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A B S T R A C T

Coupled atomistic–continuum methods can describe large domains and model dynamic material behavior for
a much lower computational cost than traditional atomistic techniques. However, these multiscale frameworks
suffer from wave reflections at the atomistic–continuum interfaces due to the numerical discrepancy between
the fine-scaled and coarse-scaled models. Such reflections are non-physical and may lead to unfavorable
outcomes such as artificial heating in the atomistic region. In this work, we develop a technique to allow the
full spectrum of phonons to be incorporated into the coarse-scaled regions of a periodic concurrent atomistic–
continuum (CAC) framework. This scheme tracks phonons generated at various time steps and thus allows
multiple high-frequency wave packets to travel between the atomistic and continuum regions. Simulations
performed with this method demonstrate the ability of the technique to preserve the coherency of waves
with a range of wavevectors as they propagate through the domain. This work has applications for systems
with defined boundary conditions and may be extended to more complex problems involving waves randomly
nucleated from an impact within a multiscale framework.
1. Introduction

Multiscale modeling techniques endeavor to link observable mate-
rial behavior to effects at lower length scales. To this end, coupled
atomistic–continuum (A–C) frameworks have been developed since
the early 1990s to integrate the microscale and macroscale into a
single computational domain [1]. In particular, concurrent A–C methods
connect the spatial scales directly such that the continuum region
surrounds an inner atomistic region containing the phenomena of inter-
est. Some examples of concurrent frameworks include the Coupling of
Length Scales (CLS) method [2], the Coupled Atomistic Discrete Dislo-
cation (CADD) method [3], and the Quasicontinuum (QC) method [4].
One of the central challenges with concurrent schemes is ensuring
compatibility at the A–C interfaces so as to mitigate ghost forces in
static systems and spurious wave behavior in dynamic systems [5]. Typ-
ically, such non-physical phenomena arise because the spectrum of the
continuum model has a much smaller cutoff frequency than that of the
atomistic model [6]. Although many techniques have been developed
to reduce ghost forces in static frameworks [7,8], the advancement of
ynamic multiscale methods is nevertheless hindered by spurious wave
eflections at the A–C interfaces.
To overcome this obstacle, most concurrent methods incorporate

echniques to either minimize or absorb transient waves impinging on
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the A–C interfaces [9–12]. An early scheme developed by [13] incorpo-
rates Langevin dynamics into the fine-scaled equations of motion and
dampens specified particles in a ‘‘stadium’’ region around the inner
atomistic core. Specifically, the method couples a one-dimensional
atomistic domain to a linear elastic continuum and reduces wave
reflections at the A–C interfaces by calculating the time-history-kernel
(THK). This approach has proven to be effective, and variations of it
have been introduced into other concurrent multiscale frameworks such
as CADD [9] and the Bridging Scale Method (BSM) [14]. However,
because the THK method suffers from issues related to computational
expense and scalability, various BSM frameworks have developed more
efficient THK techniques, but such schemes are still only effective for
linear solids [10,15,16]. Other approaches to reduce wave reflections
include minimizing the reflection coefficient at the A–C boundaries [17,
11] as well as applying digital filters to remove high-frequency phonons
that travel back into the fine-scaled region [18,19].

Because all of these methods either minimize or absorb waves
impinging on the A–C interfaces, information from short-wavelength
phonons is lost. Furthermore, damping methods will inevitably elimi-
nate fine-scaled wave data which should instead be transmitted across
the boundaries [20]. One of the first attempts to solve this problem
came in [21] which enhances a space–time discontinuous Galerkin
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finite element method by incorporating an enrichment function into
the system. This technique has since been used to study both wave
and crack propagation through materials, and it can successfully con-
serve energy and transmit high-frequency waves across the A–C inter-
faces [22]. Unfortunately, the framework in [21] requires extra degrees
of freedom in the coarse-scaled regions, and the enriched functions
must be removed at the continuum nodes in order to incorporate
the short-wavelength phonons. Therefore, conserving the correct wave
phase is challenging, so this technique cannot be easily used to study
dynamic problems which require phonon coherency. As a result, a
concurrent multiscale method is needed which would preserve phonon
coherency and permit the full range of phonons to travel across the A–C
interfaces.

Previous work has developed a technique to transfer high-frequency
phonons across length scales within a concurrent atomistic–continuum
(CAC) framework [20]. CAC is a dynamic multiscale method which
follows the solid state physics model of crystals whereby the structure
is continuous at the lattice level but discrete at the atomic level,
and a single set of governing equations is used throughout the entire
domain [23]. As a result, the wave transfer problem reduces to a nu-
merical problem caused by the discrepancy in finite element mesh sizes
between the atomistic and continuum regions. This is a long-standing
obstacle in continuum modeling and was regarded by Zienkiewicz as
one of the great unsolved problems in the Finite Element Method [24].
The work in [20] developed a supplemental basis for the CAC solution
along with a new lattice dynamics (LD)-based finite element scheme
to pass a single high-frequency phonon between the atomistic and
continuum regions. This technique allowed a wave packet with any
wavevector and frequency to travel across the A–C interfaces without
introducing new degrees of freedom into the coarse-scaled regions.
However, this method could only be used for a single phonon and was
demonstrated in a non-periodic domain.

In the present article, we develop a technique based upon the work
in [20] to pass multiple high-frequency phonon wave packets between
the atomistic and continuum regions of a periodic CAC framework.
This method uses the LD interpolation scheme to incorporate short-
wavelength displacements into the continuum regions and introduces
novel numerical techniques into the formulation to track a variety
of wave packets across time. Specifically, two Fourier transforms are
performed (both before and after the phonon is generated), and the
difference in amplitude coefficients are stored in a master array in
order to track waves of any wavevector at various time steps. Such
a technique will be useful in real-world applications which involve
the interaction and transmission of multiple waves within a single
atomistic–continuum domain. The remainder of this paper is organized
as follows: Section 2 summarizes the finite element implementation of
he CAC method; Section 3 describes the one-dimensional monatomic
ramework; Section 4 presents simulations performed without the LD
ormulation and showcases the numerical discrepancy at the A–C inter-
aces; Section 5 provides a mathematical background of the technique
ormulated in [20] and demonstrates this technique with a single
honon; Section 6 gives a detailed explanation of the LD method
or multiple waves; Section 7 presents benchmark simulations with
ultiple phonons within a periodic CAC domain; finally, Section 8
oncludes the article and provides suggestions for future work.

. The CAC method

In this section, we discuss the finite element implementation of
AC, and more details can be found in [25–27]. The mathematical
oundation of CAC is Atomistic Field Theory (AFT), and the govern-
ng equations of AFT are ensemble averages of partial differential
quations which are similar in form to the balance laws of classical
ontinuum mechanics [28,29]. Recent work has reformulated these
quations using the mathematical theory of distributions in which the
uantity definitions as well as the balance equations themselves are
2

valid instantaneously [23]. As in continuum mechanics, the analytical
solution to these equations is not readily obtainable, and thus we utilize
numerical schemes such as the finite element method (FEM) to solve
them. In this work, we refer to such a formulation as ‘the CAC method’.

Using the standard definitions of internal force density and kinetic
temperature as derived in [30,31], we can rewrite the instantaneous
balance equation of linear momentum as follows [25]:

𝜌𝛼 𝐮̈𝛼(𝐱) = 𝐟𝛼𝑖𝑛𝑡(𝐱) + 𝐟𝛼(𝐱) (1)

where 𝐮𝛼(𝐱) is the displacement of the 𝛼th atom in the unit cell located
at point x, 𝜌𝛼 = 𝑚𝛼∕𝛥𝑉 is the volumetric mass density, 𝑚𝛼 is the mass
f the 𝛼th atom, 𝛥𝑉 is the volume of the unit cell, 𝐟𝛼𝑖𝑛𝑡(𝐱) is the internal
orce density, and 𝐟𝛼(𝐱) is the force density due to external forces and
emperature. The terms on the right hand side of Eq. (1) are given by

𝛼
𝑖𝑛𝑡(𝐱) = ∫𝛺(𝐱′)

𝑁𝑎
∑

𝛽=1
𝐟
[

𝐮𝛼(𝐱) − 𝐮𝛽 (𝐱′)
]

𝑑𝐱′, 𝐟𝛼(𝐱) = 𝐟𝛼𝑒𝑥𝑡(𝐱) −
𝑚𝛼𝑘𝐵
𝑀𝛥𝑉

∇𝐱𝑇
𝛼

(2)

where 𝐟𝛼𝑒𝑥𝑡(𝐱) is the external force density, 𝑀 is the total mass of the
atoms within a unit cell, 𝑇 𝛼 is the kinetic temperature, and 𝑘𝐵 is the
oltzmann constant. Here, the internal force density is a nonlinear,
onlocal function of relative displacements between neighboring atoms
ithin a given cutoff radius, and it can be obtained exclusively from the
nteratomic potential function [32].
We calculate the numerical solution of the governing equation

Eq. (1)) by discretizing the material with finite elements such that each
lement contains a collection of primitive unit cells. Furthermore, each
inite element node represents a unit cell which is itself populated by
group of atoms. At the lattice level, we use interpolation within an
lement to approximate the displacement field as follows [27]:

̂ 𝛼(𝐱) = 𝜱𝜉 (𝐱)𝐔𝛼
𝜉 . (3)

ere, 𝐮̂𝛼(𝐱) is the displacement field for the 𝛼th atom within a given
lement, 𝜱𝜉 (𝐱) is the shape function, and 𝐔𝛼

𝜉 is the displacement of the
𝛼th atom within the 𝜉th element node. We let 𝜉 = 1, 2,… , 𝑛 where 𝑛 is
the total number of nodes in the element.

Using the method of weighted residuals, we obtain the weak form of
the governing equation by multiplying Eq. (1) with a weight function
𝜱𝜂(𝐱) and integrating over the entire domain:

∫𝛺(𝐱)

[

𝜌𝛼𝜱𝜂(𝐱)𝐮̈𝛼(𝐱)
]

𝑑𝐱 = ∫𝛺(𝐱)

[

𝜱𝜂(𝐱)𝐟𝛼𝑖𝑛𝑡(𝐱)
]

𝑑𝐱 + ∫𝛺(𝐱)

[

𝜱𝜂(𝐱)𝐟𝛼(𝐱)
]

𝑑𝐱.

(4)

Substituting Eqs. (2) and (3) into Eq. (4), we get the weak form of the
governing equation which can be represented in matrix form as

𝐌𝛼𝐔̈𝛼
𝜉 = 𝐅𝛼

𝑖𝑛𝑡 + 𝐅𝛼 (5)

where

𝐌𝛼 = ∫𝛺(𝐱)

[

𝜌𝛼𝜱𝜂(𝐱)𝜱𝜉 (𝐱)
]

𝑑𝐱 (6)

𝐅𝛼
𝑖𝑛𝑡 = ∫𝛺(𝐱)

𝜱𝜂(𝐱)∫𝛺(𝐱′)

𝑁𝑎
∑

𝛽=1
𝐟
[

𝜱𝜉 (𝐱)𝐔𝛼
𝜉 −𝜱𝜉 (𝐱′)𝐔

𝛽
𝜉

]

𝑑𝐱′𝑑𝐱 (7)

𝐅𝛼 = ∫𝛺(𝐱)

[

𝜱𝜂(𝐱)𝐟𝛼(𝐱)
]

𝑑𝐱 (8)

In the present formulation, we approximate the inertial term using
the lumped mass matrix. Additionally, no external forces are applied
and temperature is incorporated through the use of a thermostat as
in [33,20]. The internal force density 𝐅𝛼

𝑖𝑛𝑡 is the most computationally
demanding term, and we evaluate it numerically using numerical in-
tegration. Finally, the second order differential equation (Eq. (5)) is

solved through the velocity Verlet integration algorithm. By using this
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Fig. 1. Schematic of the CAC domain [34].
finite element implementation of AFT, a majority of the degrees of free-
dom in the continuum regions are eliminated. For critical regions where
atomistic behavior is important, the finest mesh is used such that the
element length is equal to the atomic equilibrium spacing. In this way,
CAC uses AFT to produce a unified theoretical framework between the
atomistic and continuum regions. CAC frameworks are defined as AFT
domains which contain both fine-scaled and coarse-scaled regions [34].

3. Computational setup

3.1. Domain geometry

In this work, the CAC framework uses the conventional finite ele-
ment formulation with linear interpolation functions discussed above.
To readily demonstrate the nature of wave transmission and reflection
at the A–C interfaces, we develop a one-dimensional CAC domain using
an in-house C++ code. The monatomic chain consists of 𝑁 particles
which are split into three regions as seen in Fig. 1. The particles in each
coarse-scaled (continuum) region are separated by a distance of 𝑛𝑟0 and
are referred to as nodes in the present work. Here, 𝑛 is some positive
integer (6 in this work), and 𝑟0 is the equilibrium spacing determined by
he potential function. These two coarse-scaled regions flank the inner
ine-scaled (atomistic) region on either side. The particles in the fine-
caled region are separated by a distance of 𝑟0 and are referred to as
atoms in the present work. Because CAC produces a unified atomistic–
continuum framework using a single set of governing equations, the
atoms and nodes have identical properties with the only difference
being their inter-particle spacing. Hence, all force calculations are
fully nonlocal, and the interatomic potential is the only constitutive
relation [35]. As a result, the particles at the atomistic–continuum
interfaces (𝑥𝐴,0 and 𝑥𝐴,𝐹 ) interact with each other directly without
generating ghost forces [8,36]. We employ standard periodic boundary
conditions in every simulation.

3.2. Integration algorithm

The CAC governing equation (Eq. (1)) is a second order ordinary
differential equation in time, and we solve it using the velocity Verlet
algorithm. The time step used in the integration algorithm is chosen to
be 𝛥𝑡 = 0.001 ps in order to minimize numerical error.

3.3. Interatomic potential and material parameters

We use the modified Morse interatomic potential function to calcu-
late the integrand of the internal force density (Eq. (2)). The standard
3

Morse potential was modified by [37] to improve the agreement with
Fig. 2. Phonon spectral energy density contour plot of a CAC monatomic chain
calculated using the Nose–Hoover thermostat. The red line represents the analytical
dispersion relation obtained from Lattice Dynamics, and the simulation was performed
at 10 K.

Table 1
Material constants and Morse parameters of Cu [37].
Element mass (u) 𝜌0 (g/cm3) 𝑟0 (Å) 𝛼 (Å−1) 𝐷0 (eV) 𝐵

Cu 63.55 8.96 2.5471 1.1857 0.5869 2.265

experimental values for the thermal expansion of materials. The mod-
ified Morse potential only considers first nearest neighbor interactions
and is given by the following expression [37]:

𝛱(𝑟𝑖𝑗 ) =
𝐷0

2𝐵 − 1

[

𝑒−2𝛼
√

𝐵(𝑟𝑖𝑗−𝑟0) − 2𝐵𝑒−𝛼(𝑟𝑖𝑗−𝑟0)∕
√

𝐵
]

(9)

where 𝑟𝑖𝑗 is the magnitude of the displacement between particle 𝑖 and 𝑗,
and 𝑟0 is the distance at which the potential reaches the minimum. We
perform simulations with Cu, and the parameters for this material are
given in Table 1. Here, we note that 𝑟0 is equivalent to the equilibrium
spacing along the [110] lattice direction of Cu.

4. Numerical discrepancy at the A–C interface

In this section, we showcase the numerical discrepancy between the
fine-scaled and coarse-scaled regions when modeling high-frequency
phonons in a standard CAC formulation. To do this, we reproduce the
dispersion relation using the domain in Fig. 1.
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f
o
r
s
o
t
s
C
2

The dispersion relation of the CAC framework is obtained by cal-
culating the phonon spectral energy density which is defined as the
average kinetic energy per unit cell as a function of wavevector 𝑘 and
angular frequency 𝜔. In 1D, the spectral energy density is given as
follows [38]:

(𝑘, 𝜔) = 𝑚
4𝜋𝜏0𝑁

|

|

|

|

|

|

∫

𝜏0

0

{ 𝑁
∑

𝑛=1
𝑢̇𝑛(𝑡) × exp

[

𝑖𝑘 ⋅ 𝑥𝑛(𝑡0) − 𝑖𝜔𝑡
]

}

𝑑𝑡
|

|

|

|

|

|

2

(10)

here 𝜏0 is the total simulation time, 𝑁 is the total number of particles,
̇ 𝑛(𝑡) is the velocity of particle 𝑛 at time 𝑡, and 𝑥𝑛(𝑡0) is the initial position
f particle 𝑛. For this simulation, the monatomic chain contains 260
toms in the fine-scaled region and 20 nodes in each coarse-scaled
egion for a total of 300 particles, and the domain is maintained at
0 K using the Nose–Hoover thermostat [39]. Spectral energy density
alculations are compared to the analytical dispersion relation obtained
rom Lattice Dynamics (LD), and this relation for a one-dimensional
onatomic crystal is given by the following equation:

=
√

4𝐶
𝑚

|

|

|

|

|

sin
(

𝑘𝑟0
2

)

|

|

|

|

|

(11)

where 𝐶 is the elastic constant defined as the second derivative of
the interatomic potential function at 𝑟0 in 1D. Results are shown in
Fig. 2. Here, the contours indicate the magnitude of the spectral energy
density for each (𝑘, 𝜔) combination, and the red line represents the
nalytical relation.
In Fig. 2, we observe that the phonon dispersion relation obtained

in the fine-scaled region of the CAC framework is identical to the
4

a

analytical curve from LD. However, the dispersion relation for the
coarse-scaled regions is only accurate for phonons whose wavevector
is smaller than a critical value 𝑘𝐶 . This critical wavevector is given by
the following equation [40]:

𝑘𝐶 = max
𝑘

{

|

|

|

|

|

sin
(

𝑘𝑟0
2

)

− sin
(𝑘𝐿

2

)|

|

|

|

|

≤ 𝜖

}

. (12)

Here, 𝜖 is the allowable error, and 𝐿 = 6𝑟0 is the element length in
the coarse-scaled regions. We choose an allowable error of 𝜖 = 5%
which corresponds to a critical wavevector of 𝑘𝐶 = 0.064𝜋∕𝑟0, and a
critical wavelength 𝜆𝐶 = 2𝜋∕𝑘𝐶 = 7.96 nm. Therefore, only phonons
with wavelengths longer than 7.96 nm can pass into the coarse-scaled
regions with a reflection of less than 5%. These results are consistent
with spectral energy density plots obtained in previous works which
use the CAC method for phonon heat transport and the prediction of
phonon properties [33,40,20].

Phonon wave packet simulations from previous studies have con-
irmed that the reflections at the A–C interface are a direct result
f the numerical discrepancy between the atomistic and continuum
egions [33,20,34]. An example of this reflection phenomena can be
een in Fig. 3. This mismatch is attributed to the dispersive nature
f the frequency–wavevector relation which comes from the fact that
he nonlocal internal force–displacement relationship is the only con-
titutive relation in CAC [27]. Hence, the coarse-scaled regions in
AC simulations impede elastic waves with wavelengths shorter than
𝜋∕𝑘𝐶 . To allow these high-frequency waves to pass smoothly from the
tomistic to the continuum region, the CAC finite element formulation
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needs to be modified to allow the full population of phonon waves to
propagate across the A–C interface.

5. Lattice dynamics finite element formulation

5.1. Lattice dynamics method

In this section, we present a technique that was first formulated
in [20] to overcome the issue of spurious wave reflections at the A–
C interfaces, and we add extra details where necessary. If we consider
a typical polyatomic crystalline system with 𝑁𝛼 particles in each unit
cell, then the standard approximation of the displacement field is given
by Eq. (3). However, the LD-based method modifies this equation such
that the particle displacements are now approximated as follows:

𝐮𝛼(𝐱, 𝑡) =
2𝑑
∑

𝑗=1
𝜱𝑗 (𝐱)

[

𝐔𝛼
𝑗 (𝑡) − 𝐔𝛼

𝑠𝑗 (𝑡)
]

+ 𝐮𝛼𝑠 (𝐱, 𝑡) 𝛼 = 1, 2,… , 𝑁𝛼 . (13)

In this equation, 𝐮𝛼(𝐱, 𝑡) is the new displacement at time t of the 𝛼th
tom within a given unit cell located at position 𝐱; 𝑑 is the dimen-
ionality of the system; 2𝑑 is the total number of nodes in an element;
𝑗 (𝐱) is the conventional tri-linear shape function; 𝐔𝛼

𝑗 (𝑡) is the total
isplacement of the 𝛼th atom in the 𝑗th element node at time 𝑡; 𝐔𝛼

𝑠𝑗 (𝑡)
s the short-wavelength displacement (denoted by the subscript 𝑠) of the
th atom embedded in the 𝑗th element node at time 𝑡; and 𝐮𝛼𝑠 (𝐱, 𝑡) is the
hort-wavelength displacement at time 𝑡 of the 𝛼th atom within a unit
ell at any material point 𝐱 (not necessarily a nodal position). Since the
ri-linear shape functions satisfy partition of unity

(

∑2𝑑
𝑗=1 𝜱𝑗 (𝐱) = 1

)

,
we can rewrite Eq. (13) as follows:

𝐮𝛼(𝐱, 𝑡) =
2𝑑
∑

𝑗=1
𝜱𝑗 (𝐱)

[

𝐔𝛼
𝑗 (𝑡) − 𝐔𝛼

𝑠𝑗 (𝑡) + 𝐮𝛼𝑠 (𝐱, 𝑡)
]

. (14)

As a result of this new basis, the CAC governing equation must be
updated to account for the modified displacement interpolation which
is now a function of time:

𝜌𝛼 𝐮̈𝛼(𝐱, 𝑡) = 𝐟𝛼𝑖𝑛𝑡(𝐱) + 𝐟𝛼(𝐱). (15)

In Eq. (14), the additional components of the displacement field ap-
proximation are 𝐔𝛼

𝑠𝑗 (𝑡) and 𝐮𝛼𝑠 (𝐱, 𝑡) which represent the short-
wavelength displacements that need to be calculated. We note that at a
given node 𝑗, 𝐔𝛼

𝑠𝑗 (𝑡) = 𝐮𝛼𝑠 (𝐱, 𝑡). Therefore, the displacements of particles
at nodal locations remain unchanged when introducing the short-
wavelength basis function. Instead, only the neighboring particles at
non-nodal unit cells located at material points 𝐱 within an element get
modified by Eq. (14). These enhanced displacements will influence the
force calculations at nodal locations which will allow short-wavelength
phonons to pass through the coarse-scaled region.

For a harmonic approximation, atomic displacements can be decom-
posed into a linear combination of normal modes with a discrete set
of wavevectors where the number of wavevectors equals the number
of unit cells [41,42]. If we only consider the contributions from short-
wavelength phonons with 𝐤 > 𝐤𝐶 , then the displacement of the 𝛼th
particle in a unit cell at undeformed position 𝐱 is given as follows:

𝐮𝛼𝑠 (𝐱, 𝑡) =
1

(𝑁𝑙𝑚𝛼)1∕2
∑

𝐤,𝜈(𝐤>𝐤𝐶 )
𝐞𝛼𝐤𝜈𝑄𝐤𝜈exp

[

𝑖
(

𝐤 ⋅ 𝐱 − 𝜔𝐤𝜈 𝑡
)]

. (16)

n Eq. (16), each linear combination of normal modes represents the
ontribution from a wave with wavevector 𝐤 and phonon branch 𝜈.
dditionally, 𝑁𝑙 is the total number of unit cells in the system; 𝑚𝛼 is the
ass of the 𝛼th particle in the 𝑙th unit cell; 𝐞𝛼𝐤𝜈 is the polarization vector
hat determines which direction each particle moves; 𝑄𝐤𝜈 is the normal
ode coordinate which gives both the amplitude of the wave and the
ime dependence; and 𝜔𝐤𝜈 is the angular frequency corresponding to
avevector 𝐤. We can then rewrite Eq. (16) to obtain the following

expressions for 𝐔𝛼
𝑠𝑗 (𝑡) and 𝐮𝛼𝑠 (𝐱, 𝑡) [20]:

𝐔𝛼
𝑠𝑗 (𝑡) =

1
𝑁

∑

𝐞𝛼𝐤𝜈𝑈
𝛼
𝐤𝜈exp

[

𝑖
(

𝐤 ⋅ 𝐱𝑗 − 𝜔𝐤𝜈 𝑡
)]

(17)
5

𝐴 𝐤,𝜈(𝐤>𝐤𝐶 )
𝛼
𝑠 (𝐱, 𝑡) =

1
𝑁𝐴

∑

𝐤,𝜈(𝐤>𝐤𝐶 )
𝐞𝛼𝐤𝜈𝑈

𝛼
𝐤𝜈exp

[

𝑖
(

𝐤 ⋅ 𝐱 − 𝜔𝐤𝜈 𝑡
)]

(18)

here 𝑁𝐴 represents the total number of unit cells in only the atomistic
egion, and 𝑈𝛼

𝐤𝜈 is the amplitude. The short-wavelength displacement at
n unknown position 𝐱 and time t in the coarse-scaled region is linked
o information at a known position 𝐱0 and time 𝑡0 in the fine-scaled
egion as follows:

𝛼
𝑠 (𝐱, 𝑡) =

1
𝑁𝐴

∑

𝐤,𝜈(𝐤>𝐤𝐶 )
𝐞𝛼𝐤𝜈𝑈

𝛼
𝐤𝜈 (𝐱0, 𝑡0)exp

{

𝑖
[

𝐤 ⋅ (𝐱 − 𝐱0) − 𝜔𝐤𝜈 (𝑡 − 𝑡0)
]}

= 1
𝑁𝐴

∑

𝐤,𝜈(𝐤>𝐤𝐶 )
𝐞𝛼𝐤𝜈𝑈

𝛼
𝐤𝜈 (𝐱0, 𝑡0)exp

[

𝑖
(

𝐤 ⋅ 𝛥𝐱 − 𝜔𝐤𝜈𝛥𝑡
)]

. (19)

Here, we have only shown the expression for 𝐮𝛼𝑠 (𝐱, 𝑡) as the expression
for 𝐔𝛼

𝑠𝑗 (𝑡) would have the same form. In Eq. (19), 𝛥𝐱 = 𝐱−𝐱0 represents
the spatial distance between the current unit cell at location x in the
continuum region and the reference unit cell at undeformed location 𝐱0
in the atomistic region. Additionally, 𝛥𝑡 = 𝑡−𝑡0 represents the difference
between the current time t and the time 𝑡0 at which 𝑈𝛼

𝐤𝜈(𝐱0, 𝑡0) was
calculated.

We can use Eq. (19) to calculate 𝐮𝛼𝑠 (𝐱, 𝑡) [and 𝐔𝛼
𝑠𝑗 (𝑡)] and then

substitute these expressions into Eq. (14). As a result, short-wavelength
effects will now be incorporated into 𝐮𝛽 (𝐱′) from Eq. (2) which will
update the internal force calculation. Specifically, the forces at the
nodes will now contain information from the entire spectrum of phonon
waves: low-frequency data from linear interpolation and high-
frequency data from LD calculations. Therefore, it is clear that an
accurate determination of 𝐮𝛼𝑠 (𝐱, 𝑡) and 𝐔𝛼

𝑠𝑗 (𝑡) is crucial to achieve proper
force matching, and this requires calculating the amplitude 𝑈𝛼

𝐤𝜈 (𝐱0, 𝑡0)
of each short-wavelength phonon mode. We derive this amplitude in
the following section.

5.2. Determining the amplitude of the short-wavelength phonon mode

We can represent the short-wavelength displacement of the 𝛼th
particle at undeformed position 𝐱𝑗 and time 𝑡 as follows:

𝐮𝛼𝑠 (𝐱𝑗 , 𝑡) =
∑

𝐤,𝜈
𝐴𝛼
𝐤𝜈𝐞

𝛼
𝐤𝜈exp

[

𝑖
(

𝐤 ⋅ 𝐱𝑗 − 𝜔𝐤𝜈 𝑡
)]

+ 𝐵𝛼
𝐤𝜈𝐞

𝛼
𝐤𝜈exp

[

𝑖
(

𝐤 ⋅ 𝐱𝑗 + 𝜔𝐤𝜈 𝑡
)]

.

(20)

As before, we have only shown the expression for 𝐮𝛼𝑠 (𝐱𝑗 , 𝑡) as the same
analysis applies to 𝐔𝛼

𝑠𝑗 (𝑡). Eq. (20) is a general expression for the short-
wavelength displacement, but it is understood that 𝐱𝑗 = 𝐱0 and 𝑡 = 𝑡0
in this example. Here, 𝐴𝛼

𝐤𝜈 and 𝐵𝛼
𝐤𝜈 are the two unknown coefficients

computed for each mode which represent both parts of the coefficient
𝑈𝛼
𝐤𝜈(𝐱0, 𝑡0). Hence, the goal is to calculate 𝐴𝛼

𝐤𝜈 and 𝐵𝛼
𝐤𝜈 at 𝑡0 as these

coefficients will then be applied to the short-wavelength calculation
(Eq. (19)) at every subsequent time step.

To find these amplitudes, we must take the discrete Fourier trans-
form (DFT) of both the initial displacements 𝐮𝛼𝑗 and initial velocities 𝐯

𝛼
𝑗

in the atomistic region as shown below:

𝐂𝛼
𝐤 =

𝑁𝐴−1
∑

𝑗=0
𝐮𝛼𝑗 exp

[

−𝑖
(

𝐤 ⋅ 𝐱𝑗
)]

(21)

𝐃𝛼
𝐤 =

𝑁𝐴−1
∑

𝑗=0
𝐯𝛼𝑗 exp

[

−𝑖
(

𝐤 ⋅ 𝐱𝑗
)]

. (22)

where 𝐱𝑗 = 𝑗𝐫0 is the position of the 𝑗th unit cell in the undeformed
configuration with 𝐫0 being the equilibrium spacing. We can then relate
the modal amplitude in Eq. (21) to the phonon modes in Eq. (20)
evaluated at 𝑡 = 0 for a specific wavevector k:

𝐂𝛼
𝐤 =

∑

𝜈
𝐮𝛼𝑠 (𝐱𝑗 , 0)exp

[

−𝑖(𝐤 ⋅ 𝐱𝑗 )
]

=
∑

𝐴𝛼
𝐤𝜈𝐞

𝛼
𝐤𝜈exp

[

𝑖
(

𝐤 ⋅ 𝐱𝑗 − 𝐤 ⋅ 𝐱𝑗 − 𝜔𝐤𝜈0
)]
𝜈
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Fig. 4. High-frequency phonon wave packet simulation performed with the LD interpolation method (𝑘 = 0.2𝜋∕𝑟0).
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+ 𝐵𝛼
𝐤𝜈𝐞

𝛼
𝐤𝜈exp

[

𝑖
(

𝐤 ⋅ 𝐱𝑗 − 𝐤 ⋅ 𝐱𝑗 + 𝜔𝐤𝜈0
)]

=
∑

𝜈

(

𝐴𝛼
𝐤𝜈 + 𝐵𝛼

𝐤𝜈
)

𝐞𝛼𝐤𝜈 . (23)

Next, we can perform a similar analysis for the modal amplitude of the
velocities in Eq. (22) by taking the derivative of Eq. (20) with respect
o 𝑡:
𝛼
𝐤 =

∑

𝜈
𝐯𝛼𝑠 (𝐱𝑗 , 0)exp

[

−𝑖(𝐤 ⋅ 𝐱𝑗 )
]

=
∑

𝜈
−𝑖𝜔𝐤𝜈𝐴

𝛼
𝐤𝜈𝐞

𝛼
𝐤𝜈exp

[

𝑖
(

𝐤 ⋅ 𝐱𝑗 − 𝐤 ⋅ 𝐱𝑗 − 𝜔𝐤𝜈0
)]

+ 𝑖𝜔𝐤𝜈𝐵
𝛼
𝐤𝜈𝐞

𝛼
𝐤𝜈exp

[

𝑖
(

𝐤 ⋅ 𝐱𝑗 − 𝐤 ⋅ 𝐱𝑗 + 𝜔𝐤𝜈0
)]

=
∑

𝜈

(

𝐵𝛼
𝐤𝜈 − 𝐴𝛼

𝐤𝜈
)

𝑖𝜔𝐤𝜈𝐞𝛼𝐤𝜈 . (24)

inally, we arrive at a system of two equations with the two unknowns
𝛼
𝐤𝜈 and 𝐵𝛼

𝐤𝜈 :

𝛼
𝐤 =

𝑁𝐴−1
∑

𝑗=0
𝐮𝛼𝑗 exp

[

−𝑖
(

𝐤 ⋅ 𝐱𝑗
)]

=
∑

𝜈

(

𝐴𝛼
𝐤𝜈 + 𝐵𝛼

𝐤𝜈
)

𝐞𝛼𝐤𝜈 (25)

𝛼
𝐤 =

𝑁𝐴−1
∑

𝑗=0
𝐯𝛼𝑗 exp

[

−𝑖
(

𝐤 ⋅ 𝐱𝑗
)]

=
∑

𝜈

(

𝐵𝛼
𝐤𝜈 − 𝐴𝛼

𝐤𝜈
)

𝑖𝜔𝐤𝜈𝐞𝛼𝐤𝜈 . (26)

herefore, the DFTs of displacement and velocity for the 𝛼th particle
ithin each unit cell produce a 2𝜈 by 2𝜈 matrix to solve for the coef-
icients 𝐴𝛼

𝐤𝜈 and 𝐵𝛼
𝐤𝜈 corresponding to a given wavevector 𝐤. We solve
6

hese equations for a one-dimensional monatomic chain in Appendix.
.3. Passing a single high-frequency wave packet from atomistic to contin-
um

We now present a 1D wave packet simulation performed with the
D interpolation method. The results can be seen in Fig. 4, and 𝑘 =
.2𝜋∕𝑟0 in this case. Hence, we can directly compare the results in
ig. 4 to the results in Fig. 3d. We observe that the LD interpolation
cheme permits the entire phonon wave packet to travel across the A–
interface from the atomistic to the continuum region with a >99.5%
ransmission. This is in contrast to the complete reflection seen in
ig. 3d and is congruent with the results from previous studies [20].
Additionally, by enabling periodic boundary conditions, we observe
that the LD interpolation method allows the high-frequency phonon
wave packet to travel between the two outer continuum regions and
back to the center atomistic region. The transmission demonstrated in
Fig. 4 validates the implementation of the LD interpolation method.

6. Lattice dynamics technique for multiple waves

6.1. Background and preliminary approach

While the method presented in the previous section has been shown
to efficiently pass high-frequency phonons between the atomistic and
continuum regions of a CAC domain, the scheme is limited to single
wave packets of a specified wavevector. This is because the short-
wavelength amplitude information can only be stored for one wave

at a time to prevent data from being overwritten. In this section, we
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Fig. 5. Naive approach to passing multiple waves across the A–C interface in which wave 1 crosses but wave 2 gets reflected (𝑘 = 0.2𝜋∕𝑟0).
Fig. 6. Schematic of two phonon wave packets traveling through a CAC domain.
i

𝐮

present an LD interpolation method to be used with multiple waves
and wavevectors in a single CAC domain. We recall the expression for
the displacement field approximation from Section 5.1:

𝐮𝛼(𝐱, 𝑡) =
2𝑑
∑

𝑗=1
𝜱𝑗 (𝐱)

[

𝐔𝛼
𝑗 (𝑡) − 𝐔𝛼

𝑠𝑗 (𝑡) + 𝐮𝛼𝑠 (𝐱, 𝑡)
]

. (27)

Here, we note that both 𝐔𝛼
𝑠𝑗 (𝑡) and 𝐮𝛼𝑠 (𝐱, 𝑡) contain all the short-

wavelength information of a given wave packet at time 𝑡. Again, since
the same analysis applies to both terms, we only focus on 𝐮𝛼𝑠 (𝐱, 𝑡) in this
ection.
7

For multiple wave packets, a straight-forward extension to Eq. (20)
s given by

𝛼
𝑠 (𝐱𝑗 , 𝑡) =

∑

𝐤,𝜈

∑

𝑙
𝐴𝛼
𝐤𝜈,𝑙𝐞

𝛼
𝐤𝜈exp

{

𝑖
[

𝐤 ⋅ 𝐱𝑗 − 𝜔𝐤𝜈 (𝑡 − 𝑡𝑙)
]}

(28)

+ 𝐵𝛼
𝐤𝜈,𝑙𝐞

𝛼
𝐤𝜈exp

{

𝑖
[

𝐤 ⋅ 𝐱𝑗 + 𝜔𝐤𝜈(𝑡 − 𝑡𝑙)
]}

where the inner summation occurs over all wave packets 𝑙 nucleated
at time 𝑡𝑙. The coefficients 𝐴𝛼

𝐤𝜈,𝑙 and 𝐵𝛼
𝐤𝜈,𝑙 described in Section 5.2 now

correspond to each wave packet 𝑙. The problem with this approach is
that except for the first wave packet, the other wave packets generated

at time 𝑡𝑙 cannot be tracked over time. As a result, any new phonon
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initialized at time 𝑡𝑙 ≠ 0 will be reflected off the A–C interface as
seen in Fig. 5. Specifically, the main issue lies in keeping track of each
individual phonon generated at time 𝑡𝑙 without losing information from
other phonons. In an attempt to overcome this difficult problem, we
provide a detailed solution below.

6.2. Solution to the preliminary approach

Each wave packet can be characterized by its wavevector and
frequency combination (𝐤, 𝜔), its short-wavelength amplitudes (𝐴𝛼

𝐤𝜈,𝑙
nd 𝐵𝛼

𝐤𝜈,𝑙), and the time at which it was initialized (𝑡𝑙). These terms
must be tracked and stored correctly in order to allow multiple waves
to pass across the A–C interfaces. To this end, we first rewrite Eq. (28)
as follows:

𝐮𝛼𝑠 (𝐱𝑗 , 𝑡) =
∑

𝐤,𝜈

∑

𝑙
𝐴𝛼
𝐤𝜈,𝑙exp[𝑖 ⋅ 𝜔𝐤𝜈 𝑡𝑙]𝐞𝛼𝐤𝜈exp

[

𝑖
(

𝐤 ⋅ 𝐱𝑗 − 𝜔𝐤𝜈 𝑡
)]

(29)

+ 𝐵𝛼
𝐤𝜈,𝑙exp[−𝑖 ⋅ 𝜔𝐤𝜈 𝑡𝑙]𝐞𝛼𝐤𝜈exp

[

𝑖
(

𝐤 ⋅ 𝐱𝑗 + 𝜔𝐤𝜈 𝑡
)]

.

hus, we now have ‘‘time-stamped’’ coefficients 𝐴𝛼
𝐤𝜈,𝑙exp[𝑖 ⋅ 𝜔𝐤𝜈 𝑡𝑙] and

𝛼
𝐤𝜈,𝑙exp[−𝑖 ⋅ 𝜔𝐤𝜈 𝑡𝑙] which contain the unique information for each
honon and encode the time at which the wave is nucleated. During
ach time step (before a new wave is generated), we take a ‘‘snap-
hot’’ of the domain in k-space whereby the amplitude coefficients are
btained from the Fourier transform discussed in Section 5.2. After
he generation of a new phonon, a second Fourier transform of the
omain is taken, and the first set of coefficients is subtracted from the
econd. This allows us to see which frequencies are ‘‘new’’ and thus
ives us information about the current wave without the influence from
revious phonons. Finally, we add the difference in these coefficients to
global ‘‘master’’ array and use a modified form of Eq. (19) to calculate
he displacement of each particle:

𝛼
𝑠 (𝐱, 𝑡) =

1
𝑁𝐴

∑

𝐤,𝜈(𝐤>𝐤𝐶 )

∑

𝑙
𝐞𝛼𝐤𝜈𝑈

𝛼
𝐤𝜈,𝑙exp[𝑖 ⋅ 𝜔𝐤𝜈 𝑡𝑙]exp

[

𝑖
(

𝐤 ⋅ 𝛥𝐱 − 𝜔𝐤𝜈𝛥𝑡
)]

.

(30)

As a result, the displacement field approximation is updated based upon
multiple waves, and no information gets lost.

6.3. Detailed explanation in 1D

We now elaborate on this process for a one-dimensional monatomic
chain as is utilized in the present work. Fig. 6 gives a visual represen-
ation of two high-frequency wave packets with wavevector–frequency
airs of (𝑘1, 𝜔1) and (𝑘2, 𝜔2) traveling within the 1D CAC framework
escribed in Section 3.1. The first phonon is generated at time 𝑡1, the
econd phonon is generated at time 𝑡2, and without loss of generality,
e assume that each wave originates at the center of the atomistic
egion. For a one-dimensional system, Eq. (29) reduces to the following:

𝑠(𝑥𝑗 , 𝑡) =
∑

𝑘

∑

𝑙
𝐴𝑘,𝑙exp[𝑖 ⋅ 𝜔𝑘𝑡𝑙]exp

[

𝑖
(

𝑘 ⋅ 𝑥𝑗 − 𝜔𝑘𝑡
)]

(31)

+ 𝐵𝑘,𝑙exp[−𝑖 ⋅ 𝜔𝑘𝑡𝑙]exp
[

𝑖
(

𝑘 ⋅ 𝑥𝑗 + 𝜔𝑘𝑡
)]

.

y following the procedure discussed in Section 5.2, we can solve for
he coefficients and substitute these back into Eq. (19) to achieve the
ollowing short-wavelength displacement approximation in 1D:

𝑠(𝑥, 𝑡) =
1
𝑁𝐴

∑

𝑘(𝑘>𝑘𝐶 )

∑

𝑙
𝐶𝑘,𝑙exp[𝑖 ⋅ 𝜔𝑘𝑡𝑙]exp

[

𝑖
(

𝑘 ⋅ 𝑥 − 𝜔𝑘𝑡
)]

(32)

where 𝑡 is the global simulation time, and 𝐶𝑘,𝑙 is the derived coefficient
given by Eq. (A.12). Recall that 𝐶𝑘,𝑙 is purely a function of the atomic
displacements, undeformed positions, and wavevectors. Furthermore,
Eq. (32) is the same as Eq. (A.11) but with the added exponential term
nd summation over 𝑙.
8

Therefore, we have the new time-stamped coefficient 𝐸𝑘,𝑙 = 𝐶𝑘,𝑙exp[𝑖⋅
𝜔𝑘𝑡𝑙]. Expanding out 𝐸𝑘,𝑙 into its real and imaginary parts, we get the
following:

𝐸𝑘,𝑙 = 𝐶𝑘,𝑙exp[𝑖 ⋅𝜔𝑘𝑡𝑙] =
[

Re(𝐶𝑘,𝑙) − 𝑖Im(𝐶𝑘,𝑙)
] [

cos(𝜔𝑘𝑡𝑙) + 𝑖sin(𝜔𝑘𝑡𝑙)
]

(33)

where Re(𝐶𝑘,𝑙) and Im(𝐶𝑘,𝑙) are given by Eqs. (A.14) and (A.15) respec-
ively. Next, we can define the real and imaginary components of the
oefficient 𝐸𝑘,𝑙:

Re(𝐸𝑘,𝑙) = Re(𝐶𝑘,𝑙)cos(𝜔𝑘𝑡𝑙) + Im(𝐶𝑘,𝑙)sin(𝜔𝑘𝑡𝑙) (34)

m(𝐸𝑘,𝑙) = Re(𝐶𝑘,𝑙)sin(𝜔𝑘𝑡𝑙) − Im(𝐶𝑘,𝑙)cos(𝜔𝑘𝑡𝑙). (35)

ubstituting the two parts of this coefficient back into Eq. (32) and
riting the expression in trigonometric form, we get the following:

𝑠(𝑥, 𝑡) = 1
𝑁𝐴

∑

𝑘(𝑘>𝑘𝐶 )

∑

𝑙

[

Re(𝐸𝑘,𝑙) + 𝑖Im(𝐸𝑘,𝑙)
]

×
[

cos(𝑘 ⋅ 𝑥 − 𝜔𝑘𝑡) + 𝑖sin(𝑘 ⋅ 𝑥 − 𝜔𝑘𝑡)
]

.

(36)

Then, keeping only the real parts of Eq. (36), we arrive at the final
expression for the multi-wave, short-wavelength displacement in 1D:

𝑢𝑠(𝑥, 𝑡) = 1
𝑁𝐴

∑

𝑘(𝑘>𝑘𝐶 )

∑

𝑙

[

Re(𝐸𝑘,𝑙)cos(𝑘 ⋅ 𝑥 − 𝜔𝑘𝑡)

− Im(𝐸𝑘,𝑙)sin(𝑘 ⋅ 𝑥 − 𝜔𝑘𝑡)
]

.

(37)

Eq. (37) allows us to update the atomic displacements given multiple
high-frequency waves in the CAC domain.

6.4. Using the LD technique with time integration

We now discuss how the process described above is incorporated
into the time integration algorithm, and we use the two waves from
Fig. 6 as a reference. Additionally, we assume that 𝑡 = 𝑡2 and the first
phonon (wave 1) has already been nucleated in the atomistic region.
The steps are enumerated as follows.

1. After the particle velocity update, we calculate the
time-independent amplitude coefficients 𝐶𝑘,𝑙. Specifically, we find
the real and imaginary components of the coefficient 𝐶𝑘,𝑙 using
Eqs. (A.14) and (A.15) and store them in a k-based array in
which each index is a different wavevector. This effectively
allows us to take a ‘‘snapshot’’ of the framework in k-space and
thus capture the information from any phonon currently within
the domain. Referring back to Fig. 6, we calculate and store
the 𝐶𝑘,1 coefficients to preserve the displacements/velocities
induced by wave 1.

2. If desired, we then generate the second phonon (wave 2) after
obtaining 𝐶𝑘,1 and update the particle displacements and veloc-
ities accordingly. In other words, displacements and velocities
resulting from wave 2 are added to those values induced by wave
1 such that both phonons are still present in the domain and
information from each is preserved.

3. At the end of the time step, we then calculate the
time-independent amplitude coefficient of wave 2 (𝐶𝑘,2). We
note that the wavevector of wave 2 can be any value — it does
not have to be the same as wave 1.

4. Next, we subtract the real and imaginary components of 𝐶𝑘,1
from the corresponding components of 𝐶𝑘,2. This gives us the
exclusive frequencies from wave 2 as seen below:

Re(𝐶𝑘,21) = Re(𝐶𝑘,2) − Re(𝐶𝑘,1) (38)

Im(𝐶𝑘,21) = Im(𝐶𝑘,2) − Im(𝐶𝑘,1). (39)

5. Finally, we substitute Re(𝐶𝑘,21) and Im(𝐶𝑘,21) into Eqs. (34) and
(35) to obtain the new time-stamped coefficient 𝐸𝑘,2. This coeffi-
cient contains all the ‘‘new’’ information from wave 2 including
its generation time.
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Fig. 7. Master template for the time-stamped wave passing coefficients.
Fig. 8. Flow chart showing the various steps taken to pass multiple waves between the atomistic and continuum regions of a CAC domain.
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The real and imaginary parts of 𝐸𝑘,2 are added to a global k-based
rray where each array index contains the sum of the 𝐸𝑘,𝑙 coefficients
rom every generated phonon (the 𝐸𝑘,1 coefficients from wave 1 would
ave already been obtained at 𝑡 = 𝑡1). This array serves as a ‘‘master
emplate’’ by storing the time-stamped coefficients from every phonon,
nd a visual representation for wave 1 and wave 2 can be seen in Fig. 7.

We note that the nondegenerate wavevectors are limited to 𝑘𝑥 =
𝑛𝑥∕𝑟0𝑁𝐴 where 𝑛𝑥 is an integer ranging from 0 to 𝑁𝐴 − 1 [38]. Thus,
or any given wavevector, we know the corresponding total amplitude
oefficient. We can then use these coefficients in Eq. (37) during all
subsequent time steps to calculate the short wavelength displacement
induced by multiple wave packets.

The flow chart shown in Fig. 8 provides an overview of the various
steps required to pass more than one phonon wave packet between the
atomistic and continuum regions of a CAC domain using the velocity
Verlet time integration algorithm. We note that the second Fourier
transform always occurs at the end of each time step regardless of
whether or not a new wave is nucleated. If there is not a new phonon
present in the domain, the first and second 𝐶𝑘,𝑙 coefficients will cancel
out and 𝐸𝑘,𝑙 will equal zero. As a result, no ‘‘extra’’ data is ever added
to the master template.

7. Benchmark examples with multiple waves

To verify the implementation and effectiveness of the technique
9

discussed in Section 6, we perform simulations with multiple waves e
using the CAC framework described in Section 3.1. Specifically, we
tilize the new technique to pass various high-frequency wave packets
etween the atomistic and continuum regions of the multiscale domain.
esults from these simulations can be seen in both Fig. 9 as well as in
ig. 10. In each simulation, we nucleate four waves in the atomistic
egion and allow them to propagate to the right and travel across the
–C interfaces. The waves are generated in time increments of 15 ps,
nd each has a high wavevector value that would ordinarily cause the
honon to be completely reflected (as demonstrated in Fig. 3). We note
hat in Fig. 9, each phonon has the same wavevector (𝑘 = 0.2𝜋∕𝑟0)
hile in Fig. 10, the phonons increase in wavevector from 𝑘 = 0.2𝜋∕𝑟0
o 𝑘 = 0.5𝜋∕𝑟0. This is done in order to showcase how the new method
an be used with multiple waves of a variety of frequencies within the
ame domain.
In both figures, we observe that the new method outlined in Sec-

ion 6 permits each short-wavelength phonon wave packet to travel
cross the A–C interface with no observable reflection. Additionally,
his scheme facilitates periodic boundary conditions whereby the waves
an travel between the two outer continuum regions and back into the
nner atomistic region. Hence, this method may be used in practical
pplications which require a periodic domain. Finally, we note that this
echnique can be utilized to track phonons with a variety of frequencies
ithin a single domain, and these waves may interact with each other
reely without undermining any stored data. Therefore, we can use this
ethod to transmit many waves across length scales as they contact
ach other as well as the domain boundary.
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Fig. 9. Multiple high-frequency phonon wave packets traveling through a single CAC domain. In this case, each phonon has the same wavevector: 𝑘 = 0.2𝜋∕𝑟0.
8. Conclusion

In this paper, we developed a technique to transmit multiple high-
frequency phonon waves across length scales within a periodic CAC
domain. Specifically, we utilized the LD interpolation scheme from [20]
and introduced novel numerical techniques into the framework to
update the continuum region with short-wavelength data and track
multiple waves across time. We first replicated the phonon dispersion
relation of the system in order to find the critical wavevector 𝑘𝐶
above which the curves of the coarse-scaled region and fine-scaled
region diverged. Wave packet simulations confirm that phonons with
wavevectors < 𝑘𝐶 fully transmit across the A–C interface while phonons
with wavevectors > 𝑘𝐶 completely reflect. Next, we described the LD-
based finite element scheme developed in [20] to transmit a single
short-wavelength phonon across length scales. A wave packet simula-
tion confirmed the ability of this method to transmit a high-frequency
𝑘 = 0.2𝜋∕𝑟0 phonon from the atomistic to the continuum region with
early imperceptible reflection.
We then described the technique to pass multiple high-frequency

honons between the atomistic and continuum regions of the CAC
ramework. To implement this method, we first expanded the short-
avelength displacement equation to account for a variety of wave
ackets nucleated at different time steps. However, the coefficients
n this equation were still time-independent, and we showcased how
his ‘‘naive’’ approach could only store information for one phonon
t a time. Next, we modified the displacement equation to incorpo-
ate ‘‘time-stamped’’ coefficients which encoded the initialization time
10

f each wave. During the integration algorithm, we performed two
separate Fourier transforms both before and after a new phonon was
generated. By obtaining the amplitude coefficients, we effectively took
a ‘‘snapshot’’ of the domain in k-space which allowed us to know
which information was new. The difference in these coefficients was
used to calculate the updated time-stamped coefficients which were
then stored in a ‘‘master’’ array. Hence, information from multiple
phonons was tracked over time, and the displacement field could be
updated to incorporate each of these waves into the continuum regions.
Simulations performed with this technique confirmed its effectiveness
in transmitting multiple short-wavelength phonons across the A–C
interfaces.

While this technique can be used to transmit multiple
short-wavelength wave packets, we note some limitations of this
scheme. The framework, in its current state, is incapable of transmitting
short-wavelength waves generated due to physical processes such as
scattering. For example, during impact simulations, a shock wave may
interact with a microstructural interface and produce high-frequency
transient waves which travel throughout the domain. Such a wave
will appear in the system during the Verlet integration (Steps 1–5
in Fig. 8). However, in the current framework, the short-wavelength
wave packet nucleation occurs at a very specific step in the flowchart
(Step 8 in Fig. 8) external to the Verlet integration. As such, any
high-frequency wave generated during Verlet integration will not be
captured and thus not added to the master template. We emphasize,
however, that the current technique is not meant to be a decisive
solution to a complex problem of wave scattering/transmission in

multiscale modeling. Rather, this method is a step towards tracking
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Fig. 10. Multiple high-frequency phonon wave packets traveling through a single CAC domain. In this case, each phonon has a different wavevector as is shown.
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a variety of high-frequency waves which are nucleated in a concurrent
domain over time.

In the future, we hope to extend this technique to higher-dimensions
and use it to study waves in systems with complex microstructures.
Such microstructures could arise from particles being randomly ori-
ented within a monatomic lattice or alloyed materials giving rise to
intricate particle arrangements within polyatomic crystals. For diatomic
systems in particular, there would be two branches of the analytical
dispersion relation, and in principle, the present formulation could
be used to transmit high-frequency optical phonons between the fine-
scaled and coarse-scaled regions of the CAC domain and vice versa.
We also hope to expand this method to account for different wave
types such as elastic waves and orthogonal wavelets. Finally, we intend
to eventually solve the scattering problem whereby we could transmit
across length scales multiple high-frequency waves generated from a
physical process such as a moving dislocation or shock impact.
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Appendix. Solving for the short-wavelength amplitude in 1D

In 1D, there is only one phonon branch (𝜈 = 1), particles can only
travel in the ±x direction (𝐞𝛼𝐤𝜈 = 1), and there is only one atom per unit
cell (𝑁𝛼 = 1). As a result, Eqs. (25) and (26) reduce to the following:

𝐶𝑘 =
𝑁𝐴−1
∑

𝑗=0
𝑢𝑗exp

[

−𝑖
(

𝑘 ⋅ 𝑥𝑗
)]

= 𝐴𝑘 + 𝐵𝑘 (A.1)

𝐷𝑘 =
𝑁𝐴−1
∑

𝑗=0
𝑣𝑗exp

[

−𝑖
(

𝑘 ⋅ 𝑥𝑗
)]

= (𝐵𝑘 − 𝐴𝑘)𝑖𝜔𝑘. (A.2)

Solving Eqs. (A.1) and (A.2) for 𝐴𝑘 and 𝐵𝑘 gives the following:

𝐴𝑘 =
𝐶𝑘 + 𝑖

𝐷𝑘 (A.3)

2 2𝜔𝑘
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𝐵𝑘 =
𝐶𝑘
2

− 𝑖
𝐷𝑘
2𝜔𝑘

. (A.4)

Substituting these expressions for 𝐴𝑘 and 𝐵𝑘 back into Eq. (20) when
𝑥𝑗 = 𝑥0 and 𝑡 = 0, we get the following:

𝑢𝑠(𝑥0, 0) =
∑

𝑘
(𝐴𝑘 + 𝐵𝑘)𝑒𝑖𝑘𝑥0 (A.5)

=
[

𝐶𝑘
2

+ 𝑖
𝐷𝑘
2𝜔𝑘

+
𝐶𝑘
2

− 𝑖
𝐷𝑘
2𝜔𝑘

]

𝑒𝑖𝑘𝑥0 (A.6)

= 𝐶𝑘𝑒
𝑖𝑘𝑥0 . (A.7)

ence, we arrive at the following expression for the amplitude of the
hort-wavelength phonon mode in 1D:

𝑘(𝑥0, 𝑡0) = 𝐶𝑘𝑒
𝑖𝑘𝑥0 =

𝑁𝐴−1
∑

𝑗=0
𝑢𝑗𝑒

−𝑖𝑘𝑥𝑗 𝑒𝑖𝑘𝑥0 . (A.8)

ubstituting this back into Eq. (19) for the one-dimensional monatomic
chain:

𝑢𝑠(𝑥, 𝑡) =
1
𝑁𝐴

∑

𝑘(𝑘>𝑘𝐶 )
𝐶𝑘𝑒

𝑖𝑘𝑥0exp
[

𝑖
(

𝑘 ⋅ 𝛥𝑥 − 𝜔𝑘𝛥𝑡
)]

(A.9)

= 1
𝑁𝐴

∑

𝑘(𝑘>𝑘𝐶 )
𝐶𝑘exp

{

𝑖
[

𝑘 ⋅ (𝑥0 + 𝛥𝑥) − 𝜔𝑘𝛥𝑡
]}

(A.10)

= 1
𝑁𝐴

∑

𝑘(𝑘>𝑘𝐶 )
𝐶𝑘exp

[

𝑖
(

𝑘 ⋅ 𝑥 − 𝜔𝑘𝛥𝑡
)]

(A.11)

where 𝑥 = 𝑥0 + 𝛥𝑥 is the location of the node in the continuum region.
dditionally, 𝐶𝑘 is given by the following expression:

𝑘 =
𝑁𝐴−1
∑

𝑗=0
𝑢𝑗𝑒

−𝑖𝑘𝑥𝑗 =
𝑁𝐴−1
∑

𝑗=0
𝑢𝑗

[

cos(𝑘 ⋅ 𝑥𝑗 ) − 𝑖sin(𝑘 ⋅ 𝑥𝑗 )
]

. (A.12)

As a result, we can rewrite 𝑢𝑠(𝑥, 𝑡) in trigonometric form as follows:

𝑢𝑠(𝑥, 𝑡) = 1
𝑁𝐴

∑

𝑘(𝑘>𝑘𝐶 )

[

Re(𝐶𝑘) − 𝑖Im(𝐶𝑘)
]

×
[

cos(𝑘 ⋅ 𝑥 − 𝜔𝑘𝛥𝑡) + 𝑖sin(𝑘 ⋅ 𝑥 − 𝜔𝑘𝛥𝑡)
]

(A.13)

where

Re(𝐶𝑘) =
𝑁𝐴−1
∑

𝑗=0
𝑢𝑗cos(𝑘 ⋅ 𝑥𝑗 ) (A.14)

Im(𝐶𝑘) =
𝑁𝐴−1
∑

𝑗=0
𝑢𝑗sin(𝑘 ⋅ 𝑥𝑗 ). (A.15)

Keeping only the real parts, we arrive at our final expression for the
short-wavelength displacement in 1D:

𝑢𝑠(𝑥, 𝑡) =
1
𝑁𝐴

∑

𝑘(𝑘>𝑘𝐶 )

[

Re(𝐶𝑘)cos(𝑘 ⋅ 𝑥 − 𝜔𝑘𝛥𝑡) + Im(𝐶𝑘)sin(𝑘 ⋅ 𝑥 − 𝜔𝑘𝛥𝑡)
]

.

(A.16)

Therefore, when simulating a high-frequency phonon wave packet
sing the described LD technique, we utilize the velocity-Verlet algo-
ithm from Section 3.2 to evolve the wave initialized in the atomistic
egion. Next, we store the displacements of each particle in an array
t time 𝑡 = 0 ps and follow the procedure outlined in Section 5.2 to
calculate 𝑈𝛼

𝐤𝜈 . Then, at each time step 𝑡, we use Eq. (19) to compute
𝐮𝛼𝑠 (𝐱, 𝑡) at a given position 𝐱, and we calculate the total displacement of
each continuum node using Eq. (14). Finally, we calculate the internal
force of each particle as a function of relative displacements using
Eq. (2) and update the time step. This technique allows high-frequency
phonons that would ordinarily be reflected at the A–C interface to pass
smoothly between the atomistic and continuum regions.
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