertexts in the Boyle et al. mixnet is as follows:

V = (G × G)d
W = Σd × Z

d
q

f = Mixpk,d(c, (σ, r)) �→ {
ReRandpk(cσ−1(i), ri)

}
i∈[d]
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where Σd is the set of all permutations over d elements. We claim that this
function is a homomorphic update function.

Lemma 4.13. For any pk ∈ G and any d ∈ N
+, Mixpk,d is a homomorphic

update function with perfect rerandomization, per Definition 4.1.

Proof Sketch. Perfect rerandomization holds because all elements in the vector of
ciphertexts are individually perfectly rerandomized. The homomorphic operator
is defined to be

� : ((σ1, r), (σ2, s)) �→
(

σ1 ◦ σ2,
{
si + rσ−1

2 (i)

}

i∈[d]

)

where ◦ is the composition operator for permutations.

In the mixnet design of Boyle et al., every mixing server runs Mixpk,d in
sequence and broadcasts the output along with a proof that the function was
evaluated correctly. In other words, their protocol is round-robin and player
replaceable. Because their proofs of correct execution achieve only witness-
indistinguishability (which is sufficient for their purposes), whereas we require

our proofs to UC-realize FRMixpk,d

NIZK , their protocol is not a pre-existing special-

ization of πRRSample. Nevertheless, we can realize FRMixpk,d

NIZK generically as we
have in our previous applications.

Corollary 4.14. For any prime-order group G and any d ∈ N
+, n,m ∈ N

+ such
that m ≤ n, pk ∈ G, and c ∈ image(Encpk)d, there exists a protocol in the FCRS-
hybrid model that UC-realizes �FPreTrans(Mixpk,d, n, c)�PV and that requires
O(m + n/m) sequential broadcasts and no other communication, under any of
the conditions enumerated in Remark 4.5.

Proof. By conjunction of Lemma 4.13 and Theorems 4.4 and 4.6.

We remark that the public-verifiability aspect of the functionality ensures
that the mixnet that results from integrating it into the scheme of Boyle et al. is
verifiable in the sense that they require [14, Definition 7]. Furthermore, the game-
based security definition of Boyle et al. [14, Definition 12] permits the adversary
to induce precisely the same sort of bias as �FPreTrans(Mixpk,d, ·, ·)�PV. It
follows naturally that their construction retains its security properties when
mixing is done via our functionality. Setting m ..=

√
n, we have achieved a

verifiable mixnet with guaranteed output delivery against n − 1 maliciously-
corrupt mix servers in O(

√
n) broadcast rounds.

5 With Concrete Efficiency

The previous sections of this paper were concerned with optimizing round effi-
ciency to the exclusion of all else. In practice, this may lead to protocols that
are concretely round-efficient, but prohibitively expensive due to large concrete
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communication or computation costs. Consider, for example, the powers of tau in
an elliptic curve: in practice, d ∈ [210, 220] [13]. This implies that the PowTauG,d

function involves many thousands of elliptic curve scalar multiplications; if ren-
dered into a boolean circuit, it could easily require trillions of gates. Evaluating
circuits of such size is at or beyond the edge of feasibility with current techniques
even in the security-with-abort setting, and our compiler requires the circuit to
be evaluated many times with identifiable abort.

We believe that this concrete inefficiency is a shortcoming of our
compiler and not the technique that underlies it. In evidence of this,
we use this section to sketch a new protocol, πBilinearSRS, which realizes
FPostTrans(BilinearSRSG1,G2,d, n, (X, Y ), 2

√
n−1) directly, where (X, Y ) is any

well-formed SRS. Our new protocol requires O(
√

n · log d) sequential broadcast
rounds and avoids the major concrete costs implied by compiling the round-robin
protocol. Here we will give a simple sketch and make a few high-level efficiency
claims. The full version of this paper contains a full protocol description, an
in-depth concrete cost analysis, and a proof of security.

πBilinearSRS will leverage the fact that the well-formedness of SRSes sampled
by the BilinearSRS update function can be checked using the pairing opera-
tion of the underlying bilinear group, without any additional protocol artifacts
or external information. πBilinearSRS is structured similarly to πCompiler, with
two major differences. First, when a committee’s intermediate output is cho-
sen to become definitive, it is first double-checked for well-formedness by all
parties in the protocol (the check is performed via the pairing operation and
therefore incurs only computational costs), and the entire committee is ejected
for cheating if this check fails. Second, we replace instances of �FSFE-IA�PV
that evaluate the BilinearSRSG1,G2,d update function as a circuit with instances
of a new functionality �FExtSRS�PV that directly computes the same update
function. �FExtSRS�PV maintains most of the public-verifiability properties of
�FSFE-IA�PV, but unlike the latter it allows the adversary to choose the out-
put arbitrarily if all active participants are corrupted.

In order to realize �FExtSRS�PV with reasonable concrete efficiency, each com-
mittee samples shares of a uniform secret τ and uses a generic reactive, arithmetic
MPC functionality �FMPC-IA�PV to compute secret sharings of the powers of τ .
The functionality �FMPC-IA�PV is similar to �FSFE-IA�PV, except that it is
reactive (that is, it allows the circuit to be determined dynamically after inputs
are supplied), it allows the adversary to choose outputs arbitrarily if all active
participants are corrupted, and it natively supports arithmetic computations
over an arbitrary field, which implies that this computation requires only O(d)
multiplication gates arranged in a circuit of depth O(log d). Using these shares of
the powers of τ , the committee engages in a round of distributed EC scalar oper-
ations to generate its intermediate SRS, which is checked for well-formedness by
the members of the committee (but not by any passive verifiers). If any active
participants are honest, and the intermediate SRS is not well-formed, then they
broadcast a message indicating as much, along with information that allows pas-
sive verifiers to efficiently confirm which active participant has cheated. Known
techniques for realizing �FMPC-IA�PV require a round count proportionate to the
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circuit’s multiplicative depth, and so the protocol realizing �FExtSRS�PV runs in
O(log d) rounds overall.

In practice, bilinear groups are realized by certain elliptic curves, and both
the pairing operation and the scalar-multiplication operation have large concrete
computational costs; thus we must use them judiciously. In πBilinearSRS, these two
operations incur the vast majority of concrete computational costs that are not
due to the protocol realizing �FMPC-IA�PV. We define a metric of the overall
wall-clock latency incurred by EC pairings and, similarly, a metric of the latency
incurred by EC scalar operations. For πBilinearSRS, the former cost is in O(

√
n)

and the latter is in O(d ·√n+n ·λ/ log λ) for active participants or O(n+d ·√n)
for passive verifiers; this is an improvement upon the round-robin SRS sampling
technique, which (after optimization) has a pairing latency in O(n) and a scalar
latency in O(d · n).

It should be noted that our protocol is not a strict improvement upon prior
techniques in all respects: it requires O(n1.5 · d · λ + n1.5 · λ2/ log λ) bits to be
broadcasted in total, not including the communication costs of the protocol that
realizes �FMPC-IA�PV; in this respect our approach is strictly worse than prior
work. The protocol that realizes �FMPC-IA�PV must evaluate O(d · n1.5) input
and output gates and O(d ·n) multiplication gates in total, among groups of

√
n

active participants. We identify this as our most significant concrete bottleneck.
Substantial progress has recently been made toward optimizing generic MPC
in the security-with-abort setting, but the publicly-verifiable identifiable-abort
setting has received less attention thus far. We hope and expect that this will
change, and πBilinearSRS will move toward practicality as a result.
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