
Webcam Lighting Studio: A Framework for
Real-Time Control of Webcam Lighting
Karan Gonagur∗, Shobhit Aggarwal∗, David Fillmore, Jr.†, and Asis Nasipuri∗

∗Department of Electrical & Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223
Email: {kgonagur, saggarw4, anasipur}@uncc.edu

†Department of Theater, University of North Carolina at Charlotte, Charlotte, NC 28223
Email: D.M.Fillmore@uncc.edu

Abstract—We present the design of a multiuser networked
wireless system to remotely configure and control the lighting of
multiple webcam users at different locations. This system makes
use of a Raspberry Pi and a wireless DMX transmitter as the
wireless interface that can be used to control the DMX webcam
lights. A lighting control software called OLA is used on the
Raspberry Pi. A web interface is designed to issue commands to
OLA API running on the Raspberry Pi to control DMX lights
associated with Raspberry Pi. Multiple wireless interfaces, each
for a specific user at a different location, can be simultaneously
configured and managed using the web interface. The interactive
web interface can be used to control the intensity and color of
the DMX lights. The web interface follows a model controller
view design and makes HTTP calls to the OLA software running
on Raspberry pi. The proposed system enables an operator to
provide optimum and artistic lighting effects for a group of online
presenters.

Index Terms—webcam lighting, DMX, system design.

I. INTRODUCTION

The COVID-19 global pandemic at the start of the year 2020
forced many businesses, educational institutions, meetings,
and conferences to go virtual. This ushered in the need for
remote meetings and presentations across a broader set of users
involving new requirements [1]. The most common format for
online meetings involved multiple individuals at different loca-
tions, each controlling their own audio-visual parameters (e.g.,
lighting, sounds) from their own teleconferencing applications
such as Zoom, Google Meets, etc. However, the pandemic
also forced concerts and theatrical performances to go virtual,
which brought in a new set of challenges and advantages [2].
Remote theatrical performances extended the reach of users
to different geographical locations, providing access to the
disabled and the elderly at affordable costs. This has given rise
to a demand for quality, professional-looking lighting that can
be controlled remotely. Just as in live theatrical performances,
concerts, and professional presentations, lighting is controlled
by a lighting designer or operator who is present at the
venue and controls the lighting systems using lighting control
hardware, online performances and presentations often need a
lighting control mechanism that can be controlled remotely.

The standard industry protocol used to control the lights
for commercial light shows and stage lighting shows is the
DMX512 protocol [3]. DMX512 was created in 1986 by an
engineering commission USITT (United States Institute for

Theater Technology) to control dimming channels on lights.
DMX512 protocol uses the RS-485 standard at the physical
layer to overcome electrical noise and send data over lengthy
cabling distances. The DMX protocol makes use of XLR
connectors to make physical connections. The 3-pin XLR
connectors use Data+, Data- and ground, and the 5-pin uses
2 additional data pins which are mostly unconnected. At the
Data link layer, the DMX layer sends out 513 frames out of
which 512 frames are data frames and 1 frame is used for
synchronization. The operator uses a DMX light controller to
issue DMX signals to control the lights. These lights usually
have physical connections to the controller. The operator
can therefore control the parameters of different fixtures by
adjusting the DMX values of these fixtures.

In a virtual performance, the performers are usually located
at different locations, each having their own lighting system set
up to provide adequate illumination for the webcam operation.
However, current webcam lighting systems lack the ability to
provide special effects and variations of lighting that would
be required at various instances during live performances that
are normally controlled by a lighting operator. There is a need
for a centralized interface where a single operator can have
access to the webcam lighting of multiple users present at
different locations and control the lights at various instances
during the performance. The operator must be able to do so
in a convenient manner and in real-time.

We propose a real-time multi-user networked interface to
control DMX lighting fixtures at multiple locations, which we
refer to as the Webcam Lighting Studio (WLS). This paper
presents the detailed prototype design of WLS, which involves
the development of a web-based user interface, database,
and a networked hardware interface that receives control
signals from the web interface via the internet and wirelessly
controls the DMX-enabled lighting setup present with each
performer. The web-based user interface provides the operator
to access the set of lights (light universe) at each user location
and transmits control signals to the WLS Interfaces located
in each user location. The database maintains current and
dynamically changing parameters entered by the operator.
The WLS hardware interface receives signals via the Internet
and transmits wireless DMX signals to the set of lights for
that user’s universe. The system allows operators to control
multiple lighting systems in real-time as if they are present



Fig. 1. Ring light (Source: adapted from [?])

there physically.

II. RELATED WORKS

In this section, we present a review of existing technologies
to provide lighting for webcam applications and existing
projects developed to control DMX lights.

A. Ring Light as a basic solution for webcam lighting

The Ring Light [?] as shown in Figure 1 aims to improve
the appearance of users by providing illumination through a
ring-like LED light. The webcam version of the ring light
aims to provide lighting for video calls and conferencing
by embedding LED lights around the webcam. However,
the ring light cannot be controlled over the internet and
must be controlled manually by the user. One of the major
disadvantages that were found in our survey of the ring light
users is that the users have to stare into the webcam surrounded
by the bright LED lights while using the setup, which is not
a comfortable experience, especially for longer durations.

B. Raspberry Pi as a DMX light controller

This project by Flashular [5] makes use of Raspberry Pi to
control DMX lights. In this project, a simple user interface is
generated on the Raspberry Pi to control DMX lights (see
Figure 2). It uses a Raspberry Pi and a DMX controller
to control a DMX light. One end of a DMX controller is
connected to the Raspberry Pi and the other end of the
controller is connected to the DMX light. This project makes
use of two programs that run on Raspberry Pi. The first
program generates the user interface and contains the function
calls to set DMX channels on a shared memory location. The
second program runs in the background and performs serial
communication to send data to the DMX controller connected
to the Raspberry Pi. Whenever the user makes changes to the
color wheel on the user interface, the Raspberry Pi transmits
the corresponding data to the DMX controller and changes
the color of the DMX light. Although this project provides
a simpler mechanism to control DMX lights it has a lot of
limitations. Firstly, the code is configured to work only for a
specific DMX controller, namely, the Vellman controller [6].
One can use cheaper alternatives to reduce costs. Secondly, to
control multiple fixtures, one has to make significant changes
to the code. One has to have access to Raspberry Pi to control

Fig. 2. Raspberry pi as a DMX light controller (adapted from [4])

Fig. 3. Champylight web interface (adapted from [?])

the lighting fixtures. Most importantly this project can only
control lighting fixtures connected to a single Raspberry Pi.

C. Champylight

The Champylight [7] makes a significant improvement to
the project by Flashular. It provides an additional web interface
to control lighting fixtures connected to the Raspberry Pi. The
web interface runs on a computer, so one does not need to
connect to the Raspberry Pi to control the lights. This interface
also makes it possible to control multiple lighting fixtures
connected to a single Raspberry Pi without having to make
significant changes to the code. The main limitation of this
improvement is that the web interface can only control lighting
fixtures connected to a single Raspberry Pi.



Fig. 4. System block diagram

III. SYSTEM DESIGN

We propose an IP-enabled solution that allows an operator
to control the webcam lighting of multiple users at different
locations. The specific design considerations for the proposed
system are as follows:

• The current implementation requires each presenter at a
different venue to have a wireless interface for a set of
DMX lights as shown by Fig. 4

• The wireless interface should be controlled by the opera-
tor through a web application. The operator interacts with
the front end or the user interface of the web application.

• The operator can register new users by adding their IP
address, a friendly name, and the number of lighting
fixtures the user has.

• This information should be stored in a database. The user
interface displays the list of registered users who can be
identified by their friendly names.

• The User interface should provide a way to manage the
registered users and the settings of each light associated
with that user.

• The operator can set the color and intensity of the lights
through the user interface.

The proposed wireless interface is implemented using a
Raspberry Pi and a wireless DMX transmitter. The operator
enters control requests that are relayed to the user’s wireless
interface over the internet via the web server. The server relays
the requests to the Raspberry Pi’s Ip address. The Raspberry
Pi has a lighting control software called Open lighting archi-
tecture (OLA) [8] running on it. The software’s API receives
the request and sends DMX data to the transmitter connected
to the Raspberry Pi via the USB to DMX cable [9]. The
transmitter transmits the data to the light fixture and changes
its state

A. Hardware Used

1) DMX Lights: The lights are milight DMX controllable
9W LED bulbs (Figure 5). These bulbs have wireless DMX
receiver embedded inside them. To control them, we use a
DMX 512 transmitter (see Figure 6). Pairing between the
transmitter and the lights can be done by pressing the set
button on the transmitter 3 times. Once a light is paired

Fig. 5. Milight DMX LED bulb (adapted from [10])

Fig. 6. Wireless DMX transmitter (adapted from [?])

the light bulb settings can be controlled by transmitting
the corresponding DMX data. The bulb has 5 consecutive
DMX channels corresponding to red, green, blue, warmth,
and coolness parameters of the bulb. The channels can have a
value ranging from 0 to 255. Settings 0 and 255 corresponds
to the lowest and highest intensity levels of that parameter,
respectively.

2) Wireless Interface: A wireless interface is present at
each presenter’s location. The wireless interface consists of 3
components: a Raspberry Pi zero, wireless DMX transmitter
and the USB to DMX cable.

• Raspberry Pi Zero W: The Raspberry Pi Zero W [11], as
shown in Figure 7, is a tiny but powerful computer about



Fig. 7. Raspberry pi zero w (adapted from [?])

Fig. 8. USB to DMX cable

half the size of a credit card. It has Bluetooth and wireless
LAN connectivity, 512 MB ram, a micro USB power port,
and a mini HDMI port. The Raspberry Pi zero w has the
Broadcom BCM2835 CPU with a clock speed of 1 GHz.
It supports a micro SD slot. The Raspberry Pi zero runs
on the Raspbian operating system, Debian based linux os.
The Raspberry Pi is assigned a unique IP address and this
allows the operator to make http requests to the Raspberry
Pi to control the lights via the web application.

• USB to DMX cable: The USB to DMX cable (see
Figure 8) converts the incoming USB data from the
Raspberry Pi to DMX data. The USB to DMX cable has
a USB and DMX interfaces to perform the conversions.
This DMX data is given to the input of the transmitter.

• Wireless DMX transmitter: Wireless DMX Transmitter
has an input DMX port and a transmitter. The input DMX
port is used to receive DMX data from an external source.
The transmitter transmits the received input DMX data
wirelessly. The Wireless DMX Transmitter is used as a
replacement for wired DMX connections. This project
uses the Milight FUTD01 wireless DMX Transmitter
[12]. The Transmitter uses the 2.4GHz ISM band to
transmit the DMX 512 data wirelessly. The Transmitter’s
DMX input is connected to the Raspberry Pi via a USB
to DMX cable. This allows the Transmitter to receive the
DMX data from the Raspberry Pi. The transmitter that
we are using can support 16 independent zones. Each
zone is a collection of 5 DMX 512 channels. The lighting

Implementation

19

Raspberry pi zero

DMX transmitter

USB to DMX cable

DMX Lights

Fig. 9. Hardware setup of WLS for an user with wireless interface and two
LED lights.

fixture that we are using has 5 DMX channels. Thus, The
Transmitter can be used to control up to 16 lights at the
same time.

An experimental setup for the proposed WLS equipment for
an user with two DMX lights in illustrated in Figure 9.

B. Software Used and Developed

1) User side: The Raspberry Pi Zero W present at the
presenter‘s location uses a set of software in order to control
the associated hardware. It runs on Raspberry Pi OS [13]
which is a Debian-based Linux OS. The OS is available in
both 32-bit and 64-bit versions. It also has a lite version and
the desktop version. The desktop version has a Graphical User
Interface (GUI), while the lite version has a Command Line
Interface (CLI). WLS uses the 32-bit Raspberry Pi OS lite
since we do not require a graphical user interface thereby
optimizing the performance of the Raspberry Pi.

To control the lighting equipment an open-source frame-
work known as Open Lighting Architecture (OLA) [14] is
used. It implements the lower-level software and protocols
that are needed to control DMX lights. The OLA consists
of 3 important parts: OLA daemon, OLA client library, and
OLA plugins. The OLA daemon runs as a background process
and is responsible for handling the DMX512 communication
between different hardware devices. The OLA client library
provides applications with APIs to interact with the OLA
daemon. OLA defines plugins that support DMX over different
hardware devices. The FTDI USB to DMX is of particular
interest as it allows us to transmit DMX data over the USB
to DMX cable. Each plugin device must be assigned to a
universe id and a port, this process is called patching. The
FTDI USB to DMX plugin is patched to universe three and
configured as an output port. The OLA web server runs on
the local host at port 9090. It provides the set dmx [14] API
to interact with the webserver and set the DMX values for
the specified universe. The set dmx API takes in universe id
and DMX values for channels 1 to 512 as the input and sets
the corresponding values for that universe. The set dmx API
call can be made to the OLA running on the Raspberry Pi



Implementation

16

Navigation bar

Fig. 10. Homepage

if we know the Raspberry Pi’s IP address. This allows us to
use a web application to control the OLA server running on
Raspberry Pi over the internet.

2) Operator side: The operator uses a web application
to control the user-side hardware. This web application was
developed using the MERN stack [15] and provides the
operator with an interface to control the lights. The MERN
stack is composed of Mongo DB, Express, React, and node
technologies.

The front-end application and the user interfaces were
developed using React [15]. The server side was developed
using express and node frameworks of javascript. For the
database, Mongo DB [15] was used. Mongo DB is a non-
relational database used to store data in the form of documents
and collections. The document is the simplest unit of data
supported by MongoDB and it consists of key-value pairs.

Typically, all applications define a set of interfaces to access
the application’s data or functionality. Application Program-
ming Interfaces (APIs) allow multiple applications to interact
with one another without exposing the details of the interfaces.
Web APIs are typically used by the client application to access
the functionality of the Web server. The client sends a request
to the API of the server. The server’s API processes the
request and returns a response. The response contains the data
requested by the client. The client’s request to the server’s API
contains endpoints, resources, and the HTTP method used. In
our design, we use a URL to specify the endpoint and the
resource. Resource refers to the data requested by the client
and the endpoint is used to identify the address of the resource.
The method specifies the action to be taken by the API.

IV. IMPLEMENTATION

This section presents the details of the implementation and
operation of the web interface and the hardware setup for the

Fig. 11. Raspberry PI registration pageImplementation

18

Friendly name of user-2

Friendly name of user-1

RGB color picker used to select the 
color of user-2’s first fixture

Used to set color of user-1’s fixtures

Used to set color of user-2’s fixtures

Fig. 12. Manage Rpi page

proposed WLS system. Later in the section, we demonstrate
the controlling of DMX lights through the web interface.

The web application is implemented as a three-part applica-
tion: client application, server application, and database. These
applications interact with one another using APIs. The client
applications and the server APIs are designed to use the HTTP
protocol to send requests and receive responses.

The server application running on the web exposes its func-
tionality through APIs. The client application makes requests
to the server’s APIs to read or update the data present in
the database. The server application provides functionality for
CRUD operations that are to create, update, read, and delete
data in databases.

The client application displays the list of registered users
on the user interface. The web user interface contains three
pages. The first page is the home page that has a navigation
bar with links to the ‘register RPI’ and ‘manage RPI’ pages.
This is illustrated in Figure 10. It allows the operator to register
new performers and control the color of lighting fixtures for
existing performers via the user interface. When the operator
wants to register a new Raspberry Pi, its IP address, friendly
name, and the number of light fixtures in the user’s universe,
the user can enter these in the “Register RPI’s” page (see



(a) Before (b) After

Fig. 13. Images of a user of Zoom teleconferencing software without lights (a) and after turning on the proposed WLS system (b) at a poorly lit location.

Figure 11).
Once the operator provides these details and clicks the

submit button, the client application will send a request to
the server’s API. The server’s API will create a new corre-
sponding entry in the database. When the operator clicks on
the “Manage RPI” page, the client application makes a request
to the server’s API that fetches the most recent data from the
database and sends the data to the client in JSON format.
The client uses this data and displays the registered Raspberry
Pis with their friendly names along with an interface that
enables the user to choose colors corresponding to each fixture
associated with that Rasperry PI to the operator in an intuitive
manner. The operator can choose the color of the fixture using
an RGB palette to change the color of the lighting fixture. The
designed user interface for setting the colors is illustrated in
Figure 12. Once the color is chosen the operator can use the
“Set color” button to set the color of the fixture. When the
operator clicks the button, the client application sends the RGB
values of the fixture and the IP address of the Raspberry Pi
associated with the fixture via an HTTP request to the server’s
API. The server’s API uses the information in the request to
update the database. This request is simultaneously transmitted
to the OLA server associated with the user’s Raspberry Pi.
The OLA software on the Raspberry Pi receives the request
and generates the necessary DMX data to change the color
of the light. The operator can register multiple Raspberry Pis
and control multiple fixtures associated with each Raspberry
Pi using the web application.

V. DEMONSTRATION OF PERFORMANCE

To demonstrate the impact of the proposed WLS system on
improving the appearance of a webcam user, we illustrate the
appearance of a user as observed in the Zoom teleconferencing
application at a poorly lit up location, before and after acti-
vating our WLS system in Figure 13. In addition to obtaining
quality illumination under a wide range of ambient lighting
conditions, the main benefits of the proposed WLS system
is to achieve special lighting control, as required to achieve
artistic effects. For instance, optimum colors and intensity of
lighting to match a specific background image is illustrate in

Fig. 14. Appearance of a user in Zoom with optimum lighting to match with
a background image.

Fig. 15. Illustration of artistic lighting effects achieved using the proposed
WLS system.

Figure 14. An illustration of artisitc lighting effects is depicted
in Figure 15.

VI. CONCLUSIONS AND FUTURE WORK

A system to control webcam lighting of multiple users was
designed, developed and tested. The IP-based implementation
allows the operator to seamlessly control the lighting systems



of multiple users over the internet. This was achieved by
designing a web application that would enable an operator
to control the wireless interface of the webcam lights. The
wireless interface uses a raspberry pi along with a wireless
DMX transmitter to control DMX controllable webcam lights
wirelessly. The web application communicated with the ola
server by on the raspberry pi by issuing HTTP requests to
control the wireless interface.

An initial customer survey process that was conducted as
part of this project revealed that the proposed system would
benefit multiple segments of online presenters. The survey
done on multiple types of users suggested that lighting has
a lot of impact on the storytelling experience. This survey
included webcam users and service providers working in vari-
ous industries such as educational institutes, conference hotels,
convention centers, business communities, political leaders,
theaters, social media influencers, live stream gamers, etc. Our
future work includes further development of the web interface
and control parameters that meet the requirements of various
customer segments. We plan to make the registration process
more efficient by designing an app that would allow the users
to register their raspberry pi to the web server. Additionally,
we aim to add a set of presets of color settings on the user
interface that would enable the operator to Furthermore, we
aim to add sensors that would detect the change in the ambient
light and automatically adjust the lighting to the appropriate
preset setting.

ACKNOWLEDGMENT

This work was supported by a grant from UNC Charlotte’s
Ventureprise Charlotte Launch NSF I-Site program Zoom
Theater Interface (I-Corps, 2021-2022 Award # 1450417).

REFERENCES

[1] “How zoom became so popular during social distancing,” [On-
line]. Available: https://www.cnbc.com/2020/04/03/how-zoom-rose-to-
the-top-during-the-coronavirus-pandemic.html.

[2] “The show must go online: How performance was reinvented for the pan-
demic,” [Online]. Available: https://www.cnet.com/culture/internet/the-
show-must-go-online-how-performance-was-reinvented-for-the-
pandemic/.

[3] “American national standards institute, “american national standard ansi
e1.11 – 2008 (r2018) entertainment technology—usitt dmx512-
a asynchronous serial digital data transmission standard for
controlling lighting equipment and accessories” [1] american national
standards institute , ansi cp/2007-1013r3.1, may 31 2018.” [Online].
Available: https://tsp.esta.org/tsp/documents/docs/ANSI-ESTA E1-
11 2008R2018.pdf.

[4] “Namrata gogoi ”top 5 webcams with a ring light”,” [Online]. Available:
https://www.guidingtech.com/best-webcams-ring-light-buy/.

[5] “Flashular: Raspberry pi as a dmx light controller.” [Online].
Available: https://www.instructables.com/Raspberry-Pi-as-a-DMX-light-
controller/.

[6] “Louis leblin “online dmx light controller”,” [Online]. Available:
https://www.instructables.com/Online-DMX-Light-Controller/.

[7] “Velleman kits projects,” [Online]. Available:
http://www.velleman.co.uk/contents/en-uk/p310.html.

[8] “Open lighting architecture,” [Online]. Available:
https://www.openlighting.org/ola/.

[9] “Lixada usb to dmx interface adapter,” [Online]. Available:
https://www.lixada.com/p-l0385.html.

[10] “Lgidtech dmx512 led light bulb miboxer 9w,” [Online].
Available: https://www.amazon.com/Mi-Light-Temperature-Adjustable-
Transmitter-Separately/dp/B07813CHHY?th=1.

[11] “Raspberry pi zero w,” [Online]. Available:
https://www.raspberrypi.com/products/raspberry-pi-zero-w/.

[12] “Milight user instruction – dmx 512 led transmitter model no: Futd01,”
[Online]. Available: https://milight.pro/manuals/FUTD01 EN.pdf.

[13] “Raspberry pi os,” [Online]. Available:
https://www.raspberrypi.com/documentation/computers/os.htmlupdating-
and-upgrading-raspberry-pi-os.

[14] Ola json api. [Online]. Available:
https://wiki.openlighting.org/index.php/OLA JSON APISet a universe
of DMX

[15] Mern stack explained. [Online]. Available:
https://www.mongodb.com/mern-stack


