
Computational Mechanics (2023) 71:721–743
https://doi.org/10.1007/s00466-022-02258-8

ORIG INAL PAPER

Investigating shock wave propagation, evolution, and anisotropy
using a moving window concurrent atomistic–continuum framework

Alexander S. Davis1 · Vinamra Agrawal1

Received: 24 October 2022 / Accepted: 5 December 2022 / Published online: 20 January 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Despite their success in microscale modeling of materials, atomistic methods are still limited by short time scales, small
domain sizes, and high strain rates. Multiscale formulations can capture the continuum-level response of solids over longer
runtimes, but using such schemes to model highly dynamic, nonlinear phenomena is very challenging and an active area of
research. In this work, we develop novel techniques within the concurrent atomistic–continuum (CAC) multiscale framework
to simulate shock wave propagation through a two-dimensional, single-crystal lattice. The technique is described in detail,
and two moving window methods are incorporated to track the shock front through the domain and thus prevent spurious
wave reflections at the atomistic–continuum interfaces. We compare our simulation results to analytical models as well as
previous atomistic and CAC data and discuss the apparent effects of lattice orientation on the shock response of two materials.
We then use the moving window techniques to perform parametric studies which analyze the shock front’s structure. Finally,
we compare the efficiency of our model to molecular dynamics simulations. This work showcases the framework’s capability
for simulating dynamic shock evolution over long runtimes and opens the door to more complex studies involving shock
propagation through composites and alloys.
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1 Introduction

Shock waves are complex events which can induce catas-
trophic damage to materials through plastic deformation and
spall fracture. As such, considerable effort has been devoted
towards understanding shock propagation within solids at
the continuum level [1,2]. However, a material’s response
to shock wave loading is linked to intricate behavior at the
microscale. For example, in ductilemetals, fracture causedby
a shock wave impact is the direct result of dislocations and
void nucleation within the material’s microstructure [3–5].
Hence, it is imperative to understand shock wave propaga-
tion and evolution at the microscale in order to adequately
predict material behavior at the macroscale.

Atomistic shock wave simulations have been performed
over the past several decades primarily using a technique
known as non-equilibrium Molecular Dynamics (NEMD).
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In these simulations, the shock is typically generated by
an impact or with a moving piston and is then allowed to
propagate through the domain [6]. Recent works have signif-
icantly increased the size and scope of NEMD frameworks
to contain millions or sometimes billions of particles, and
these formulations have been used to model events such
as dislocation generation [7–10], twinning [11–13], void
nucleation [14–16], and shock-induced spallation [17–21].
Unfortunately, NEMD techniques suffer from issues related
to limited domain sizes and a large computational overhead
which can cause artificial wave reflection and drastically
restrict the total runtime [22]. In the past twodecades, alterna-
tive atomistic techniques have been developed to counteract
such issues, and some examples are the multiscale shock
technique (MSST) [23,24], the uniaxial Hugoniostat [25,26],
and the moving window method [27–29].

Whilemodern atomistic techniques have greatly expanded
our knowledge of shock wave behavior at the microscale,
theynevertheless fail to capture the continuum-level response
because the overall quantity of particles than can be inte-
grated into the domain is restricted by computer architecture
and limited computational resources. To overcome these
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issues, concurrent multiscale frameworks have been devel-
oped which preserve atomistic information around a small
region of interest and populate the remainder of the domain
with finite elements [30–34]. A primary concern of con-
current methods is ensuring numerical compatibility at the
atomistic–continuum (A–C) interfaces in order to reduce
spurious wave reflections and ghost forces. A variety of
schemes have been established which attempt to solve this
issue in different ways [35], and some examples include the
Coupled Atomistic Discrete Dislocation (CADD) method
[36], the Bridging Domain (BD) method [37], the Coupling
of Length Scales (CLS) method [38], and the Quasicontin-
uum (QC) method [39]. Although methods such as these
have had great success in material modeling, many of them
still suffer from interface discrepancy due to a difference in
material description and governing equations between the
atomistic and continuum regions.

The Concurrent Atomistic–Continuum (CAC) method
overcomes many of the A–C interface issues seen in other
concurrent schemes by utilizing a unified multiscale frame-
work whereby the governing equations fromAtomistic Field
Theory [40,41] are employed throughout the whole domain
[42–51]. As a result, CAC has seen tremendous success
over the past decade in modeling phenomena such as dis-
locations and grain boundaries [52,53] as well as passing
high-frequency waves between the atomistic and contin-
uum regions [49,54]. Recent work has even implemented
an A-atom approach within CAC to perform large-scale
simulations of multicomponent alloys [55], and research of
dislocation evolution [56] as well as crystal plasticity [57]
is ongoing. Unfortunately, the study of shock wave propa-
gation using the CAC method has been limited due to the
highly dynamic nature of such phenomena. While previous
work has addressed this complication by incorporating mov-
ing window techniques into a CAC framework to track a
nonlinear shock wave for long runtimes [58], this formula-
tion only considered a 1D chain of particles and was thus
limited in scope.

In the present work, we develop a multiscale framework
using the CAC method to simulate long-time shock wave
propagation through a two-dimensional lattice. Specifically,
we utilize both the Hugoniot shock equations [1] as well as
the nonlinear Eulerian thermoelastic shock equations [59]
to analyze the well-known Riemann problem of an individ-
ual discontinuity traveling through a material. Furthermore,
we enhance the moving window techniques first presented
in [58] to track the shock over long simulation times and
engineering-scale domains. Each method keeps the shock
front in the middle of the atomistic region for the entire run-
time, so the wave front never encounters the A–C interfaces.
This allows us to model shock propagation for greater simu-
lation times than traditional NEMD and multiscale methods
and thus gain valuable information about the long-term, time-

averaged material response to shock loading of two different
face-centered cubic (FCC) ductile metals: Cu and Al.

This paper is organized as follows. Section 2 character-
izes the shocks studied in the present work and elaborates
on both the Hugoniot and Eulerian analytical models. Sec-
tion 3 describes the framework’s geometry and boundary
conditions as well as presents the interatomic potential, ther-
mostat, material parameters, and shock constants utilized
in the simulations. Section 4 discusses the finite element
formulation of CAC and its 2D implementation. Section 5
outlines both the shock propagation technique and the two
moving window schemes used to track the shock front. Sec-
tion 6 presents shock propagation results obtained with the
conveyor technique and compares these to both analytical
models to highlight the directional anisotropies in single
crystals subject to shock loading. Section 7 uses the coarsen-
refine technique to perform parametric studies related to the
shock front’s structure as well as showcases the efficiency of
the current model compared to NEMD simulations. Finally,
Sect. 8 concludes the paper and discusses ideas for future
work.

2 Shock wave background

2.1 Problem statement

We consider a defect-free two-dimensional monatomic lat-
tice compressed by an ideal longitudinal shock wave
traveling in the x-direction. We mathematically character-
ize the shock front as a traveling discontinuity across which
there is a jump in particle velocity (v), stress (σ ), strain (ε),
and temperature (θ ). Material quantities behind the discon-
tinuous shock front are denoted by the superscript +, and
quantities in front of the shock front are denoted by the
superscript −. Additionally, the notation �·� represents the
change in a certain quantity (·) across the discontinuity. Dur-
ing every simulation, particles ahead of the shock wave front
have zero mean particle velocity, stress, and strain; and they
remain at room temperature (295 K). Furthermore, the shock
propagates at a natural velocity US along the surface of the
primitive unit cell of an FCC lattice.

We utilize the parameters v, σ , ε, θ , and US in our two-
dimensional CAC formulation to analyze long-time shock
wave propagation over engineering-scale domains. In partic-
ular, we model the traditional Riemann problem of a single
shock front with constant states on either side of the discon-
tinuity (see Fig. 1). To calculate the aforementioned jump
parameters and thus describe the macroscale shock response
characterize the shock wave at the continuum level we use
two different formulations which are discussed below.
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Fig. 1 Riemann problem of a shock with constant states behind and in
front of the wave front [58]

2.2 Hugoniot shock equations

First, we simulate dynamic shock wave propagation and
evolution using the conservation of momentum, continuity
equation, Hugoniot equation of state (EOS), and a thermo-
dynamic relationship derived from the shock Hugoniot and
release isentrope. By applying the conservation of linear
momentum and continuity of displacement across the dis-
continuous shock front and assuming uniaxial loading, we
obtain the following standard one-dimensional shock wave
jump equations [2]:

�σ � + ρUs�v� = 0 (1)

�v� +Us�ε� = 0 (2)

where ρ denotes the density of the material. To fully param-
eterize the system, we also employ an empirical linear
relationship between shock velocity and particle velocity [1]:

Us = C0 + S�v�. (3)

In Eq. (3), C0 is the sound velocity in the material at zero
stress, and S is the slope of the shock velocity vs. particle
velocity curve. We can use Eqs. (1), (2), and (3) to derive the
following Hugoniot stress-strain relationship:

σ = ρC2
0�ε�

(1 + S�ε�)2
(4)

where compression is positive in this paper. Eq. (4) is the
standard Hugoniot EOS used in many simulations of shock
waves throughmaterials [29]. Finally, we calculate the rise in

temperature across the shock front by solving the following
ordinary differential equation [2]:

CV

(
dθ

dε

)
H

− �1θCV

1 − ε
= ε

2

(
dσ

dε

)
H

− σ

2
(5)

where CV is the volumetric specific heat capacity, and �1 is
the first-order Grüneisen parameter for the material.

2.3 Eulerian shock equations

We also characterize the propagating shock wave using the
nonlinear Eulerian thermoelastic shock equations derived for
anisotropic crystals in [59,60]. Nonlinear elastic constitutive
models of material behavior which do not account for slip-
page and plasticity are generally idealizations because even
small uniaxial compressive strains can cause ductile materi-
als to reach the experimental Hugoniot elastic limit (HEL).
However, such elastic formulations can be practically applied
to defect-free atomistic and multiscale simulations of ductile
solids since these systems may be shocked to finite strains
over relatively short runtimes and small areas [60,61]. Fur-
thermore, we note that nonlinear elastic models may be used
to describe the finite compression of some strong crystals
like diamond since the HEL of such materials is very large.

For an extensive derivation of the Eulerian formulation for
shock waves, we refer the reader to [59]. Here, we merely
present the relevant equations used in the current work. The
particle velocity in the shocked material, shock propagation
velocity, and temperature in the shocked material are given
by the following respective equations:

v =
{(

Ŝ

ρ

) [
(1 − 2D) − (1 − 2D)3/2

]}1/2

(6)

US = v
[
1 − (1 − 2D)−1/2

]−1
(7)

θ = ∂Û

∂η
= θ0

(
1 − �̂1D − 1

2
�̂11D

2
)

. (8)

In Eqs. (6), (7), and (8), D is the Eulerian strain represented
by the following expression:

D = 1

2

(
1 − F−2

)
= 1

2

[
1 − 1

(1 + ε)2

]
. (9)

Here, the term Eulerianmeans that the strain is a function of
the inverse deformation gradient F . Hence, the strain tensor
D assumes material coordinates rather than spatial coordi-
nates, so it can be applied to the anisotropic shock simulations
performed in this work [59]. Furthermore, Û is the Eulerian
fourth-order internal energy function as seen below [60]:
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Û = 1

2
Ĉ11D

2 + 1

6
Ĉ111D

3 + 1

24
Ĉ1111D

4

− θ0

(
�̂1D + 1

2
�̂11D

2 − 1

)
η

(10)

where Ĉ11, Ĉ111, and Ĉ1111 are the Eulerian second, third,
and fourth-order elastic constants, �̂1 and �̂11 are the Eule-
rian first and second-order Grüneisen parameters, and η = 0
is the entropy ahead of the shock front. The elastic con-
stants and Grüneisen parameters in an Eulerian setting are
obtained from their non-Eulerian counterparts using the fol-
lowing relations [59,62,63]:

Ĉ11 = C11 (11)

Ĉ111 = C111 + 12C11 (12)

Ĉ1111 = C1111 − 18C111 − 318C11 (13)

�̂1 = �1 (14)

�̂11 = �11 + 4�1. (15)

Finally, the conjugate stress Ŝ is represented by

Ŝ = ∂Û

∂D

= C11D + 1

2
Ĉ111D

2 +
(
1

6
Ĉ1111 − θ0�̂1b3

)
D3

− θ0D
4
[(

�̂1b4 + �̂11b3
)

+
(
�̂1b5 + �̂11b4

)
D

]
(16)

where b3, b4, and b5 are polynomials for entropy η generated
across the shock front, and their expressions can be found in
[59]. In each shock wave simulation, we use the fourth-order
expression of Eqs. (6), (7), and (8).

2.4 ‘Elastic’ shock waves

To legitimately utilize the shock equations from Sect. 2.3 as
well as avoid intractability with the moving window tech-
niques, we perform shock simulations with relatively small
strains such that the resulting stresses are below the HEL of
the material (see Appendix A.2). To maintain consistency,
we refer to these as elastic shock waves in the present work.
Elastic shock waves are often modeled in defect-free crystals
with NEMD techniques to study a particular phenomenon,
test a new framework, or validate a givenpotential [29,61,64],
and their distinguishing characteristic is the lack of any per-
manent dislocations (inelastic deformation) behind the wave
front. This is possible because the HEL is typically higher
than what is seen in experimental settings [44], and the wave
speed is still greater than the sound velocity in the material at
the low strains. Modeling shock propagation with the CAC
movingwindow framework using thermoelastic-viscoplastic
models [65,66] is a worthy pursuit but would add an extra

layer of complexity to the current model and is thus reserved
for future studies.

3 Computational framework

3.1 Geometry and boundary conditions

We use our personal C++ code to develop, test, operate, and
update the two-dimensional CAC framework used in this
work, so we briefly discuss the formulation setup in this sec-
tion.

The monatomic lattice is divided into three primary
regions as seen in Fig. 2. The two coarse-scaled (continuum)
regions are composed of rhombus elements, and the four par-
ticles which make up any particular element are classified as
nodes in this paper. We choose rhombus elements because
they align with the primitive unit cell of the FCC lattice (see
Sect. 4.2) and thus facilitate a smooth transition between
the fine-scaled and coarse-scaled regions. Specifically, the x-
direction corresponds to the [112] lattice orientationwhile the
y-direction corresponds to the

[
1̄10

]
lattice orientation. Since

element connectivity is not required in CAC [42], each node
is a member of only one element, and this greatly reduces the
complexity of the finite element formulation. Furthermore,
the edges of the grid in the continuum regions are “filled in”
with particles which we refer to as boundary atoms in this
work. This is done in order to facilitate periodic boundary
conditions as shown in [67].

The two continuum regions border the central fine-scaled
(atomistic) region on the left and right-hand side, andwe clas-
sify the particles in this region as either inner atoms or just
atoms in this paper. The “elements” in the fine-scaled region
are reduced to their smallest possible configuration such that
only four atoms constitute the entire area of each element.
Hence, both the fine-scaled and coarse-scaled regions are
technically made up of rhombuses with the only differences
being the area and mass of their respective elements. As
a consequence, one governing equation along with a sin-
gle mass matrix is utilized for both regions, the interatomic
potential is the only constitutive relation, and all force cal-
culations are nonlocal [47]. Thus, the particles at the A–C
interfaces (xA,0 and xA,F ) have a direct communication with
each other without creating ghost forces [50,67].

We note that to avoid introducing non-physical strains into
the domain during shock simulations, semi-periodic bound-
ary conditions are employed in the x-direction whereby the
particles at the extreme ends of the lattice (x0 and xF ) are
neighborswith the nodes at theA–C interfaces (xA,0 and xA,F

respectively) [58]. Additionally, since the present work only
considers uniaxial compression,weutilize periodic boundary
conditions in the y-direction when modeling a longitudinal
shock wave.
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Fig. 2 Schematic of the two-dimensional CAC framework

3.2 Interatomic potential andmaterial parameters

Since the parameters of complex multi-body potentials such
as EAMare typically derived for 3D lattices, we use themod-
ified Morse interatomic potential to find the integrand of the
CAC internal force density (Eq. 19). Modified Morse only
considers first nearest-neighbor interactions and has been
shown to perform better than other pair potentials such as
Lennard-Jones for FCC metals [29]. The equation for this
potential function is as follows [68]:

	(ri j ) = D0

2B − 1

[
e−2α

√
B(ri j−r0)

− 2Be−α(ri j−r0)/
√
B
] (17)

where ri j = |xi − x j | is the magnitude of the displacement
between particle i and j , and r0 is the distance at which the
potential reaches the minimum of the energy well (defined
as the close-packed neighbor spacing). The modified Morse
potential was derived from the standard Morse potential to
more accurately capture the thermal expansion of materials
[68]. We perform shock simulations with Cu and Al, and the
parameters for these materials are given in Table 1.

3.3 Integration algorithm and thermostat

We integrate the CAC governing equation (Eq. 23) using the
velocityVerlet algorithmwith a time step of�t = 0.001 ps to
reduce numerical error. To apply temperature to the domain,
we utilize the stochastic Langevin thermostat by discretizing
the velocity Verlet algorithm according to the protocol from
LAMMPS [69]. Since Langevin is a local thermostat, each
particle has its own target temperature θ , and a different ran-

dom variable is generated for each particle at every time step.
For the compressive strains applied in this work, θ+ has an
upper boundary of ∼ 450 K (θ− is always set to 295 K).

3.4 Shock parameters

In Table 2, we present the empirical Hugoniot shock param-
eters as well as the second, third, and fourth-order elastic
constants (in a normal and Eulerian setting) for both Cu
and Al. The Hugoniot parameters are obtained from [70],
the second and third-order elastic constants for Cu and Al
are obtained from [71,72] respectively, and the fourth-order
elastic constants are obtained from [60]. For these values, the
temperature is assumed to be 295 K, C0 is given in km/s, S
is unitless, and the elastic constants are given in GPa. The
Hugoniot parameters are derived for a shock wave propagat-
ing through a bulk, polycrystallinematerial. Furthermore, the
elastic constants represent the pure-mode directions such that
a planar shock impact results in an exclusively longitudinal
component (along the [100] direction) with no transmitted
shear stress, and hence the one-dimensional analysis is valid.
We use these parameters as initial input in our shock sim-
ulations and compare the results from the CAC model to
analytical and empirical data in Sect. 6.

4 CACmethod

4.1 Finite element implementation

Here, we give a very brief overview of the finite element
formulation of CAC, but for an extensive background of the
technique and derivation of the relevant equations, we refer
the reader to the many papers on CAC including the follow-
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Table 1 Material constants and
Morse parameters of two
different FCC metals [68]

Element Mass (u) ρ0 (g/cm3) �1 r0 (Å) a (Å−1) D0 (eV) B

Cu 63.55 8.96 1.97 2.5471 1.1857 0.5869 2.265

Al 26.98 2.70 2.17 2.8485 1.1611 0.3976 2.5

Table 2 Hugoniot and Eulerian
shock parameters for Cu and Al
(θ = 295 K, C0 in km/s, and
Cαβ in GPa)

Property Cu [100] Al [100]

C0 3.94 5.33

S 1.49 1.34

C11 166 107

C111 −1270 −1080

Ĉ111 722 204

C1111 11,900 25,000

Ĉ1111 2000 10,500

ing: [42,51,73,74]. CAC is based upon the mathematics of
Atomistic Field Theory (AFT), and the governing equations
of AFT have a similar form to the balance laws in continuum
mechanics. Exploiting the definitions of internal force den-
sity and kinetic temperature derived in [75,76], we can recast
the equation of linear momentum as follows [73]:

ραüα(x) = fαint (x) + fα(x). (18)

In Eq. (18), uα(x) is the displacement of the αth atom in the
unit cell, ρα = mα/�V is the mass density, mα is the mass
of the αth atom, �V is the volume of the unit cell, fαint (x) is
the internal force density, and fα(x) is the force density from
external forces and temperature. The two terms on right side
of Eq. (18) are represented as follows:

fαint (x) =
∫


(x′)

Na∑
β=1

f
[
uα(x) − uβ(x′)

]
dx′ (19)

fα(x) = fαext (x) − mαkB
M�V

∇xθ
α (20)

where fαext (x) is the external force density, M is the total
mass of atoms within a unit cell, and θα is the kinetic tem-
perature. We note that since the internal force density is a
nonlocal function of the various distances between neighbor-
ing particles, it can be determined solely from the interatomic
potential [77].

We employ the finite element method to calculate the
numerical solution of Eq. (18). In particular, we populate
the domain with finite elements such that every element con-
sists of an assemblage of unit cells, and each nodal location
represents a unit cell which is itself made up of particles.
As a result, CAC provides a two-level description of crys-
tals and follows the solid state physics model whereby the
material is continuous at the macroscale but discrete at the
microscale. We use interpolation within each element in the

domain to approximate the displacement field with the fol-
lowing expression [42]:

ûα
(x) = �ξ (x)Uα

ξ . (21)

In Eq. (21), ûα
(x) is the displacement field for the αth atom

in an element, �ξ (x) is the shape function, and Uα
ξ is the

displacement of the αth atom within the ξ th node of the ele-
ment. Here, ξ = 1, 2, ..., n where n equals the total number
of nodes in the element (four in this work).

Applying the method of weighted residuals, we arrive at
the weak form of the governing equation by multiplying Eq.
(18) with a weight function �η(x) and integrating over the
whole system:

∫

(x)

[
ρα�η(x)üα(x)

]
dx

=
∫


(x)

[
�η(x)fαint (x)

]
dx +

∫

(x)

[
�η(x)fα(x)

]
dx.

(22)

Specifically, the Galerkin method is used to obtain the above
expression, so the weight function �η(x) equals the shape
function �ξ (x) in this case. Substituting Eqs. (19), (20), and
(21) into Eq. (22), we arrive at the following CAC governing
equation:

MαÜ
α

ξ = Fα
int + Fα (23)

where Fα is the third term in Eq. (22), and Mα and Fα
int are

given as

Mα =
∫


(x)

[
ρα�η(x)�ξ (x)

]
dx (24)

Fα
int =

∫

(x)

�η(x)
∫


(x′)

Na∑
β=1

f
[
�ξ (x)Uα

ξ − �ξ (x′)Uβ
ξ

]
dx′dx.

(25)

In this work, we use the row-sum method to approximate
the inertial term (Eq. 24)with the lumpedmassmatrix derived
in Appendix B.1. Additionally, there are no external forces,
and we apply temperature using a thermostat as in [45,49].
Finally, we calculate the computationally expensive internal
force density Fα

int numerically using Gaussian integration as
discussed in Appendix B.2.

The finite element formulation reviewed in this section
eliminates most of the degrees of freedom in the coarse-
scaled regions of the CAC domain. For critical regions where
atomistic behavior is required, the smallest mesh is used such
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that each rhombus “element” consists exclusively of four
atoms with no additional lattice points. Thus, CAC builds
upon AFT to produce a unified framework between the fine-
scaled and coarse-scaled regions. A unique feature of CAC
is that in the finite element implementation, element connec-
tivity is not required because the nonlocal interatomic force
field is the only constitutive relation [42]. This is similar to
aspects of the cohesive zone model [78] and greatly simpli-
fies the implementation of both the mass matrix as well as
the force calculations.

4.2 Two-dimensional formulation

Rhombohedral elements are utilized within the CAC formu-
lation to replicate the primitive unit cell of a monocrystalline
lattice (FCC in the present work). A sketch of this can be
seen in Fig. 3a, where we observe the primitive unit cell (blue
lines) within the broader FCC crystal structure. Furthermore,
the shaded region represents the two-dimensional atomic
plane used in our formulationwhereby rhombus elements are
incorporated throughout the domain. Since the same consti-
tutive relation is used bothwithin elements aswell as between
elements, dislocations and cracks emerge naturally through
the separation of finite elements [42]. This is a direct result
of the CAC governing equations, and it allows such defects
to pass smoothly across the A–C interfaces without deform-
ing individual elements. As a result, some mesh sensitivity
may be introduced into simulations with very high strains
whereby different grid resolutions alter the convergence of
the solution.

A schematic of the two-dimensional rhombus element
can be seen in Fig. 3b. Here, the black circles represent the
four nodes where the governing equations are applied, and
the grey circles represent the lattice points which serve as
nodal neighbors and thus aid in the force calculations. For
monatomic crystals, each nodal location (unit cell) only con-
tains one atom, and the positions of the lattice points are inter-
polated usingEq. (21) throughout the element.We emphasize
that the lattice points are excluded from the Verlet algorithm.
Finally, since no external forces are applied in this work, the
governing equations from Sect. 4.1 reduce to the following:

MÜ − Fint = 0 (26)

where the terms M and Fint are given as

M =
∫


(x)
[ρ�(x)�(x)] dx (27)

Fint =
∫


(x)
�(x)

∫

(x′)

nα∑
j=1

f
[
�(x)Ui − �(x′)U j

]
dx′dx

=
∫


(x)
�(x)fint (x)dx. (28)

In Eq. (26), M is the mass matrix, and Appendix B.1
provides a full derivation of this term. In brief, we utilize
the lumped mass matrix approach in the present formulation
which effectively reducesM to the following expression for
each element:

M = mNppe

Nnpe
(29)

where m is the atomic mass, Nppe is the number of particles
per element (including lattice points), and Nnpe is the number
of nodes per element [67].

The terms Ü and Fint are the respective accelerations and
internal forces for each atom/node in the lattice, and nα rep-
resents the total number of neighbors of particle i within a
specified cutoff radius. Furthermore, the local force fint (x) on
particle i at position x is obtained exclusively from the inter-
atomic potential through relative displacements of particles,
and the total force is obtained through Gaussian quadrature
rules (see Appendix B.2). We note that the surrounding lat-
tice points act as atomic neighbors when calculating the force
fint (x) of a node in the continuum regions, whereas in the
fine-scaled region, atomic neighbors are merely other atoms.

5 Shock propagation technique

5.1 Shock initialization

For each simulation, the shock wave is characterized using
either the Hugoniot (Sect. 2.2) or Eulerian (Sect. 2.3) gov-
erning equations, and the shock front is achieved by dividing
the grid from Fig. 2 into different regions as seen in Fig.
4. The boundary particles within each continuum domain
(red circles) constitute the thermostat regions (TRs) and are
categorized as “damped” atoms since they apply a constant
temperature to the lattice through the Langevin thermostat.
Furthermore, a narrowband of inner atoms at eachA–C inter-
face are also damped to ensure that the window region (WR)
made up of “undamped” atoms (blue circles) achieves the
correct canonical ensemble [58]. We note that as in [79], the
nodes (black circles) are left undamped to prevent spurious
behavior within each element. The shock wave front (SWF)
starts at the midpoint of theWR and travels to the right along
the positive x-direction with a speed of US . We delineate
material to the right of the SWF as the unshocked region and
material to the left of the SWF as the shocked region.

To initialize the shock, we assign a final strain ε+ to
the shocked region and use either Eqs. (2) and (3) for the
Hugoniot formulation or Eqs. (6) and (7) for the Eulerian for-
mulation to calculate the mean particle velocity v+ and SWF
velocityUS . TheHugoniot parametersC0 and S aswell as the
elastic constants C11, Ĉ111, and Ĉ1111 are initially assigned
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Fig. 3 a Rhombohedral element constituting the primitive unit cell (blue lines) of an FCC lattice. The shaded region represents the two-dimensional
rhombus element utilized in the present formulation. b Schematic of the two-dimensional rhombus element

Fig. 4 CAC geometry used for shock wave simulations. Here, the red circles represent damped atoms, the blue circles represent undamped atoms,
and the black circles represent nodes

their literature values given in Table 2. The particle velocity
v+ is the newequilibriumvelocity for the shocked region, and
the strain ε+ causes the lattice to compress uniaxially such
that particles behind the SWF obey the Cauchy-Born rule.
As a result, the shocked region achieves its final state and the
SWF starts to propagate forward beginning in the middle of
the WR. The temperature θ+ calculated from either Eq. (5)
or (8) is applied to the shocked TR, and each TR is far enough
away from the non-equilibrium SWF to be considered within
a region of “local” equilibrium. Hence, we can legitimately
apply the Langevin thermostat to the strained portion of the
domain [25].

In this work, we overcome the runtime-limiting obstacle
of boundary reflections present in traditional NEMD shock
wave simulations by incorporating twomovingwindow tech-
niques into the multiscale framework. The first technique,
known as the conveyor method, draws inspiration from the
moving boundary conditions utilized in [80,81] to simulate

dynamic crack propagation as well as the atomic inser-
tion scheme from [27,28] to model piston-driven shocks.
The second technique, known as the coarsen-refine method,
has similarities to mesh refinement schemes used in finite
element [82,83] as well as atomistic–continuum [47,84,85]
frameworks. Both techniques serve to track the propagating
shock front over engineering length scales and time frames
by eliminating shock-boundary reflections, and a description
of each can be found in the following sections.

5.2 Conveyor method

Figure 5 provides a schematic of the conveyor technique for
the two-dimensional CAC framework. This technique is sim-
ilar to the scheme found in [58] for one dimension, but there
are more intricacies and complexities associated with the
higher-dimensional lattice. After the SWF has traveled one
lattice spacing (alat ) along the positive x-direction from the
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center of the WR, the initial position, displacement, veloc-
ity, and acceleration of particles in the first two columns of
the grid are set equal to the parameters of their rightmost
neighbors within the same row. The neighbors may be either
boundary atoms, nodes, or lattice points, but if they are lat-
tice points, the Verlet parameters are first interpolated as
discussed in Sect. 4.1. Effectively, the parameters of parti-
cles within the first two columns of the lattice are removed
from the simulation as is noted in the figure by the leftmost
arrow.

This process continues throughout the entire domain from
the beginning of the shocked region to the end of the
unshocked region, and we note that only the initial posi-
tion of lattice points are updated since their displacements,
velocities, and accelerations are interpolated during the inte-
gration algorithm. Particles in the final column of the domain
(denoted by the gold and orange circles in Fig. 5) are given
new initial x-positions which are one lattice spacing greater
than their current initial x-positions, and their y-positions
remain the same. Furthermore, their displacements, veloc-
ities, and accelerations are all set equal to zero, and the
Langevin thermostat dampens any energy fluctuations gen-
erated near xF as in [28]. This conveyor mechanism occurs
with a frequency of τ−1 = US/alat , and if the simulated and
analytical shock velocities are the same, the SWFwill remain
stationary in themiddle of theWR for the entire runtime. The
resulting time resolution of alat/US is thus optimized for the
given shock propagation velocity, but higher time resolutions
are achievable depending on the speed of the phenomenon
in question.

5.3 Coarsen-refinemethod

A schematic of the coarsen-refine method can be seen in
Fig. 6, and again it is similar in principle to the 1D tech-
nique from [58]. Here, after the SWF has traveled a distance
equal to the length of the element diagonal (ediag) plus the
lattice spacing divided by two, the moving window mech-
anism begins whereby material in the shocked continuum
region gets coarsened and material in the unshocked contin-
uum region gets refined. In the shocked region, coarsening
is achieved by transforming the relevant particles into nodes
and lattice points such that new elements appear in the pre-
vious atomic locations. On the other hand, in the unshocked
region, refinement takes place by changing nodes and lat-
tice points into fine-scaled particles through both parameter
re-assignment and linear interpolation—similar to what is
donewith the conveyor technique. This procedure effectively
transmits thefine-scaled region forward to the newSWF loca-
tion as seen in Fig. 6.

After this process completes, undamped particles at
the A–C interfaces in the shocked material are redefined
as damped particles and vice versa for particles in the

unshocked material. Furthermore, the mass matrix is mod-
ified to exhibit the new mass distribution within the lat-
tice. This technique occurs iteratively with a frequency of
τ−1 = US/

1
2

(
ediag + alat

)
, and the integer time counter

n is increased by one each time the mechanism terminates
(as shown in Fig. 6). When utilizing the coarsen-refine
method, the entire two-dimensional grid remains stationary
and merely the location of the fine-scaled region is shifted.
As a result, most of the domain can be populated with finite
elements while a comparatively small section of atoms track
the propagating shock wave through the lattice. This tech-
nique thus ultimately endeavors to balance total efficiency
and total accuracy of nonlinear shock wave modeling.

6 Elastic anisotropy: crystal orientation
dependence of shock propagation
response

In this section, we elaborate on the shock velocity and
longitudinal stress results obtained with both the Hugo-
niot and Eulerian formulations and discuss how they relate
to the directional anisotropy of materials subject to shock
impact. Recent NEMD works have studied shock propa-
gation along different lattice directions of single crystals
and observed a significant orientation dependence on the
material’s shock response [86–89]. This phenomenon has
also been documented for elastic shock waves in small-
scale, atomistic domains [29,61]. Interestingly, large-scale
experimental studies have not shown the same orientation
dependence of shock parameters [90], but this may be due
to the fact that bulk crystals naturally have more defects
than what can be feasibly represented using atomistic tech-
niques [88]. The present work provides a unique insight on
this phenomenon because the CAC domain is modeled after
the primitive unit cell of an FCC lattice and thus promotes
a smooth transition between the atomistic and continuum
regions. Hence, the shock travels along the [112] longitu-
dinal direction, and the

[
1̄10

]
direction is transverse to the

direction of propagation. To the authors’ knowledge, this is
one of the first studies to analyze shock evolution along this
particular orientation.

6.1 Simulation specifications

The results in this section are obtained from shock wave
simulations performed with the conveyor moving window
technique using the CAC domain described in Fig. 4. For
every simulation, the left and right coarse-scaled regions each
contain 250 particle columns for a total length of 250alat , and
each element diagonal has a length of 8alat . Furthermore, the
fine-scaled region contains 2500 particle columns, and the
length of each element diagonal is merely the lattice spac-
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Fig. 5 Schematic of the moving window conveyor technique for the 2D CAC framework. The white circles represent removed particle locations
while the gold/orange circles represent inserted particle locations

Fig. 6 Schematic of the moving window coarsen-refine technique for the 2D CAC framework

ing (alat ). Additionally, each atomistic TR band contains 20
columns to ensure that the WR reaches the desired tempera-
ture [79]. Simulations are conducted for compressive strains
(ε+) ranging from 1% to 9% and 1% to 8% for Cu and Al
respectively (see Appendix A.2), and the total runtime is 2
ns. A velocity profile of the two-dimensional shocked lattice
can be seen in Fig. 7a. Specifically, we track the SWF over
time in MATLAB by taking a column average of the particle
velocities as shown in Fig. 7b.

6.2 Shock velocity results

Shock velocity results obtained for both Hugoniot and Eule-
rian theory can be seen in Figs. 8 and 9 respectively.

Specifically, Fig. 8 displays the shock velocity vs. particle
velocity data (as well as the derived Hugoniot equations) of
four different sets of simulations using both (a) Cu and (b)Al.
Here, the blue line represents the polycrystalline Hugoniot
calculated in [70], and the green data points are the average
velocity results for shocks propagating through the standard
CACdomain.As a comparison,we also invert the lattice such
that the

[
1̄10

]
orientation lies along the x-direction, and the

[112] orientation lies along the y-direction, and these results
are given by the red data points. As in Appendix A.2, we per-
formed stress vs. strain studies for this inverted lattice and
found yielding to occur at 9% strain for Cu and 8% strain for
Al, so we maintain ε+ values below these elastic limits when
simulating shocks along the

[
1̄10

]
direction. Finally, we also
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Fig. 7 Velocity profiles of the propagating shock in the CAC frame-
work. a SWF in the two-dimensional grid (not to scale);bSWFobtained
from averaging the column velocities of the lattice

present one-dimensional atomistic shock data obtained from
[29] for Cu and calculated in this work for Al.

The data and associated Hugoniot equations in Fig. 8
clearly show the dependency of a shock’s propagation veloc-
ity on the given lattice orientation. In particular, both of
the two-dimensional CAC Hugoniots have C0 and S values
which are greater than the standard polycrystallineHugoniot.
This is most likely due to the fact that the FCC primitive unit
cell is rhombohedral instead of cubic, so the entire CAC lat-
tice is more compressed than a traditional structured FCC
grid. This causes the particles in the domain to be more
compact which results in larger forces from the interatomic
potential and hence higher shock velocities. Additionally, the
polycrystallineHugoniot data are fitted to strong shockwaves
for which yielding reduces the effects of the shear modulus.
Hence, wewould anticipate the shocks from [70] to be slower
than the elastic CAC shocks since shear stress is limited to
plastic yield strength. Next, as expected, the inverted CAC
lattice produces slightly higher shock velocities than the lat-
tice from Fig. 4 since the

[
1̄10

]
lattice spacing is shorter

than the [112] spacing. Finally, the one-dimensional shock
velocities are greater than the those from the two-dimensional
simulations due to the lack of any transverse motion which
naturally dampens the shock speed. Instead, the 1D results
are comparable to plane-plane collisions in a bulk lattice [91].

We observe a similar phenomenon for the Eulerian results
in Fig. 9 where we now plot average shock velocity vs.
applied strain. Here, the green and red data points are from
the same types of 2D simulations as those from Fig. 8. How-
ever, the blue line now represents the analytical results from
fourth-order Eulerian theory, and the orange data points are

Fig. 8 Hugoniot shock wave results for both a Cu and b Al. The
polycrystalline shock Hugoniot obtained from [70] is shown in blue.
Two-dimensional CAC Hugoniot data obtained for shocks propagating
along the [112] and

[
1̄10

]
lattice directions are shown in green and red

respectively. One-dimensional shock Hugoniots are given in orange.
The Cu Hugoniot comes from [29], and the Al Hugoniot is calculated
in the present work

1D CAC shock results obtained from [58]. Since we utilize
elastic constants obtained for shocks propagating along the
[100] direction and the CAC formulation analyzes shocks
along the [112] and

[
1̄10

]
directions, elastic anisotropy in

the crystal lattice is a major reason why the results from the
various models differ.

As seen previously, the 1D shock velocities are slightly
greater than the 2D velocities from the present study, and
the inverted CAC lattice has a higher slope than the stan-
dard CAC lattice. For Cu, the shock velocities predicted at
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Fig. 9 Eulerian shock results for both a Cu and b Al. The blue line
represents velocities obtained from fourth-order Eulerian theory. Two-
dimensional CAC data obtained for shocks propagating along the [112]
and

[
1̄10

]
lattice directions are shown in green and red respectively.

One-dimensional CAC data obtained from [58] are in orange

higher strains by Eulerian theory are indeed lower than the
2D and 1D CAC results, but this is not the case for Al. The
reason for the anomalous results with Al is not necessarily
clear, but it could be due to the fact that the third- and fourth-
order elastic constants are not always measurable to high
accuracy, so uncertainties in their values would lead to uncer-
tainty in the results predicted by fourth-order Eulerian theory.
Nonetheless, we observe qualitative compatibility between
the Hugoniot and Eulerian formulations which gives us con-
fidence that the current CAC framework produces accurate
results and can thus be reliably used to measure the response

Fig. 10 Longitudinal stress data for both a Cu and b Al. The blue,
orange, and green lines represent the [100] results from 2nd, 3rd, and
4th-order Eulerian theory respectively. The purple circles and gold dia-
monds represent the [112] and

[
1̄10

]
CAC data respectively

of materials to shock propagation along various lattice direc-
tions.

6.3 Longitudinal stress results

To supplement the anisotropic shock velocity results from
Sect. 6.2, we perform longitudinal stress vs. strain studies
using the shocked data for both Cu and Al, and these results
can be seen in Fig. 10. Specifically, we calculate the time-
averaged virial (thermodynamic) stress (σxx ) in the shocked
region using Eq. (A1), and we relate the Cauchy stress (Pxx )
to the virial stress as follows [61]:

Pxx = (1 − ε)σxx (30)
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Fig. 11 Shock simulation using the coarsen-refine moving window technique

where we note that compressive stress/strain is considered
positive.

Figure 10 shows the shock stress Pxx normalized by the
second-order elastic constantC11 as a function of the applied
strain. The data from Hugoniot and Eulerian theory were
practically identical, so without loss of generality, we only
exhibit the Eulerian results. The [100] second, third, and
fourth-order Eulerian models are represented by the blue,
orange, and green lines respectively, while the [112] and[
1̄10

]
shock stress data are represented by the purple circles

and gold diamonds respectively. As in Sect. 6.2, we clearly
observe the orientation dependence and elastic anisotropy
of the shock stress as the CAC data is significantly higher
than that predicted by the various Eulerian models for shocks
along the [100] direction. Furthermore, the

[
1̄10

]
CAC sim-

ulations produced shock stresses which were slightly higher
than those from the [112] simulations. Again, this is pri-
marily due to the higher compression velocities caused by
the larger ‘compactness’ of CAC domains. This anisotropic
stress data is congruent with a previous work which analyzed
elastic shocks along various lattice directions using a number
of different potential functions [61].

7 Results with the coarsen-refinemethod
and formulation efficiency

Without loss of generality, we only reference data from Eule-
rian theory in this section as both shock models gave similar
quantitative results.

7.1 Coarsen-refine simulations

In Fig. 11, we present results from a shock wave simula-
tion performed using the coarsen-refine technique over 6 ns.

Here, we can observe the atomistic portion of the domain
successfully follow the evolving shock front throughout the
CAC framework with no spurious wave behavior at the A–C
interfaces. Due the elastic nature of the shock as discussed in
Sect. 2.4, no dislocations are present to the left of the wave
front, but we do see the shocked material maintain the mean
particle velocity of v+ for the entire runtime. These results
are in contrast to those performed using the conveyor tech-
nique because now the SWF may travel through the entire
CAC domain while staying within the fine-scaled region.
Although previous work has used mesh refinement to study
phenomena within both finite-element [82] and multiscale
[47,84,85] schemes, utilizing simultaneous refine/coarsen
techniques to study dynamic, high-temperature phenomena
is still a challenging area of research [58]. Thus, the present
formulation provides a novel means for tracking propagat-
ing shocks over long runtimes, and may be used to research
even more complex lattice structures in the future such as
nanoscale composites or high-entropy alloys.

7.2 Shock structure and planarity

We now use the coarsen-refine simulations to analyze the
shock front’s spatial width over 5 ns, and the results for
ε+ = −0.06 can be seen in Fig. 12. As a comparison, we
also show the 1D CAC results from [58]. Unlike the 1D
data, the present work shows a clear steadiness in the shock
wave behavior as evidenced by the fact that the shock width
remains constant throughout the simulation with very little
deviation from the mean. We also do not observe a signif-
icant change in the shock front’s planarity throughout the
simulation’s duration. Finally, similar results were found for
both Cu and Al over the range of strains studied with the
present formulation. Clearly, for shock waves modeled at the
microscale, the ability of particles to oscillate transversely
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Fig. 12 Spatial shock width over time. The blue and red circles repre-
sent the 1D CAC data from [58] for both Cu and Al respectively. The
gold squares and purple diamonds represent the 2D CAC data for Cu
and Al from the present work

to the direction of shock propagation plays a large role in
the overall steadiness of the wave. These results are similar
to findings from previous NEMD studies which observed a
change in shock structure and steadiness when transitioning
from a 1D to 3D regime [6]. In particular, the transition from
unsteady to steady waves was due to the “increase in cou-
pling between vibrational excitations normal and transverse
to the direction of shock wave propagation” [92]. Our work
shows this for two dimensions as well.

7.3 Framework speedup and efficiency

For the sake of completeness, we now present results for
speedup/efficiency tests which compare the two-dimensional
moving window CAC framework to equally-sized NEMD
domains. The data from these two studies can be seen in Fig.
13. Specifically, in Fig. 13a, we maintain a constant ratio in
the CAC lattice such that the fine-scaled region is always
one-tenth the length of the entire grid, and we run simula-
tions for increasing domain sizes. We observe the CAC vs.
MD speedup reach an asymptotic value around 4.0x (fur-
ther increases in domain size did not significantly effect the
speedup). Next, in Fig. 13b, we keep the total lattice size con-
stant and vary the length of the coarse-scaled region from 0%
to 100% of the total area. Clearly, as the percentage of the lat-
tice that is coarse-scaled increases, the speedup does as well
up to a maximum value of approximately 6.5x. These studies
demonstrate the utility of using the present CAC framework
to enhance performance in large-scale simulations.

Fig. 13 Efficiency of the CAC framework vs equally-sized MD
domains. In a, the total runtimes are compared for increasing system
sizes. Here, the central fine-scaled region of the CAC lattice is always
1/10 the length of the entire grid. In b, the simulation speedup is shown
when the size of the domain remains constant, but the coarse-scaled
region increases from 0 to 100% of the lattice

8 Conclusion

In this paper, we developed a dynamic moving window CAC
framework to simulate shock wave propagation through a
two-dimensional, single-crystal lattice. Specifically,we char-
acterized the shock using both the linear Hugoniot [2] and
nonlinear Eulerian [59] shock equations to analyze the well-
known Riemann problem of a single discontinuity traveling
through an infinitemedium.TheCACmultiscale formulation
was utilized for its ability to seamlessly transition between
the fine-scaled and coarse-scaled regions, and many verifica-
tions and analyseswere conducted on the higher-dimensional
system.We elaborated on the technique to initialize the shock
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front in the lattice as well as described two moving window
methods which were incorporated into the domain. These
schemes provided a mechanism to study the evolution of the
shock over very long simulation times by preventing non-
physical wave reflections at the A–C interfaces.

We performed many shock wave simulations within the
CAC framework and used the moving window techniques
to track the shock front through two different FCC mate-
rials: Cu and Al. The unique lattice directions inherent to
the CAC formulation provided us the opportunity to study
how directional anisotropies in single crystals can give rise
to orientation-dependent shock velocities. We observed that
longitudinal shocks traveling along the [112] and

[
1̄10

]
direc-

tions of the CAC domain propagated at distinct velocities for
a given strain and particle velocity. These shock velocities
were also different from those predicted by polycrystalline
Hugoniot and Eulerian analytical models as well as previous
one-dimensional atomistic and multiscale data. From these
results, we were able to derive new Hugoniot parameters for
the CAC formulation, and longitudinal stress calculations
further validated the observed anisotropic material response.
Our data agreed qualitatively with the results from previous
NEMD studies which identified this orientation-dependence
of shock evolution in solids [86–89].

Next, in Sect. 7, we exhibited the capability and nov-
elty of the present framework by using the coarsen-refine
technique to track a propagating shock wave through the
entire grid. By leveraging concepts from previous atom-
istic and finite element schemes as well as exploiting the
unique qualities of the CAC formulation, the fine-scaled
region could travel through the domain at the speed of the
moving wave front, and we noted the significance of this for
advancing non-equilibrium multiscale research. We utilized
this techinique to study the shock’s structure and planarity
over very long runtimes which are typically unattainable
in traditional NEMD methods. Finally, we presented mul-
tiple plots comparing the efficiency of an NEMD system to
an equally-sized CAC lattice. We observed that the present
moving window multiscale scheme had significantly faster
runtimes for various domain sizes—a necessary quality for
realistic and scalable atomistic–continuum models.

The present work is innovative in its own right, but it also
opens the door to more complex research involving the use
of multiscale domains to simulate dynamic, nonlinear phe-
nomena over engineering length scales. While we focused
only on elastic shock waves in this work, we hope to expand
this formulation to model elastic-plastic shocks [65] in poly-
crystalline materials to study the role of grain boundaries on
shock evolution. Additionally, recent works have used both
atomistic [93,94] as well as multiscale [55,95,96] methods
to predict material behavior in composites and high-entropy
alloys. This work provides a framework to study shock prop-
agation through such materials. Furthermore, we would also

like to utilize machine learning algorithms in this scheme
to pass information from the mesoscale to macroscale [97].
Finally, we hope to incorporate a high-frequency wave pass-
ing technique that was first introduced in [49,54] into the
present formulation to study shock scattering and the role of
scattered waves in subsequent material behavior.

Acknowledgements This material is based upon work supported by
the National Science Foundation under Grant No. 1950488. Financial
support was also provided by the U.S. Department of Defense through
the National Defense Science and Engineering Graduate (NDSEG) Fel-
lowship Program (F-1656215698). Simulations were performed using
the Easley computing cluster at Auburn University.

Data availability Data will be made available upon request.

Declarations

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have
appeared to influence the work reported in this paper

Appendix A: Verifications

In this section, we present results from additional studies
which verify that the current CAC framework functions cor-
rectly.

A.1 Temperature equilibration

First, we verify that the two-dimensional CAC framework
used in the shock wave simulations (Fig. 4) can attain the
proper canonical ensemble in the undamped WR when the
Langevin thermostat is assigned to each TR. In particular,
we demonstrate that the system equilibrates to the proper
steady-state value over long simulation times for a range of
input temperatures. The initial random velocities of the par-
ticles are such that the system has the correct total energy
for a given temperature θ0. Furthermore, we ensure that each
atomistic TR has a length which is at least equal to the force
range of the interatomic potential, and we set the damping
parameter ζ equal to one-half the Debye frequency of the
material ( 12ωD). These specifications are based off results
from previous multiscale studies which used CADD [79] as
well as CAC [58] to characterize the domain. The tempera-
ture equilibration results for both Cu and Al can be seen in
Fig. 14.

The domain size for these simulations is as follows: 200
total columns (100 in the atomistic region and 50 in each
continuum region) and 40 total rows. Within the fine-scaled
region, there are 5 columns in each TR and hence 90 columns
in the undampedWR. Each simulation is performed for 1 ns,
and we use the equipartition theorem to calculate the tem-
perature in the WR at every time step. As stated in Sect. 3.3,
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Fig. 14 Temperature in the undamped atomistic region of the CAC
framework vs. time using the Morse potential for both a Cu and b Al.
We apply the Langevin thermostat to the TRs with the following input
temperatures: 10 K, 100 K, 200 K, 300 K, 400 K, and 500 K

the maximum temperature obtained from shock loading in
this work is ∼ 450 K, so we perform analysis for the follow-
ing temperatures: 10 K, 100 K, 200 K, 300 K, 400 K, and
500 K. In Fig. 14, we observe that in each simulation, the
temperature achieves a steady state around its mean value
with very little deviation. Hence, this confirms the imple-
mentation of the framework from Fig. 4 and shows that the
WR can maintain the correct equilibrium temperature during
long runtimes with both materials.

A.2 Stress–strain relations

Next, we identify the elastic zone of the framework and
ensure that the yield strength between a purely atomistic

domain and equally-sized CAC domain is comparable. This
is done to establish that the CAC force calculations are
accurate as well as provide a range of input strains for the
shock equations. Specifically, we compress the grid uniax-
ially along the x-direction ([112] lattice orientation) with
strains ranging from 0.01 to 0.2 and calculate the virial
stress of the domain for each input strain using the following
expression [35]:

σkl = 1

A

〈
−

∑
α

mα
(
u̇α
k − ¯̇uk

) (
u̇α
l − ¯̇ul

)

+ 1

2

∑
α,β

(α �=β)

ϕαβ r
αβ
k rαβ

l

rαβ

〉
.

(A1)

In Eq. (A1), σ is the virial (thermodynamic) stress, A is
the area of the grid, mα is the mass of particle α, u̇α

k is the
velocity in the kth direction of particle α, ¯̇uk is the average
velocity in the kth direction of all particles in the given area,
ϕαβ is the first derivative of the potential energy at a distance
rαβ between particles α and β (ϕαβ = ∂	

∂rαβ ), and rαβ
k is

the distance in the kth direction between particles α and β.
Since we consider uniaxial compressive strains for the shock
simulations, we only calculate the longitudinal stress (σkk =
σxx ) in this section and do not perform any tensile tests. The
stress vs. strain results for both Cu and Al at 450 K can be
seen in Fig. 15.

For each atomistic simulation, the domain contains 100
columns and 20 rows, and the runtime is 100 ps with an
equilibration time of 50 ps. The parameters for the CAC sim-
ulations are the same, but the lattice described in Sect. 3.1
(with damped atoms) is utilized instead of the fully atom-
istic grid. Since 450 K is the highest temperature achieved
in the shock simulations, we specifically wanted to iden-
tify the yield point at this extreme temperature to inform
our shock calculations. In Fig. 15, we observe that the lin-
ear elastic region of the CAC framework is nearly identical
to that of the atomistic framework for both Cu and Al with
yielding occurring at compressive strains of approximately
10% and 9% respectively. After this point, dislocations begin
appearing throughout the lattice in both the coarse-scaled and
fine-scaled regions, sowemaintain compressive strains≤9%
forCuand≤8%forAlwhenusing theHugoniot andEulerian
shock equations. We note that experimental HEL values for
Cu and Al are on the order of 10s to 100s of MPa largely due
to pre-existing defects present in bulk metals. Since homoge-
neously nucleating a dislocation in a perfect crystal is much
harder than moving a dislocation which already exists in the
microstructure, it makes sense that the HEL values observed
in the present work are higher than those obtained experi-
mentally.
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Fig. 15 Virial stress of the domain as a function of strain for both a Cu
and bAl. Simulations were performed for both a purely atomistic (blue)
and CAC (red) framework. In each case, the system is equilibrated to
450 K, and the compression is applied uniaxially along the x-direction

These results confirm the validity of the CAC force cal-
culations, and they are also congruent with results from
previous CAC studies [42,98,99].

Appendix B: Additional information on 2D
CAC elements

B.1 Mass matrix

We now elaborate on the isoparametric formulation of the
mass matrix for a given continuum element in the 2D CAC

framework. As stated in Sect. 4.2, element connectivity is
not required in CAC. Hence, this derivation is general and
can be applied to any element in the domain assuming the
physical nodal coordinates of that element are known.

The isoparametric shape functions of a four-node element
are given as follows:

φ1(ξ, η) = 1

4
(1 − ξ)(1 − η) (B2)

φ2(ξ, η) = 1

4
(1 + ξ)(1 − η) (B3)

φ3(ξ, η) = 1

4
(1 − ξ)(1 + η) (B4)

φ4(ξ, η) = 1

4
(1 + ξ)(1 + η) (B5)

which can be stored in a matrix as

�(ξ, η) =
[
φ1 0 φ2 0 φ3 0 φ4 0
0 φ1 0 φ2 0 φ3 0 φ4

]
(B6)

whereφi = φi (ξ, η). In order tomap the element between the
global and natural coordinate system, we need the Jacobian
which is given as follows:

J =
[
∂φ1/∂ξ ∂φ2/∂ξ ∂φ3/∂ξ ∂φ4/∂ξ

∂φ1/∂η ∂φ2/∂η ∂φ3/∂η ∂φ4/∂η

] ⎡
⎢⎢⎣
x1 y1
x2 y2
x3 y3
x4 y4

⎤
⎥⎥⎦ (B7)

where (x1, y1), (x2, y2), (x3, y3), and (x4, y4) are the posi-
tions of the four element nodes in the global coordinate
system. We note that the numbering goes counterclockwise
starting from the left node as seen in Fig. 16.

Expanding out Eq. (B7) and taking the appropriate deriva-
tives of the shape functions, we obtain the four components
of the Jacobian:

J1 = x1
4

(η − 1) + x2
4

(1 − η) + x3
4

(η + 1) − x4
4

(η + 1) (B8)

J2 = y1
4

(η − 1) + y2
4

(1 − η) + y3
4

(η + 1) − y4
4

(η + 1) (B9)

J3 = x1
4

(ξ − 1) − x2
4

(ξ + 1) + x3
4

(ξ + 1) + x4
4

(1 − ξ) (B10)

J4 = y1
4

(ξ − 1) − y2
4

(ξ + 1) + y3
4

(ξ + 1) + y4
4

(1 − ξ). (B11)

Hence, the Jacobian determinant is

det(J) =
∣∣∣∣J1 J2
J3 J4

∣∣∣∣ = J1 J4 − J2 J3 (B12)

which can be simplified using a software program like Wol-
fram Mathematica.
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Fig. 16 Mapping from global to
natural coordinates of a
two-dimensional CAC element

The expression for the mass matrix of the 2D element in
global coordinates is given as follows:

M = ρ

∫
A

�T� d A. (B13)

Writing this in natural coordinates:

M = ρ

∫ 1

−1

∫ 1

−1

[
�T� · det(J)

]
dξdη (B14)

where

�T� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 0
0 φ1

φ2 0
0 φ2

φ3 0
0 φ3

φ4 0
0 φ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
φ1 0 φ2 0 φ3 0 φ4 0
0 φ1 0 φ2 0 φ3 0 φ4

]
(B15)

and ρ is the area of the element. As a result, we can use the
expressions for the shape functions as well as det(J) from
Eq. (B12) to calculate all sixty-four components of the mass
matrix for the given element. It turns out, however, that only
ten of these components are unique, so we can simplify the
mass matrix significantly as follows:

M =

⎡
⎢⎢⎣
M11 M13 M15 M17

M13 M33 M35 M37

M15 M35 M55 M57

M17 M37 M57 M77

⎤
⎥⎥⎦ (B16)

where

Mi j = ρ

∫ 1

−1

∫ 1

−1

[
φiφ j · det(J)] dξdη. (B17)

After obtaining the cumulative force on each node in the
element through Gaussian integration (see Appendix B.2),

we can then calculate the respective accelerations as follows:

⎡
⎢⎢⎣
ü1
ü2
ü3
ü4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
M11 M13 M15 M17

M13 M33 M35 M37

M15 M35 M55 M57

M17 M37 M57 M77

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣
f1
f2
f3
f4

⎤
⎥⎥⎦ . (B18)

In this work, we use the lumped mass matrix approximation,
and specifically, the row-summethod. Hence, we can further
simplify our calculations and sum the rows of themassmatrix
such that

M1 = M11 + M13 + M15 + M17 (B19)

M2 = M13 + M33 + M35 + M37 (B20)

M3 = M15 + M35 + M55 + M57 (B21)

M4 = M17 + M37 + M57 + M77. (B22)

Therefore, we arrive at the final result for the accelerations
of the four nodes:

⎡
⎢⎢⎣
ü1
ü2
ü3
ü4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
f1/M1

f2/M2

f3/M3

f4/M4

⎤
⎥⎥⎦ . (B23)

For the sake of completeness, we provide the expressions
for the ten unique components of the two-dimensional mass
matrix below. As can be seen, each of these terms is strictly a
function of the four nodal positions of the element in the
global coordinate system as well as the density ρ. Thus,
assuming that we know the global coordinates, we can calcu-
late each component of the mass matrix and thereby obtain
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the acceleration of each node.

M11 = ρ

36
[(3x1 − x3)(y2 − y4) + x2(2y4 + y3 − 3y1)

+x4(3y1 − 2y2 − y3)] (B24)

M13 = ρ

72
[x1(3y2 − y3 − 2y4) + x2(y4 + 2y3 − 3y1)

+x3(y1 − 2y2 + y4) + x4(2y1 − y2 − y3)] (B25)

M15 = ρ

72
[(x1 − x3)(y2 − y4) − (x2 − x4)(y1 − y3)]

(B26)

M17 = ρ

72
[x1(2y2 + y3 − 3y4) + x2(y4 + y3 − 2y1)

−x3(y1 + y2 − 2y4) + x4(3y1 − y2 − 2y3)] (B27)

M33 = ρ

36
[x1(3y2 − 2y3 − y4) + 3x2(y3 − y1)

+x3(2y1 − 3y2 + y4) + x4(y1 − y3)] (B28)

M35 = ρ

72
[x1(2y2 − y3 − y4) − x2(2y1 − 3y3 + y4)

+x3(y1 − 3y2 + 2y4) + x4(y1 + y2 − 2y3)] (B29)

M37 = ρ

72
[(x1 − x3)(y2 − y4) − (x2 − x4)(y1 − y3)]

(B30)

M55 = ρ

36
[(x1 − 3x3)(y2 − y4) − x2(y1 − 3y3 + 2y4)

+x4(y1 + 2y2 − 3y3)] (B31)

M57 = ρ

72
[x1(y2 + y3 − 2y4) − x2(y1 − 2y3 + y4)

−x3(y1 + 2y2 − 3y4) + x4(2y1 + y2 − 3y3)] (B32)

M77 = ρ

36
[x1(y2 + 2y3 − 3y4) + x2(y3 − y1)

−x3(2y1 + y2 − 3y4) + 3x4(y1 − y3)] (B33)

B.2 Gaussian integration

For this work, we calculate the internal force density using
Gaussian integration, so we now elaborate on this method
for a 2D coarse-scaled element. In Gaussian integration, the
elemental forces are approximated by the forces at both the
nodes as well as the integration points. Thus, while more
complex to implement, Gaussian integration typically results
in more accurate force calculations when using complex
geometries or large elements. For all of our simulations,
we use twelve-point Gaussian integration such that each
element, in addition to the four nodes, contains twelve inte-
gration points. These integration points are chosen such that
there are two along each edge of the element and four on
the interior surface as seen in Fig. 17. In particular, both the

Fig. 17 Two-dimensional CAC coarse-scaled element. Nodes are
shown in black, edge integration points are shown in green, surface
integration points are shown in orange, and lattice points are shown in
grey

edge and surface integration points are chosen to be equal
to the lattice points which directly neighbor the nodes, and
this is comparable to techniques used in other multiscale
schemes such as cluster-QC [100] and three-dimensional
CAC [67].

The forces within the 2D element are thus split into three
distinct parts associated with the (1) nodes, (2) edges, and
(3) surfaces as seen in the equation below:

Fint = FNint + FEint + FSint . (B34)

The first term in Eq. (B34) represents the forces at the
nodes and is given by Eq. (B37), where we note that all
of the weights equal one. Additionally, each shape func-
tion equals one at its nodal location and zero everywhere
else. Equation (B37) would be the only force used in nodal
integration—a technique which effectively does not alter the
forces obtained using the interatomic potential function and
relative displacement of particles. Although nodal integra-
tion is more computationally efficient, it is less robust than
Gaussian integration and only accurate for simple geome-
tries and relatively small elements, so it is not used in this
work.

The second two forces in Eq. (B34) are given as follows:

FEint =
8∑
j=1

(w j,x · w j,y)�( j)fint ( j) (B35)

FSint =
12∑
j=9

(w j,x · w j,y)�( j)fint ( j). (B36)

In Eqs. (B35) and (B36), the summations occur over the eight
edge integration points and four surface integration points
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respectively. Furthermore, the terms w j,x and w j,y are the
weights of the integration points along the x and y direc-
tions. Finally, �( j) is the shape function vector at the given
integration point while fint ( j) is the force of the integration
point obtained through the potential function. For the sake
simplicity, we do not write out the full expressions of these
terms, but the expansion would be similar to that shown for
the nodal forces in Eq. (B37).

FNint = wN1�(N1)fint (N1) + wN2�(N2)fint (N2)

+ wN3�(N3)fint (N3) + wN4�(N4)fint (N4)

=

⎡
⎢⎢⎣

φ1(N1)

φ2(N1)

φ3(N1)

φ4(N1)

⎤
⎥⎥⎦ fint (N1) +

⎡
⎢⎢⎣

φ1(N2)

φ2(N2)

φ3(N2)

φ4(N2)

⎤
⎥⎥⎦ fint (N2)

+

⎡
⎢⎢⎣

φ1(N3)

φ2(N3)

φ3(N3)

φ4(N3)

⎤
⎥⎥⎦ fint (N3) +

⎡
⎢⎢⎣

φ1(N4)

φ2(N4)

φ3(N4)

φ4(N4)

⎤
⎥⎥⎦ fint (N4)

=

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ fint (x1, y1) +

⎡
⎢⎢⎣
0
1
0
0

⎤
⎥⎥⎦ fint (x2, y2)

+

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ fint (x3, y3) +

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ fint (x4, y4)

= [
fint (x1, y1) fint (x2, y2) fint (x3, y3) fint (x4, y4)

]T
(B37)
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