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Abstract

Motivation: Despite advances in method development for multiple sequence alignment over the last several deca-
des, the alignment of datasets exhibiting substantial sequence length heterogeneity, especially when the input
sequences include very short sequences (either as a result of sequencing technologies or of large deletions during
evolution) remains an inadequately solved problem.

Results: We present HMMerge, a method to compute an alignment of datasets exhibiting high sequence length het-
erogeneity, or to add short sequences into a given ‘backbone’ alignment. HMMerge builds on the technique from its
predecessor alignment methods, UPP and WITCH, which build an ensemble of profile HMMs to represent the back-
bone alignment and add the remaining sequences into the backbone alignment using the ensemble. HMMerge dif-
fers from UPP and WITCH by building a new ‘merged’ HMM from the ensemble, and then using that merged HMM
to align the query sequences. We show that HMMerge is competitive with WITCH, with an advantage over WITCH

when adding very short sequences into backbone alignments.
Availability and implementation: HMMerge is freely available at https://github.com/MinhyukPark/HMMerge.

Contact: warnow@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Multiple sequence alignment (MSA) is a necessary first step in many
common bioinformatics pipelines, such as phylogenetic tree infer-
ence and metagenomic taxon identification, and so obtaining high
quality MSAs has high relevance in downstream analyses (Matsen
et al., 2010; Morrison, 2006). One of the challenges in multiple se-
quence alignment is when the input sequence dataset has highly vari-
able sequence lengths, a property that is found in many biological
datasets (Nguyen et al., 2015). Sequence length heterogeneity can be
caused by evolutionary processes (e.g. large indels), but is also pro-
duced when datasets include reads generated by Illumina and other
short read sequencing technologies (Shendure and Ji, 2008).

UPP (Nguyen et al., 2015) and its successor WITCH (Shen et al.,
2022) are methods that are designed to align datasets when the input
has sequence length heterogeneity. Both methods use a two-stage ap-
proach, where they first identify and extract a subset of the input
sequences (based on their sequence length) that are considered to be
“full-length’, and then align these sequences, forming the ‘backbone
alignment’. Both then build an ensemble of profile Hidden Markov
Models (eHMM) to represent the backbone alignment, where each
profile HMM is built on a subset of the input sequences in the back-
bone alignment [see Durbin et al. (1998) for an introduction to pro-
file Hidden Markov Models]. UPP adds each of the remaining
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sequences (called ‘queries’) to the backbone alignment, as follows:
(i) each query sequence selects a best-fitting HMM from the eHMM
based on the bit scores, (ii) the Viterbi algorithm is used to find an
optimal path for the query sequence through the selected HMM and
(iii) the match states in the optimal path define an alignment of the
query sequence to the backbone alignment, which is used to add the
query sequence into the backbone alignment. WITCH elaborates on
this approach by weighting each profile HMM with the probability
it has of generating the query sequence, and then combines the opti-
mal alignments (one such alignment for each profile HMM in the
eHMM) into a consensus alignment using the Graph Clustering
Merger from Smirnov and Warnow (2021a). Both UPP and WITCH
produce more accurate alignments than standard methods, including
MAGUS (Smirnov and Warnow, 2021a), when datasets have frag-
mentary sequences (Nguyen et al., 2015; Shen ez al., 2022), and
WITCH generally dominates UPP for accuracy (Shen et al., 2022).
Here, we present HMMerge, a new approach for computing
alignments. We follow the same initial steps as WITCH and UPP
(i.e. we use the same technique to build the backbone alignment and
the ensemble of HMMs representing the backbone alignment). We
then deviate from WITCH in several ways. First, we use only a
selected subset of the HMMs from the WITCH ensemble of HMMs
for the HMMerge ensemble. Second, instead of aligning the query
sequence to each HMM and then computing a consensus of these
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extended alignments, we use the HMMerge ensemble of HMMs to
build a new HMM (not a standard profile HMM, however) to rep-
resent the backbone alignment. The topology of the HMM is the
same for all query sequences but the numeric parameters (transition
and emission probabilities) are derived for each query sequence.
Finally, given a query sequence, the numeric parameters are com-
puted and then used to align the query sequence to the backbone
alignment.

As this study shows, using both simulated and biological data,
HMMerge is competitive with WITCH when aligning datasets with
sequence length heterogeneity (sometimes more accurate and some-
times less accurate), and has an advantage in some cases when there
are very short sequences in the dataset. More generally, we show
that two-stage methods, including the use of MAFFT-addfragments
(Katoh and Frith, 2012), provide more reliable accuracy when align-
ing datasets with sequence length heterogeneity than standard
methods.

2 Methods

We first describe HMMerge, which is our new approach for aligning
sequence datasets that exhibit sequence length heterogeneity. We
then describe the experimental study we used to evaluate
HMMerge.

2.1 HMMerge

HMMerge operates in three stages: the backbone stage, the con-
struction of the eHMM for the backbone, and then the search-and-
align stage. HMMerge uses the same process for stages 1 and 2 as
handled by both UPP and WITCH, but then differs from both for
the third stage. Due to space limitations, we briefly review the first
two stages, and provide details only for the third stage for
HMMerge; see Shen et al. (2022) for additional details about how
these first two stages are performed in WITCH.

2.1.1 Stage 1: computing the backbone alignment

In the backbone stage, the input sequences are split into two sets,
with one set containing some of the ‘full-length’ sequences and the
remaining sequences denoted ‘query’ sequences. An alignment is
built on the full-length sequences, using external methods [e.g.
PASTA (Mirarab er al., 2015) or MAGUS]. However, any method
can be used to produce the backbone alignment, and the use of the
Bayesian method BAli-Phy (Suchard and Redelings, 2006) for statis-
tical alignment was studied in this context (Nute and Warnow,
2016).

2.1.2 Stage 2: computing the eHMM

Once the backbone alignment is computed, a tree is computed on
the backbone alignment [e.g. using a maximum likelihood method,
such as FastTree 2 (Price et al., 2010) or RAXxML (Stamatakis,
2014)]. Then, the backbone tree is decomposed into subsets by edge
deletions (removing ‘centroid edges’ that split the leaf-set into two
roughly equally sized parts) until each subset is at most a given size
specified by the user. For HMMerge, we stopped at subset size 50,
for the sake of runtime (see Supplementary Materials Section SS5).
The full set of backbone sequences and any subset produced by the
decomposition pipeline becomes one of the subsets. A profile HMM
is constructed on each subset using hmmbuild from the HMMER
suite (Eddy, 2011). The collection of profile HMMs produced in
this stage is referred to as an ‘ensemble of HMMSs’ for the backbone
alignment, or ‘eHMM’.

2.1.3 Stage 3: search-and-align stage

For this stage, HMMalign builds a new HMM (not a profile HMM,
however), based on a selected subset of the HMMs in the ensemble.
Here, we explored several options for the selection. The default case
is where we use just the HMMs based on the minimal sequence sub-
sets, which are pairwise-disjoint; we refer to this as the Disjoint(50)

eHMM. We also explore Disjoint(50)+BB, which is where we add
the HMM for the full backbone alignment to Disjoint(50). Finally,
we explore UPP(50), which is where we use the same ensemble as
used by UPP decomposing to size 50, which is based on a hierarchic-
al set of sequence subsets. Henceforth, when we refer to ‘eHMM’,
we mean whichever eHMM has been selected, but the default in our
experiments is to use Disjoint(50).

To add a given query sequence into the backbone alignment
using HMMalign, each query sequence scores each HMM in the
eHMM according to an ‘adjusted’ bit score, which is designed to be
an estimate of the probability that the HMM generated the given
query sequence [see Shen e al. (2022) for the derivation of the
adjusted bit score]. Note that the choice of eHMM affects the
adjusted bitscore calculation, since these depend on whether or not
the subsets are disjoint, as described in Shen et al. (2022).

2.2 Merged HMM construction

HMMerge computes the topology of the merged HMM from the en-
semble of HMMs, and each query sequence then defines the numeric
parameters on this common topology. Here we describe first how
we compute the topology, and then how we define the numeric
parameters.

Since every HMM in the ensemble is constructed for a sub-
alignment of the backbone alignment (induced by a subset of the
rows of the alignment matrix), each match state in each of these
HMMs corresponds to a specific column (also known as ‘site’) in
the backbone alignment. The merged HMM will have the same set
of states (match state, insertion states and deletion states) as the
HMM for the backbone alignment, but there may be additional
edges in the merged HMM, as we now describe. Suppose for ex-
ample one of the subset alignments is entirely gapped in sites 10
through 20, but otherwise all the sites have at least one letter and so
are not entirely gapped. For this subset alignment, the HMM will
have match states for all sites in the backbone alignment other than
those for sites 10 through 20. Therefore, the HMM for this subset
alignment will have a transition from the match state for backbone
alignment site 9 to the match state for backbone alignment site 21,
as well as other transition edges. These transition edges will be
included in the merged HMM topology. As a result, the merged
HMM is not a standard profile HMM.

Although the topology remains fixed for each query sequence,
the numeric parameters (i.e. transition probabilities and emission
probabilities) depend on the query sequence. Each query sequence
assigns a weight to each HMM using the adjusted bitscore, which
reflects the probability that the HMM produced the query sequence;
see Shen et al. (2022). In the merged HMM for that given query se-
quence, we then use these bit scores to compute the numeric param-
eters, as follows. To compute the transition probability on an edge
from state A to state B, we compute the weighted sum of the transi-
tion probabilities on the same edge across all HMMs that have that
edge, where the weight for a given HMM is the adjusted bit score of
that HMM for that query sequence. Similarly, the emission proba-
bilities for a match state are computed by the weighted sum of the
emission probabilities for that match state across the HMMs that
have that match state.

Given the ensemble of HMMs and a single query sequence, we
use this process to compute the merged HMM. Note that the
HMMs for the different query sequences differ only in the numeric
parameters, and that the topology of the merged HMM:s has all the
edges from the HMM s in the ensemble.

2.3 Modifying the merged HMM to enable glocal

alignment

Once the merged HMM is defined for the given query sequence, we
use a standard Viterbi algorithm to align the query sequences to the
merged HMM. This alignment defines an extended alignment of the
query sequence to the backbone alignment in the usual way.
However, since the Viterbi algorithm is naturally a global alignment
algorithm, we introduce additional edges to the merged HMM in
order to enable a glocal alignment.

£20Z Ae\ vz uo 1senb Aq | 1.99Z | 2/2S0PBAA/ L /S/3|911B/S80UBAPESDIIBWIOLUIOIG/WO0D dNO dlWapee//:sdly Wol) PapEojUMO(]


https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad052#supplementary-data

Latent disease similarities

— — \\

(Dl g Do 5

B i s g % I Povit
Start M, Moy My End
\\\\ /’/\\ o

et //%mr g
B R mae? -
T Pentry——— Perit—

Fig. 1. Equal entry exit HMM example. Here, we show a visualization of an ex-
ample HMM with equal entry and exit probability edges. peniy and peic represent
the probabilities of a path taking that edge. M; stands for the ith match state, I,
stands for the ith insertion state, and D; stands for the ith deletion state. Only the in-
sertion and match states emit letters

A glocal alignment is a hybrid approach in which the entirety of
one sequence is aligned to a segment from another sequence. An ex-
ample where this may be useful is aligning a short sequence to a
long sequence. In this case, we would like to align the entirety of the
short sequence to a specific region in the longer sequence. In order
to allow for glocal alignment without incurring any penalties, i.e.
aligning a query sequence to a specific region of the backbone align-
ment, we need to allow for our HMM algorithm to be able to start
at any match state and end at any match state.

We define two new probabilities, pentry and peyir, which represent
the transition probabilities from the start state to each match state
and from each match and delete states to the end state, respectively;
see Figure 1. Let S be the number of match states. p,.;; is a constant
0.1 whereas penyy is % To account for the new edges, we normalize
the edge weights such that all outgoing edge weights sum to 1 for
each state.

2.4 Combining the extended alignments

After all query sequences are added to the backbone alignment, the
final alignment is produced through transitivity (this is the same
technique as used in UPP and WITCH). Note however that homolo-
gies in the final alignment only take place through the match
states—letters that are introduced through insertion states are never
considered homologous to any other letters. These letters that are
added through insertion states are indicated through the use of
lower-case letters in the output alignment.

3 Experimental study design

We performed a sequence of experiments. In the first two experi-
ments, we explored HMMerge in comparison to other methods
using the default eHMM, Disjoint(50). We then performed an add-
itional experiment where we varied the selection of HMM:s for the
ensemble. While we used some standard methods [e.g. MAFFT
(Katoh et al., 2002) and MUSCLE (Edgar, 2004)], a major focus of
this study is on two-stage methods, like HMMerge, that operate by
constructing a backbone alignment and then adding the remaining
sequences into the backbone alignment. Thus, we also used UPP,
WITCH and the use of MAFFT-addfrags in this study. On all data-
sets tested, these four two-stage methods used the same backbone
alignments computed by MAGUS and backbone trees computed by
FastTree (Price et al., 2010). All the tested datasets exhibit sequence
length heterogeneity, as shown in Supplementary Figures S10-S14.

3.1 Experiment 1: analyses of simulated datasets with

introduced fragmentation
In Experiment 1, we explored both standard and two-stage methods
on simulated datasets with introduced fragmentation.

3.2 Experiment 2: analyses of biological datasets
In this experiment, we examined both standard and two-stage meth-

ods on five rRNA datasets from the Comparative Ribosomal
Website (CRW) (Cannone et al., 2002).

3.3 Experiment 3: exploring results with changes to the
eHMM

In the previous two experiments, we used Disjoint(50) for the
eHMMs we used for HMMerge. In this experiment, we explored
the impact of using a larger eHMM -that is, Disjoint(50)+BB (i.e.
including the HMM for the backbone alignment) or UPP(50) [i.e.
using all the HMMs in the UPP(50) ensemble]. We perform this ex-
periment on a subset of the study datasets.

3.4 Simulated datasets

We created high-fragmentary (HF) versions of simulated nucleotide
datasets, each with 1000 sequences, using three different simulators:
ROSE (Stoye et al., 1998), RNASim (Mirarab et al., 2015) and
INDELible (Fletcher and Yang, 2009). To make these HF versions,
we used the same technique and parameters as in Smirnov and
Warnow (2021b). These HF datasets have 1000 sequences, and half
of the sequences have been trimmed (i.e. a prefix and suffix are
deleted) to produce a substring that is on average 25% of the me-
dian length with a standard deviation of 60 base pairs. These data-
sets consist of 500 full-length sequences and 500 fragmentary
sequences.

The ROSE simulated datasets have 15 model conditions each
with 20 replicates, where each model condition varies by the average
length of gaps (‘S’ for Short, ‘M’ for Medium or L’ for Long) and
by their varying substitution rates (models are numbered 1 through
5, and the substitution rate decreases as the number increases).

The RNASim simulated datasets were originally used to evaluate
alignment methods in Mirarab ez al. (2015), and the simulation
protocol for generating these datasets is described in Appendix A in
the supplementary materials for Mirarab et al. (2015). These
sequences evolve under a biophysical model that enforces selection
in order to maintain RNA secondary structure. We use HF versions
from Smirnov and Warnow (2021b) and we also made an ultra-high
fragmentary, or ‘UHF’, version of the dataset by setting the target
mean to be exactly half of the HF condition. The target mean se-
quence length was 388 for the HF condition and 194 for the UHF
condition. The standard deviation remained at 60, which is the same
as the original study. We used 10 replicates each for both datasets.

The INDELible datasets were created for this study. The model
tree for the simulation was taken from the set of gene trees from the
ASTRAL-II study (Mirarab and Warnow, 2015). In order to make
alignment estimation challenging, we scaled the branch lengths of
the model tree by a factor of two. Since these simulated datasets
evolve without indels, we modified the simulation to produce indels.
The indel gap length distribution was taken from the PASTA study
(Mirarab et al., 2015), where INDELible was used to generate simu-
lated datasets. We simulated sequences under these conditions with
an indel rate of 0.001 and 0.005, relative to a substitution rate of 1.
These sequences were then fragmented according to the HF protocol
described above. 10 replicates were created for each indel rate model
condition.

3.5 Biological datasets

We used datasets from the Comparative RNA Website (CRW)
(Cannone et al., 2002), which have curated alignments based on
rRNA structure for the 23S and 5S ribosomal RNA genes. We chose
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Fig. 2. Sequence length heterogeneity histograms for two biological datasets (23S.A
and 5S.3) from the Comparative Ribosomal Website (Cannone et al., 2002)

23S.A, 23S.C 55.3, 5S.E and 5S.T for our study. These datasets vary
in how much sequence length variability they have, with 23S data-
sets exhibiting more fragmentation than the 5S datasets (Fig. 2).

To separate the biological datasets into backbone sequences and
query sequences, we split the sequences using visual inspection of
their sequence length histograms. As a result, 23S.A and 23S.C were
both split at 1250 (so that sequences shorter than 1250 in length
were considered query sequences and the rest were backbone
sequences), and 55.3, 5S.E, and 5S.T were split at 100 (with the cor-
responding definition).

For the simulated datasets, we summarize the empirical proper-
ties in Supplementary Table S1. For the CRW biological datasets,
we summarize the empirical properties in Table 1 and
Supplementary Table S2.

3.6 MSA methods

We compare our new MSA pipeline, HMMerge, to three other two-
stage methods (UPP, WITCH and MAFFT-addfragments), each
using the same backbone alignment. We also compare these two-
stage methods to a collection of leading MSA methods, including
MAGUS, PASTA, Clustal Omega (Sievers et al., 2011), MUSCLE
(Edgar, 2004), MAFFT (Katoh et al., 2002) and T-COFFEE
(Garriga et al., 2019). The only methods that were not run in their
default modes were MAFFT, which was run using the L-INS-i algo-
rithm (to maximize accuracy), and T-COFFEE, which was run using
the regressive mode. The exact commands and versions for each of
the methods are supplied in the Supplementary Materials Section S1.

3.7 Computational resources

All runs of HMMerge, WITCH, UPP and MAFFT-addfrags were
run on the Illinois Campus Cluster with 16 cores available for paral-
lelism and a default memory limit of 64GB. The standard methods
(MAGUS, PASTA, MAFFT, Clustal Omega, T-COFFEE and
MUSCLE) were run on BlueWaters (Bode et al., 2013) for the ROSE
and CRW datasets. However, as discussed in Supplementary
Materials Section S5, HMMerge needed extra memory for some
analyses, which required us to use a high-memory machine with up
to 1TB of memory for these analyses.

3.8 Evaluation criteria

Alignment error was calculated using FastSP (Mirarab and
Warnow, 2011). SPFN and SPFP are based on pairwise homologies,
i.e. pairs of letters that appear in the same column of the estimated
or reference alignment. Thus, SPFN, or sum-of-pairs false negatives,
is the fraction of true pairwise homologies (i.e. homologies in the
reference alignment) that are not found in the estimated alignment,
while SPFP, or sum-of-pairs false positives, is the fraction of putative
homologies in the estimated alignment that are not in the reference
alignment. Note that letters that are emitted by our HMM-based

alignment method through insertion states are never considered
homologous to any other letters, and are represented by lower-case
letters in the output alignment.

We include both standard methods (i.e. methods that do not op-
erate in two stages) as well as two-stage methods. When we include
standard methods in the comparison, we report ‘total’ alignment
error, which is alignment error on the entire sequence dataset.
However, when we compare two-stage methods to each other, we
report ‘query-only” alignment error. This allows us to take advan-
tage of the fact that all the two-stage methods are using the same
backbone alignment.

4 Results

4.1 Experiment 1: analyses of simulated datasets with
introduced fragmentation

4.1.1 ROSE-HF nucleotide simulated datasets

The comparison of six standard methods (MAGUS, PASTA, T-
COFFEE, MUSCLE, MAFFT-linsi and Clustal-Omega) and UPP on
the 15 ROSE model conditions is given in Supplementary Figure S1.
While all methods have nearly the same accuracy on the easier
model conditions, the gap between methods increases with the diffi-
culty of the model condition. UPP was consistently the method with
the least error on the harder model conditions, and for the three
hardest model conditions (1000L3-HF, 1000S1-HF and 1000M1-
HF) there is a gap of more than 0.1 in average alignment error be-
tween UPP and the next best method, which is MAGUS.

Supplementary Figure S2 compares HMMerge, WITCH and
UPP for query-only alignment error across the nine hardest model
conditions. In this comparison, UPP always has the highest average
query-only error, and HMMerge is always at least as accurate as
WITCH. However, the gap between WITCH and HMMerge is
never more than 0.020. Also, MAGUS has higher error than these
three two-phase methods (HMMerge, WITCH and UPP), as seen in
Supplementary Figure S3.

A comparison between all four two-stage methods on the three
hardest model conditions, 1000S1-HF, 1000L3-HF and 1000M1-
HF (Fig. 3), shows that HMMerge and WITCH have the lowest
average error (and never differ by more than 0.012), followed by
UPP, and finally by MAFFT-addfrags.

4.1.2 RNASim1000-HF and RNASim1000-UHF datasets
A comparison between the standard methods and the two-stage
methods is shown in Supplementary Figure S6. The four two-stage
methods, MAGUS and MAFFT-linsi have average alignment error
between 0.101 and 0.127 while the remaining methods have average
alignment error that is never less than 0.250. MAGUS and MAFFT-
linsi always have higher average alignment error than the four two-
stage methods, and the difference is always at least 0.007.
Comparing the four two-stage methods to each other with re-
spect to query-only alignment error (Table 2 and Supplementary
Fig. S5), we see the following trends. UPP, WITCH and HMMerge
never differ by more than 0.005 for average alignment error and
MAFFT-addfrags always has higher average alignment error. For
example, on the HF condition, MAFFT-addfrags has 0.123 average
alignment error and the other three methods have average error be-
tween 0.100 and 0.101. On the UHF condition, MAFFT-addfrags
has 0.126 average alignment error and the other three methods have
average error between 0.103 and 0.108. In sum, UPP, WITCH and
HMMerge are very close in accuracy, and all are somewhat more ac-
curate than MAFFT-addfrags.

4.1.3 INDELible datasets

Results on the INDELIBLE datasets, shown in Supplementary
Figure S4, show that the lowest average alignment error achieved by
a standard method on the 0.001-HF condition was 0.102, achieved
by MAGUS, with PASTA at 0.105; MAFFT-linsi was higher at
0.212, and all the other standard methods had errors at least 0.309.
In contrast, all four two-stage methods had error rates between
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Fig. 3. Query sequence alignment error of two-stage methods on ROSE simulated datasets with introduced fragmentation. Each model condition has 20 replicates; error bars

show standard error

Table 1. Biological DNA/RNA dataset overview

Name No. of sequences Avg. p-dist. Avg. len.
23S.A 214 0.293 1851
23S.C 374 0.143 2087
58.3 5507 0.417 106
SS.E 2774 0.305 96
58.T 5751 0.425 106

Note: Here, we show the basic empirical statistics about the datasets used
in this study. p-dist. refers to the normalized Hamming distance [i.e. the num-
ber of positions where the two sequences have different letters divided by the
number of positions where both sequences have letters (are not gapped)].

0.072 and 0.083. The trends on the 0.005-HF condition were simi-
lar, with the lowest average alignment error of a standard method
achieved by MAGUS at 0.353 (with the next lowest error at 0.479,
achieved by MAFFT-linsi). In contrast, the four two-stage methods
had average alignment error between 0.279 and 0.295. Thus, for the
INDELIBLE model conditions, there was a clear gap between the
two-stage methods and the standard methods.

We compare the four two-stage methods with respect to query-
only alignment error in Figure 4. MAFFT-addfrags has higher aver-
age alignment error than the other three methods; for example, it
has error of 0.147 on the 0.001-HF condition compared to the

Table 2. Query sequence alignment error of two-stage methods on
RNASiIim1000 with introduced fragmentation

RNASim1000 HMMerge WITCH  UPP MAFFT addfrags
HF—average 0.100 0.101 0.100 0.123
HF—SPFN 0.102 0.103 0.108 0.126
HF—SPFP 0.098 0.099 0.092 0.120
UHF—average 0.103 0.105 0.108 0.126
UHF—SPFN 0.107 0.108 0.123 0.128
UHF—SPFP 0.099 0.102 0.093 0.124

second highest error of 0.121, attained by UPP, and error of 0.326
on the 0.005-HF condition compared to the second highest error of
0.321, attained by HMMerge. Overall, MAFFT-addfrags has higher
average error on these conditions than the other three two-stage
methods, but differences between the four two-stage methods are
generally small.

4.2 Experiment 2: results on biological datasets

A comparison of all methods, including the standard methods, is
given in Supplementary Figure S8. Error rates are highest on 5S.3
and 5S.T, compared to the 23S datasets and 5S.E. However, based
on this figure, it is clear that MUSCLE, T-COFFEE and Clustal-
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Fig. 4. Query sequence alignment error of two-stage methods on INDELible simulated datasets with introduced fragmentation. The model conditions have 10 replicates; error

bars show standard error

Omega have substantially higher average error than the other align-
ment methods. Average error for the remaining methods (the four
two-stage methods, MAGUS, MAFFT-linsi and PASTA) are general-
ly close, but with an advantage to the two-stage methods, as we now
describe.

On the 23S.A dataset, MAFFT-linsi and MAGUS have the low-
est error (0.074), followed closely by the four two-stage methods at
0.076-0.077. On the 23S.C dataset, MAFFT-linsi has the lowest
error (0.038), followed closely by the four two-stage methods at
0.039, and by MAGUS at 0.040. On the 5S.E dataset, MAFFT-linsi
has the lowest error (0.020), followed closely by the four two-stage
methods and MAGUS at 0.024-0.029. On the 5S.3 dataset,
MAFFT-addfrags has the lowest error (0.096), followed closely by
the other three two-stage methods (0.099-0.101); the lowest error

for any standard method is 0.105, achieved by PASTA. Finally, on
the 5S.T dataset, MAFFT-addfrags has the lowest error (0.097), fol-
lowed closely by the other three two-stage methods (0.099-0.102);
the lowest error for any standard method is 0.108, achieved by
MAGUS. We also explored the impact of using MAFFT-linsi for the
backbone alignment instead of MAGUS on these datasets; as seen in
Supplementary Figure S9, this reduced accuracy rather than improv-
ing it. Finally, it is worth noting that MAFFT-linsi was the most ac-
curate on three datasets (23S.A, 23S.C and 5S.E), and although it
did not fall in the top category for the two remaining datasets, 55.T
and 5S.3, it fell in the middle of the methods with respect to
accuracy.

With the exception of MAFFT-linsi (and perhaps MAGUS,
which also generally came close to the four two-stage methods), the
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Table 3. Query sequence alignment error of two-stage methods on
CRW biological datasets

HMMerge WITCH UPP MAFFT addfrags
23S.A—average 0.084 0.121 0.107 0.091
23S.A—SPFN 0.103 0.174 0.148 0.105
23S.A—SPFP 0.066 0.068 0.065 0.077
23S.C—average 0.039 0.037 0.035 0.040
23S.C—SPFN 0.039 0.036 0.036 0.039
23S.C—SPFP 0.039 0.038 0.035 0.041
5S.3—average 0.106 0.087 0.096 0.050
5S5.3—SPFN 0.129 0.120 0.138 0.059
5S.3—SPFP 0.084 0.053 0.055 0.042
5S.E—average 0.091 0.060 0.083 0.068
5S.E—SPFN 0.103 0.077 0.120 0.071
5S.E—SPFP 0.079 0.042 0.045 0.064
5S. T—average 0.106 0.076 0.096 0.053
5S.T—SPFN 0.122 0.093 0.129 0.054
5S. T—SPFP 0.090 0.058 0.062 0.051

trends on these five CRW datasets show that the four two-stage
methods reliably have lower average alignment error than the stand-
ard methods.

A comparison of the four two-stage methods with respect to
query-only alignment error (Table 3 and Supplementary Fig. S35)
show that no single two-stage method reliably was more accurate
than the others, but we note that HMMerge specifically was less
competitive on the 5S datasets than it was on the 23S datasets.

4.3 Experiment 3: impact of changing the eHMM

Inspired by results reported in Nguyen et al. (2015) that showed
that using hierarchical ensembles instead of disjoint ensembles
improved accuracy, we explored changes to the eHMM we use in
HMMerge to see if adding HMMs would improve accuracy. Recall
that by default, HMMerge uses Disjoint(50). In this experiment, we
also explore the use of Disjoint(50)+BB [i.e. adding the HMM for
the full backbone alignment to Disjoint(50)] as well as using the en-
tire UPP(50) ensemble. We explored this partially for some simu-
lated datasets as well.

On the three CRW 5S datasets (Supplementary Table S3),
Disjoint(50) and Disjoint(50)+BB had the same alignment error.
The same was true for two simulated datasets (INDELible 0.001-HF
and ROSE 1000S1-HF). On the other hand, using the UPP(50)
eHMM improved accuracy compared to Disjoint(50). Specifically,
average alignment error dropped from 0.106 to 0.102 for the 5S.3
dataset, from 0.91 to 0.89 for the SS.E dataset, and from 0.106 to
0.096 for the 5S.T dataset.

Thus, this experiment suggests the possibility that HMMerge ac-
curacy could improve by using larger ensembles [i.e. adding HMMs
to the Disjoint(50) ensemble], but also suggests that it is not suffi-
cient to simply add the HMM for the backbone alignment. See
Supplementary Materials Section S4 for additional results and
discussion.

5 Discussion

This study introduced HMMerge, a new technique for aligning data-
sets that exhibit sequence length heterogeneity. Like its predecessors,
WITCH and UPP, it operates by constructing a backbone alignment
of full-length sequences and then adds the remaining sequences into
the backbone alignment using a method based on hidden Markov
models. This study showed that HMMerge, WITCH and UPP all
tended to have close accuracy, and generally that HMMerge and
WITCH were more accurate than UPP. We also observed that using
MAFFT-addfrags to add the remaining sequences into the backbone
alignment had comparable accuracy to HMMerge, WITCh and UPP

under some conditions. Finally, we saw that standard methods (i.e.
methods that do not operate in this two-stage manner) tend to have
lower accuracy than two-stage methods.

It is interesting however to consider the difference between
trends observed on the five biological datasets and the simulated
datasets. Specifically, for the simulated datasets, we saw generally
that the four two-stage methods had reliably lower error than the
standard methods, except when the mutation rate was low (as indi-
cated by a low average p-distance). The biological CRW datasets
have generally lower p-distances than the harder simulated model
conditions, and on these biological datasets, we saw that MAFFT-
linsi was the most accurate method on three of the datasets and that
MAGUS also was close to the two-stage methods in accuracy. Thus,
the likely explanation for this difference may be the mutation rate,
as the conditions where the two-stage methods had clear dominance
over the standard methods had high rates of evolution as well as
substantial fragmentation. Thus, it may be that two-stage methods
may only be needed when datasets exhibit both these factors: sub-
stantial sequence length heterogeneity and also large p-distances.

It is also interesting to consider why sometimes, but not always,
HMMerge is more accurate than WITCH. Based on the trends
shown in the simulated datasets and the contrast between its per-
formance on the 23S and 5S biological datasets, we conjecture that
HMMerge may provide an advantage under conditions where there
are many very short sequences. If this is the case, the choice between
WITCH and HMMerge might be based on the type of sequence
length heterogeneity in the dataset.

This study suggests several directions for future research.
Clearly, HMMerge is more computationally intensive to use than
WITCH or UPP (Supplementary Materials Section S5); hence,
improving its implementation is necessary. However, changes to the
design may also yield improved accuracy, as the preliminary results
we obtained in modifying HMMerge through changes to its eHMM
[and especially through the use of the UPP(50) eHMM] suggest.

From an algorithms design perspective, WITCH and HMMerge
both benefit from the use of adjusted bit-scores, which is an innov-
ation relative to UPP. They also both use the same ensemble of
HMMs for the representation of the backbone alignment, but be-
yond this they differ. WITCH computes an extended alignment
from each of the profile HMMs for a given query, and then uses a
graph-based algorithm to combine these extended alignments into a
single extended alignment. In contrast, given the query sequence,
HMMerge produces a new HMM with a topology that has the po-
tential to differ from that of the canonical profile HMM topology
used for each HMM in the given eHMM, and then uses that new
HMM to align the query sequence. This new profile HMM creation
is the novel algorithmic aspect of HMMerge. As we demonstrated in
this study, this machine learning model provides an advantage over
WITCH in some cases. Future research should explore additional al-
gorithm design strategies to determine how to best take advantage
of this insight.

6 Conclusion

HMMerge is a multiple sequence alignment method that was
designed to address the challenge of aligning datasets that exhibit
high levels of sequence length heterogeneity. HMMerge operates in
two stages, where the first stage extracts and aligns a subset of the
sequences it considers to be full-length (thus producing a backbone
alignment), and in the second stage it adds the remaining sequences
into the backbone alignment. HMMerge builds on techniques in
previous methods that use ensembles of profile HMMs to represent
the backbone alignment, but does so by creating a new HMM with
more edges than a standard profile HMM. As our study shows, this
novel machine learning model enables HMMerge to improve on
WITCH when adding very short sequences into the backbone align-
ment, and is otherwise competitive with WITCH (sometimes better,
sometimes not as good).

£20Z Ae\ vz uo 1senb Aq | 1.99Z | 2/2S0PBAA/ L /S/3|911B/S80UBAPESDIIBWIOLUIOIG/WO0D dNO dlWapee//:sdly Wol) PapEojUMO(]


https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad052#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad052#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad052#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad052#supplementary-data

M.Park and T.Warnow

There are implications of this study for both biologists and algo-
rithms developers. For the biologists, the implications are that when
aligning datasets with fragmentary sequences, standard methods
(such as MAFFT, T-COFFEE, MUSCLE, Clustal Omega, etc.) may
not provide good accuracy, and instead alignment methods that are
designed for use on such datasets should be considered. Here we
would recommend the use of a two-stage method, though the condi-
tions under which each such method might provide an advantage
over the others are not yet understood.

For the algorithms designer, this study shows the potential bene-
fits to be gained from novel uses of ensembles of profile Hidden
Markov Models to represent backbone alignments. Furthermore, al-
though WITCH and HMMerge both provide improved accuracy
compared to UPP, which was the first method in this category, it
seems very likely that additional algorithmic exploration could lead
to improved accuracy and potentially faster methods. We hope that
this study will lead to new algorithmic advances, in order to best im-
prove alignment accuracy under conditions with sequence length
heterogeneity, since these are increasingly common in biological
datasets.
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