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Abstract— We study the role of interactivity in distributed
statistical inference under information constraints, e.g., commu-
nication constraints and local differential privacy. We focus on the
tasks of goodness-of-fit testing and estimation of discrete distrib-
utions. From prior work, these tasks are well understood under
noninteractive protocols. Extending these approaches directly for
interactive protocols is difficult due to correlations that can
build due to interactivity; in fact, gaps can be found in prior
claims of tight bounds of distribution estimation using interactive
protocols. We propose a new approach to handle this correlation
and establish a unified method to establish lower bounds for
both tasks. As an application, we obtain optimal bounds for
both estimation and testing under local differential privacy and
communication constraints. We also provide an example of a
natural testing problem where interactivity helps.

Index Terms— Distributed algorithms, inference algorithms,
estimation, statistics, minimax techniques, data privacy, commu-
nication channels.

I. INTRODUCTION

CLASSICAL statistics focuses on algorithms that are data-
efficient. Recent years have seen revived interest in

a different set of constraints for distributed statistics: local
constraints on the amount of information that can be extracted
from each data point. These local constraints can be commu-
nication constraints, where each data point must be expressed
using a fixed number of bits; privacy constraints, where each
user holding a sample seeks to reveal as little as possible
about it; and many others, such as noisy communication chan-
nels, limited types of measurements, or quantization schemes.
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Our focus in this work is on statistical inference under such
local constraints, when interactive protocols are allowed.

We study the strengths and limitations of interactivity for
statistical inference under local information constraints for
two fundamental inference tasks for discrete distributions:
learning (density estimation) and identity testing (goodness-
of-fit) under total variation distance. For these tasks, prior work
gives a good understanding of the number of samples needed
in noninteractive setting, including a precise dependence on
the information constraints under consideration. However, the
following question remains largely open:

Does interactivity help for learning and testing in

total variation distance when the data is subject to

local information constraints, and, if so, for which

type of constraints?

In this work, we resolve this question by establishing lower
bounds that hold for general channel families (modeling local
information constraints). We show that interaction does not
help for learning and testing under communication constraints
or local privacy constraints. Several prior works have claimed
a subset of these results, but we exhibit technical gaps in
most of them (with the important exceptions of [12] and [16],
which both obtain a tight bound for testing under local privacy
constraints). These gaps stem from the difficulty in handling
the correlation that builds due to interaction. Our lower bound
explicitly handles this correlation and is based on examining
how effectively one can exploit this correlation in spite of
the local constraints. Furthermore, our lower bounds allow
us to identify a family of channels for which interaction
strictly helps in identity testing, establishing the first separation
between interactive and noninteractive protocols for distributed
goodness-of-fit.

A. The Setting

We now describe the general framework of distributed infer-
ence under local information constraints and then specialize it
to two canonical tasks: estimation and testing.

The general setting is captured in Fig. 1. There are n
users, each of which observes an independent sample from an
unknown distribution p over [2k] = {1, 2, . . . , 2k}.1 Each user
is constrained in the amount of information they can reveal
about their input. This constraint for user t is described by
a channel Wt : [2k] → Y , which is a randomized function
from [2k] to the message space Y .2 In general, we will

1For convenience, we assume throughout the paper that the domain X has
even cardinality; specifically X = [2k]. This is merely for the ease of notation,
and all results apply to any finite domain X .

2Throughout, we use the information-theoretic notion of a channel and use
the standard notation W (y | x) for the probability with which the output is
y when the input is x.
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Fig. 1. The information-constrained distributed model. In the private-coin
setting the channels W1, . . . , Wn are independent, while in the public-coin
setting they are jointly randomized, and in the interactive setting Wt can also
depend on the previous messages Y1, . . . , Yt−1 (dotted, upwards arrows).

consider a set of channels W from which each user’s channel
must be selected; this family of “allowed channels” models
the local information constraints under consideration. This is a
very general setting, which captures communication and local
privacy constraints as special cases, as we elaborate next.

Communication constraints. Let W` := {W : [2k] →
{0, 1}`} be the set of channels whose output alphabet Y
is the set of all `-bit strings. This captures the constraint
where the message from each user is at most ` bits: that
is, each user has a stringent bandwidth constraint.
Local differential privacy constraints. For a privacy para-
meter % > 0, a channel W : [2k] → {0, 1}∗ is %-locally

differentially private [28], [30], [38] if

W (y | x1)

W (y | x2)
≤ e%, ∀x1, x2 ∈ [2k], ∀y ∈ {0, 1}∗.

Loosely speaking, no output message from a user can
reveal too much about their sample. We denote by W%

the set of all %-locally differentially private (%-LDP)
channels.

We emphasize that, although these two constraints will be
our leading examples, our formulation of local information
constraints captures many more settings. As an example,
choosing message output Y = [2k] ∪ {⊥} and W to be
the set W : [2k] → Y of the form W (x | x) = ηx,
W (⊥ | x) = 1 − ηx for various sequences (ηx)x∈[2k] lets one
model erasure channels. As another example, one can choose
Y = {0, 1}, and let W to be the set of channels of the form
W (1 | x) = 1{x≤τ}, i.e., of threshold measurements.

We now return to the description of distributed inference
protocols under local information constraints described by W .
Once the channel Wt ∈ W at user t is decided, the message
of user t is y ∈ Y with probability Wt(y | Xt). The transcript
of n messages, Y n = (Y1, . . . , Yn), is observed by a server
R, whose goal is to perform some inference task based on
the messages. We consider three classes of protocols, classified
depending on how the channels are allowed to be chosen.3

3In what follows, “SMP” stands for simultaneous-message passing, i.e., for
noninteractive, one-shot protocol.

Private-coin noninteractive (SMP) protocols. Let
U1, . . . , Un be independent random variables which are
independent jointly of (X1, . . . , Xn). Ut is available
only at user t and Wt is chosen as a function of Ut.
Therefore, the outputs of the channels are independent
of each other.
Public-coin noninteractive (SMP) protocols. Let U be a
random variable independent of (X1, . . . , Xn). All users
are given access to U , and they select their respective
channels Wt ∈ W as a function of U . We note that the
outputs of the channels are independent given U .
Sequentially interactive protocols. Let U be a random
variable independent of (X1, . . . , Xn). In an interactive

protocol, all users are given access to U , and user t
selects their respective channel Wt ∈ W as a function of
(Y1, . . . , Y

t−1, U). We will often make this dependence
on previous messages explicit by writing WY t,U or as
WY t

when U is fixed (see Section II).

Henceforth, we will interchangeably use “interactive” and
“sequentially interactive,” and will often omit to specify
“noninteractive” when mentioning public- and private-coin
protocols. Note that private-coin protocols are a subset of
public-coin protocols which in turn are a subset of interactive
protocols.

We now define information-constrained discrete distribution
estimation and uniformity testing. For a discrete domain X ,
let ∆X be the simplex of distributions over X . Throughout
this paper we consider X = [2k], and denote ∆[2k] by ∆2k.

Distribution learning. In the (2k, ε)-distribution
learning problem (under constraints W), we seek
to estimate an unknown distribution p over X =
[2k] to within ε in total variation distance (defined
in Eq. (4)). Formally, a protocol Π: [2k]n×U → Yn

(using W) and an estimator mapping p̂ : Yn ×U →
∆2k constitute an (n, ε)-estimator using W if

sup
p∈∆2k

Pr
Xn∼p

[ dTV (p̂(Y n, U),p) > ε ] ≤ 1

100
, (1)

where Y n = Π(Xn, U) and dTV (p,q) denotes the
total variation distance between p and q. Namely,
given the transcript (Y n, U) of the protocol Π run on
the samples Xn, p̂ estimates the input distribution p

to within distance ε with probability at least 99/100
(this choice of probability is arbitrary and has been
chosen for convenience in the proof of Lemma 12).
The sample complexity of (k, ε)-distribution learning
using W is then the least n such that there exists an
(n, ε)-estimator using W .
Identity and uniformity testing. In the (2k, ε)-identity
testing problem (under constraints W), given a
known reference distribution q over [2k], and sam-
ples from an unknown p, we seek to test if p = q

or if it is ε-far from q in total variation distance.
Specifically, an (n, ε)-test using W is given by a
protocol Π: [2k]n × U → Yn (using W) and a
randomized decision function T : Yn × U → {0, 1}
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TABLE I

LOWER BOUNDS FOR LOCAL INFORMATION-CONSTRAINED LEARNING AND TESTING. THE PUBLIC- AND PRIVATE-COIN BOUNDS WERE KNOWN

FROM PREVIOUS WORK; THE INTERACTIVE BOUNDS ALL FOLLOW FROM OUR RESULTS. THE BOUND MARKED

BY A (†) WAS PREVIOUSLY ESTABLISHED IN [12], [16]

such that

Pr
Xn∼qn

[ T (Y n, U) = 0 ] ≥ 99

100
,

inf
p:dTV(p,q)≥ε

Pr
Xn∼pn

[ T (Y n, U) = 1 ] ≥ 99

100
, (2)

where Y n = Π(Xn, U). In other words, after run-
ning the protocol Π on independent samples Xn and
public coins U , a decision function T is applied
to the transcript (Y n, U) of the protocol. Overall,
the protocol should “accept” with high constant
probability if the samples come from the reference
distribution q and “reject” with high constant prob-
ability if they come from a distribution significantly
far from q. Once again, note that the choice of 1/100
for probability of error is for convenience.4 Identity
testing for the uniform reference distribution u over
[2k] is termed the (2k, ε)-uniformity testing problem,
and the sample complexity of (2k, ε)-uniformity test-
ing using W is the least n for which there exists an
(n, ε)-test using W for u.

Remark 1: We note that our results are phrased in terms
of sample complexity, i.e., the number of users required to
perform the corresponding task. Equivalently, this corresponds
to minimax lower bounds on rates of convergence (for esti-
mation) or critical radius (for testing).

B. Our Results

The lower bounds we develop associate to each channel
W : [2k] → Y a k-by-k positive semidefinite matrix H(W ),
which we term the channel information matrix (see Eq. (6)),
which captures the “informativeness” of the channel W .
The spectrum of these matrices H(W ), for W ∈ W , will
play a central role in our results. In particular, for a given
family of local constraints W , the following quantities will

4In other words, we seek to solve the composite hypothesis testing problem
with null hypothesis H0 = {q} and composite alternative given by H1 =�

q
′ ∈ ∆2k : dTV (q′,q) ≥ ε

�
in a minimax setting, with both type-I and

type-II errors set to 1/100.

be used:

kWkop := max
W∈W

kH(W )kop , (maximum operator norm)

kWk∗ := max
W∈W

kH(W )k∗ , (maximum nuclear norm)

kWkF := max
W∈W

kH(W )kF . (maximum Frobenius norm)

Two key inequalities to interpret our results are

kWk2
F ≤ kWkop kWk∗ and kWkop ≤ kWkF ≤ kWk∗ ,

(3)

which follow from Hölder’s inequality and monotonicity of
norms, respectively.

Our results are summarized in Table I; we describe and
discuss them in more detail below.

1) Learning: Our first result concerns distribution learning.
We establish a new technical lemma which relates the mutual
information between the parameters of the distribution to learn
and the (adaptively chosen) messages sent by the users to the
nuclear norm kWk∗ of the local constraints (Theorem 13).
This key result, combined with an Assouad-type bound for
interactive protocols, yields the following:

Theorem 2: The sample complexity of (2k, ε)-distribution
learning under local constraints W using interactive
protocols is

Ω

(

k2

ε2 kWk∗

)

.

This bound matches the known lower bound for learning
with noninteractive private-coin protocols in [7].

LDP and communication-limited learning. We now apply
this to local differential privacy (LDP) and communication
constraints. While bounds for these two constraints were
presented in prior work, the proofs unfortunately break down
for interactive protocols (see Section I-C).

Corollary 3: Let % ∈ (0, 1]. The sample complexity of
interactive (2k, ε)-distribution learning under %-LDP channels
W% is

Ω

(

k2

ε2%2

)

.

Proof: This follows from kW%k∗ = O(%2), which was
seen in [7, Lemma V.5].
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Corollary 4: For 1 ≤ ` ≤ log k, the sample complexity of
interactive (2k, ε)-distribution learning under communication
constraints W` is

Ω

(

k2

ε22`

)

.

Proof: This follows from kW`k∗ ≤ 2`, which was seen
in [7, Lemma V.1].

Both Corollaries 3 and 4 are optimal up to constant factors.
In fact there exist noninteractive private-coin protocols that
achieve these bounds (see references in Section I-C), showing
that for learning with communication and LDP constraints,
interactive protocols are no more powerful than noninteractive
ones.

Learning under `2 distance. Finally, we note that one
can instantiate the distribution learning question in Eq. (1)
with other distance measures than total variation, e.g., the `2

distance defined by `2(p1,p2) = kp1 − p2k2. Our results
on total variation distance readily imply the following corol-
lary for `2, which retrieves the two lower bounds from
[13], [14] and matches the bounds of [15], [25] for LDP in
the noninteractive case.

Corollary 5: For 1 ≤ ` ≤ log k and % ∈ (0, 1], the sample
complexities of interactive (2k, ε)-distribution learning in `2

distance under constraints W` and W% are

Ω

(

k

ε22`
∧ 1

ε42`

)

and Ω

(

k

ε2%2
∧ 1

ε4%2

)

,

respectively.
Details can be found in Section IV.
2) Testing: Our next result, proved in Section V, is a general

lower bound for uniformity testing (and thus, a fortiori, on the
more general problem of identity testing).5

Theorem 6: The sample complexity of (2k, ε)-uniformity
testing under local constraints W using interactive protocols is

Ω

⎛

⎝

k

ε2
√

kWkop kWk∗

⎞

⎠.

[7] previously established an Ω
(

k
ε2‖W‖F

)

lower bound
for (noninteractive) public-coin protocols.

a) LDP and communication-limited testing: We now
apply this to common local constraints.

Corollary 7: Let % ∈ (0, 1]. The sample complexity of inter-
active (2k, ε)-uniformity testing under %-LDP channels W% is

Ω

(

k

ε2%2

)

.

Proof: This follows from Theorem 6 and the fact that
kW%kop � kW%kF � kW%k∗ = O(%2) shown in
[7, Lemma V.5].

Corollary 8: Let 1 ≤ ` ≤ log k. The sample complexity
of interactive (2k, ε)-uniformity testing under communication
constraints W` is

Ω

(

k

ε22`/2

)

.

5As uniformity testing is a special case of identity testing, lower bounds for
the former problem imply worst-case lower bounds for the latter.

Proof: This follows from kW`k∗ ≤ 2` ( [7, Lemma V.1])
and kW`kop ≤ 2 from Lemma 19 in Section V-D.

Both Corollaries 7 and 8 are tight up to constant factors,
as they are in particular achieved by (noninteractive) public-
coin protocols [1], [8]). This shows that for communication
and local privacy constraints, interactive protocols are no more
powerful than public-coin protocols, which are themselves
more powerful than private-coin protocols.

b) A separation: By relations between matrix norms (3),
it can be seen that the noninteractive public-coin lower bound
of Ω

(

k
ε2‖W‖

F

)

from [6] can be up to a k1/4 factor smaller
than the bound in Theorem 6 for interactive protocols. Guided
by the analysis of the proof of Theorem 6, we show that this
maximal separation is achievable, and in particular demon-
strate a separation between noninteractive and interactive
protocols for uniformity testing. (see Section V-D for details).

Theorem 9: There exists a natural family of constraints,
which we term leaky-query channels, under which the sample
complexity of (2k, ε)-uniformity testing for noninteractive
public-coin protocols and interactive protocols are Θ(k/ε2)
and Θ(k3/4/ε2), respectively.

c) Power of the proof: Finally, we emphasize that
√

kWkop kWk∗ is a convenient, easy-to-apply bound which is
optimal for the channel families considered above. However,
the power of our techniques goes beyond that specific eval-
uation. To show this, we provide in Section V-C a family
of partial erasure constraints W⊥ for which the bound given
in Theorem 6 is loose, and for which interactivity does not
help. Yet, while the general bound given in the statement of
the theorem is not tight, the proof of Theorem 6, instantiated
with this specific family W⊥ in mind, readily gives the correct
bound.

C. Prior Work

There is a vast literature on statistical inference under LDP
and communication constraints. We discuss some of these
works below, focusing on those most relevant to ours.

Several protocols have been proposed for discrete dis-
tribution estimation and testing under communication and
privacy constraints. To the best of our knowledge, all
these schemes are noninteractive. [9], [10], [26], [29], [37],
[43], [44] provide schemes under LDP, and [4], [5], [33], [34]
provide estimation schemes under communication constraints.
[15] considers estimation schemes under LDP in the `2

distance. [1], [12], [16] consider distribution testing under
various privacy constraints, and [5]–[8], [31] study distribution
testing under several communication constraints. [2] focuses
on the role of shared randomness in distributed testing under
information constraints. Most relevant to this paper is prior
work by a subset of the authors [7] which provides a unifying
view of lower bounds under information constraints in the
noninteractive setting. We build on this work here.

1) Interactive Testing and Estimation of Discrete Distrib-

utions: We now describe prior work on distribution testing
and learning for discrete distributions in the interactive setting.
We focus on the papers that obtain or claim similar results
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as ours. We point out the technical flaws in some of the prior
work and outline the state of the art.

[27] (also, see preprint [25]) state lower bounds on distrib-
uted estimation of several families of distributions under LDP
constraints. While their results hold true in one-dimensional
settings and for noninteractive protocols, a crucial component
of their proof of a private analogue of Assouad’s method
([27, Proposition 3]) is their claim that, under a marginal mix-
ture distribution they consider, the distribution of the sample
is independent from the previous messages; in particular, this
claim is used to show [27, Theorem 3, supplemental (12)]. This
claim of independence simplifies the analysis and takes care of
several dependency structures that might arise in sequentially
interactive protocols. However, this key identity only holds for
noninteractive protocols, not in general, even in the absence
of any local constraint.

In another direction, [32] claim lower bounds on distributed
estimation (in total variation distance) of several families of
distributions under communication constraints. In [34], the
authors claim lower bounds on distribution estimation under
the `2 distance as well. The arguments of [32] and [34]
appear to both rely on a particular flawed step stated as
[34, Lemma 3], which essentially reduces their problem to
the noninteractive setting. But this step does not hold in the
interactive setting. Following an earlier version of this work,
made available as preprint, the authors of [34] were able to
mend their proofs by leveraging the techniques developed in
the present paper.

Turning to testing, both [12] and [16] establish optimal
lower bounds on uniformity testing under LDP constraints.6,7

In particular, this implies that the separation between private-
coin and public-coin noninteractive LDP protocols shown
in [6] does not increase when allowing sequential interactivity.
However, we note that the results in these paper do not extend
to general constraints. Furthermore, even when we try to use
their techniques to obtain general bounds, we only get bounds
as a function of kWk∗ alone. This turns out to be optimal for
LDP constraints, but would lead a suboptimal bound for other
types of constraints, such as communication constraints (where
it would yield a denominator of 2` instead of the optimal 2`/2).

Several works have studied distribution estimation under the
`2 distance [13], [14], [17] for parametric families of distribu-
tions. [13], [14] develop Fisher information-based methods to
obtain these bounds, and one of the distribution families they
consider is the class of discrete distributions. For sequentially
interactive protocols and this particular class, our lower bounds
for estimation under the total variation distance imply their
results. We point out, nevertheless, that their bounds apply

6The conference version of [12] had a flaw on the claim that for any fixed
setting of the previous messages Y t−1, the random variables Yt and Zi

(a parameter of their lower bound construction) are independent conditioned
on Xt /∈ {2i − 1, 2i}. This is not true in general, as it overlooks some
conditional dependencies that may arise. However, after this was brought to
their attention, the authors were able fix the gap in their argument, using
techniques that bear some resemblance to the ones used in the present
paper [11].

7The result of [16] is actually phrased in a more general way, as they
address the more general problem of identity testing, where the reference
distribution need not be uniform and the lower bound quantitatively depends
on the reference distribution itself.

to a larger class of protocols (blackboard protocols, which
allow for multiple rounds of messages from each user), and
therefore hold in a more general setting than ours. However,
it is important to remark that these techniques do not suffice
for the total variation distance setting, and more importantly,
unlike the bounds claimed in [34], cannot give bounds for
testing.

Slightly further from the setting considered here,
[22]8 and [21] also consider distributed estimation and identity
testing of discrete distributions, respectively, under total
variation distance. Although their results apply to blackboard
protocols, their setting and results are incomparable to ours
as they consider constraints on the total communication sent
by all the users.

In a different direction, recent work of [18] considers the
task of testing whether a quantum state is maximally mixed,
the quantum analogue of uniformity testing. They focus on
the setting where one is only allowed local measurements
(i.e., without entanglement) and provide a lower bound show-
ing a separation between sequentially interactive “local mea-
surement” protocols and the more general fully entangled
ones. We note that, while the setting differs from the one
we consider here, some of the considerations are similar,
and there is a direct analogy between their techniques and
those of [6].

2) General Interactive Testing and Estimation Bounds:

Several papers have studied the role of interactivity for specific
estimation tasks, establishing separation results under either
local privacy or communication constraints.

The study of interactivity in LDP started with [38] who
designed a learning task that requires exponentially fewer
samples with interactive protocols than with noninteractive
ones. Moreover, this separation can manifest itself in very
natural optimization or learning problems [20], [41], [42].
[35] and [36] study the relation between sequentially interac-
tive protocols and fully interactive protocols (where the same
user can send multiple messages), establishing both relations
and strong separations in sample complexity between the two
settings. [24], drawing on machinery from the communication
complexity literature, develop a lower bound results which
apply to any locally private estimation protocol (regardless
of the interactivity model). [40] studies various estimation
tasks under a range of information constraints. Finally, [19]
establish a separation between interactive and noninteractive
learning for large-margin classifiers, under both local privacy
and communication constraints.

II. PRELIMINARIES

Hereafter, we write log and ln for the binary and natural
logarithms, respectively. We will consider probability distri-
butions over [2k] which we identify with their probability
mass functions p : [2k] → [0, 1] satisying

∑

x∈X p(x) = 1.
We denote by ∆2k the set of all such probability distributions.
We denote by u the uniform distribution over [2k].

8To the best of our knowledge, the details of the proofs of [22] have not
been made publicly available, and as such we have not been able to assess
correctness of the results claimed in this paper.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 13,2023 at 13:33:48 UTC from IEEE Xplore.  Restrictions apply. 



ACHARYA et al.: INTERACTIVE INFERENCE UNDER INFORMATION CONSTRAINTS 507

For two distributions p1,p2 over X , denote their total
variation distance by

dTV (p1,p2) := sup
S⊆X

(p1(S) − p2(S)), (4)

and their Kullback–Leibler divergence and chi square diver-
gence, respectively, by

D (p1kp2) :=
∑

x∈X
p1(x) log

p1(x)

p2(x)

and

dχ2 (p1 || p2) :=
∑

x∈X

(p1(x) − p2(x))2

p2(x)
.

By Pinsker’s inequality and concavity of logarithm, these
quantities obey the inequalities:

dTV (p1,p2)
2 ≤ ln 2

2
D (p1kp2) ≤

ln 2

2
dχ2 (p1 || p2) .

Throughout, We use the standard asymptotic notation O (f),
Ω (f), Θ (f). In addition, we will often write an � bn (resp.
an � bn), to indicate there exists an absolute constant C > 0
such that an ≤ C · bn (resp. an ≥ C · bn) for all n, and
accordingly write an � bn when both an � bn and an � bn.

A. Interactive Protocols

We set up some notation for sequentially interactive pro-
tocols, defined in Section I-A. When public-coin U is fixed
constant, we will call the protocol a deterministic protocol.9

Recall that in interactive protocols, user t selects its channel
W ∈ W as a function of (Y t−1, U). We denote this channel
by WY t−1,U , or simply by WY t−1

for deterministic protocols,
and the corresponding output by Yt.

We call (Y n, U) the transcript of the protocol, which is
used to complete the inference task. For a fixed protocol
Π, when the input Xn has distribution pn, we denote the
distribution of the transcript by p

Y n,U
Π . In fact, we often omit

the dependence on the protocol from our notation (since it
will be clear from the context) and simply use pY n,U . For
deterministic protocols, pYt|Y t−1

will be used to denote the
conditional distribution of the message Yt of the tth user,
conditioned on the past messages Y t−1 = (Y1, . . . , Yt−1).

B. Lower Bound Construction

Our lower bounds rely on a family of perturbed distributions
around u, a common starting point for establishing several
statistical lower bounds. The particular construction we use is
from [39] and consists of 2k distributions parameterized by
Z = {−1, +1}k. Specifically, for z ∈ Z the distribution pz

over [2k] is given by

pz =
1

2k
(1 + 4εz1, 1 − 4εz1, . . . , 1 + 4εzt, 1 − 4εzt,

. . . , 1 + 4εzk, 1 − 4εzk) . (5)

Each such pz is therefore at total variation exactly 2ε from
u.

9This is a slight abuse of notation, since randomness is used by the channels
to generate their (random) output.

C. The Channel Information Matrix

We capture the information revealed by a channel about the
distribution of its input in terms of a matrix H(W ), which
was defined in [7, Definition I.5].

Specifically, for a channel W : [2k] → Y , the associated
information matrix H(W ) is the k-by-k positive semi-definite
(p.s.d.) matrix H(W ) whose entry H(W )i,j is given by

�

y∈Y

(W (y | 2i − 1)−W (y | 2i))(W (y | 2j − 1)−W (y | 2j))�
x∈[2k] W (y | x)

(6)

for i, j ∈ [k]. This matrix captures the ability of the channel
output to distinguish between consecutive even and odd inputs,
and is thus particularly tailored to the Paninski perturbed
family defined above. However, the ordering of the elements
is arbitrary and we can associate this matrix with any partition
of the domain into equal parts.

D. Organization

The remainder of the paper is organized as follows.
In Sections IV and V we prove our general results on learning
and testing. In Section V-D we present a set of channels W
for which interactivity helps when testing using W .

III. INFORMATION-LOSS BOUNDS

In this section, we present two bounds relating the loss
for estimating Rademacher random variables using correlated
observations to mutual information. The bounds are simple and
highlighted separately here for easy reference – in essence,
they say that small loss implies large information, the first
step in any information-theoretic lower bound for statistical
inference.

First, we consider estimation of a {−1, +1}k-valued
random vector under the average Hamming loss function
dH (u, v) :=

∑k
i=1 1{ui 
=vi}. Note that E[dH (U, V )] =

∑k
i=1 Pr [Ui 6= Vi].
Lemma 10 (Hamming Loss): Consider random variables

(Z, Y ) with Z ∈ {−1, 1}k being a random vector with inde-
pendent Rademacher entries. Let Ẑ be a randomized function
of Y , i.e., such that the Markov relation Z—Y —Ẑ holds.
Then, for each i ∈ [k], with h(t) := −t log t−(1−t) log(1−t)
denoting the binary entropy function, we get

I (Zi ∧ Y ) ≥ 1 − h
(

Pr
[

Zi 6= Ẑi

])

,

whereby

1

k

k
∑

i=1

I (Zi ∧ Y ) ≥ 1 − h

(

1

k

k
∑

i=1

Pr
[

Zi 6= Ẑi

]

)

.

Proof: Using the data processing inequality for mutual
information,

I (Zi ∧ Y ) = 1 − H(Zi | Y ) ≥ 1 − H(Zi | Ẑi)

≥ 1 − h
(

Pr
[

Zi 6= Ẑi

])

,
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where the second inequality is by Fano’s inequality. Upon
taking average over i, we get

1

k

k
∑

i=1

I (Zi ∧ Y ) ≥ 1 − 1

k

k
∑

i=1

h(Pr
[

Zi 6= Ẑi

]

)

≥ 1 − h

(

1

k

k
∑

i=1

Pr
[

Zi 6= Ẑi

]

)

,

where the second inequality holds by concavity of h(·).
Next, we consider the mean squared loss function ku − vk2

2

for u, v ∈ {−1, +1}k. Denote by mmse(Z | Y ) the minimum
mean squared error for estimating Z using Y given by

mmse(Z | Y ) := min
g : Y→Rk

E

[

kZ−g(Y )k2
2

]

, (7)

where the minimum is taken over all randomized functions
g of Y . It is well known that the minimum is attained by
g(Y ) = E[Z | Y ].

Lemma 11 (Mean Squared Loss): Consider random vari-
ables (Z, Y ) with Z ∈ {−1, 1}k being a random vector
with independent Rademacher entries. Then, for each i ∈ [k],
we get

I (Zi ∧ Y ) ≥ 1

2 ln 2
E

[

E[Zi | Y ]2
]

,

whereby

1

k

k
∑

i=1

I (Zi ∧ Y ) ≥ 1

2 ln 2

(

1 − 1

k
mmse(Z | Y )

)

.

Proof: By using E[ZiE[Zi | Y ]] = E

[

E[Zi | Y ]
2
]

,
we obtain

1 − E

[

kZi − E[Zi|Y ]k2
2

]

= E

[

E[Zi | Y ]
2
]

.

Thus, since mmse(Z | Y ) =
∑k

i=1 E

[

kZi − E[Zi|Y ]k2
2

]

,
the first inequality in the lemma implies the second.

To see the first inequality, note

I (Zi ∧ Y ) = 1 − H(Zi | Y ) = E
[

D(PZi|Y kunif)
]

,

where unif denotes the Rademacher distribution. Thus,
by Pinsker’s inequality,

I (Zi ∧ Y ) ≥ 2

ln 2
E

[

(

1

2
− Pr [Zi = 1 | Y ]

)2
]

=
1

2 ln 2
E

[

E[Zi | Y ]
2
]

,

where in the final step we used the observation that for any
{−1, +1}-valued random variable V , E[V ] = 2 Pr [V = 1]−1.
This completes the proof of the lemma.

IV. INTERACTIVE LEARNING UNDER

INFORMATION CONSTRAINTS

We now prove Theorem 2, a lower bound on the sample
complexity for learning using interactive protocols under gen-
eral information constraints given by a channel family W .

We proceed as in [7] and use the construction in Eq. (5).
For each z ∈ {−1, +1}k, let pz ∈ ∆2k denote the 2k-ary
distribution given in Eq. (5). We use a uniform prior over

these distributions to get our lower bound. Specifically, let Z
be distributed uniformly over {−1, +1}k. Conditioned on Z ,
let X1, . . . , Xn denote independent samples from pZ . We run
a (sequentially) interactive protocol Π which generates the
messages (transcript) Y n taking values in Yn. The distribution
of messages over Yn is given by

qY n

:=
1

2k

∑

z∈Z
pY n

z (8)

In [7], Fano’s inequality is used to derive the desired bound.
However, this requires us to derive a bound for I (Z ∧ Y n), the
joint information in the message about the vector Z . As noted
in [27], this is a formidable task for interactive communica-
tion, since the correlation can be rather complicated. Instead,
we exploit the additive structure of total variation distance
to obtain an Assouad-type bound below, which relates the
loss in total variation function to the average information
1
k

∑k
i=1 I (Zi ∧ Y n).10

Lemma 12 (Assouad-Type Bound): Consider local con-
straints W and ε ∈ (0, 1]. Let (Π, p̂) be an (n, ε/12)-estimator
using W and (Y n, U) be the corresponding transcript. Then,
we must have

k
∑

i=1

I (Zi ∧ Y n | U) ≥ k

2
. (9)

Proof: The proof involves relating PAC-style guarantees
provided by Eq. (1) to an expected Hamming-loss guarantee
and then applying the information-loss bound in Lemma 10.
Specifically, let

Ẑ := argmin
z∈{−1,+1}k

dTV (pz, p̂(Y n, U)).

By the triangle inequality,

dTV

(

pẐ ,pZ

)

≤ dTV

(

p̂(Y n, U),pẐ

)

+dTV (p̂(Y n, U),pZ)

≤ 2dTV (p̂(Y n, U),pZ)

which yields

Pr
[

dTV

(

pẐ ,pZ

)

>
ε

12

]

≤ 1

100
,

since Pr
[

dTV (p̂(Y n, U),pZ) > ε
10

]

≤ 1/100 by
our assumption for the estimator (Π, p̂). Noting that
dTV (pz ,pz′) ≤ 2ε for every z, z′ ∈ {−1, +1}k, we get

E
[

dTV

(

pẐ ,pZ

)]

≤ 99

100
· 2ε

12
+

1

100
· 2ε <

ε

5
.

Next, noting that dTV (pz,pz′) = (2ε/k)
∑k

i=1 1{zi 
=z′
i},

the previous inequality yields

1

k

k
∑

i=1

Pr
[

Ẑi 6= Zi

]

<
1

10
.

The proof is now completed using Lemma 10.
Upon combining the previous bound with Lemma 12,

we obtain the proof of Theorem 2. Interestingly, the same
bound will be useful for the testing problem as well, and

10Note that
�k

i=1 I (Zi ∧ Y n) ≤ I (Z ∧ Y n), suggesting that this bound
is perhaps more stringent than the Fano-type bound in [7].
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is one of the key components of our lower bound recipes
in this paper. We provide its formal proof first, followed by
remarks on its extension (which will be useful) and heuristics
underlying the formal proof.

Theorem 13 (Average Information Bound): For ε ∈ (0, 1/4],
let (Y n, U) be the transcript of an interactive protocol using
W , when the input is generated using pZ from Eq. (5) with
a uniform Z . Then, for every 1 ≤ t ≤ n,

1

k

k
∑

i=1

I
(

Zi ∧ Y t | U
)

≤ 8tε2

k2
· kWk∗ .

Proof: Since
∑k

i=1 I (Zi ∧ Y t | U) ≤ maxu

∑k
i=1

I (Zi ∧ Y t | U = u), it suffices to establish the bound for
every fixed realization of U ; we will assume that U is a
fixed constant and the protocol Π is a deterministic interactive
protocol. Fix 1 ≤ t ≤ n and consider i ∈ [k]. For the
distribution in Eq. (5) and i ∈ [k], let

pY n

+i :=
1

2k−1

∑

z:zi=+1

pY n

z and pY n

−i :=
1

2k−1

∑

z:zi=−1

pY n

z (10)

be distributions over n-message transcripts restricting zi to
be +1 or −1. Recalling the definition of qY t

, from Eq. (8),
we can rewrite

qY t

=
pY t

+i + pY t

−i

2
. (11)

By the convexity of KL divergence,

I
(

Zi ∧ Y t
)

=
D
(

pY t

+ikqY t
)

+ D
(

pY t

−ikqY t
)

2

≤ 1

4

(

D
(

pY t

+ikpY t

−i

)

+ D
(

pY t

−ikpY t

+i

))

.

For z ∈ {−1, +1}k, write z⊕i for z with the ith coordinate
flipped. Using the convexity of KL divergence and applying
Jensen’s inequality to the right-side of the previous bound,
we get

I
(

Zi ∧ Y t
)

≤ 1

2

⎛

⎝

1

2k

∑

z∈{−1,+1}k

D
(

pY t

z kpY t

z⊕i

)

⎞

⎠ . (12)

Now for any z, z′, by the chain rule for KL divergence we
have

D
(

pY t

z kpY t

z′

)

=
t
∑

r=1

E
pY r−1

z

[

D
(

pYr |Y r−1

z kpYr|Y r−1

z′

)]

.

(13)

Next, we note that

Pr
pz

[

Yr = y | Y r−1
]

− Pr
p

z⊕i

[

Yr = y | Y r−1
]

=
2εzi

k

(

WY r−1

(y | 2i − 1) − WY r−1

(y | 2i)
)

. (14)

Indeed, this relation holds since for all z

Pr
pz

[

Yr = y | Y r−1
]

=

k
∑

j=1

(

pz(2j − 1)WY r−1

(y |2j−1)+pz(2j)WY r−1

(y |2j)
)

=
∑

j 
=i

(

pz(2j−1)WY r−1

(y |2j−1)+pz(2j)WY r−1

(y |2j)
)

+

(

1+4εzi

2k
WY r−1

(y | 2i−1)+
1−4εzi

2k
WY r−1

(y |2i)

)

=
∑

j 
=i

(

pz⊕i(2i−1)WY r−1

(y |2j−1)+pz⊕i(2j)WY r−1

(y|2j)
)

+

(

1−4εzi

2k
WY r−1

(y |2i−1)+
1+4εzi

2k
WY r−1

(y|2i)

)

+
2εzi

k

(

WY r−1

(y | 2i − 1) − WY r−1

(y | 2i)
)

= Pr
p

z⊕i

[

Yr = y | Y r−1
]

+
2εzi

k

(

WY r−1

(y | 2i − 1) − WY r−1

(y | 2i)
)

.

Using (14), we bound D
(

p
Yr |Y r−1

z kpYr|Y r−1

z⊕i

)

as follows.
Since the KL divergence is bounded by the chi square distance,
we have

D
(

pYr|Y r−1

z kpYr|Y r−1

z⊕i

)

≤
∑

y∈Y

(

Prpz

[

Yr = y | Y r−1
]

−Prp
z⊕i

[

Yr = y |Y r−1
])2

Prp
z⊕i

[ Yr = y |Y r−1 ]

≤ 16ε2

k

∑

y∈Y

(

WY r−1

(y | 2i − 1) − WY r−1

(y | 2i)
)2

∑

x∈[2k] W
Y r−1(y | x)

=
16ε2

k
H(WY r−1

)i,i, (15)

where we used the observation

Pr
p

z⊕i

[

Yr = y | Y r−1
]

≥ 1 − 2ε

2k

∑

x∈[2k]

WY r−1

(y | x)

≥ 1

4k

∑

x∈[2k]

WY r−1

(y | x).

It follows that
k
∑

i=1

I
(

Zi ∧ Y t
)

≤ 8ε2

k

k
∑

i=1

(

t
∑

r=1

E
pY r−1

z

[

H(WY r−1

)i,i

]

)

=
8ε2

k

t
∑

r=1

(

E
pY r−1

z

[

k
∑

i=1

H(WY r−1

)i,i

])

=
8ε2

k

t
∑

r=1

(

E
pY r−1

z

[∥

∥

∥H(WY r−1

)
∥

∥

∥

∗

])

≤ 8tε2

k
· kWk∗ ,

concluding the proof.

Remark 14 (Information bound for each coordinate): While
we have stated the previous result as a bound for average infor-
mation, our proof gives a bound for information I (Zi ∧ Y t)
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about each coordinate contained in the message Y t. Specifi-
cally, by Eq. (15) we get that

I
(

Zi ∧ Y t
)

≤ 8ε2

k

t
∑

r=1

E

[

H(WY r−1

)i,i

]

.

This stronger form is useful; see Section V-C.

Remark 15 (Is This Bound Tight?): An examination of the
proof above suggests that the only seemingly weak bound
is Eq. (12). In this step, which is an important ingredient of our
proof and perhaps allows us to circumvent the difficulty faced
by prior works, we simplify the conditional distribution of Zi

given the past Y t by conditioning additionally on all the other
coordinates Z−i = (Z1, . . . , Zi−1, Zi+1, . . . , Zk). Our thesis
is that until the time t when the ith bit of Z is determined by
Y t, the difficulty in determining Zi using Y t is not reduced
much even when we condition on all the other bits Z−i. This
is a driving heuristic for the bound above.

We conclude this section by showing how our proof of
Theorem 13 implies the claimed result on estimation under
the `2 distance, Corollary 5.

Proof of Corollary 5: Note that, by the Cauchy–Schwarz
inequality, a lower bound on estimation for distributions over
domain X to total variation distance ε implies a lower bound
to `2 distance ε/

√

|X |, i.e., with a square root of the domain
size factor loss in the distance parameter. We will use this to
derive our lower bounds under `2 distance: first, by the above
it is easy to see that for 0 < ε ≤ 1

4
√

2k
, Theorem 2 implies a

lower bound of Ω
(

k
ε2‖W‖

∗

)

users for learning under any set
of constraints W .

However, for larger values of ε, we cannot directly use the
result, as

√
2kε > 1/4 and our result does not apply. However,

we can choose in that case a subset X ′ ⊆ [2k] of the domain of
size |X | = 2

⌊

1/(32ε2)
⌋

, and embed our (total variation) lower
bound in this domain. One can check that this will indeed
result in a lower bound of Ω

(

k
ε2‖W‖

∗

)

users, for a `2 distance
parameter ε.

Combining the two cases yields a general lower bound for
`2 estimation under W ; instantiating the bound to W% and W`

yields Corollary 5.

V. INTERACTIVE TESTING UNDER

INFORMATION CONSTRAINTS

A. The General Bound: Proof of Theorem 6

We proceed as in [7] and derive a lower bound
for testing under information constraints using Le Cam’s
two-point method. Specifically, let Z be distributed uniformly
over {−1, +1}k. Note that for any (n, ε)-test (Π, T ) for
(2k, ε)-identity testing with transcript (Y n, U), we must have

1

2
Pr
un

[ T (Y n, U) = 0 ] +
1

2
E

[

Pr
pn

Z

[T (Y n, U) = 1 ]

]

≥ 99

100
,

where pz is given by Eq. (5). It follows that we can find a
fixed realization of U for which the same bound holds; thus,
there exists a deterministic interactive protocol Π′ for which
the same bound holds. In the remainder of the section, we will
assume that our protocol Π is deterministic and denote by

qY n

and uY n

, respectively, the probabilities distribution of
the transcript under input distribution E[pn

Z ] and un.
Using standard relations between Bayesian error for binary

hypothesis testing with uniform prior and the total varia-
tion distance, along with Pinsker’s inequality, we get that
D
(

qY nkuY n) ≥ c for a constant c > 0. It remains to bound
this KL divergence, which we do after the following remark.

Remark 16 (Comparison With Decoupled Chi Square

Bounds): Before proceeding, we draw contrast with the decou-

pled chi square divergence bound technique developed [7].
Their first step was to bound Kullback–Leibler divergence with
chi square divergence and then handle the latter using the
so-called “Ingster’s method.” While very powerful for SMP
protocols, this technique requires us to handle the correlation
of the vector Y n directly, which is a formidable task for
interactive protocols. Below, we proceed by first applying the
chain rule to the Kullback–Leibler divergence to break it into
contribution for each sample and then bounding it by the chi
square divergence. As will be seen below, this allows us to
work with one sample at a time. Further, switching to chi
square divergence relates distances between distributions to a
bilinear form involving H(W )s. Thus, we can relate distances
between distributions to the spectrum of H(W ), a relation that
was exploited to establish a separation between public- and
private-coin protocols in [7]. But now we need to handle the
posterior distribution of the message Yt given the past Y t−1,
under the mixture distribution.

Proceeding with the proof, by the chain rule for
Kullback–Leibler divergence, we can write

D
(

qY nkuY n
)

=

n−1
∑

t=0

E
qY t

[

D
(

qYt+1|Y tkuYt+1|Y t
)]

(16)

We now present the key technical component of our testing
bound in the result below.

Lemma 17 (Per-round divergence bound): For every
0 ≤ t ≤ n − 1, we have

E
qY t

[

D
(

qYt+1|Y tkuYt+1|Y t
)]

≤ 4(ln 2)ε2

k
kWkop ·

k
∑

i=1

I
(

Zi ∧ Y t
)

. (17)

Proof: Fix t. As chi-squared divergence upper bounds KL
divergence, we have

E
qY t

[

D
(

qYt+1|Y tkuYt+1|Y t
)]

≤ E
qY t

[

dχ2

(

qYt+1|Y t || uYt+1|Y t
)]

= 2k · E
qY t

⎡

⎢

⎣

∑

y∈Y

(

∑

x WY t

(y | x)(qXt+1|Y t(x) − 1
2k )

)2

∑

x WY t(y | x)

⎤

⎥

⎦
.

Upon noting that, for all i ∈ [k],

qXt+1|Y t(2i − 1) =
1 + 2εE[Zi | Y t]

2k
,

qXt+1|Y t(2i) =
1 − 2εE[Zi | Y t]

2k
,
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we get

E
qY t

[

D
(

qYt+1|Y tkuYt+1|Y t
)]

≤ 2ε2

k
E

qY t

⎡

⎣

∑

y∈Y

��
k
i=1 E[Zi | Y t](W Y t

(y|2i−1)−W Y t
(y|2i))

�2

�
x

W Y t (y|x)

⎤

⎦

=
2ε2

k
E

qY t

[

E
[

Z
∣

∣ Y t
]T

H(WY t

)E
[

Z
∣

∣ Y t
]

]

. (18)

We can now bound11

E
[

Z
∣

∣ Y t
]T

H(WY t

)E
[

Z
∣

∣ Y t
]

≤
∥

∥H(WY t

)
∥

∥

op
·
∥

∥E
[

Z
∣

∣ Y t
]∥

∥

2

2
, (19)

where k·kop denotes the operator norm (or the maximum

eigenvalue) of the p.s.d. matrix H(WY t

).
We now take recourse to the information-loss bound

in Lemma 11 to relate kE[Z | Y t]k2
2 to average information.

By combining Eqs. (18) and (19) and using Lemma 11,
we obtain

E
qY t

[

D
(

pYt+1|Y tkuYt+1|Y t
)]

≤ 4(ln 2)ε2

k
kWkop ·

k
∑

i=1

I
(

Zi ∧ Y t
)

,

proving the lemma.

Remark 18 (Is the Bound Above Tight?): A key heuristic
underlying our learning bound is the thesis that when the
information gathered about each coordinate is small, the infor-
mation revealed in the next iteration cannot be too much. The
bound in Eq. (18) provides a quantitative counterpart for this
heuristic. The crux of the previous bound is Eq. (19), which
relates the Kullback–Leibler divergence to a per-coordinate
information quantity

∑k
i=1 E

[

E[Zi | Y t]
2
]

. As for learning,

this enables us to circumvent the difficulty in handling the
joint correlation between Zis, when conditioned on Y t. In fact,
this step can be weak, as we shall see in a later section
below. Nonetheless, it allows us to relate the distance between
message distribution induced by the mixture distribution and
the uniform distribution to the average information quantity
of Theorem 13. This connection between learning and testing
bounds is interesting in its own right.

Upon combining Lemma 17 with Eq. (16), summing over t,
and using the average information bound of Theorem 13,
we get

D
(

qY nkuY n
)

≤ 16(ln 2)ε4n2

k2
kWkop kWk∗ ,

which gives the desired bound n = Ω(k/(
√

kWkop kWk∗ε2))

for D
(

qY nkuY n)

to be Ω(1). This proves Theorem 6.

11In view of Lemma 11, the right-side of Eq. (19) is large when the mean
squared error in estimating Z from Y t is small. Thus, if the divergence
in Eq. (18) is large, we should be able to determine Z from Y t.

B. A Bound for kH(W )kop

Next, we record a general property of the matrix H(W ),
which is crucial for handling communication constraints but
more generally holds for arbitrary information constraints.

Lemma 19 (Operator-Norm Bound): For any channel
W : X → Y , we have kH(W )kop ≤ 2.

Proof: By the Gershgorin circle theorem, the eigenvalue
of a matrix is at most the largest sum of absolute entries of a
row. Now, for any i ∈ [k],

kH(W )kop

≤∑k
j=1

∣

∣

∣

∑

y∈Y
(W (y|2i−1)−W (y|2i))(W (y|2j−1)−W (y|2j))�

x∈[k] W (y|x)

∣

∣

∣

≤∑

y |(W (y | 2i − 1) − W (y | 2i))|
�

j |W (y|2j−1)−W (y|2j)|�
x∈[k] W (y|x)

≤∑

y |W (y | 2i − 1) − W (y | 2i)| ≤ 2,

where in the last step we used the fact that
∑

y∈Y W (y | x) =
1 for all x ∈ [2k].

C. The General Bound Can Be Tightened

We now present a family of channels for which the general
lower bound of Theorem 6 and the true sample complexity are
a factor k1/4 apart. Nonetheless, we can follow the proof of
the lower bound instead of directly applying the statement and
establish the tight lower bounds. In other words, the general
proof methodology we have goes beyond the specific form
in Theorem 6.

Let X = [2k], Y := X ∪ {⊥}, and η ∈ (0, 1). The family
of partial erasure channels Wη

⊥ consists of 2k channels from
X to Y , indexed by elements of X such that for x∗ ∈ X ,

Wx∗(y | x) =

⎧

⎪

⎨

⎪

⎩

1, if y = x = x∗,

η, if y = x and x 6= x∗,

1 − η, if y = ⊥ and x 6= x∗.

Namely, the channel Wx∗ sends the symbol x∗ exactly
and erases every other symbol x 6= x∗ with probability
1− η. Moreover, the channel matrix H(Wx∗) (see Eq. (6)) is
diagonal with the ith diagonal entry equal to 1+ η+ 1−η

2k−1 for
x∗ /∈ {2i−1, 2i}, and is equal to 2η otherwise. For η = 1/

√
k,

we can verify that

2 ≤ kH(Wx)kF ≤ 2
√

2,

2
√

k ≤ kH(Wx)k∗ ≤ 2
√

k + 2, (20)

1 ≤ kH(Wx)kop ≤ 2.

Using these quantities to evaluate the lower bounds
in Table I, we get a lower bound of Ω(k/ε2) for the sam-
ple complexity of testing under SMP public-coin protocols.
We now provide a simple SMP private-coin protocols that
achieves this bound.

We set all the channels to be W1, the channel that erases
all symbols except symbol x = 1. This can be converted
into an erasure channel with erasure probability 1 − η by
simply converting the Yts that are equal to 1 to ⊥ with
probability 1 − η. With this modification, the channel output
for the users are independent and identically distributed, and
Pr [Yt = x | Yt 6= ⊥] = p(x), where p is the underlying
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distribution. Therefore, with O(
√

k
ε2 · 1

η ) users we can obtain

O(
√

k
ε2 ) samples and use a centralized uniformity test. Upon

combining these bounds we get the following result.
Proposition 20: The sample complexity of noninteractive

(2k, ε)-uniformity testing under local constraints W1/
√

k
⊥ is

Θ(k/ε2) for both public-coin and private-coin protocols.
Next, using the norm bounds in Eq. (20) to evaluate the

general lower bound of Theorem 6 gives a lower bound of
Ω(k3/4/ε2) for sample complexity of uniformity testing under
W , using interactive protocols.

Below we will see that this bound is not tight, show-
ing that the general bound of Theorem 6 can be loose
for specific families. Nonetheless, we show that the proof
of Theorem 6 can be adapted easily to establish the optimal
sample complexity Θ(k/ε2) for interactive protocols, match-
ing Proposition (21). This will be achieved by an improved
evaluation for E[Z | Y t]

T
H(WY t

)E[Z | Y t] in Eq. (19).
Proposition 21: Interactive (2k, ε)-uniformity testing under

local constraints W1/
√

k
⊥ requires at least Ω(k/ε2) users.

Proof: We proceed as in the proof of Lemma 17
until Eq. (18) and then replace the bound Eq. (19) with a
more precise one. Specifically, we note that different choices
of x simply allow us to permute the diagonal entries of the
diagonal matrix H(Wx). Therefore, we get

E
[

Z
∣

∣ Y t
]T

H(WY t

)E
[

Z
∣

∣ Y t
]

≤
(

1 + η +
1 − η

2k − 1

)

max
1≤i≤k

E
[

Zi

∣

∣ Y t
]2

+ η

(

∥

∥E
[

Z
∣

∣ Y t
]∥

∥

2

2
− max

1≤i≤k
E
[

Zi

∣

∣ Y t
]2
)

≤ 2
∥

∥E
[

Z
∣

∣ Y t
]∥

∥

2

∞ +
1√
k

∥

∥E
[

Z
∣

∣ Y t
]∥

∥

2

2
.

Combining with Lemma 11, we get

E

[

E
[

Z
∣

∣ Y t
]T

H(WY t

)E
[

Z
∣

∣ Y t
]

]

≤ 4(ln 2)

(

max
1≤i≤k

I
(

Zi ∧ Y t
)

+
1√
k

k
∑

i=1

I
(

Zi ∧ Y t
)

)

.

Next, we take recourse to Remark 14 to get a bound for
information I (Zi ∧ Y t) about each coordinate. We have

I
(

Zi ∧ Y t
)

≤ 8ε2

k

t−1
∑

j=1

E

[

H(WY j

)i,i

]

,

which when combined with the previous bound yields

E

[

E
[

Z
∣

∣ Y t
]T

H(WY t

)E
[

Z
∣

∣ Y t
]

]

≤ 32(ln 2)ε2

k

t−1
∑

j=1

(

max
1≤i≤k

E

[

H(WY j

)i,i

]

+
1√
k

k
∑

i=1

E

[

H(WY j

)i,i

]

)

≤ 320(ln 2)ε2(t − 1)

k
.

It follows from (18) that

D
(

qY nkuY n
)

≤ 320(ln 2) · ε4n2

k2
,

which completes the proof.
We close by noting that the proof above provides yet another

example of an application where our lower bound technique
yields a tight bound; we believe there can be many more.
We note that even in this example we related the distance to
the per-coordinate information I(Zi∧Y t). It will be interesting
to seek examples where our technique yields a tight bound
without using an upper bound for Eq. (18) in terms of per-
coordinate information quantities.

D. A Separation Between Non-Interactive and

Interactive Protocols

We will now show that there exists a “natural” family of
local constraints for which the sample complexity of inter-
active protocols is much smaller than that of noninteractive
protocols for (2k, ε)-uniformity testing. To the best of our
knowledge, this is the first example of a separation between
interactive and noninteractive protocols for a basic hypothesis
testing problem.

1) The Search for a Suitable Family of Channels: To des-
cribe how we identify the family W that yields the desired
separation, we first revisit the proof of Lemma 17. As noted
before, the only possibly loose step in the argument is (19).
As we saw in Section V-C, this bound can be improved by
carefully examining the spectrum of H(W ) for different W s.
Our goal in this section is to construct an example where the
bound in (19) is tight, but kWkF is maximally separated from
√

kWk∗ kWkop. Towards this, a key observation we have is

that for (19) to be tight, we should have a channel family that
such that for each E[Z | Y t], we can find a channel W such
that the maximum eigenvalue of W is roughly kWkop and it
corresponds to an eigenvector that is aligned with E[Z | Y t].

Specifically, we seek a set of channels W for which
(a) there is a large gap between kWkF and

√

kWkop kWk∗;
(b) there is a noninteractive protocol with sample complexity
O(k/ε2 kWkF ); and (c) there is an interactive protocol with

sample complexity O(k/ε2
√

kWkop kWk∗). In view of the
heuristic observation above, we seek W such that we can
assign the maximum eigenvalue of H(W ) in any direction of
our choice, by appropriately choosing W ∈ W . In the previous
section, we designed a set of channels that satisfy (a) and (b).
However, (c) did not hold since (19) is not tight as we could
only assign the maximum eigenvalue of H(W ) to one of the
standard basis vectors, and to no other direction.

We meet the objectives above with channels that release
membership queries for particular sets of our choice. We will
also have a leakage component to introduce an eigenspace with
a small eigenvalue to ensure a large gap in different norms of
interest to us. We now formalize this family below.

For η ∈ [0, 1), u ∈ [0, 1]2k, and Y := [2k] ∪ {1?,0?}, the
leaky-query channel W η

u for an input x ∈ [2k] outputs x with
probability η; otherwise it outputs 1? and 0? with probability
ux and 1 − ux respectively. For our scheme, we will use ux
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that has all the entries for coordinates in a set S equal to 1
and outside it equal to 0, corresponding to a membership query
for S. Let Wη

∈ = {W η
u : u ∈ [0, 1]2k}

Wu(y | x) =

⎧

⎪

⎨

⎪

⎩

η, if y = x,

(1 − η)ux, if y = 1?,

(1 − η)(1 − ux), if y = 0?.

Throughout this section, we will consider η = 1/
√

k.
We begin by evaluating the required norms for this family.

Lemma 22:

2 ≤
∥

∥

∥W1/
√

k
∈

∥

∥

∥

F
≤ 2

√
2,

2
√

k ≤
∥

∥

∥W1/
√

k
∈

∥

∥

∥

∗
≤ 2

√
k + 2,

∥

∥

∥W1/
√

k
∈

∥

∥

∥

op
= 2. (21)

Proof: By the definition of Wu, we obtain for i1, i2 ∈ [k]
that

H(Wu)i1,i2

=
∑

y∈[2k]∪{1�,0�}

(Wu(y|2i1−1)−Wu(y|2i1))(Wu(y|2i2−1)−Wu(y|2i2))�
x∈[2k] Wu(y|x) .

Note that for every u ∈ [0, 1]2k and y ∈ [2k],
∑

x∈[2k] Wu(y | x) = Wu(y | y) = η and

(Wu(y | 2i1−1)−Wu(y |2i1))(Wu(y |2i2−1)−Wu(y |2i2))

=

{

η2, if i1 = i2 = dy/2e,
0, otherwise.

Further, for y ∈ {1?,0?}, we have

(Wu(y | 2i1−1)−Wu(y |2i1))(Wu(y |2i2−1)−Wu(y |2i2))

= (1 − η)2(u2i1−1 − u2i1)(u2i2−1 − u2i2),

and
∑

x∈[2k]

Wu(1? | x) = (1 − η)
∑

x∈[2k]

ux,

∑

x∈[2k]

Wu(0? | x) = (1 − η)
∑

x∈[2k]

(1 − ux).

Upon combining these bounds, we get

H(Wu) = 2ηIk + (1 − η)δ(u)δ(u)T ,

where for all i ∈ [k],

δ(u)i = (u2i−1 − u2i)

√

2k

(kuk1)(2k − kuk1)
.

From this, it can be verified that H(Wu) has eigenvalues
2η + (1 − η)kδ(u)k2

2 with multiplicity one and 2η with
multiplicity k − 1. Also, we have kδ(u)k2

2 ≤ 2, and moreover
that equality holds when |u2i−1 − u2i| = 1 for all i ∈ [k]
and

∑

i∈[k] u(2i) = k/2. Setting the value of η to be 1/
√

k
establishes the claimed bounds.

The following two results establish our claim of a separation
between noninteractive schemes and interactive scheme for
(2k, ε)-uniformity testing under local constraints W1/

√
k

∈ .

Proposition 23: Noninteractive (2k, ε)-uniformity testing

under W1/
√

k
∈ has sample complexity Θ(k/ε2), even when

the unknown distribution p has bounded norm kpk∞ ≤ 10/k.
Proof: The lower bound can be shown by plugging

kW1/
√

k
∈ kF ≤ 2

√
2 in the lower bound for noninteractive

schemes obtained in [7] (see Table I). Crucially, this lower
bound is established by considering the family of distributions
given in Eq. (5), and thus still applies under the promise that
kpk∞ ≤ 10

k . For the upper bound, note that with probability
1/

√
k we observe a sample from [2k] from the underlying

distribution. Ignoring the binary responses and using the same
argument as that in the previous section, we get a (matching)
upper bound for the number of samples needed by this private-
coin SMP protocol.

Our next result provides the last piece to establish our
separation, by showing that interactive protocols can do strictly
better than the noninteractive ones.12

Proposition 24: For ε ≥ 8/k1/8, interactive (2k, ε)-

uniformity testing under W1/
√

k
∈ under the promise that the

unknown distribution p satisfies kpk∞ ≤ 10/k has sample
complexity Θ(k3/4/ε2).

Proof: The lower bound can be obtained by plugging

the bounds kW1/
√

k
∈ k∗ ≤ 2

√
k + 2 and kW1/

√
k

∈ kop = 2
into Theorem 6 (noting that the lower bound instances (Eq. (5))
satisfy the `∞ promise). For the upper bound, we first present
a high-level overview of our scheme, and then provide the
details.

2) Sketch of The Scheme: Observe that when we sample
X ∼ p for a distribution p over [2k], we have E[p(X)] =
∑

x p(x)2 = kpk2
2. If dTV (p,u) ≥ ε, then by the

Cauchy–Schwarz inequality kpk2
2 ≥ (1 + 4ε2)/2k, whereas

kuk2
2 = 1/k. Therefore, when we sample from a distribution

that is far from uniform, the expected probability of the
observed sample is also larger than that under the uniform
distribution. Our protocol exploits this and proceeds in two

stages. In the first stage, we select any channel in W1/
√

k
∈ and

use it for a fraction of the users. Let S be the set of outputs
from these channels that are in [2k]. Now, u(S) = |S|/2k,
but using the motivation above we can hope that, for a p

that is far from u, p(S) will be noticeably larger. In the
next stage, the remaining players choose ux = 1{x∈S}. Now,
u(1?) = (1− η)u(S), and p(1?) = (1− η)p(S), and we will
perform a binary hypothesis test to separate these two cases.

3) Detailed Argument: The rest of the argument makes
the intuition above formal. We assume that there are n =
Ck3/4/ε2 users, for some constant C > 0 which can be taken
to be C = 625 and k ≥

⌈

9C2/216
⌉

= 54. Our protocol
proceeds as follows:

1) For the first n/2 users, choose the channel W0, cor-
responding to a simple erasure channel with erasure
probability 1 − η. Gather a set S ⊆ [2k] of “leaked”
samples in this stage.

12For simplicitly, we only provide a protocol for the case of ε =
Ω(1/k1/8), which is enough for our purposes. We believe that handling
smaller values of the distance parameter is possible, but would require a more
involved protocol and analysis.
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2) For the last n/2 users, choose the channel Wu for u
corresponding to the indicator vector of S, in order to
estimate p(S) to an additive accuracy ε2

4 Eu[u(S)], via
the binary responses.

Step 1. Let N be the number of “leaked” samples in the
first stage, namely N symbols are received without erasure in
the first stage. It can be easily checked that E[N ] = n/(2

√
k)

and Var(N) < n/(2
√

k). Since our assumptions on C and k
imply that n ≥ 800

√
k, by Chebyshev’s inequality we have

n/(4
√

k) ≤ N ≤ 3n/(4
√

k) with probability at least 99/100;
below we proceed assuming this event holds and will account
for the probability of its failure at the end.

Let S ⊆ [2k] be the set of symbols of “leaked” samples
in this step; note that |S| ≤ N (since some values may be
repeated). By linearity of expectation, when the samples are
generated from p, we have

E[p(S)] =

2k
∑

i=1

p(i)
(

1 − (1 − p(i))N
)

,

and u(S) = 1 − (1 − 1/(2k))N . When p is ε-far from u,
we have kpk2

2 ≥ 1+4ε2

2k , and

Ep[p(S)] − Eu[u(S)]

=

(

1 − 1

2k

)N 2k
∑

i=1

p(i)

(

1 −
(

2k

2k − 1
(1 − p(i))

)N
)

≥ Nε2

k
,

where the last inequality follows by using almost the same
analysis as that in the proof of [39, Lemma 1]. Further,
we have

Eu[u(S)] = 1 −
(

1 − 1

2k

)N

≥ N

4k
.

since N ≤ k (which follows from our bound N ≤ 3n/(4
√

k),
along with ε ≥ 8/k1/8 and k ≥ 9C2/216), and therefore,

Ep[p(S)] ≥ (1 + 3ε2/2)Eu[u(S)]

whenever p is ε-far from uniform.
Turning to the variance, we can prove the following bound:
Claim 25: For any p, we have

Varp[p(S)] ≤ kpk∞Ep[p(S)] .

Proof: Denote by N1, . . . , Nk the sample counts, i.e., Ni

is the number of times element i is seen among the N samples.
While Ni is distributed as a Binomial with parameters N and
p(i), the N1, . . . , Nk are not independent; however, they are
negatively associated (see, e.g., [23, Section 2.2]), which we
will use below. We start with bounding the expected square:

E
[

p(S)2
]

=
k
∑

i=1

k
∑

j=1

p(i)p(j)E
[

1{Ni≥1}1{Nj≥1}
]

=

k
∑

i=1

p(i)2E
[

1{Ni≥1}
]

+ 2
∑

i<j

p(i)p(j)E
[

1{Ni≥1}1{Nj≥1}
]

≤
k
∑

i=1

p(i)2E
[

1{Ni≥1}
]

+ 2
∑

i<j

p(i)p(j)E
[

1{Ni≥1}
]

E
[

1{Nj≥1}
]

=

k
∑

i=1

p(i)2 Pr [Ni ≥ 1]+

(

k
∑

i=1

p(i) Pr [Ni ≥ 1]

)2

−
k
∑

i=1

p(i)2 Pr [Ni ≥ 1]
2

=
k
∑

i=1

p(i)2 Pr [Ni ≥ 1]Pr [Ni = 0] + E[p(S)]2,

where the inequality follows from negative associativity, and
we got the third equality by completing the sum 2

∑

i<j xi,j =
∑

i,j xi,j −
∑

i xi,i. Rewriting, we have

Var[p(S)] ≤
k
∑

i=1

p(i)2 Pr [Ni ≥ 1] Pr [Ni = 0] .

By upper bounding the last factor by 1, we then get

Var[p(S)] ≤ kpk∞E [p(S)] ,

concluding the proof.
When p = u, this gives Varu[u(S)] ≤ 1

2k Eu[u(S)].
By Chebyshev’s inequality, using the chain of inequalities

2

kε4Eu[u(S)]
≤ 8

ε4N
≤ 32

√
k

ε4n
≤ k3/4

2ε2n

(where the second is due to our lower bound on N , and the
third follows from our assumption ε ≥ 8/k1/8) we get that

Pr
Xn∼un

[

u(S) < (1 +
ε2

2
)Eu[u(S)]

]

≥ 9/10 (22)

as long as C ≥ 5.
Now, consider the case where p is ε-far from uniform.

By Chebyshev’s inequality, using Claim 25 along with the
promise that kpk∞ ≤ 10/k, we get

Pr
Xn∼pn

[

p(S) < (1 + ε2)Eu[u(S)]
]

≤ Pr
Xn∼pn

[

p(S) <
1 + ε2

1 + 3
2ε2

Ep[p(S)]

]

≤ (2 + 3ε2)2

ε4

10

kEp[p(S)]
≤ 1000

ε4N

≤ 125k3/4

2ε2n
,

where the last inequality is derived as in the uniform case.
This implies that, if dTV (p,u) ≥ ε,

Pr
Xn∼pn

[

p(S) > (1 + ε2)Eu[u(S)]
]

≥ 9/10, (23)

as long as C ≥ 625.
Step 2. In the second stage, the n/2 users all choose the

channel Wu, where u ∈ {0, 1}2k is the indicator vector of S.
We assume now that conditions Eq. (22) and Eq. (23), respec-
tively, hold under the uniform and nonuniform distribution
hypothesis. The goal of this stage is to distinguish between
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the two cases p(S) < (1 + 1
2ε2)Eu[u(S)] and p(S) >

(1 + ε2)Eu[u(S)], which can be done by estimating p(S) to
an additive ε2

4 Eu[u(S)] with probability at least 99/100 (from
n/2 users). Note that this is equivalent to estimating the mean
of a Bernoulli random variable p ≥ Eu[u(S)] to an additive
ε2p/8 from n/2 observations. Using Chebyshev’s inequality,
we can check n ≥ 320k3/4/ε2 suffices.

Overall. Accounting for the 3 good events above that hold
with probability 99/100, 9/10, and 99/100 respectively, this
protocol is correct by a union bound with probability at
least 22/25, and involves n = O(k3/4/ε2) users, as desired.
By explicit computation of the Binomial distribution probabil-
ities, repeating the protocol 7 times on independent subsets of
samples (i.e., groups of users) and taking the majority output
can then boost the success probability from 22/25 to at least
99/100, only changing the total number of samples by this
constant factor 7.

REFERENCES

[1] J. Acharya, C. L. Canonne, C. Freitag, Z. Sun, and H. Tyagi, “Inference
under information constraints III: Local privacy constraints,” IEEE J. Sel.
Areas Inf. Theory, vol. 2, no. 1, pp. 253–267, Mar. 2021.

[2] J. Acharya, C. L. Canonne, Y. Han, Z. Sun, and H. Tyagi, “Domain com-
pression and its application to randomness-optimal distributed goodness-
of-fit,” in Proc. 33rd Conf. Learn. Theory, vol. 125, J. Abernethy and
S. Agarwal, Eds. Graz, Austria: PMLR, Jul. 2020, pp. 3–40. [Online].
Available: http://proceedings.mlr.press/v125/acharya20a.html

[3] J. Acharya, C. L. Canonne, Y. Liu, Z. Sun, and H. Tyagi, “Interactive
inference under information constraints,” in Proc. IEEE Int. Symp. Inf.

Theory (ISIT), Melbourne, VIC, Australia, Jul. 2021, pp. 326–331.
[4] J. Acharya, C. L. Canonne, and H. Tyagi, “Distributed simulation and

distributed inference,” 2018, arXiv:1804.06952.
[5] J. Acharya, C. Canonne, and H. Tyagi, “Communication-constrained

inference and the role of shared randomness,” in Proc. 36th Int.

Conf. Mach. Learn., vol. 97, K. Chaudhuri and R. Salakhutdinov, Eds.
Long Beach, CA, USA: PMLR, Jun. 2019, pp. 30–39.

[6] J. Acharya, C. L. Canonne, and H. Tyagi, “Inference under information
constraints: Lower bounds from chi-square contraction,” in Proc. 32nd

Conf. Learn. Theory, vol. 99, A. Beygelzimer and D. Hsu, Eds. Phoenix,
AZ, USA: PMLR, Jun. 2019, pp. 3–17.

[7] J. Acharya, C. L. Canonne, and H. Tyagi, “Inference under information
constraints I: Lower bounds from chi-square contraction,” IEEE Trans.

Inf. Theory, vol. 66, no. 12, pp. 7835–7855, Dec. 2020.
[8] J. Acharya, C. L. Canonne, and H. Tyagi, “Inference under infor-

mation constraints II: Communication constraints and shared ran-
domness,” IEEE Trans. Inf. Theory, vol. 66, no. 12, pp. 7856–7877,
Dec. 2020.

[9] J. Acharya and Z. Sun, “Communication complexity in locally private
distribution estimation and heavy hitters,” in Proc. 36th Int. Conf. Mach.
Learn., vol. 97, K. Chaudhuri and R. Salakhutdinov, Eds. Long Beach,
CA, USA: PMLR, Jun. 2019, pp. 51–60.

[10] J. Acharya, Z. Sun, and H. Zhang, “Hadamard response: Estimat-
ing distributions privately, efficiently, and with little communica-
tion,” in Proc. 22nd Int. Conf. Artif. Intell. Statist. (AISTATS), 2018,
pp. 1120–1129.

[11] K. Amin, M. Joseph, and J. Mao, Personal Communication,
Jul. 2020.

[12] K. Amin, M. Joseph, and J. Mao, “Pan-private uniformity testing,” in
Proc. 33rd Conf. Learn. Theory, vol. 125, J. Abernethy and S. Agarwal,
Eds. Graz, Austria: PMLR, Jul. 2020, pp. 183–218. [Online]. Available:
http://proceedings.mlr.press/v125/amin20a.html

[13] L. P. Barnes, Y. Han, and A. Ozgur, “Fisher information for distributed
estimation under a blackboard communication protocol,” in Proc. IEEE

Int. Symp. Inf. Theory (ISIT), Jul. 2019, pp. 2704–2708.
[14] L. P. Barnes, W.-N. Chen, and A. Ozgur, “Fisher information under

local differential privacy,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 3,
pp. 645–659, Nov. 2020.

[15] R. Bassily, “Linear queries estimation with local differential privacy,” in
Proc. Int. Conf. Artif. Intell. Statist. (AISTATS), vol. 89. Naha, Japan:
PMLR, 2019, pp. 721–729.

[16] T. Berrett and C. Butucea, “Locally private non-asymptotic
testing of discrete distributions is faster using interactive
mechanisms,” in Proc. Adv. Neural Inf. Process. Syst. 33,
Annu. Conf. Neural Inf. Process. Syst. (NeurIPS), H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds. Red
Hook, NY, USA: Curran Associates, Dec. 2020, pp. 3164–3173.
[Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/
20b02dc95171540bc52912baf3aa709d-Abstract.html

[17] M. Braverman, A. Garg, T. Ma, H. L. Nguyen, and D. P. Woodruff,
“Communication lower bounds for statistical estimation problems via a
distributed data processing inequality,” in Proc. 48th Annu. ACM Symp.

Theory Comput., Jun. 2016, pp. 1011–1020.
[18] S. Bubeck, S. Chen, and J. Li, “Entanglement is necessary for optimal

quantum property testing,” in Proc. IEEE 61st Annu. Symp. Found.

Comput. Sci., Los Alamitos, CA, USA, Nov. 2020, pp. 692–703.
[19] Y. Dagan and V. Feldman, “Interaction is necessary for distributed

learning with privacy or communication constraints,” in Proc. 52nd

Annu. ACM SIGACT Symp. Theory Comput. (STOC), New York, NY,
USA, 2020, pp. 450–462.

[20] A. Daniely and V. Feldman, “Locally private learning without interaction
requires separation,” in Proc. Adv. Neural Inf. Process. Syst., H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett,
Eds. Brooklyn, NY, USA: Curran Associates, 2019, pp. 15001–15012.

[21] I. Diakonikolas, T. Gouleakis, D. M. Kane, and S. Rao, “Communication
and memory efficient testing of discrete distributions,” in Proc. 32nd

Conf. Learn. Theory, vol. 99, A. Beygelzimer and D. Hsu, Eds. Phoenix,
AZ, USA: PMLR, Jun. 2019, pp. 1070–1106.

[22] I. Diakonikolas, E. Grigorescu, J. Li, A. Natarajan, K. Onak, and
L. Schmidt, “Communication-efficient distributed learning of dis-
crete distributions,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 6394–6404.

[23] D. Dubhashi and D. Ranjan, “Balls and bins: A study in negative
dependence,” Random Struct. Algorithms, vol. 13, no. 2, pp. 99–124,
1998.

[24] J. Duchi and R. Rogers, “Lower bounds for locally private estimation
via communication complexity,” in Proc. 32nd Conf. Learn. Theory,
vol. 99, A. Beygelzimer and D. Hsu, Eds. Phoenix, AZ, USA: PMLR,
Jun. 2019, pp. 1161–1191.

[25] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy,
data processing inequalities, and statistical minimax rates,” 2014,
arXiv:1302.3203.

[26] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and
statistical minimax rates,” in Proc. IEEE 54th Annu. Symp. Found.
Comput. Sci., Oct. 2013, pp. 429–438.

[27] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Minimax optimal
procedures for locally private estimation,” J. Amer. Statist. Assoc.,
vol. 113, no. 521, pp. 182–201, 2018.

[28] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Theory of Cryptography (Lecture
Notes in Computer Science), vol. 3876. Berlin, Germany: Springer,
2006, pp. 265–284.

[29] Ú. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Random-
ized aggregatable privacy-preserving ordinal response,” in Proc. ACM

SIGSAC Conf. Comput. Commun. Secur., Nov. 2014, pp. 1054–1067.
[30] A. V. Evfimievski, J. Gehrke, and R. Srikant, “Limiting privacy breaches

in privacy preserving data mining,” in Proc. 22nd ACM SIGMOD-

SIGACT-SIGART Symp. Princ. Database Syst., 2003, pp. 211–222.
[31] O. Fischer, U. Meir, and R. Oshman, “Distributed uniformity testing,”

in Proc. ACM Symp. Princ. Distrib. Comput., 2018, pp. 455–464.
[32] Y. Han, P. Mukherjee, A. Ozgur, and T. Weissman, “Distributed statisti-

cal estimation of high-dimensional and nonparametric distributions,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018, pp. 506–510.

[33] Y. Han, P. Mukherjee, A. Özgür, and T. Weissman, “Distrib-
uted statistical estimation of high-dimensional and nonparametric
distributions with communication constraints, February 2018,” Talk
Given at ITA, vol. 1, no. 1, p. 5, 2018. [Online]. Available:
http://ita.ucsd.edu/workshop/18/files/abstract/abstract_2352.txt

[34] Y. Han, A. Ozgur, and T. Weissman, “Geometric lower bounds for dis-
tributed parameter estimation under communication constraints,” 2018,
arXiv:1802.08417.

[35] M. Joseph, J. Mao, S. Neel, and A. Roth, “The role of interactivity
in local differential privacy,” in Proc. IEEE 60th Annu. Symp. Found.

Comput. Sci., Los Alamitos, CA, USA, Nov. 2019, pp. 94–105.
[36] M. Joseph, J. Mao, and A. Roth, “Exponential separations in local

differential privacy,” in Proc. ACM-SIAM Symp. Discrete Algorithms.
Philadelphia, PA, USA: SIAM, 2020, pp. 515–527.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 13,2023 at 13:33:48 UTC from IEEE Xplore.  Restrictions apply. 



516 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 1, JANUARY 2022

[37] P. Kairouz, K. Bonawitz, and D. Ramage, “Discrete distribution estima-
tion under local privacy,” in Proc. 33rd Int. Conf. Mach. Learn., vol. 48,
Jun. 2016, pp. 2436–2444.

[38] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and
A. Smith, “What can we learn privately?” SIAM J. Comput., vol. 40,
no. 3, pp. 793–826, Jun. 2011.

[39] L. Paninski, “A coincidence-based test for uniformity given very sparsely
sampled discrete data,” IEEE Trans. Inf. Theory, vol. 54, no. 10,
pp. 4750–4755, Oct. 2008.

[40] O. Shamir, “Fundamental limits of online and distributed algorithms for
statistical learning and estimation,” in Proc. Adv. Neural Inf. Process.

Syst., 2014, pp. 163–171.
[41] A. Smith, A. Thakurta, and J. Upadhyay, “Is interaction necessary for

distributed private learning?” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2017, pp. 58–77.

[42] J. Ullman, “Tight lower bounds for locally differentially private selec-
tion,” 2018, arXiv:1802.02638.

[43] S. Wang et al., “Mutual information optimally local private discrete
distribution estimation,” 2016, arXiv:1607.08025.

[44] M. Ye and A. Barg, “Optimal schemes for discrete distribution estima-
tion under locally differential privacy,” IEEE Trans. Inf. Theory, vol. 64,
no. 8, pp. 5662–5676, Aug. 2018.

Jayadev Acharya (Member, IEEE) received the Bachelor of Technology
degree in electronics and electrical communication engineering from the
Indian Institute of Technology, Kharagpur, in 2007, and the M.S. and
Ph.D. degrees in electrical and computer engineering from the University
of California at San Diego in 2009 and 2014, respectively. He was a Post-
Doctoral Associate in electrical engineering and computer science at MIT
from 2014 to 2016. He is currently an Assistant Professor with the School of
Electrical and Computer Engineering, Cornell University.

Clément L. Canonne is currently a Lecturer with the School of Computer
Science, The University of Sydney, Australia. Prior to this, he was a Motwani
Post-Doctoral Fellow at Stanford University and a Goldstine Post-Doctoral
Fellow at IBM Research, after graduating from Columbia University in 2017,
where he was advised by Rocco Servedio. His research focuses on the fields of
property testing and sublinear algorithms, and more broadly on computational
aspects of learning and statistical inference.

Yuhan Liu (Student Member, IEEE) received the Bachelor of Engineering
degree in automation from Tsinghua University. He is currently pursuing the
Ph.D. degree in electrical and computer engineering with Cornell University.
His research interests include distributed learning, statistical estimation with
information constraints, differential privacy, and federated learning.

Ziteng Sun (Student Member, IEEE) received the B.S. degree from Tsinghua
University. He is currently pursuing the Ph.D. degree in electrical and
computer engineering with Cornell University. His research interests include
studying the tradeoffs between different resources in modern data science,
including samples, privacy, communication, memory, and computation.

Himanshu Tyagi (Senior Member, IEEE) received the B.Tech. degree in elec-
trical engineering and the M.Tech. degree in communication and information
technology from the Indian Institute of Technology, New Delhi, India, in 2007,
and the Ph.D. degree from the University of Maryland, College Park, in 2013.
From 2013 to 2014, he was a Post-Doctoral Researcher at the Information
Theory and Applications (ITA) Center, University of California at San Diego.
Since January 2015, he has been a Faculty Member at the Department of
Electrical Communication Engineering, Indian Institute of Science, Bengaluru.
His research interests broadly lie in information theory and its application
in cryptography, statistics and computer science. Also, he is interested in
communication and automation for city-scale systems.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 13,2023 at 13:33:48 UTC from IEEE Xplore.  Restrictions apply. 


