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Coupled atomistic-continuum methods can describe large domains and model dynamic material behavior for
a much lower computational cost than traditional atomistic techniques. However, these multiscale frameworks
suffer from wave reflections at the atomistic—continuum interfaces due to the numerical discrepancy between
the fine-scaled and coarse-scaled models. Such reflections are non-physical and may lead to unfavorable
outcomes such as artificial heating in the atomistic region. In this work, we develop a technique to allow the
full spectrum of phonons to be incorporated into the coarse-scaled regions of a periodic concurrent atomistic—
continuum (CAC) framework. This scheme tracks phonons generated at various time steps and thus allows
multiple high-frequency wave packets to travel between the atomistic and continuum regions. Simulations
performed with this method demonstrate the ability of the technique to preserve the coherency of waves
with a range of wavevectors as they propagate through the domain. This work has applications for systems
with defined boundary conditions and may be extended to more complex problems involving waves randomly
nucleated from an impact within a multiscale framework.

1. Introduction

Multiscale modeling techniques endeavor to link observable mate-
rial behavior to effects at lower length scales. To this end, coupled
atomistic—continuum (A-C) frameworks have been developed since
the early 1990s to integrate the microscale and macroscale into a
single computational domain [1]. In particular, concurrent A-C methods
connect the spatial scales directly such that the continuum region
surrounds an inner atomistic region containing the phenomena of inter-
est. Some examples of concurrent frameworks include the Coupling of
Length Scales (CLS) method [2], the Coupled Atomistic Discrete Dislo-
cation (CADD) method [3], and the Quasicontinuum (QC) method [4].
One of the central challenges with concurrent schemes is ensuring
compatibility at the A-C interfaces so as to mitigate ghost forces in
static systems and spurious wave behavior in dynamic systems [5]. Typ-
ically, such non-physical phenomena arise because the spectrum of the
continuum model has a much smaller cutoff frequency than that of the
atomistic model [6]. Although many techniques have been developed
to reduce ghost forces in static frameworks [7,8], the advancement of
dynamic multiscale methods is nevertheless hindered by spurious wave
reflections at the A-C interfaces.

To overcome this obstacle, most concurrent methods incorporate
techniques to either minimize or absorb transient waves impinging on
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the A—C interfaces [9-12]. An early scheme developed by [13] incorpo-
rates Langevin dynamics into the fine-scaled equations of motion and
dampens specified particles in a “stadium” region around the inner
atomistic core. Specifically, the method couples a one-dimensional
atomistic domain to a linear elastic continuum and reduces wave
reflections at the A-C interfaces by calculating the time-history-kernel
(THK). This approach has proven to be effective, and variations of it
have been introduced into other concurrent multiscale frameworks such
as CADD [9] and the Bridging Scale Method (BSM) [14]. However,
because the THK method suffers from issues related to computational
expense and scalability, various BSM frameworks have developed more
efficient THK techniques, but such schemes are still only effective for
linear solids [10,15,16]. Other approaches to reduce wave reflections
include minimizing the reflection coefficient at the A-C boundaries [17,
11] as well as applying digital filters to remove high-frequency phonons
that travel back into the fine-scaled region [18,19].

Because all of these methods either minimize or absorb waves
impinging on the A-C interfaces, information from short-wavelength
phonons is lost. Furthermore, damping methods will inevitably elimi-
nate fine-scaled wave data which should instead be transmitted across
the boundaries [20]. One of the first attempts to solve this problem
came in [21] which enhances a space-time discontinuous Galerkin
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finite element method by incorporating an enrichment function into
the system. This technique has since been used to study both wave
and crack propagation through materials, and it can successfully con-
serve energy and transmit high-frequency waves across the A-C inter-
faces [22]. Unfortunately, the framework in [21] requires extra degrees
of freedom in the coarse-scaled regions, and the enriched functions
must be removed at the continuum nodes in order to incorporate
the short-wavelength phonons. Therefore, conserving the correct wave
phase is challenging, so this technique cannot be easily used to study
dynamic problems which require phonon coherency. As a result, a
concurrent multiscale method is needed which would preserve phonon
coherency and permit the full range of phonons to travel across the A-C
interfaces.

Previous work has developed a technique to transfer high-frequency
phonons across length scales within a concurrent atomistic—continuum
(CAQ) framework [20]. CAC is a dynamic multiscale method which
follows the solid state physics model of crystals whereby the structure
is continuous at the lattice level but discrete at the atomic level,
and a single set of governing equations is used throughout the entire
domain [23]. As a result, the wave transfer problem reduces to a nu-
merical problem caused by the discrepancy in finite element mesh sizes
between the atomistic and continuum regions. This is a long-standing
obstacle in continuum modeling and was regarded by Zienkiewicz as
one of the great unsolved problems in the Finite Element Method [24].
The work in [20] developed a supplemental basis for the CAC solution
along with a new lattice dynamics (LD)-based finite element scheme
to pass a single high-frequency phonon between the atomistic and
continuum regions. This technique allowed a wave packet with any
wavevector and frequency to travel across the A—C interfaces without
introducing new degrees of freedom into the coarse-scaled regions.
However, this method could only be used for a single phonon and was
demonstrated in a non-periodic domain.

In the present article, we develop a technique based upon the work
in [20] to pass multiple high-frequency phonon wave packets between
the atomistic and continuum regions of a periodic CAC framework.
This method uses the LD interpolation scheme to incorporate short-
wavelength displacements into the continuum regions and introduces
novel numerical techniques into the formulation to track a variety
of wave packets across time. Specifically, two Fourier transforms are
performed (both before and after the phonon is generated), and the
difference in amplitude coefficients are stored in a master array in
order to track waves of any wavevector at various time steps. Such
a technique will be useful in real-world applications which involve
the interaction and transmission of multiple waves within a single
atomistic—continuum domain. The remainder of this paper is organized
as follows: Section 2 summarizes the finite element implementation of
the CAC method; Section 3 describes the one-dimensional monatomic
framework; Section 4 presents simulations performed without the LD
formulation and showcases the numerical discrepancy at the A-C inter-
faces; Section 5 provides a mathematical background of the technique
formulated in [20] and demonstrates this technique with a single
phonon; Section 6 gives a detailed explanation of the LD method
for multiple waves; Section 7 presents benchmark simulations with
multiple phonons within a periodic CAC domain; finally, Section 8
concludes the article and provides suggestions for future work.

2. The CAC method

In this section, we discuss the finite element implementation of
CAC, and more details can be found in [25-27]. The mathematical
foundation of CAC is Atomistic Field Theory (AFT), and the govern-
ing equations of AFT are ensemble averages of partial differential
equations which are similar in form to the balance laws of classical
continuum mechanics [28,29]. Recent work has reformulated these
equations using the mathematical theory of distributions in which the
quantity definitions as well as the balance equations themselves are
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valid instantaneously [23]. As in continuum mechanics, the analytical
solution to these equations is not readily obtainable, and thus we utilize
numerical schemes such as the finite element method (FEM) to solve
them. In this work, we refer to such a formulation as ‘the CAC method’.
Using the standard definitions of internal force density and kinetic
temperature as derived in [30,31], we can rewrite the instantaneous
balance equation of linear momentum as follows [25]:
Pt (x) = £ (x) +£%(x) (@)

int

where u*(x) is the displacement of the ath atom in the unit cell located
at point x, p* = m*/AV is the volumetric mass density, m* is the mass
of the ath atom, AV is the volume of the unit cell, f (x) is the internal
force density, and f*(x) is the force density due to external forces and
temperature. The terms on the right hand side of Eq. (1) are given by

miky
a a p a a a
£¢ (x) = /Q<x’>ﬁz{f [ (0 — v’ (] X', £100 = £, 00 = T2 By T

(2)

where fZ (x) is the external force density, M is the total mass of the
atoms within a unit cell, 7% is the kinetic temperature, and kj is the
Boltzmann constant. Here, the internal force density is a nonlinear,
nonlocal function of relative displacements between neighboring atoms
within a given cutoff radius, and it can be obtained exclusively from the
interatomic potential function [32].

We calculate the numerical solution of the governing equation
(Eq. (1)) by discretizing the material with finite elements such that each
element contains a collection of primitive unit cells. Furthermore, each
finite element node represents a unit cell which is itself populated by
a group of atoms. At the lattice level, we use interpolation within an
element to approximate the displacement field as follows [27]:

(%) = P (x)U;. 3

Here, 21%(x) is the displacement field for the ath atom within a given
element, @,(x) is the shape function, and U is the displacement of the
ath atom within the éth element node. We let £ = 1,2, ...,n where n is
the total number of nodes in the element.

Using the method of weighted residuals, we obtain the weak form of
the governing equation by multiplying Eq. (1) with a weight function
@, (x) and integrating over the entire domain:

/ [p @, (®)ii*(x)] dx = / [@,0f%, ()] dx + / [@, ()] dx.
Q(x) Q%)

4

Substituting Egs. (2) and (3) into Eq. (4), we get the weak form of the
governing equation which can be represented in matrix form as

MU = Fg, + F° (5)

where

M* = / @, 00@:0] dx ©®)

F* / ?,(x) / Zf P (VUE - D(x)UL | dx'dx %)
2(x) Q) jo

F* = / [@,)f%(x)] dx (8)
Q%)

In the present formulation, we approximate the inertial term using
the lumped mass matrix. Additionally, no external forces are applied
and temperature is incorporated through the use of a thermostat as
in [33,20]. The internal force density F¢ is the most computationally
demanding term, and we evaluate it numerically using numerical in-
tegration. Finally, the second order differential equation (Eq. (5)) is
solved through the velocity Verlet integration algorithm. By using this
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Fig. 1. Schematic of the CAC domain [34].

finite element implementation of AFT, a majority of the degrees of free-
dom in the continuum regions are eliminated. For critical regions where
atomistic behavior is important, the finest mesh is used such that the
element length is equal to the atomic equilibrium spacing. In this way,
CAC uses AFT to produce a unified theoretical framework between the
atomistic and continuum regions. CAC frameworks are defined as AFT
domains which contain both fine-scaled and coarse-scaled regions [34].

3. Computational setup
3.1. Domain geometry

In this work, the CAC framework uses the conventional finite ele-
ment formulation with linear interpolation functions discussed above.
To readily demonstrate the nature of wave transmission and reflection
at the A—C interfaces, we develop a one-dimensional CAC domain using
an in-house C++ code. The monatomic chain consists of N particles
which are split into three regions as seen in Fig. 1. The particles in each
coarse-scaled (continuum) region are separated by a distance of nr;, and
are referred to as nodes in the present work. Here, n is some positive
integer (6 in this work), and r, is the equilibrium spacing determined by
the potential function. These two coarse-scaled regions flank the inner
fine-scaled (atomistic) region on either side. The particles in the fine-
scaled region are separated by a distance of r, and are referred to as
atoms in the present work. Because CAC produces a unified atomistic—
continuum framework using a single set of governing equations, the
atoms and nodes have identical properties with the only difference
being their inter-particle spacing. Hence, all force calculations are
fully nonlocal, and the interatomic potential is the only constitutive
relation [35]. As a result, the particles at the atomistic-continuum
interfaces (x,, and x, r) interact with each other directly without
generating ghost forces [8,36]. We employ standard periodic boundary
conditions in every simulation.

3.2. Integration algorithm

The CAC governing equation (Eq. (1)) is a second order ordinary
differential equation in time, and we solve it using the velocity Verlet
algorithm. The time step used in the integration algorithm is chosen to
be 4t = 0.001 ps in order to minimize numerical error.

3.3. Interatomic potential and material parameters

We use the modified Morse interatomic potential function to calcu-
late the integrand of the internal force density (Eq. (2)). The standard
Morse potential was modified by [37] to improve the agreement with
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Fig. 2. Phonon spectral energy density contour plot of a CAC monatomic chain
calculated using the Nose-Hoover thermostat. The red line represents the analytical
dispersion relation obtained from Lattice Dynamics, and the simulation was performed
at 10 K.

Table 1
Material constants and Morse parameters of Cu [37].

o (g/em®)  ry (A)
Cu 63.55 8.96 2.5471

Element a A1)

1.1857

mass (u) D, (eV) B

0.5869 2.265

experimental values for the thermal expansion of materials. The mod-
ified Morse potential only considers first nearest neighbor interactions
and is given by the following expression [37]:

Dy
2B-1
where r;; is the magnitude of the displacement between particle i and j,
and r, is the distance at which the potential reaches the minimum. We
perform simulations with Cu, and the parameters for this material are
given in Table 1. Here, we note that r, is equivalent to the equilibrium
spacing along the [110] lattice direction of Cu.

() = [6—20\/§(m—’0) — 2 Be~rij —’o)/\/E] 9

4. Numerical discrepancy at the A-C interface

In this section, we showcase the numerical discrepancy between the
fine-scaled and coarse-scaled regions when modeling high-frequency
phonons in a standard CAC formulation. To do this, we reproduce the
dispersion relation using the domain in Fig. 1.
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Fig. 3. Phonon wave packet simulations performed with the following wavevectors: (a) 0.01 z/r,, (b) 0.05x/ry, (c) 0.1/ry, and (d) 0.2z /r, [34].

The dispersion relation of the CAC framework is obtained by cal-
culating the phonon spectral energy density which is defined as the
average kinetic energy per unit cell as a function of wavevector k and
angular frequency w. In 1D, the spectral energy density is given as
follows [38]:

2

'[0 N
47rZ:)N /o { 2 it (1) X exp ik - x,,(tg) — ioot] } dt 10)

n=1

ok, w) =

where 7, is the total simulation time, N is the total number of particles,
u,(¢) is the velocity of particle » at time 7, and x,,() is the initial position
of particle n. For this simulation, the monatomic chain contains 260
atoms in the fine-scaled region and 20 nodes in each coarse-scaled
region for a total of 300 particles, and the domain is maintained at
10 K using the Nose-Hoover thermostat [39]. Spectral energy density
calculations are compared to the analytical dispersion relation obtained
from Lattice Dynamics (LD), and this relation for a one-dimensional
monatomic crystal is given by the following equation:

l4C (kr0>
w=1/— [sin | —
m 2

where C is the elastic constant defined as the second derivative of
the interatomic potential function at r, in 1D. Results are shown in
Fig. 2. Here, the contours indicate the magnitude of the spectral energy
density for each (k, w) combination, and the red line represents the
analytical relation.

In Fig. 2, we observe that the phonon dispersion relation obtained
in the fine-scaled region of the CAC framework is identical to the

(1)

analytical curve from LD. However, the dispersion relation for the
coarse-scaled regions is only accurate for phonons whose wavevector
is smaller than a critical value k. This critical wavevector is given by
the following equation [40]:

< e} . (12)

ke =mlflx{ sin <%> —sin(%)
Here, € is the allowable error, and L = 6r, is the element length in
the coarse-scaled regions. We choose an allowable error of ¢ = 5%
which corresponds to a critical wavevector of k- = 0.064 z/r,, and a
critical wavelength A- = 27/kc = 7.96 nm. Therefore, only phonons
with wavelengths longer than 7.96 nm can pass into the coarse-scaled
regions with a reflection of less than 5%. These results are consistent
with spectral energy density plots obtained in previous works which
use the CAC method for phonon heat transport and the prediction of
phonon properties [33,40,20].

Phonon wave packet simulations from previous studies have con-
firmed that the reflections at the A-C interface are a direct result
of the numerical discrepancy between the atomistic and continuum
regions [33,20,34]. An example of this reflection phenomena can be
seen in Fig. 3. This mismatch is attributed to the dispersive nature
of the frequency-wavevector relation which comes from the fact that
the nonlocal internal force-displacement relationship is the only con-
stitutive relation in CAC [27]. Hence, the coarse-scaled regions in
CAC simulations impede elastic waves with wavelengths shorter than
27 /kc. To allow these high-frequency waves to pass smoothly from the
atomistic to the continuum region, the CAC finite element formulation
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needs to be modified to allow the full population of phonon waves to
propagate across the A-C interface.

5. Lattice dynamics finite element formulation
5.1. Lattice dynamics method

In this section, we present a technique that was first formulated
in [20] to overcome the issue of spurious wave reflections at the A-
C interfaces, and we add extra details where necessary. If we consider
a typical polyatomic crystalline system with N* particles in each unit
cell, then the standard approximation of the displacement field is given
by Eq. (3). However, the LD-based method modifies this equation such
that the particle displacements are now approximated as follows:

zd
u“(x,z):Zqij(x)[Uj‘(z)—Ugj(z)]+ug'(x,z) a=12,...,N*" (13)
i1

In this equation, u*(x,7) is the new displacement at time t of the ath
atom within a given unit cell located at position x; d is the dimen-
sionality of the system; 2¢ is the total number of nodes in an element;
®;(x) is the conventional tri-linear shape function; U;‘(t) is the total
displacement of the ath atom in the jth element node at time ¢; U;"j(t)
is the short-wavelength displacement (denoted by the subscript s) of the
ath atom embedded in the jth element node at time #; and uf(x, ) is the
short-wavelength displacement at time ¢ of the ath atom within a unit
cell at any material point x (not necessarily a nodal position). Since the
tri-linear shape functions satisfy partition of unity (2,211 D;(x) = 1),
we can rewrite Eq. (13) as follows:

od
w0 = Y, @0 [0 - U0 +uixn)] a4
j=1
As a result of this new basis, the CAC governing equation must be
updated to account for the modified displacement interpolation which
is now a function of time:
pMu%(x, 1) = f* (x) + f*(x). (15)

int

In Eq. (14), the additional components of the displacement field ap-
proximation are UJ.(r) and ul(x,r) which represent the short-
wavelength displacements that need to be calculated. We note that at a
given node j, U‘;j(t) = u!(x, 1. Therefore, the displacements of particles
at nodal locations remain unchanged when introducing the short-
wavelength basis function. Instead, only the neighboring particles at
non-nodal unit cells located at material points x within an element get
modified by Eq. (14). These enhanced displacements will influence the
force calculations at nodal locations which will allow short-wavelength
phonons to pass through the coarse-scaled region.

For a harmonic approximation, atomic displacements can be decom-
posed into a linear combination of normal modes with a discrete set
of wavevectors where the number of wavevectors equals the number
of unit cells [41,42]. If we only consider the contributions from short-
wavelength phonons with k > k., then the displacement of the ath
particle in a unit cell at undeformed position x is given as follows:

1 > e Owenp i (k- x—wyt)]. (16)

w(x,f) = ———
s (Nlm(x)l/Z k(o)

In Eq. (16), each linear combination of normal modes represents the
contribution from a wave with wavevector k and phonon branch v.
Additionally, N, is the total number of unit cells in the system; m“ is the
mass of the ath particle in the /th unit cell; e is the polarization vector
that determines which direction each particle moves; Oy, is the normal
mode coordinate which gives both the amplitude of the wave and the
time dependence; and wy, is the angular frequency corresponding to
wavevector k. We can then rewrite Eq. (16) to obtain the following
expressions for U‘;j(t) and u’(x, 1) [20]:

U= Y Uk ep i (k% - 0)] an
A ky(k>ke)
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1 .
ud(x, 1) = — 2 ey Ul exp [l (k-x- a)kvt)] (18)
A kv(k>ke)
where N, represents the total number of unit cells in only the atomistic
region, and Uy is the amplitude. The short-wavelength displacement at
an unknown position x and time ¢ in the coarse-scaled region is linked
to information at a known position x, and time ¢, in the fine-scaled
region as follows:
-
Ny kv(k>ke)

L Z ex, Uy, (X0, )exp [i (k - AX — kaAt)] . (19)

N4 kv(k>ke)

uf(x,1) eﬁvUI‘:’v(xo, to)exp {i [k - (X — Xq) — o, (t — IO)] }

Here, we have only shown the expression for u’(x,7) as the expression
for Ugj(t) would have the same form. In Eq. (19), 4x = x—Xx,, represents
the spatial distance between the current unit cell at location x in the
continuum region and the reference unit cell at undeformed location x,,
in the atomistic region. Additionally, Ar = r—¢, represents the difference
between the current time ¢ and the time #, at which U} (xo,t)) was
calculated.

We can use Eq. (19) to calculate ul(x, 1) [and Ugj(t)] and then
substitute these expressions into Eq. (14). As a result, short-wavelength
effects will now be incorporated into u/(x’) from Eq. (2) which will
update the internal force calculation. Specifically, the forces at the
nodes will now contain information from the entire spectrum of phonon
waves: low-frequency data from linear interpolation and high-
frequency data from LD calculations. Therefore, it is clear that an
accurate determination of u?(x, ) and U‘;j(t) is crucial to achieve proper
force matching, and this requires calculating the amplitude Uy (xy,%))
of each short-wavelength phonon mode. We derive this amplitude in
the following section.

5.2. Determining the amplitude of the short-wavelength phonon mode

We can represent the short-wavelength displacement of the ath
particle at undeformed position x; and time ¢ as follows:

u?(x/-,t) = Z Al"(’vezvexp [i (k X — a)kvt)] + Bl‘zvezvexp [i (k X+ wkvt)] .
k,v

(20)

As before, we have only shown the expression for uf(x;,?) as the same
analysis applies to Ug; (0. Eq. (20) is a general expression for the short-
wavelength displacement, but it is understood that x; = x, and 1 = ¢,
in this example. Here, A7 and Bj are the two unknown coefficients
computed for each mode which represent both parts of the coefficient
Uy (xg.19)- Hence, the goal is to calculate A} and By at ¢, as these
coefficients will then be applied to the short-wavelength calculation
(Eq. (19)) at every subsequent time step.

To find these amplitudes, we must take the discrete Fourier trans-
form (DFT) of both the initial displacements uj.‘ and initial velocities v;‘
in the atomistic region as shown below:

N,-1

Cy = Z ufexp [-i (k-x;)] 21)
j=0
Ny-1

Dﬁ = Z Vj.‘exp [—i (k . x/)] . (22)
Jj=0

where x; = jr, is the position of the jth unit cell in the undeformed
configuration with r,, being the equilibrium spacing. We can then relate
the modal amplitude in Eq. (21) to the phonon modes in Eq. (20)
evaluated at ¢ = 0 for a specific wavevector k:

Cy =) ul(x;, 0)exp [—i(k - x))]

= ZAﬁveﬁvcxp [i (k- x; —k-X; -y, 0)]
v
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Fig. 4. High-frequency phonon wave packet simulation performed with the LD interpolation method (k = 0.27/r,).

+ By e, exp i (k-x; —k-X; + @,0)]
Z (AF, + BE ) ek . (23)

kv

Next, we can perform a similar analysis for the modal amplitude of the
velocities in Eq. (22) by taking the derivative of Eq. (20) with respect
to f:

= 2 v?(xj, 0)exp [—i(k . xj)]
v
= Z—iwkvAﬁvekvexp[ (k- x; —k-x; —kaO)]
12
+ iwy, Bl‘:veﬁvexp [i (k-x; —k-X; + ,0)]

Z — AL ) iy €L . (24)

Finally, we arrive at a system of two equations with the two unknowns
Ay and B

k'
Ny-1
= D wexp i (k-x;)] = ) (AF, + By, ) e, (25)
o ”
Di = Z viexp [—i (k- x;)] = z (BE, — AY)) ion €l . (26)
Jj=0 v

Therefore, the DFTs of displacement and velocity for the ath particle
within each unit cell produce a 2v by 2v matrix to solve for the coef-
ficients A} and B} corresponding to a given wavevector k. We solve
these equations for a one-dimensional monatomic chain in Appendix.

5.3. Passing a single high-frequency wave packet from atomistic to contin-
uum

We now present a 1D wave packet simulation performed with the
LD interpolation method. The results can be seen in Fig. 4, and k =
0.27/ry in this case. Hence, we can directly compare the results in
Fig. 4 to the results in Fig. 3d. We observe that the LD interpolation
scheme permits the entire phonon wave packet to travel across the A—-
C interface from the atomistic to the continuum region with a >99.5%
transmission. This is in contrast to the complete reflection seen in
Fig. 3d and is congruent with the results from previous studies [20].
Additionally, by enabling periodic boundary conditions, we observe
that the LD interpolation method allows the high-frequency phonon
wave packet to travel between the two outer continuum regions and
back to the center atomistic region. The transmission demonstrated in
Fig. 4 validates the implementation of the LD interpolation method.

6. Lattice dynamics technique for multiple waves
6.1. Background and preliminary approach

While the method presented in the previous section has been shown
to efficiently pass high-frequency phonons between the atomistic and
continuum regions of a CAC domain, the scheme is limited to single
wave packets of a specified wavevector. This is because the short-
wavelength amplitude information can only be stored for one wave
at a time to prevent data from being overwritten. In this section, we
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Fig. 6. Schematic of two phonon wave packets traveling through a CAC domain.
present an LD interpolation method to be used with multiple waves For multiple wave packets, a straight-forward extension to Eq. (20)
and wavevectors in a single CAC domain. We recall the expression for is given by
the displacement field approximation from Section 5.1: .
wi(x;, =Y D AL el exp {i[k-x; — o, —1)]} (28)
2d kv [
u(x,1) =) @;(x) [Uj.(r) U0 +ui(x,0). 27) + By, e exp {i [k x; + o, (1= 1)] }
=1

where the inner summation occurs over all wave packets / nucleated

Here, we note that both Uf;(1) and u{(x,7) contain all the short- at time #,. The coefficients A® = and B®  described in Section 5.2 now

. . f . . . kv.! kv,
wavelength information of a given wave packet at time ¢. Again, since correspond to each wave packet /. The problem with this approach is
the same analysis applies to both terms, we only focus on u(x,?) in this that except for the first wave packet, the other wave packets generated
section. at time 7, cannot be tracked over time. As a result, any new phonon
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initialized at time 7, # O will be reflected off the A-C interface as
seen in Fig. 5. Specifically, the main issue lies in keeping track of each
individual phonon generated at time ¢, without losing information from
other phonons. In an attempt to overcome this difficult problem, we
provide a detailed solution below.

6.2. Solution to the preliminary approach

Each wave packet can be characterized by its wavevector and
frequency combination (k, w), its short-wavelength amplitudes (Al"(‘vJ
and BID((\/,I)’ and the time at which it was initialized (7;). These terms
must be tracked and stored correctly in order to allow multiple waves
to pass across the A-C interfaces. To this end, we first rewrite Eq. (28)

as follows:
ul(x;, 1) = Z Z Af, expli - oy, lef exp [i (k- x; — wy,1)] 29)
kv [
+ By, expl—i - o, 1/lef exp [i (k- X; + wkvt)] .

Thus, we now have “time-stamped” coefficients AL, Xpli - o, 1] and
By, expl—i - w1 which contain the unique information for each
phonon and encode the time at which the wave is nucleated. During
each time step (before a new wave is generated), we take a ‘“snap-
shot” of the domain in k-space whereby the amplitude coefficients are
obtained from the Fourier transform discussed in Section 5.2. After
the generation of a new phonon, a second Fourier transform of the
domain is taken, and the first set of coefficients is subtracted from the
second. This allows us to see which frequencies are “new” and thus
gives us information about the current wave without the influence from
previous phonons. Finally, we add the difference in these coefficients to
a global “master” array and use a modified form of Eq. (19) to calculate
the displacement of each particle:

u(x,1) = NL Z 2 €, U, expli - oy, 1, ]exp [i (k- Ax — @y, 41)] .
A kv(k>ke) |

(30)

As a result, the displacement field approximation is updated based upon
multiple waves, and no information gets lost.

6.3. Detailed explanation in 1D

We now elaborate on this process for a one-dimensional monatomic
chain as is utilized in the present work. Fig. 6 gives a visual represen-
tation of two high-frequency wave packets with wavevector-frequency
pairs of (k;, ®;) and (k,, ®,) traveling within the 1D CAC framework
described in Section 3.1. The first phonon is generated at time ¢, the
second phonon is generated at time #,, and without loss of generality,
we assume that each wave originates at the center of the atomistic
region. For a one-dimensional system, Eq. (29) reduces to the following:

ug(x;,0) = 2 z Ay yexpli - ytlexp i (k- x; — wy1)] (€3]
kT
+ By expl—i - o tylexp [i (k- x; + oy 1)] -

By following the procedure discussed in Section 5.2, we can solve for
the coefficients and substitute these back into Eq. (19) to achieve the
following short-wavelength displacement approximation in 1D:

ug(x,1) = NL z Z Cy1expli - wyt/]lexp [i (k-x- wkt)] (32)
A k(k>ke) 1

where ¢ is the global simulation time, and C;, is the derived coefficient

given by Eq. (A.12). Recall that Cy, is purely a function of the atomic

displacements, undeformed positions, and wavevectors. Furthermore,

Eq. (32) is the same as Eq. (A.11) but with the added exponential term

and summation over /.
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Therefore, we have the new time-stamped coefficient E, ; = C; jexp[i-
w,t;]. Expanding out E, , into its real and imaginary parts, we get the
following:

E;; = Cyexpli-w;]1 = [Re(Cy ) — ilm(Cy )] [cos(wyt) + isin(wyt))] (33)

where Re(Cy ;) and Im(Cy ;) are given by Egs. (A.14) and (A.15) respec-
tively. Next, we can define the real and imaginary components of the
coefficient E, ;:

Re(Ey ;) = Re(Cy j)cos(wy 1) + Im(Cy )sin(wy ) (34)
Im(E ;) = Re(Cy )sin(wyt)) — Im(Cy, )cos(wyt)). (35)

Substituting the two parts of this coefficient back into Eq. (32) and
writing the expression in trigonometric form, we get the following:

un == 3 Y [Re(E,) +im(E, )]
Ny k(k>ke) 1 (36)

X [cos(k - x — 1) + isin(k - x — @y 1)] .

Then, keeping only the real parts of Eq. (36), we arrive at the final
expression for the multi-wave, short-wavelength displacement in 1D:

u,(x,1) = 1 z [Re(Ek’,)cos(k )
A k(k>ke) 1 (37)

—Im(E, )sin(k - x — o 1)] .

Eq. (37) allows us to update the atomic displacements given multiple
high-frequency waves in the CAC domain.

6.4. Using the LD technique with time integration

We now discuss how the process described above is incorporated
into the time integration algorithm, and we use the two waves from
Fig. 6 as a reference. Additionally, we assume that ¢ = 7, and the first
phonon (wave 1) has already been nucleated in the atomistic region.
The steps are enumerated as follows.

1. After the particle velocity update, we calculate the
time-independent amplitude coefficients C, ;. Specifically, we find
the real and imaginary components of the coefficient C, ; using
Egs. (A.14) and (A.15) and store them in a k-based array in
which each index is a different wavevector. This effectively
allows us to take a “snapshot” of the framework in k-space and
thus capture the information from any phonon currently within
the domain. Referring back to Fig. 6, we calculate and store
the C,, coefficients to preserve the displacements/velocities
induced by wave 1.

2. If desired, we then generate the second phonon (wave 2) after
obtaining C, ; and update the particle displacements and veloc-
ities accordingly. In other words, displacements and velocities
resulting from wave 2 are added to those values induced by wave
1 such that both phonons are still present in the domain and
information from each is preserved.

3. At the end of the time step, we then -calculate the
time-independent amplitude coefficient of wave 2 (C;,). We
note that the wavevector of wave 2 can be any value — it does
not have to be the same as wave 1.

4. Next, we subtract the real and imaginary components of C;
from the corresponding components of C,,. This gives us the
exclusive frequencies from wave 2 as seen below:

Re(Cyp1) =Re(Cy») — Re(Cy 1) (38)
Im(Cy 1) = Im(Cy ») — Im(Cy ). 39

5. Finally, we substitute Re(Cy ;) and Im(Cy ,,) into Egs. (34) and
(35) to obtain the new time-stamped coefficient E, ,. This coeffi-
cient contains all the “new” information from wave 2 including
its generation time.
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Fig. 7. Master template for the time-stamped wave passing coefficients.
[ Step 1: Calculate the new position and displacement of each particle. ] —
|
[ Step 2: Use Eq. (37) to calculate the short-wavelength component at position x.

|

Step 3: Use Eq. (27) to interpolate the positions and displacements of every lattice point in the
continuum regions.

|

[ Step 4: Use Eq. (2) to calculate the force of every particle as a function of relative displacements. ]

|

[ Step 5: Calculate the velocity of each particle. ]

|

Step 6: Follow the steps in Sec. 5.2 to calculate the time-independent coefficients C, ; and store
them in an array.

|

[ Step 7: If desired, generate a new wave packet by adding displacements/velocities to the domain. J

|

[Step 8: Perform a second Fourier transform and calculate the new time-independent coefficients Ck,z-]

|

Step 9: Subtract C, ; from C , to calculate the time-stamped coefficients E, | and add these to the
master template.

Fig. 8. Flow chart showing the various steps taken to pass multiple waves between the atomistic and continuum regions of a CAC domain.

The real and imaginary parts of E, , are added to a global k-based
array where each array index contains the sum of the E, ; coefficients
from every generated phonon (the E; ;| coefficients from wave 1 would
have already been obtained at ¢+ = 7;). This array serves as a “master
template” by storing the time-stamped coefficients from every phonon,
and a visual representation for wave 1 and wave 2 can be seen in Fig. 7.

We note that the nondegenerate wavevectors are limited to k, =
zn,/ryN 4 where n, is an integer ranging from 0 to N4 — 1 [38]. Thus,
for any given wavevector, we know the corresponding total amplitude
coefficient. We can then use these coefficients in Eq. (37) during all
subsequent time steps to calculate the short wavelength displacement
induced by multiple wave packets.

The flow chart shown in Fig. 8 provides an overview of the various
steps required to pass more than one phonon wave packet between the
atomistic and continuum regions of a CAC domain using the velocity
Verlet time integration algorithm. We note that the second Fourier
transform always occurs at the end of each time step regardless of
whether or not a new wave is nucleated. If there is not a new phonon
present in the domain, the first and second C;; coefficients will cancel
out and E, ; will equal zero. As a result, no “extra” data is ever added
to the master template.

7. Benchmark examples with multiple waves

To verify the implementation and effectiveness of the technique
discussed in Section 6, we perform simulations with multiple waves

using the CAC framework described in Section 3.1. Specifically, we
utilize the new technique to pass various high-frequency wave packets
between the atomistic and continuum regions of the multiscale domain.
Results from these simulations can be seen in both Fig. 9 as well as in
Fig. 10. In each simulation, we nucleate four waves in the atomistic
region and allow them to propagate to the right and travel across the
A-C interfaces. The waves are generated in time increments of 15 ps,
and each has a high wavevector value that would ordinarily cause the
phonon to be completely reflected (as demonstrated in Fig. 3). We note
that in Fig. 9, each phonon has the same wavevector (k = 0.27/r)
while in Fig. 10, the phonons increase in wavevector from k = 0.2z /r
to k = 0.5z /r(. This is done in order to showcase how the new method
can be used with multiple waves of a variety of frequencies within the
same domain.

In both figures, we observe that the new method outlined in Sec-
tion 6 permits each short-wavelength phonon wave packet to travel
across the A-C interface with no observable reflection. Additionally,
this scheme facilitates periodic boundary conditions whereby the waves
can travel between the two outer continuum regions and back into the
inner atomistic region. Hence, this method may be used in practical
applications which require a periodic domain. Finally, we note that this
technique can be utilized to track phonons with a variety of frequencies
within a single domain, and these waves may interact with each other
freely without undermining any stored data. Therefore, we can use this
method to transmit many waves across length scales as they contact
each other as well as the domain boundary.
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Fig. 9. Multiple high-frequency phonon wave packets traveling through a single CAC domain. In this case, each phonon has the same wavevector: k = 0.2 7/r.

8. Conclusion

In this paper, we developed a technique to transmit multiple high-
frequency phonon waves across length scales within a periodic CAC
domain. Specifically, we utilized the LD interpolation scheme from [20]
and introduced novel numerical techniques into the framework to
update the continuum region with short-wavelength data and track
multiple waves across time. We first replicated the phonon dispersion
relation of the system in order to find the critical wavevector k.
above which the curves of the coarse-scaled region and fine-scaled
region diverged. Wave packet simulations confirm that phonons with
wavevectors < k¢ fully transmit across the A-C interface while phonons
with wavevectors > k. completely reflect. Next, we described the LD-
based finite element scheme developed in [20] to transmit a single
short-wavelength phonon across length scales. A wave packet simula-
tion confirmed the ability of this method to transmit a high-frequency
k = 0.2z /r, phonon from the atomistic to the continuum region with
nearly imperceptible reflection.

We then described the technique to pass multiple high-frequency
phonons between the atomistic and continuum regions of the CAC
framework. To implement this method, we first expanded the short-
wavelength displacement equation to account for a variety of wave
packets nucleated at different time steps. However, the coefficients
in this equation were still time-independent, and we showcased how
this “naive” approach could only store information for one phonon
at a time. Next, we modified the displacement equation to incorpo-
rate “time-stamped” coefficients which encoded the initialization time
of each wave. During the integration algorithm, we performed two

10

separate Fourier transforms both before and after a new phonon was
generated. By obtaining the amplitude coefficients, we effectively took
a “snapshot” of the domain in k-space which allowed us to know
which information was new. The difference in these coefficients was
used to calculate the updated time-stamped coefficients which were
then stored in a “master” array. Hence, information from multiple
phonons was tracked over time, and the displacement field could be
updated to incorporate each of these waves into the continuum regions.
Simulations performed with this technique confirmed its effectiveness
in transmitting multiple short-wavelength phonons across the A-C
interfaces.

While this technique can be wused to transmit multiple
short-wavelength wave packets, we note some limitations of this
scheme. The framework, in its current state, is incapable of transmitting
short-wavelength waves generated due to physical processes such as
scattering. For example, during impact simulations, a shock wave may
interact with a microstructural interface and produce high-frequency
transient waves which travel throughout the domain. Such a wave
will appear in the system during the Verlet integration (Steps 1-5
in Fig. 8). However, in the current framework, the short-wavelength
wave packet nucleation occurs at a very specific step in the flowchart
(Step 8 in Fig. 8) external to the Verlet integration. As such, any
high-frequency wave generated during Verlet integration will not be
captured and thus not added to the master template. We emphasize,
however, that the current technique is not meant to be a decisive
solution to a complex problem of wave scattering/transmission in
multiscale modeling. Rather, this method is a step towards tracking
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Fig. 10. Multiple high-frequency phonon wave packets traveling through a single CAC domain. In this case, each phonon has a different wavevector as is shown.

a variety of high-frequency waves which are nucleated in a concurrent
domain over time.

In the future, we hope to extend this technique to higher-dimensions
and use it to study waves in systems with complex microstructures.
Such microstructures could arise from particles being randomly ori-
ented within a monatomic lattice or alloyed materials giving rise to
intricate particle arrangements within polyatomic crystals. For diatomic
systems in particular, there would be two branches of the analytical
dispersion relation, and in principle, the present formulation could
be used to transmit high-frequency optical phonons between the fine-
scaled and coarse-scaled regions of the CAC domain and vice versa.
We also hope to expand this method to account for different wave
types such as elastic waves and orthogonal wavelets. Finally, we intend
to eventually solve the scattering problem whereby we could transmit
across length scales multiple high-frequency waves generated from a
physical process such as a moving dislocation or shock impact.
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Appendix. Solving for the short-wavelength amplitude in 1D
In 1D, there is only one phonon branch (v = 1), particles can only

travel in the +x direction (ezv = 1), and there is only one atom per unit
cell (N, =1). As a result, Egs. (25) and (26) reduce to the following:

Ny-1

Cp= Y uexp[-i(k-x;)] = A + By (A1)
j=0
Ny-1

D, = Z v;exp [i (k- xj)] = (B, — Apiw,. (A.2)
j=0

Solving Egs. (A.1) and (A.2) for A, and B, gives the following:
Co . Dy

A = — +i— A.

T2 T, @.3)
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— Ck

D,
B, = - Pk

—_——

2 2w,

Substituting these expressions for A, and B, back into Eq. (20) when
x; = xo and t = 0, we get the following:

A4

uy(x0,0) = Y (A + By)e'™ (A.5)
k
[
B e A 'S A6
[2 e T2 T € (A4.6)
= ek, (A7)

Hence, we arrive at the following expression for the amplitude of the

short-wavelength phonon mode in 1D:
Ny—1

Uy (xg. 1) = Ce™™0 = Z uje‘ik"ieik"O.
j=0

(A.8)

Substituting this back into Eq. (19) for the one-dimensional monatomic
chain:

uy(x, 1) = L Z Cre™exp [i (k- Ax — w, At)] (A.9)
A k(k>ke)

- L Z Crexp {i [k - (xo + Ax) — w, At1] } (A.10)
Ny k(k>k¢)

- L Z Crexp [i (k- x — w, Ar)] (A.11)
Ny k(k>ke)

where x = x( + 4x is the location of the node in the continuum region.
Additionally, C, is given by the following expression:

Ny—1 Ny—1
Co= Y we ™ =3 u fcostk - x;) - isin(k - x))] . (A12)
j=0 J=0

As a result, we can rewrite u (x,t) in trigonometric form as follows:

uy(x, 1) =L z [Re(C,) — ilm(Cy))

A k(k>ke) (A.13)

X [cos(k - x — @, A1) + isin(k - x — w, Ar)|
where

Ny-1
Re(Cy) = D ujcos(k - x;)

j=0

Ny-1

Im(Cy) = Z ugsin(k - x;).
j=0

(A14)

(A.15)

Keeping only the real parts, we arrive at our final expression for the
short-wavelength displacement in 1D:

u(x,1) = L Z [Re(Cp)cos(k - x — w, A + Im(Cy)sin(k - x — w, A1) .
Ny k(k>k¢)

(A.16)

Therefore, when simulating a high-frequency phonon wave packet
using the described LD technique, we utilize the velocity-Verlet algo-
rithm from Section 3.2 to evolve the wave initialized in the atomistic
region. Next, we store the displacements of each particle in an array
at time ¢+ = 0 ps and follow the procedure outlined in Section 5.2 to
calculate Uy . Then, at each time step ¢, we use Eq. (19) to compute
u’(x,7) at a given position x, and we calculate the total displacement of
each continuum node using Eq. (14). Finally, we calculate the internal
force of each particle as a function of relative displacements using
Eq. (2) and update the time step. This technique allows high-frequency
phonons that would ordinarily be reflected at the A-C interface to pass
smoothly between the atomistic and continuum regions.
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