This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3216546

ESSENCE: Exploiting Structured Stochastic
Gradient Pruning for Endurance-aware
ReRAM-based In-Memory Training Systems

Xiaoxuan Yang, Student Member, IEEE, Huanrui Yang, Student Member, IEEE, Janardhan Rao Doppa, Senior
Member, IEEE, Partha Pratim Pande, Fellow, IEEE, Krishnendu Chakrabarty, Fellow, IEEE, and Hai (Helen) Li,
Fellow, IEEE.

Abstract—Processing-in-memory (PIM) enables energy-
efficient deployment of convolutional neural networks (CNNs)
from edge to cloud. Resistive random-access memory (ReRAM)
is one of the most commonly used technologies for PIM
architectures. One of the primary limitations of ReRAM-based
PIM in neural network training arises from the limited write
endurance due to the frequent weight updates. To make
ReRAM-based architectures viable for CNN training, the write
endurance issue needs to be addressed. This work aims to reduce
the number of weight reprogrammings without compromising
the final model accuracy. We propose the ESSENCE framework
with an endurance-aware structured stochastic gradient pruning
method, which dynamically adjusts the probability of gradient
update based on the current update counts. Experimental results
with multiple CNNs and datasets demonstrate that the proposed
method can extend ReRAM'’s life time for training. For instance,
with the ResNet20 network and CIFAR-10 dataset, ESSENCE
can save the mean update counts of up to 10.29x compared to
the SGD method and effectively reduce the maximum update
counts compared with No Endurance method. Furthermore,
aggressive tuning method based on ESSENCE can boost the
mean update count savings by up to 14.41x.

Index Terms—Endurance, resistive random-access mem-
ory (ReRAM), processing-in-memory (PIM), structured gradient
pruning.

I. INTRODUCTION

ESISTIVE random-access memory (ReRAM)-based

crossbars can perform efficient vector-matrix multipli-
cations (VMMs), which can be utilized for accelerating con-
volutional neural networks (CNNs) with low energy cost [1],
[2]. Hence, ReRAM-based architectures are suitable platforms
for accelerating both CNN training and inference and are
more energy- and area- efficient compared to their GPU
counterpart [3]. In addition, they do not require expensive
off-chip memory access due to their “in-memory” nature of
computation. One advantage of inferencing with ReRAM-
based PIM architectures is that the weights do not change,
and VMM will not update the weight values while utilizing the

This work is supported in part by the US National Science Foundation
(NSF) under grants CNS-1955196, CCF-1725456, OAC-1910213, and CNS-
1955353. (Corresponding author: Xiaoxuan Yang)

X. Yang, H. Yang, K. Chakrabarty, and H. H. Li are with the Department of
Electrical and Computer Engineering at Duke University, Durham, NC, USA.
(email: xy92@duke.edu)

J. R. Doppa and P. P. Pande are with the School of Electrical Engineering
& Computer Science at Washington State University, Pullman, WA, USA.

weight stored in the crossbar [4]. However, CNN training in-
volves multiple weight updates. Only a limited amount of prior
research has investigated the technical challenges that arise
during the weight update process. Repeated reprogramming
of the ReRAM devices during the weight update stage will
pose significant hurdles to the ReRAM system’s reliability.
The endurance problem limits the number of allowable re-
programmings and remains an open challenge for the ReRAM-
based PIM systems [5]. As the periodic and accurate gradi-
ent update in each iteration is necessary for CNN training,
repeated rewrites of the weights are inevitable. Therefore, uti-
lizing a ReRAM-based PIM system for CNN training requires
addressing the problem of periodic weight reprogramming.
In this work, we aim to leverage gradient pruning to reduce
the number of gradient updates and thus decrease the counts
of weight reprogramming for ReRAM-based PIM systems.
Gradient pruning based on the magnitude of gradient value
is initially introduced to reduce the communication load for
distributed learning [6], [7]. ReRAM-based PIM architecture
like PipeLayer [3] implements dense gradient update and
thus reprograms the entire weight crossbar in each training
iteration. Long Time Live [8] employs gradient pruning and
only updates sparse gradients. However, this approach incurs
the unavoidable overhead of intermediate gradient storage.
We propose the endurance-aware stochastic gradient prun-
ing strategy, which adjust the update probability based on
the previous writing frequency. In our approach, we can
reduce the maximum number of reprogramming for the weight
matrix compared with No Endurance approach. Furthermore,
we propose an endurance-aware structured gradient pruning
method to avoid writing to all the cells in selected rows
or columns simultaneously. Our approach can decrease the
number of weight updates and balance the write accesses.
Our design utilizes ReRAM-based counters to keep track
of the write accesses in each ReRAM row or column and
structurally adjusts the write probability according to the
current number of reprogramming recorded in the counter. In
summary, we propose the ESSENCE framework for neural
network training, which exploits structured stochastic gradient
pruning for endurance-aware ReRAM-based PIM systems.

The key contributions of this work are as follows:

e We present ESSENCE, an endurance-aware ReRAM-
based in-memory training system. ESSENCE utilizes

Authorized licensed use limited to: Duke University. Downloaded on May 24,2023 at 15:57:54 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3216546

structured stochastic gradient pruning for ReRAM cross-
bar structure.

o We demonstrate that ESSENCE can successfully reduce
the update counts for the ReRAM-based in-memory train-
ing process. We further explore the update count map
in the selected layer and illustrates that our method can
remove the clusters in the tail distribution of the update
count and effectively reduce the maximum update count.

« We propose the design of a ReRAM-based counter, which
keeps track of the number of writes in a structural manner
and introduces limited area overhead.

e We evaluate our method with various CNNs to show
its effectiveness and explore the potential of aggressive
tuning of update probability based on ESSENCE.

The remainder of this paper is organized as follows: Sec-
tion II discusses related prior work and Section III further ex-
plains the preliminaries of ReRAM-based in-memory process-
ing and gradient pruning . Section IV presents the proposed
ESSENCE methodology. Section V provides the experimental
results and analysis. Section VI concludes this paper.

II. RELATED WORK

This section presents an overview of the state-of-the-art
ReRAM-based PIM architectures and the associated endurance
issue. Then, we discuss the update counts during the weight
update stage in selected previous approaches for the ReRAM-
based in-memory training system.

A. ReRAM-based PIM Designs

ReRAM-based PIM designs can speed up neural net-
works like CNN, recurrent neural network (RNN), gener-
ative adversarial network (GAN), and attention-based net-
work for cutting-edge tasks like image categorization [3],
activity detection [9], image generation [10], and natural
language translation [11]. Neural network inferencing with
ReRAM-based systems is a welled-studied topic, and thus
the existing challenges of ReRAM-based PIM inferencing,
such as IR-drop, programming noise, and thermal noise,
have become the focus of current studies [12]. Potential
solutions include compensation [13], device-variability-aware
training [14], and stochastic-noise-aware training [15]. There-
fore, utilizing ReRAM-based PIM designs for neural network
inference is efficient and reliable. However, for ReRAM-based
training tasks, the endurance problem is a major challenge.

B. Endurance Problem

Repeated reprogramming of the ReRAM crossbar is un-
avoidable for neural network training. Taking training on
50,000 images from the CIFAR-10 dataset [16] with a batch
size of 64 as an example, one training epoch involves 782
reprogramming of each ReRAM cell in weight crossbar. Thus,
300 training epochs will introduce 2.35x 10° writes. Currently,
the endurance for a ReRAM device ranges from 10° to
10'? cycles [17]-[20]. The endurance problem sets an upper
bound for the available number of programming, but repeated
and frequent programming is necessary to the ReRAM-based

Weight matrix W | (a) Pipel:ayer Updat;e all elemen{s to the weigiht matrix.

Wiy [Wyp [Wis Wiy WintGyy | Wip+Gyy | WistGry | WigtGy
Wy (W [Was Wy War+Gar | WaatGap | WastGas | WautGae
Woi+Gsy | WaatGsy | WastGas | Wiu+Gys

Wiy |Wap [Was |Ws
Wiy [Wiz |Was |Was

WirtGay | WiatGrz | WistGas | Wia+Gay

store remaining elements to the intermediate gradient matrix. !

Gu |Gz | Giz | Gua Wi, Wi, Wis Wy, Giy |Gz |Grs | Gua i
Ga1 |Gz |Gz | Gaa Wys Wy, Wy W, Gy | Gaa |Gz | Gaoa }
Ga1 | Gz | Gs | Gon WartGar | WaptGao | WagtGas | WaytGis oo fo]o i
Gyy | Gap | Gaz | Gaa W,, w,, W3 Was Gay | Gaz | Gaz | Gay }

i
|
|
|
|
|
|
|
|
1
i b) Lo.ngiLive TIME: Ideate selected elements to the weight matrix,i
|
|
|
|
|
|
|
|
|
|
|
L

Fig. 1. Conceptual visualizations for the weight update stage in prior work:
(a) PipeLayer. (b) Long Live TIME. The learning rate is omitted for simplicity.

neural network training. We need an efficient and intelligent
strategy to balance these two parts.

Previous approaches try to propose endurance management
methods with hardware-friendly programming strategy. Wen
et al. [21] advocated utilizing a programming order of reset
operations followed by set operations and shortening the reset
operations for less significant bits to reconcile the endurance
problem with the programming technique. Zhang et al. [22]
also proposed a software-based strategy to bias the weights
toward smaller values as well as a hardware mapping solution
that takes into account the memristors’ aging status. However,
these approaches didn’t fully exploit the potential of training
neural networks with sparse gradients.

Recently, Giordano et al. [23] proposed CHIMERA frame-
work that simplifies the features and gradients with low-rank
approximation. In addition, CHIMERA used a large set to
avoid frequent ReRAM updates. Note that utilizing a large
set for training is always effective in reducing the number
of updates for training. Besides, CHIMERA requires off-line
training and the proposed low-rank training only shows its
effectiveness with pre-trained models.

C. Representative Approaches for Updating Counts during
Training

For training in-memory systems, we compare two rep-
resentative approaches, namely PipeLayer [3] and Long Live
TIME [8], and show the conceptual visualizations in Fig. 1.
PipeLayer method involves calculating the gradients and up-
dating the weights in each iteration. Here we assume that
one crossbar size is n X n. Since ReRAM crossbars function
as memory subarray and computing subarray in the design,
we assign one crossbar for the weights and another one for
the gradients. And the update counts for both weight matrix
and gradient matrix are equal to the crossbar size in each
iteration. PipeLayer is a standard approach when we don’t
consider gradient sparsity. The disadvantage of this approach is
that all elements in the weight matrix require reprogramming
in every training iteration, and this frequent reprogramming
compromises the reliability of the overall PIM system.

The second approach Long Live TIME reduces the number
of writes for the weight update stage by value-based gradient
pruning. For example, if only one row is selected for weight
update, the weight update counts will be decreased to size n.
However, it is worth noting that this method requires resetting
the selected gradient row of size n and storing the remaining

Authorized licensed use limited to: Duke University. Downloaded on May 24,2023 at 15:57:54 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3216546

TABLE I
THE UPDATE COUNTS IN THE CROSSBAR OF SIZE NXN FOR K TRAINING ITERATIONS, WHERE 1,2,...,K STANDS FOR THE ITERATION NUMBER, AND G/W
STANDS FOR CROSSBAR FOR GRADIENT/WEIGHT MATRIX.

ITteration Index-Crossbar  1-G 1-w 2-G 2-W k-G k-W Total
PipeLayer [3] n? n? n? 2 n? n? 2k - n?
Long Live TIME [8] n? n 2n?2 n .. 2n? n (2k—1)-n2+k-n
ESSENCE (this work) n? c1n n? co-n ... n2 c,-n  k-n?24+ Z?:l ci'n

gradient. At the next iteration, the new calculated gradient
requires writing to an array of size n2. Then, the remaining
gradient will be accumulated to the new calculated gradient,
and this step requires writing to a block of size (n? —n). We
summarize the results for these two methods in Table L.

Note that Long Live TIME method increases the num-
ber of writes for the gradient calculation by n? compared
with PipeLayer and requires additional storage in ReRAM
or DRAM. In the first case of storing in supplementary
ReRAM crossbars, the resource requirement for weight and
gradient matrix in one layer increases to 1.5x compared with
the PipeLayer approach because the size of the intermediate
gradient matrix is the same as that of the weight matrix.
In another case of storing the intermediate result in DRAM,
DRAM resource consumes additional power and area and in-
troduces inevitable communication overhead between DRAM
and ReRAM in each training iteration. In total, Long Live
TIME requires larger number of reprogramming involving the
gradient and weight matrix compared with PipeLayer. There-
fore, this method cannot solve the frequent reprogramming
problem for ReRAM-based in-memory training systems. Thus,
the proposed method needs to reduce the weight matrix access
without increasing the gradient matrix access. In addition, we
do not want to introduce overhead due to the intermediate
gradient storage.

III. PRELIMINARIES: RERAM-BASED IN-MEMORY
PROCESSING AND GRADIENT PRUNING

In this section, we present the background of in-memory
processing using ReRAM-based crossbars. Next, we highlight
the important design principles in the ReRAM-based gradient
pruning and the formulation of stochastic gradient pruning.

A. In-memory Processing of Neural Network in ReRAM

Fig. 2(a) shows a fully-connected (FC) layer with the
connection between input and output neurons. We denote the

Forward: o | Reprogram the cells |
y=Wx+h ERERY
o @ @ % @ 1010 0001 0000 1001
TR Y
[=) % @ [ p into cells
Backward: e :_;1./ j
OL oL oy ( L &I ol & ) 1010 0000 01001011 —
oW~ ay ow

(a) (b) (c)

Fig. 2. ReRAM-based processing-in-memory system. (a) Forward propagation
using the weight and the activation and backward propagation for the gradient
with respect to weight in a neural network. (b) ReRAM-based vector-matrix
multiplication computing. (¢c) An example of weight update in ReRAM-based
system, where multiple cells represent one weight element. In this example,
a 16-bit weight is separated into four 4-bit ReRAM cells.

activation (or input) as x, the weight as W, the bias as b, and
the output as y. The forward path computation is captured
by the equation of y = Wz + b. When the forward path
computation is finished, the loss L can be calculated with
the targeted output and the actual output using the squared
Euclidean norm (L2 norm) or the cross-entropy loss. In the
backward path, the gradient with respect to the weight %
can be computed with the chain rule, following the equation of
g—é = % . 88—1/7{,. In this example, we focus on the VMM related
to the weight, which is the dominant computation in the for-
ward and the backward path. Accordingly, the ReRAM-based
in-memory processing for neural networks should support the

VMM with high efficiency.

ReRAM, as a nonvolatile memory device, can store
conductance in each cell, as shown in Fig. 2(b). Mapping
the fully-connected kernels to the ReRAM crossbars
requires programming the weight in Fig. 2(a) into the
ReRAM cells in Fig. 2(b). When mapping the convolution
kernels to the ReRAM crossbars, the weights will be
unrolled to two-dimensional representation in the first
step. For instance, the convolution kernel has the size of
[in_channel, kernel_height, kernel_width, out_channel],
and the unrolled kernel has the dimension of [in_channel x
kernel_height x kernel_width, out_channel]. Then, we
can map the unrolled kernels to ReRAM crossbars.

In the computation stage, the voltage will be supplied to
the word line. For instance, during the forward path, the input
vector is encoded as the voltage vector (denoted as V'), and
the value of the weight matrix is encoded as the conductance
of the ReRAM crossbar (denoted as G). The ReRAM sys-
tem performs the vector-matrix multiplication according to
Kirchhoft’s current law and Ohm’s law [24]. Consequently,
the output current accumulated through the bit line (denoted as
I) equals the multiplication result of voltage and conductance.

In our PIM system, the VMM is computed in the analog
domain. The peripheral circuits (including the digital-to-analog
converter and the analog-to-digital converter) help in convert-
ing the signals from analog to digital and vice-versa. For the
ReRAM-based in-memory training system, the backward path
can also be implemented with the ReRAM-based VMM. In
addition, training requires the weight update step, in which
the gradient is added to the original weight. Thus, the repro-
gramming of the ReRAM crossbar is required. If the weight
precision (precy) is larger than the cell resolution (rescep),
we should update multiple cells (i.e., [precy, /rescen]| cells) to
refresh one weight element. In Fig. 2(c), we show an example
of weight update in ReRAM-based system. Here, W) and
W+ represent the weight for time step ¢ and (t + 1).
Parameter 77 denotes the learning rate. In the example, each
weight update starts from reading the conductance values from

Authorized licensed use limited to: Duke University. Downloaded on May 24,2023 at 15:57:54 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3216546

the ReRAM cells. Then, the value of W) is achieved by
shifting and adding the cell conductance. We compute the
WD with the equation WY = W® —p. 2L After that,
we split the new weight into cells and reprogram the cells. This
loop from reading to reprogramming is necessary for the cell-
level update in the ReRAM-based in-memory training system.

B. Design Principles of ReRAM-aware Gradient Pruning

As we discussed in Section II-C, the whole gradient matrix
will be updated to the weight matrix if no gradient sparsity
information is known. This motivates us to explore options to
replace updating the whole gradient matrix with only updating
the nonzero elements if our method can prune the gradient
matrix to have more zero elements. The potential gain of this
method lies in the pruning percentage of the gradient. Before
discussing details of the ReRAM-based gradient pruning strat-
egy, we want to address two important design principles.

First, we propose to eliminate the intermediate gradient
that is required for the gradient sparsification [8]. Gradi-
ent sparsification helps in selecting the important gradient
row (i.e., the gradient row with the largest magnitude) for
weight update. However, the disadvantage of this method is
storing the remaining gradients (i.e., gradient matrix except
for the selected gradient row) for the next training iteration.
Generally, we need to keep the intermediate gradient to ensure
the convergence of the overall training process. However,
the additional copy of the intermediate gradient adds to the
storage and communication overhead. In contrast, we should
separate the constructed gradient into zero and nonzero values.
In the update stage, all nonzero values should be updated to
the weight matrix so that the remaining gradients are zero
elements. Therefore, our approach can successfully circumvent
the intermediate gradient problem.

Second, we advocate utilizing the optimizer without mo-
mentum to avoid the area and latency overhead in ReRAM-
based designs. Stochastic gradient descent (SGD) [25] is an
effective gradient-based optimizer for neural network training.
In addition, momentum [26] or adding momentum to SGD can
include the history information to the gradient update, and it
leads to faster convergence. Here, momentum is defined as
the moving average of the gradient, and thus the storage and
computation related to momentum will introduce additional
overheads. If ReRAM-based designs manage to support the
momentum calculation within the crossbar structures, mo-
mentum values should also be stored in ReRAM. Also, the
addition of the momentum term and gradient term is required
to derive the correct gradient update. Thus, the area and latency
overhead related to the momentum is considerable. With an
appropriate gradient pruning method, gradient term can have
more zero elements, but there is no guarantee of sparsity in the
momentum. As a result, including momentum in the update
step may increase the number of updates in ReRAM cells.
Therefore, we will take the SGD as a preferred optimizer.

C. Stochastic Gradient Pruning Formulation

In this part, we first explain the gradient calculation and
the stochastic gradient pruning method. Next, we show that

stochastic gradient pruning will not affect the expectation of
the gradient value. This gradient pruning method serves as the
basis of our framework.

During the training process, we want to find the optimal
weight set to minimize the expectation of loss function, which
can be written as follows,

minimize F(w) = E[L(w,x)], ()

where x denotes the input and w represents the weight. The
gradient at iteration t is achieved by taking the derivative of
the loss function £(w,x). That is to say,

g =V L(w,x). (2)

Here we denote the weight at training iteration t as w(*)
and the gradient at training iteration t as g(*). The weight
update formula for the weight at the next training iteration
(i.e., wttD) is defined as:

wtt) = w®) s g®) 3)

where the learning rate is denoted as 7.

The expectation of stochastic rounding is unbiased, and thus
stochastic rounding has been investigated for low-precision
neural network training [27] and distributed learning [6]. We
utilize the stochastic gradient pruning and round the gradient
to its maximum absolute value or zero with the following
formula:

sgp(g") = h(g") o b(g™) (4)
(t)
h(g®) with p= — 8L
(t)y _ maz(abs(g™))
Sgp<gk ) 0 with p = 1 — |g§€c>| &)
p= max(abs(g®))’
h(g®) = maz(abs(g®))) - sign(g\"), (©)

where sgp denotes the gradient after stochastic pruning,
operator o denotes the element-wise multiplication, b denotes
a binary indicator for pruning position, and h covers the max-
imum absolute value of gradient and the sign of each element.
As shown in Equation (5), the probability of choosing the k'"
element of binary indicator as value 1 or value 0 depends
on the absolute value of the k*" element of gradient (| g,it)|).
Note that with the Equations (4) (5) and (6), the expectation
of sgp(g(t)) equals the expectation of g(*). Besides, with
the Equations (1) and (2), we can get the formula of the
expectation of the stochastic pruning gradient as

E(sgp(g")) = E(gV) = Vo F(w), (7)

which remains an unbiased gradient towards the minimization
target described in Equation (1).

IV. PROPOSED ESSENCE METHODOLOGY

This section focuses on the development of the ESSENCE
methodology. First, we propose the endurance-aware gradient
pruning method, which can monitor the previous writing
frequency and adjust the current writing probability. As the
writing access of the ReRAM crossbar is either a column-
wise or a row-wise operation, the structured stochastic gradient
pruning is preferable. We introduce the ESSENCE method

Authorized licensed use limited to: Duke University. Downloaded on May 24,2023 at 15:57:54 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3216546

and explain the endurance-aware structured gradient pruning
approach. Finally, we present the overall design of ESSENCE
and discuss the characteristics of the two components: the
computation unit and the counter unit.

A. Endurance-Aware Gradient Pruning

In the stochastic gradient pruning, we prune the gradient
based on its magnitude, and the sparsity of the gradient matrix
can be increased. For instance, for ResNet20 network with
the CIFAR-10 dataset, the average sparsity of the gradient
matrix is approximately 71.64% across all layers, as shown
in Fig. 3(a). As this pruning doesn’t consider the endurance
issue, we refer to the stochastic gradient pruning as the “No
Endurance” gradient pruning approach. However, note that
there is an aggregated usage of specific ReRAM cells for No
Endurance approach, as shown in the blue line of Fig. 3(b). For
instance, in the last convolution layer, i.e., layer with index 19,
the maximum update counts reach 80.52 x 103, while the SGD
method has the maximum update counts of 117.30 x 103. The
ReRAM cells with the maximum update counts are very highly
utilized, and may wear out faster compared to the cells with
mean update counts. This result indicates that the mean update
count saving from No Endurance method doesn’t guarantee a
similar-level improvement in terms of update counts for the
most frequently updated cell.

Therefore, we introduce an endurance-related factor o to
indicate the update intensity of ReRAM cells. Here we denote
the existing number of updates in one ReRAM cell as u.
Then, similar to the binary indicator b(g(*)) in Equation (4)
with Bernoulli distribution, the probability of update this
cell in iteration t will be p(t) = f(u). And function f is
the probability function of existing update counts. Then, in
training iteration t 4+ 1, we will have the existing number of
updates in the ReRAM cell as u’, and the value of u’ is
achieved with the following equation:

’ {u—l—l
u =
u

x10*

with p = p(t)

with p =1 — p(t). ®)

12

10

Mean Update Counts

0 5 10 15 20
Layer Index

(@)

Maximun Update Counts

2 —— SGD
—#— No Endurance

0 5 10 15 20
Layer Index

(b)
Fig. 3. Update counts for SGD, No Endurance methods. ResNet20 network
with the CIFAR-10 dataset training for 300 epochs with the batchsize of 128.
(a) Mean update counts in each layer with standard derivation shown as an
error bar, (b) Maximum update counts in each layer.

5
For the iteration t + 1, we have
p(t+1) = f(u') =p(t)f(u+1)+ (1 = p(t))f(u)
=[flu+1)+1— f(u)f(u). 9)

As we want to keep the format of p(t + 1) similar to p(t)

and the probability value smaller than 1, we define f(u) as

1— % Parameter threshold is learnable for different
hreshold+u .

training tasks. Thus, we will have the endurance-related factor

o be represented as

1 u®

(t) = — = + —-—\
fu®) threshold

The endurance-related factor increases linearly with the exist-
ing update counts in ReRAM cells as shown in Equation (10).
With the proposed endurance-related factor, we can reduce
the probability of update large-a cells. Here, we propose the
endurance-aware stochastic gradient pruning strategy (referred
to as esgp) as following:

esgp(g”,a®) = h(g®,a®)o (b(g") - b(a®)) (1)
h(g®,a®) = a® - maz(abs(g)) - sign(g") (12)

(10)

(t)
)y 1y g |
1
Pb(al)y=1) = —=- (14)
Qe

Here we omit the probability functions when each binary
indicator equals to 0, because they are easy to obtain from the
Equations (13) and (14). Therefore, the probability of update
of one cell will be determined by both the amplitude of the
gradient and the existing update counts. Following the steps
of Equation (7), we can derive the endurance-aware stochastic
pruning gradient expectation as

E(esgp(g")) = E(gY) = Vo F(w¥),  (15)

which does not influence the training convergence towards the
optimization target.

We apply the endurance-aware stochastic gradient pruning
to the training process. In Fig. 4, we collect the maximum
update counts of each layer across different training epochs
and compare the No Endurance and Endurance-aware ap-
proaches. For No Endurance method, we can observe that
the linear increase in terms of maximum update counts in
Fig. 4(a). In this case, controlling the maximum update counts
or decreasing the gap between the worst case and the average

<10" <10
10 210 10 210

B Al 8

n Update Counts

Maxi

0=
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Epoch Number

(@)

Epoch Number

Fig. 4. Maximum update counts of ReRAM cells during the training process.
Different lines in the figure represent different layers from the ResNet20
network. (a) No Endurance method, (b) Endurance-aware method.

Authorized licensed use limited to: Duke University. Downloaded on May 24,2023 at 15:57:54 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3216546

case is not possible. However, with the endurance-aware
stochastic pruning method, we can successfully control the
slope of maximum update counts, as shown in Fig. 4(b). We
set the same range for y—axis in Fig. 4(a) and (b) and find
that Endurance-aware method largely reduces the maximum
update counts compared with No Endurance method.

In summary, this case study shows the effectiveness of
endurance-aware stochastic gradient pruning for ReRAM-
based in-memory training systems. This endurance-aware
method can automatically decrease the gap between the
maximum update counts and average update counts. More
importantly, our method can transform the expected sparsity
of stochastic gradient pruning in the software approach to a
similar level of update savings in hardware approach. The
advantage of our method over previous approaches is that our
method eliminates the remaining gradient matrix and avoids
the additional storage.

B. ESSENCE: Endurance-Aware Structured Stochastic Gradi-
ent Pruning

For the No Endurance and Endurance-aware approaches, the
pruned gradient position is related to the amplitude of the gra-
dient and the endurance-related factor, and these approaches
only offer random pruning. As we write to ReRAM crossbars
either row-wise or column-wise manner, we incorporate the
gradient pruning in a structured manner. Updating one row or
column can be avoided if the gradient matrix has all zeros in
that line. Besides, the endurance-aware gradient pruning with
random positioning is impractical because the area overhead
of setting one endurance-related factor for each ReRAM cell
is large. On the other hand, setting the endurance-monitoring
factor for each ReRAM row or column, will significantly
reduce the overhead. Therefore, we develop the endurance-
aware structured stochastic gradient pruning method with the
structural position indicator and minimize the overhead of the
endurance-related factor.

The proposed method includes the structural information by
revising the endurance-related factor. We introduce a struc-
tured endurance-related factor o to indicate the intensity of
ReRAM update in a structured manner. Here we denote the
existing number of update in one ReRAM line as ug, and all
elements in this line share the same us. And the relationship
of a and ug follows the equation of

® _ 1 B us®

= =14+ ——.
fus®) T Yhreshold

Here we propose the endurance-aware structured stochastic
gradient pruning strategy (referred to as essgp) as following:

essgp(g®, o) = h(g®, o,V 0 (b(g™) - b(a, ™)) (17)

(16)

(&N

h(g(t),as(t)) =a,® ~max(abs(g(t))) 'sign(g(t)) (18)
P == — By
B ) == maz(abs(g®)))
1
Yy — 1) —
P(es) =1) = 7. (20)

Note that the binary indicator b(c,®) in Equation (17)
keeps track of the existing update counts of ReRAM and
provides structural information. Because the elements in one
selected row or column will share one binary indicator for
structured pruning position, we don’t have an element-wise
representation for the endurance-related factor. We illustrate
our method in Algorithm 1.

Algorithm 1 Endurance-aware Structured Stochastic Gradient
Pruning Method

0: Randomly initialize model weights WO,
. Set total iteration 7' and learning rate 7;
. Set update counter us(o);
fort=0,...,7 do
Sample batch B from training set;
Compute SGD gradient g = VLs(W®);
Compute endurance-related factor ;M with Equation (16);
Compute  the endurance-aware  structured  gradient
essgp(g®, o) with Equation (17);
0:  Update the weights with the endurance-aware structured gra-
dient and update the update counter u®;
return model weights W™ and update counter results u (.
=0

PR

In the ESSENCE framework, both the gradient information
and the structural endurance-related factor influence the update
probability. If the amplitude of the gradient is low or if the
existing update number is large, the probability of further
updating the cell will be reduced. We present the update count
saving results from our ESSENCE method in Section V-B.

Inspired by the deep gradient sparsification [7], we find
that the pruning method can be aggressive such that only the
largest row in a matrix is updated in each iteration. Therefore,
we propose to design a more aggressive tuning method for
ESSENCE, which further reduces the update probability for
the ReRAM cells. However, we will not employ the aggressive
strategy at the start of the training process since we want to
ensure the correct training convergence trend. In addition to the
gradient information, we can collect training accuracy during
the training process and prepare for the aggressive tuning.
When the training accuracy (¢_acc) is larger than one training
threshold (¢_thres), we use the aggressive technique to reduce
the update probability for all ReRAM cells and avoid over
fitting in the training process. The equation of this aggressive
method based on Equation (20) is as follows:

1
[t_acc —t_thres] - a,®)’
where the probability of update the ReRAM crossbars will be
reduced if the training accuracy exceeds the training thresh-

old by 1%. We show the update count saving results from
aggressive tuning with different thresholds in Section V-E.

P(b(asV, t_ace) = 1) = (21)

C. Overall Design of ESSENCE

The ESSENCE design, which comprises of two loops, is
represented in Fig. 5. This design is developed to realize
the ReRAM-based in-memory training with the endurance-
aware structured gradient pruning method. The left loop deals
with the computation in ReRAM-based system and the im-
plementation of weight update in a structured manner, while

Authorized licensed use limited to: Duke University. Downloaded on May 24,2023 at 15:57:54 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3216546

Update Weight in a AR
Forward Path ‘__ AR 3{ Update Counter
Structural Manner
b
1 A/ Y exfezif e v
REEK
‘ Compute Loss KRR | ESSGP w.r.t. Equation (17) | =2
ﬂ AYAY e =
| Aggressive
o __ Ll Tuning <
; I Training ] Endurance-related
Gradient info A |__Accuracy _ | M

Backward Path }:9{

Fig. 5. ESSENCE framework that enables the endurance-aware structured
stochastic gradient pruning. The grey blocks represent the normal training pro-
cess for neural networks, the white blocks highlight the proposed ESSENCE
design components, the dashed block are required for the aggressive tuning.
The weight matrix is shown as the black ReRAM cells, and the updated cells
in the weight matrix are denoted with the bold lines.

the right loop keeps track of the write access number to the
weight matrix. The essgp method provides a bridge for these
two loops and considers both the gradient information and
the endurance-aware factor. The forward path and backward
path follow the ReRAM-based in-memory processing process
as explained in Section III-A. The gradient information is
propagated from the backward path and used for generating
structured sparse gradient. One essential feature is that the
components in these two loops can be executed simultane-
ously, ensuring that training latency is not compromised. In
the aggressive tuning setting, the training accuracy is also fed
into the center unit.

We summarize the weight update stage of ESSENCE as
update structured sparse elements to the weight matrix without
intermediate gradient storage. Therefore, following our design
principles, we save update counts compared with dense gra-
dient update and avoid introduce ReRAM storage overhead.

In addition, we separate the tasks of computation unit and
counter unit according to the stages of neural network training,
as shown in Fig. 6. Since the details of the computation unit
have been described, we will concentrate on the counter unit
analysis. We propose ReRAM-based counter for this design.
Suppose we set the direction of counter as column-wise. In the
case that multiple cells (in our case, with four ReRAM cells
and the cell resolution of 4-bit per cell) are utilized to represent
one weight element (with the resolution of 16-bit), we should
set one counter for one weight column. For the ReRAM-based
counter, one counter is made up of 4 cells. The update process
for ReRAM-based counter is similar to that of ReRAM-based
weight cells. If the selected column is updated in one iteration,
we add one to the counter information and reprogram the new
value to the counter. The upper bound of number stored in
the counter will be (2'6 — 1). Due to the promising structured
sparsity provided by ESSENCE, the counter number will not
reach the upper bound in the training process.

Furthermore, we show the the tasks for computation and
ReRAM-based counter parts in Fig. 6 and discuss two possible
patterns for distributing the tasks into different stages. We
name the two patterns as conventional pattern and efficient
pattern. In the conventional pattern, where the read operation
of counter unit and the compute VMM operation of compu-
tation unit can be implemented simultaneously in the forward
path stage; Then, in the backward path, the gradient data is

2.
=

Computation U

— Forward Path Backward Path Weight Update
Update with
Compute the VMM | Compute the VMM endurance-aware
for y=Wx+b for L — 9L 0y structural stochastic

ow ~ ay aw gradient pruning

method

Counter Unit
EA =

T Read the counter Info

Update the counter

Fig. 6. The stage descriptions of computation unit and ReRAM-based counter
unit.

produced by the computation unit; Afterwards, in the weight
update stage, we will update the weight with the help of the
ESSENCE method and the counter information. However, we
find that we can save the design overhead of ReRAM-based
counter unit by sharing the ADC with the computation unit.
Therefore, in the efficient pattern, we can read the counter
information after the VMM computation instead of implement-
ing the counter read and VMM computation simultaneously.
This pattern will not influence the overall latency since the
counter unit is idle during the backward path. We will adopt
the efficient pattern as our preferred design choice because it
can help save the area.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first discuss the experimental setup. We
also present details of neural networks under consideration,
datasets, and ReRAM designs. Next, we present the exper-
imental results, highlight the advantages of ESSENCE, and
analyze the counter overhead. Finally, we analyze the results
of the aggressive tuning strategy.

A. Experimental Setup

We evaluate ESSENCE with the following representative
neural networks: ResNet20 [28] and VGG19 with batch nor-
malization (VGG19-BN) [29] on the CIFAR-10 and CIFAR-
100 datasets [16]. There are 50,000 training images and
10,000 testing images in the CIFAR-10 dataset, which are
divided into 10 classes. The CIFAR-100 dataset has the same
number of training and testing images as the CIFAR-10
dataset, but these images are grouped into 100 classes. We
select the common training approach SGD with momentum
(momentum is set as 0.9) as a pure software-based baseline.
The inferencing accuracy results of the ResNet20 and VGG19-
BN network on the CIFAR-10 dataset are 92.15% and 94.02%,
respectively. We include the SGD algorithm without momen-
tum and the update strategy of PipeLayer as the hardware-
based baseline method, and denote this baseline as SGD.
For the gradient pruning methods, we also exclude the mo-
mentum term to guarantee that the ReRAM-based in-memory
processing system does not store intermediate gradients. For
all the experiments, the learning rate is configured to follow
the cosine decay and initialized as 0.25. In total, 300 epochs
are required for the training process. The batch size for both
training and inferencing is 128. Note that extending the batch
size can reduce the training iterations in one training epoch and

Authorized licensed use limited to: Duke University. Downloaded on May 24,2023 at 15:57:54 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3216546

TABLE II
RERAM PROCESSING ELEMENT DESIGN DETAILS.

Name Spec. Number Power (mW)  Area (mm?)
DAC 1bit 8x128 4 0.00017
ReRAM 4bit/cell
Crossbar  128x128 8 24 0.0002
ADC 8bit,1.2GSps 8 16 0.0096
S+H 8x128 0.01 0.00004
IR 2KB 1 1.24 0.0021
OR 256 B 1 0.23 0.00077
TABLE III
EXPERIMENT RESULTS ON THE CIFAR-10 DATASET.
(a) ResNet20
Methods Mean Update Counts (Savings)  Accuracy
SGD 117.30 x 103 (1x) 90.67%
No Endurance 33.26 x 103 (3.52x%) 90.49%
Essence Row 11.45 x 103 (10.24 %) 90.51%
Essence Column 11.40 x 103 (10.29%) 90.93%
(b) VGG19-BN
Methods Mean Update Counts (Savings)  Accuracy
SGD 117.30 x 103 (1x) 92.66%
No Endurance 25.64 x 103 (4.57x) 92.43%
Essence Row 11.45 x 103 (10.24x) 92.61%
Essence Column 11.58 x 103 (10.13x) 92.41%

thus reduce the update counts of ReRAM cells for the whole
training process. However fine tuning the batch size is not
the focus of this work. We report the mean update counts for
ReRAM cells, update count savings compared with baseline,
and the inferencing accuracy.

We set the weight, activation, and gradient precision as 16,
16, and 16 bit. In addition, we report the configurations for the
processing element in the ReRAM-based in-memory training
system in Table II. As each ReRAM cell in our setup has a
resolution of 4 bit, we need 4 cells to represent one weight. The
peripheral circuits in ESSENCE are adopted from the existing
ReRAM-based PIM design [2].

B. ESSENCE Results

1) Results on the CIFAR-10 dataset: We show the
ResNet20 and VGG19 network results on the CIFAR-10
dataset, with SGD, No Endurance, Essence Row, and Essence
Column methods, in Table III. Our results demonstrate that
ESSENCE provides promising mean update savings without
degrading the accuracy. For instance, with the ResNet20
network, Essence Column can have on average 10.29x update
savings and achieve better inferencing accuracy compared with
SGD. For these two CNNs, ESSENCE framework helps in
extending the average life time by up to 10x.

In addition, we illustrate the mean update counts across
layers of ResNet20 network in Fig. 7. The mean update
and standard derivation results of Essence Column (yellow
line) overlap with that of Essence Row (purple line), which
matches our result in Table III that these two methods achieve
similar saving. We find that the standard derivations of Essence

12 x 101

SGD R
—F— No Endurance
gl —F— Essence Row

Essence Column

Mean Update Counts

()
T

Layer Index

Fig. 7. Mean update counts for SGD, No Endurance, Essence Row, Essence
Column methods. ResNet20 network with the CIFAR-10 dataset training for
300 epochs with the batch size of 128. The standard derivation is represented
as an error bar.

methods are always smaller than No Endurance method.
The standard derivation of Essence reduces as the writing
probability of high utilization cells is reduced as shown in
the Equation (20). In addition, our observation confirms the
effectiveness of ESSENCE in reducing mean update counts and
balancing write accesses to ReRAM crossbars during training.
Furthermore, we discuss the problem of maximum update
count and compare our method with No Endurance approach
in the next part.

We further analyze the training time required by ESSENCE
and SGD+PipeLayer. Note that the training time consists of
the computation time in the forward and backward paths,
the writing time in the gradient update stage, and the time
overhead introduced by the ESSENCE design. Our method
can significantly reduce the writing time in the gradient update
stage and the overall time saving of ESSENCE is 3.18x
and 3.17x for the ResNet20 and VGG19-BN network with
the CIFAR-10 dataset compared with the SGD+PipeLayer
approach. For training with the CIFAR-100 dataset, ESSENCE
method achieves 2.80x and 2.72x overall time saving com-
pared with the SGD+PipeLayer approach on the ResNet20 and
VGG19-BN network respectively.

2) Analysis of the Tail of Update Count Distribution: As
indicated in Fig. 3, the maximum update number is maximum
in the last convolution layer, and thus we analyze the update
count distribution of this layer and show the effectiveness of
ESSENCE. First, we look into the distribution of update counts
for the No Endurance Method in Fig. 8(a). Here we define the
tail of the distribution as the area beyond the third standard
derivation (denoted as p+30, where p is the mean and o is the
standard derivation). In our case, the tail of the update count
distribution indicates the heavy utilization of the crossbar.

In the next step, we look at the positions of the high
utilization cells and try to figure out whether we can decrease
the percentage in the tail of distribution with our method. In
the No Endurance method, 1.13% of ReRAM cells fall into the
tail distribution. Fig. 8(d) illustrates that the high utilization
cells form several clusters in the last convolution layer in

Authorized licensed use limited to: Duke University. Downloaded on May 24,2023 at 15:57:54 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3216546

0.04 T T - T

[ No Endurance

0.03

0.02

0.01 m-dﬂ
0 !

Fraction of Data

Cell Update Counts x10*

[ Essence Row

Row Inded *Column Index

(e)
[T Eence Columa | 0-46%

i

00
Row Index  Column Index

Cell Update Counts x 10!

Cell Update Counts x10*

(c) ®

Fig. 8. Left: Update count distribution in the last convolution layer in the
ResNet20 network: (a) No Endurance, (b) Essence Row, (c) Essence Column.
Right: The positions of the high utilization cells in the last convolution layer
in the ResNet20 network: (d) No Endurance, (e) Essence Row, (f) Essence
Column. The number in each figure represents the tail percentage of each
distribution.

the ResNet20 network. Moreover, the clusters are along the
ReRAM columns. The reason for these clusters is that the last
convolution layer is connected to the fully-connected layer.
The importance of the input neurons in the fully-connected
layers are different, i.e., frequent gradient updates on selected
neurons are necessary because the amplitude of gradient is
relatively large compared with other neurons. Even though
the tail percentage of the ReRAM cells is not considerable,
the influence of these clusters may bring degradation to the
training accuracy. If the high utilization cells are wear out,
the conductance values stored in the cells can be faulty. The
ReRAM-based PIM designs accumulate the current along the
columns for the VMM computation, and thus concurrent faults
in one column will accumulate errors in that column. There-
fore, the clusters of high utilization cells in the last convolution
layer can introduce high fault rate for the computation results
in this layer and the final result, which consequently degrades
the performance of the neural network.

With the endurance-aware structural stochastic gradient
pruning, we have the distributions of update counts in Fig. 8(b)
and (c). The mean value in the distribution is shifted to the
left compared to the no-endurance method, which confirms
that endurance-aware method is effective in reducing the mean
update counts and prolonging the life cycles for ReRAM cells.
Then, our experimental results show that row counter and
column counter approaches can decrease the tail percentage
of distribution to only 0.27% and 0.46%. Furthermore, high
utilization cells, as shown in Fig. 8(e) and (f), are randomly
distributed across the ReRAM crossbar and thus will not intro-
duce the cluster problem. Therefore, ESSENCE can improve
the overall performance in ReRAM cells as well as save
maximum update counts in the worst-case scenario.

C. Design Overhead Evaluation

1) ReRAM-based counter overhead: In our design, we
propose to use the ReRAM-based counter to keep track of
the number of updates in the ReRAM crossbars. The baseline
for the ReRAM-based counter is the CMOS-based counter
design. To have a fair comparison, we assume that the counter
is column-wise for both cases. In addition, we set the same
range of counters. We evaluate the area overhead over the
space of 128 x 128 ReRAM crossbar as shown in Table II.
Our results demonstrate that the overhead for a ReRAM-based
counter design is only 0.78%, whereas a CMOS-based counter
introduces 2.68% area overhead.

In our setting, we need one set of counters for one weight
matrix. For instance, in the last convolutional layer in the
ResNet20 network, we will have the unrolled kernel of size
[64 x 3 x 3,64]. We find that matrix row number is in
general larger than matrix row number in the 2-dimensional
kernel for ReRAM implementation. This indicates that the
required counter number for column-wise setting is smaller.
Based on our results in Table III(a), the mean update savings
and accuracy results for column-wise and row-wise with the
ResNet20 network are similar. And the column-wise result
with the VGG19-BN network is better in terms of update
savings. Therefore, to decrease the overhead of the counter
design, we are in favor of the column method.

2) Graident pruning overhead: The additional part in Fig. 5
helps with the endurance-aware structured stochastic gradient
pruning. The part of generating stochastic gradient is imple-
mented with digital circuits. We first realize a pseudo number
generator with linear-feedback shift register. For the probabil-
ity in Equation (19), we compare the amplitude of |gl(€t)| A
against maz(abs(g*))) multiplied by a random number in the
range of 0 to 2" — 1. The first part is achieved with a left shift,
and the second part is achieved with a multiplier. We select the
gradient value (essgp(g®, as*))) via a mux. We determine
the power and area overheads with Synopsys Design Compiler.
The result shows that the structured stochastic gradient pruning
components require 0.50% power and 5.13% area overhead.

D. Analysis of ESSENCE Hyperparameters and Scalability

1) Parameter threshold to tradeoff accuracy and update
counts: The threshold in Equation (16) is a tunable parameter
in our design. If this threshold is set to approach the positive
infinity, the endurance-related factor equals to 1. Then, our
method converges to No Endurance method. That is to say,
our method is a more flexible method compared with No
Endurance method. We present the threshold tuning result on
the VGG19-BN network on the CIFAR-10 dataset in Fig. 9.
Here, we utilize ESSENCE with the column counter. Even
though our endurance-aware structural pruning method is an
unbiased method in terms of the expectation of gradient, it
introduces variance to the training process. Therefore, when
the threshold is 10,000, the accuracy result of ESSENCE is
91.86%, which suffers from 0.80% degradation compared with
the SGD method. Then, with the increase of the threshold,
the accuracy results can outperform the SGD method with
effective update count savings. In the case of threshold of

Authorized licensed use limited to: Duke University. Downloaded on May 24,2023 at 15:57:54 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3216546

X 15 , ; 94
& [ Savings

A ] | — ~ Accuracy

2 s
“ o) 1 i RE
g - | B
o r |1 | Q
© I R || 5
g 9 I | I | lg2 &
% 9r F - [ | I I 928
= I | | | <
B | l [ 4 | L 3

ks B I (I ’_II Ik

g6 || I ! | 1| 1 01
= 10000 20000 30000 40000 50000

Fig. 9. Threshold tuning of ESSENCE with the VGG19-BN network on the
CIFAR-10 dataset.

TABLE IV
EXPERIMENT RESULTS ON THE CIFAR-100 DATASET.

(a) ResNet20

Methods Mean Update Counts (Savings)  Accuracy

SGD 117.30 x 103 (1x) 68.07%

No Endurance 35.69 x 103 (3.29%) 67.55%

Essence Column 17.90 x 103 (6.55x%) 67.40%
(b) VGG19-BN

Methods Mean Update Counts (Savings)  Accuracy

SGD 117.30 x 103 (1x) 73.26%

No Endurance 26.83 x 103 (4.37x) 72.20%

Essence Column 19.65 x 103 (5.97x) 71.45%

40,000 or 50,000, we can achieve higher accuracy as well as
update count savings. If our major concern is preserving the
accuracy, larger threshold is preferred. In the circumstance
that the goal is to boost the update count savings, we can
choose the threshold as 20,000, and the result has only
negligible inferencing accuracy loss of 0.25%.

2) Scalability of ESSENCE method: To prove the scala-
bility of ESSENCE, we also test on the CIFAR-100 dataset.
Again, according to the counter overhead evaluation, we adopt
ESSENCE with column counter method. With the ResNet20
network, our ESSENCE method can achieve the count savings
of 6.55x compared with the SGD method; Also, in the
VGG19-BN network, our ESSENCE method outperforms the
SGD by 5.97x. We are also sacrificing more inferencing
accuracy on the CIFAR-100 dataset. The gradient pruning
method, even without the endurance-aware part, suffers from
the accuracy loss. The reason is that the classification task
becomes more complex due to the aggregated classes. There-
fore, the scalability of ESSENCE framework is limited by the
complexity of classification tasks, but ESSENCE still provides
an effective method in prolonging the life cycles for ReRAM-
based in-memory training system.

The mean update counts shown in Table III and IV are
achieved by taking the mean value of all cells (weight parame-
ters). The parameter numbers in ResNet20 and VGG19-BN are
different, but our results (the mean number of updates among
all cells in the systems) are similar from different networks.

10

TABLE V
ACCURACY RESULTS UNDER RERAM WRITE VARIATION IN RESNET20
NETWORK.
Method 0.5% 1.0% 1.5% 2.0%
SGD 82.79% 37.40% 23.95% 17.03%
Essence Column  89.71%  88.21% 83.07%  76.73%

The mean update counts results are directly related to the
training iteration, batch size, and the effect of gradient pruning.
The update counts results is not correlated with the number
of network weight parameter. Therefore, the scalability of the
proposed technique is not limited by the network structure.

We also conducted experiments with the VGG16 network
to confirm the effectiveness of ESSENCE on the small-scale
model structure. We demonstrate that ESSENCE can achieve
12.98x and 5.08x savings on mean updates for CIFAR-10
and CIFAR-100 datasets respectively. Moreover, there is no
accuracy loss compared to the SGD method.

3) ESSENCE Performance under write variation: We fur-
ther investigate the influence of write variation because it may
lead to accuracy degradation. Our ESSENCE approach follows
the PipeLayer training strategy and doesn’t include the write
variation in the gradient update stage.

Note that both advanced programming techniques and
mature fabrication processes have contributed to reducing
ReRAM variation. With homogeneous switching [30] ap-
proach, ReRAM variation in the switching process could
be mitigated [31]. Besides, with fine modulation of pulse
amplitude, the evaluated ReRAM variation is only 5% [32]. In
addition, the variation can be reduced to 4.2% with fabricated
TiO, devices [33]. Furthermore, the writing scheme innovation
can help achieve a 0.5% variation level in 4-bit ReRAM
devices [34].

To make our work comprehensive, we add one set of
experiments to show the influence of writing variation on the
baseline and the proposed method. We set variation levels
as 0.5%,1.0%, 1.5%, and 2.0%. The experimental results are
shown in TABLE V.

Our proposed ESSENCE method only updates structured
sparse gradient to the matrix, and thus the influence of write
variation can be reduced compared with the SGD approach.
For instance, in each iteration of the SGD approach, all
elements in each weight matrix have to be rewritten, and
thus the programming variation of ReRAM will influence all
elements. Therefore, stable training with the SGD approach
cannot be realized under certain level of ReRAM variation.
As shown in TABLE V, under 1.0% variation, SGD approach
fails to converge to a high accuracy. However, ESSENCE
only updates parts of the weight matrix, and the inferencing
accuracy doesn’t degrade as much as the SGD approach. The
accuracy improvement achieved by ESSENCE under variation
level of 2.0% is 59.7% compared with SGD. Therefore,
ESSENCE is more tolerant to ReRAM write variation.

E. Aggressive Tuning Strategy based on ESSENCE

In an initial experiment, we implement the Essence Column
aggressive tuning of a threshold of 87.5% method in the

Authorized licensed use limited to: Duke University. Downloaded on May 24,2023 at 15:57:54 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3216546

TABLE VI
AGGRESSIVE TUNING RESULTS WITH VARIOUS TRAINING THRESHOLDS
ON THE CIFAR-10 DATASET.

(a) ResNet20

Threshold  Start Ep.  Mean Update Counts (Savings)  Accuracy
87.50% 110 8.80 x 103 (13.33x) 89.59%
90.00% 180 9.57 x 103 (12.26x) 90.22%
92.50% 217 10.32 x 103 (11.37x) 90.45%
95.00% 253 11.06 x 103 (10.61x) 90.71%
(b) VGG19-BN
Threshold  Start Ep.  Mean Update Counts (Savings)  Accuracy
87.50% 20 5.33 x 103 (22.47x) 90.72%
90.00% 40 5.68 x 103 (20.65x) 91.15%
92.50% 108 7.19 x 10 (16.31x) 91.14%
95.00% 168 8.14 x 103 (14.41x) 91.85%
97.50% 210 10.40 x 103 (11.28x) 92.44%

ResNet20 network. This method starts aggressive tuning at
epoch 110. However, we notice that the final training accu-
racy with this threshold is 93.72%, which implies that the
training is unsuccessful. To improve the training accuracy,
we adjust the threshold for the aggressive method to 90.00%,
92.50%, 95.00%. We don’t include the threshold of 97.50% for
ResNet20 since the training accuracy cannot reach this number
through 300 training epochs. Results in Table VI(a) show that
the aggressive tuning further decreases the update counts and
maintains the inferencing accuracy. Next, we switch the net-
work to VGG19-BN and collect results in Table VI(b). Since
the VGG19-BN network has a larger number of parameters
than ResNet20, the training accuracy reaches the targeted
threshold at an earlier epoch. For instance, with threshold
90.00% and 95.00%, we can start aggressive tuning at epoch
40 and 168, respectively. As a result, the aggressive method
shows promising mean update count savings in the VGG19-
BN network.

The aggressive method has to trade off between mean
update counts and the inferencing accuracy. In other words,
the aggressive method has to balance the endurance issue
and the performance target. In the case that we set the
tolerable accuracy loss compared with SGD as 1.00%, the
proposed method helps in further boosting the mean update
count savings from 10.29x to 12.26x for ResNet20, and from
10.13x to 14.41x for VGG19-BN.

FE. Comparison with respect to Existing Work

Considering that the endurance for a ReRAM device ranges
from 10° to 102 cycles, we set the available cycle of ReRAM
writes as 10°. To make a fair comparison, we include two
baselines: batch training and single instance training. More

specifically, batch training sets the batch size as 128 and up-
dates the gradients after the computation of each batch, while
single instance training utilizes the single instance for training
and updates the gradients after the computation of a single
instance. Note that batch training serves as the baseline for this
paper.The comparison results are shown in TABLE VII. The
proposed ESSENCE method exploits the potential of structured
stochastic gradient pruning for in-memory training systems
and outperforms existing methods.

Our method can outperform the representative approaches
mentioned in Section II-C because this work can reduce
the update count during the gradient update stage without
compromising the update count in the gradient calculation
stage. In addition, our method takes advantage of the potential
sparsity of gradient matrix in neural network training and
transforms the sparsity into the update count saving, and
thus achieves promising update saving results compared with
hardware-based solutions [21], [22]. Furthermore, the batch
training in the ESSENCE method also provides benefits to the
update count saving because frequent gradient updates for each
training instance can be effectively avoided, and our method
can achieve better performance compared with the pre-train-
based method [23]. More importantly, our hardware-software
co-design solution is orthogonal to mapping-based solutions,
such as [22]. The update saving counts can be further improved
with the consideration of ESSENCE and detailed mapping
optimization.

This work is the first-of-its-kind structured stochastic gra-
dient pruning work. There are existing work targeted at
stochastic activation, weight, and gradient pruning [6], [35]-
[37]. Prior work ReCOM supports sparse DNN processing in
ReRAM-based design with a focus on the weight sparsity [38].
However, this work focuses on the gradient pruning because
of the endurance issue of ReRAM device and further pro-
poses the structured gradient pruning because of the preferred
programming method of ReRAM crossbar is row-wise and
column-wise.

VI. CONCLUSION

We have presented ESSENCE framework for ReRAM-based
in-memory training system. The endurance-aware structured
gradient pruning method can save the mean update counts
of up to 10.29x compared with SGD method and effec-
tively reduces the maximum update counts compared with
No Endurance method. Our framework includes the design
of ReRAM-based counters, which keeps track of crossbar
accesses in a structural manner. Moreover, we have explored
the potentials of aggressive tuning method based on ESSENCE
to boost the mean update count savings by up to 14.41x.

TABLE VII
UPDATE COUNT SAVINGS COMPARISON OF EXISTING METHODS AND ESSENCE.

ReNew [21]  Aging-aware [22] CHIMERA [23] ESSENCE (this work)
Compared to batch training 2.83x 11.00x 2.21x 14.41x
Compared to single instance training 362x 1408x 283x 3252x

Authorized licensed use limited to: Duke University. Downloaded on May 24,2023 at 15:57:54 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



[1]

[2]

[3

[t}

[4]

[5

=

[6

—

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3216546

REFERENCES

P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” in 43rd
ACM/IEEE Annual International Symposium on Computer Architecture,
ISCA 2016, pp. 27-39, IEEE Computer Society, 2016.

A. Shafiee ef al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in 43rd ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2016, pp. 14—
26, IEEE Computer Society, 2016.

L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A pipelined ReRAM-
based accelerator for deep learning,” in 2017 IEEE International Sym-
posium on High Performance Computer Architecture, HPCA 2017,
pp. 541-552, IEEE Computer Society, 2017.

M. Hu, Y. Chen, J. J. Yang, Y. Wang, and H. H. Li, “A compact
memristor-based dynamic synapse for spiking neural networks,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 36, no. 8, pp. 1353-1366, 2016.

X. Yang, B. Taylor, A. Wu, Y. Chen, and L. O. Chua, “Research progress
on memristor: From synapses to computing systems,” IEEE Transactions
on Circuits and Systems I: Regular Papers, 2022.

W. Wen et al., “Terngrad: Ternary gradients to reduce communication in
distributed deep learning,” in Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, pp. 1509-1519, 2017.

Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” in 6th International Conference on Learning Representations,
ICLR 2018, OpenReview.net, 2018.

Y. Cai et al., “Long live TIME: improving lifetime for training-in-
memory engines by structured gradient sparsification,” in Proceedings of
the 55th Annual Design Automation Conference, DAC 2018, pp. 107:1—
107:6, ACM, 2018.

Y. Long, E. M. Jung, J. Kung, and S. Mukhopadhyay, “ReRAM
crossbar based recurrent neural network for human activity detection,” in
2016 International Joint Conference on Neural Networks, IICNN 2016,
Vancouver, BC, Canada, pp. 939-946, IEEE, 2016.

F. Chen, L. Song, and Y. Chen, “ReGAN: A pipelined ReRAM-based
accelerator for generative adversarial networks,” in 23rd Asia and South
Pacific Design Automation Conference, ASP-DAC 2018, pp. 178-183,
IEEE, 2018.

X. Yang, B. Yan, H. Li, and Y. Chen, “ReTransformer: ReRAM-
based processing-in-memory architecture for transformer acceleration,”
in IEEE/ACM International Conference On Computer Aided Design,
ICCAD 2020, pp. 92:1-92:9, IEEE, 2020.

X. Yang, C. Wu, M. Li, and Y. Chen, “Tolerating noise ef-
fects in processing-in-memory systems for neural networks: A
hardware—software codesign perspective,” Advanced Intelligent Systems,
p. 2200029, 2022.

B. Liu et al., “Reduction and ir-drop compensations techniques for reli-
able neuromorphic computing systems,” in The IEEE/ACM International
Conference on Computer-Aided Design, ICCAD 2014, pp. 63-70, IEEE,
2014.

Y. Long, X. She, and S. Mukhopadhyay, “Design of reliable DNN
accelerator with un-reliable ReRAM,” in Design, Automation & Test
in Europe Conference & Exhibition, DATE 2019, pp. 1769—-1774, IEEE,
2019.

X. Yang et al., “Multi-objective optimization of ReRAM crossbars
for robust DNN inferencing under stochastic noise,” in IEEE/ACM
International Conference On Computer Aided Design, ICCAD 2021,
pp. 1-9, IEEE, 2021.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

M.-J. Lee et al., “A fast, high-endurance and scalable non-volatile mem-
ory device made from asymmetric Ta205-x/TaO2-x bilayer structures,”
Nature materials, vol. 10, no. 8, pp. 625-630, 2011.

C.-W. Hsu et al., “Self-rectifying bipolar TaOx/TiO2 RRAM with
superior endurance over 1012 cycles for 3d high-density storage-class
memory,” in 2013 Symposium on VLSI Technology, pp. T166-T167,
IEEE, 2013.

W. Chen et al., “Switching characteristics of W/Zt/HfO2/TiN ReRAM
devices for multi-level cell non-volatile memory applications,” Semi-
conductor Science and Technology, vol. 30, no. 7, p. 075002, 2015.

Q. Wu, W. Banerjee, J. Cao, Z. Ji, L. Li, and M. Liu, “Improvement
of durability and switching speed by incorporating nanocrystals in the
HfOx based resistive random access memory devices,” Applied Physics
Letters, vol. 113, no. 2, p. 023105, 2018.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

W. Wen, Y. Zhang, and J. Yang, “RENEW: Enhancing lifetime for
reram crossbar based neural network accelerators,” in 2019 IEEE 37th
International Conference on Computer Design (ICCD), pp. 487-496,
IEEE, 2019.

S. Zhang, G. L. Zhang, B. Li, H. H. Li, and U. Schlichtmann,
“Aging-aware lifetime enhancement for memristor-based neuromorphic
computing,” in 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1751-1756, IEEE, 2019.

M. Giordano et al., “CHIMERA: A 0.92 TOPS, 2.2 TOPS/W edge Al
accelerator with 2 MByte on-chip foundry resistive RAM for efficient
training and inference,” in 2021 Symposium on VLSI Circuits, pp. 1-2,
IEEE, 2021.

M. Hu, H. Li, Q. Wu, and G. S. Rose, “Hardware realization of BSB
recall function using memristor crossbar arrays,” in The 49th Annual
Design Automation Conference 2012, DAC 12, pp. 498-503, ACM,
2012.

L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’ 2010, pp. 177-186, Springer,
2010.

N. Qian, “On the momentum term in gradient descent learning algo-
rithms,” Neural networks, vol. 12, no. 1, pp. 145-151, 1999.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, vol. 37
of JMLR Workshop and Conference Proceedings, pp. 1737-1746,
JMLR.org, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, pp. 770-778, IEEE Computer Society, 2016.
K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015, 2015.

K. Baek, S. Park, J. Park, Y.-M. Kim, H. Hwang, and S. H. Oh,
“In situ tem observation on the interface-type resistive switching by
electrochemical redox reactions at a tin/pcmo interface,” Nanoscale,
vol. 9, no. 2, pp. 582-593, 2017.

Z. Wang et al., “Resistive switching materials for information process-
ing,” Nature Reviews Materials, vol. 5, no. 3, pp. 173-195, 2020.

T. Van Nguyen, J. An, S. Oh, S. N. Truong, and K.-S. Min, “Quanti-
zation, training, parasitic resistance correction, and programming tech-
niques of memristor-crossbar neural networks for edge intelligence,”
Neuromorphic Computing and Engineering, vol. 2, no. 3, p. 032001,
2022.

W. Choi, M. Kwak, S. Heo, K. Lee, S. Lee, and H. Hwang, “Hardware
neural network using hybrid synapses via transfer learning: WOXx nano-
resistors and TiOx RRAM synapse for energy-efficient edge-ai sensor,”
in 2021 IEEE International Electron Devices Meeting (IEDM), pp. 23-1,
IEEE, 2021.

H. Aziza et al., “Multi-level control of resistive RAM (RRAM) using
a write termination to achieve 4 bits/cell in high resistance state,”
Electronics, vol. 10, no. 18, p. 2222, 2021.

G. S. Dhillon et al., “Stochastic activation pruning for robust adversarial
defense,” arXiv preprint arXiv:1803.01442, 2018.

X. Ye et al., “Accelerating cnn training by pruning activation gradients,”
in European Conference on Computer Vision, pp. 322-338, Springer,
2020.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

H. Ji, L. Song, L. Jiang, H. Li, and Y. Chen, “ReCom: An efficient
resistive accelerator for compressed deep neural networks,” in 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 237-240, IEEE, 2018.

Authorized licensed use limited to: Duke University. Downloaded on May 24,2023 at 15:57:54 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3216546

Xiaoxuan Yang (Student Member, IEEE) is a Ph.D.
Candidate in Electrical and Computer Engineering
Department at Duke University, under the super-
vision of Dr. Hai (Helen) Li and Dr. Yiran Chen
in the CEI Lab. She received the B.S. degree in
electrical engineering from Tsinghua University and
the M.S. degree in electrical engineering from the
University of California, Los Angeles. Her research
interests include emerging nonvolatile memory tech-
nologies, robustness and reliability enhancement in
processing-in-memory designs, and hardware accel-
erators for deep learning applications. She serves as the reviewer for multiple
IEEE and ACM journals. Xiaoxuan won Best Research Award at ACM SIGDA
Ph.D. Forum at Design Automation Conference (DAC), 2022. She is selected
as a Rising Star in EECS by UT Austin in 2022.

Huanrui Yang (Student Member, IEEE) is Post-
doctoral Scholar in the EECS department of UC
Berkeley, supervised by Prof. Kurt Keutzer. Before
joining Berkeley he earned PhD from Duke Univer-
sity in 2022, supervised by Prof. Hai Li and Yiran
Chen, and earned Bachelor’s degree from Tsinghua
University in 2017. His main research interest lies
in compressing neural network models with methods
like sparsity and quantization, and to evaluate and
enhance the robustness of deep learning models. He
published multiple papers at conferences such as
NeurIPS, ICLR, CVPR, KDD, DAC, ICCAD, etc, and served as reviewer
for multiple journals and conferences.

Janardhan Rao Doppa (Senior Member, IEEE)
is the Huie-Rogers Endowed Chair Associate Pro-
fessor at Washington State University. He received
his PhD in computer science from Oregon State
University. His research interests are at the inter-
section of machine learning and computing systems
design. He won NSF CAREER award, Outstanding
Paper Award from AAAI conference (2013), Best
Paper Award from ACM Transactions on Design
Automation of Electronic Systems (2021), IJCAI
Early Career Award (2021), Best Paper Award from
Embedded Systems Week Conference (2022), Outstanding Junior Faculty in
Research Award (2020) and Reid-Miller Teaching Excellence Award (2018)
from the College of Engineering, Washington State University.

Partha Pratim Pande (Fellow, IEEE) is a pro-
fessor and holder of the Boeing Centennial Chair
in computer engineering at the school of Electri-
cal Engineering and Computer Science, Washington
State University, Pullman, USA. He is currently the
director of the school. His current research interests
are novel interconnect architectures for manycore
chips, on-chip wireless communication networks,
heterogeneous architectures, and ML for EDA. Dr.
Pande currently serves as the Editor-in-Chief (EIC)
of IEEE Design and Test (D&T). He is on the
editorial boards of IEEE Transactions on VLSI (TVLSI) and ACM Journal
of Emerging Technologies in Computing Systems (JETC) and IEEE Em-
bedded Systems letters. He was/is the technical program committee chair
of IEEE/ACM Network-on-Chip Symposium 2015 and CASES (2019-2020).
He also serves on the program committees of many reputed international
conferences. He has won the NSF CAREER award in 2009. He is the
winner of the Anjan Bose outstanding researcher award from the college of
engineering, Washington State University in 2013.

13

Krishnendu Chakrabarty (Fellow, IEEE) received
the B. Tech. degree from the Indian Institute of
Technology, Kharagpur, in 1990, and the M.S.E. and
Ph.D. degrees from the University of Michigan, Ann
Arbor, in 1992 and 1995, respectively. He is now
the John Cocke Distinguished Professor of Electrical
and Computer Engineering at Duke University.

Prof. Chakrabarty is a recipient of the National
Science Foundation CAREER award, the Office
of Naval Research Young Investigator award, the
Humboldt Research Award from the Alexander von
Humboldt Foundation, Germany, the IEEE Transactions on CAD Donald O.
Pederson Best Paper Award (2015), the IEEE Transactions on VLSI Systems
Prize Paper Award (2021), the ACM Transactions on Design Automation of
Electronic Systems Best Paper Award (2017), multiple IBM Faculty Awards
and HP Labs Open Innovation Research Awards, and over a dozen best
paper awards at major conferences. He is also a recipient of the IEEE
Computer Society Technical Achievement Award (2015), the IEEE Circuits
and Systems Society Charles A. Desoer Technical Achievement Award (2017),
the IEEE Circuits and Systems Society Vitold Belevitch Award (2021),
the IEEEHKN Asad M. Madni Outstanding Technical Achievement and
Excellence Award (2021), the Semiconductor Research Corporation Technical
Excellence Award (2018), and the IEEE Test Technology Technical Council
Bob Madge Innovation Award (2018). He is a 2018 recipient of the Japan
Society for the Promotion of Science (JSPS) Invitational Fellowship in the
“Short Term S: Nobel Prize Level” category.

Prof. Chakrabarty’s current research projects include: design-for-testability
of 3D integrated circuits a d system-on-chip; Al accelerators and neuromor-
phic computing; microfluidic biochips; hardware security; Al for healthcare.
He is a Fellow of ACM, IEEE, and AAAS, and a Golden Core Member of
the IEEE Computer Society.

Hai (Helen) Li (Fellow, IEEE) is Clare Boothe Luce
Professor and Chair of the Electrical and Computer
Engineering Department at Duke University. She
received the B.S. and M.S. degrees from Tsinghua
University, Beijing, China, and the Ph.D. degree
from the Department of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN,
USA, in 2004. Prior to joining Duke University,
she has been working with Qualcomm Inc., Intel
Corporation, Seagate Technology, the Polytechnic
Institute of New York University, and the University
of Pittsburgh.

Prof. Li serves as Associate Editor-in-Chief of IEEE Transactions on
Circuits and Systems I (TCAS-I), served as Senior Editorial Board member
of IEEE Journal on Emerging and Selected Topics in Circuits and Systems
(JETCAS), as well as Associate Editors of multiple IEEE and ACM journals.
She has served as general chair and technical program chair of multiple IEEE
conferences, including DAC, ISLPED, ISVLSI, SoCC, and ISQED, and the
Technical Program Committee members of over 30 international conference
series. She has been on the steering committee of ISVLSI and iNIS since
2016. Dr. Li serves on the IEEE Fellow committee.

Prof. Li’s research interests include neuromorphic computing systems,
machine learning and deep neural networks, memory design and architecture,
and cross-layer optimization for low power and high performance. She has
authored or co-authored more than 300 technical papers in peer-reviewed
journals and conferences and a book entitled Nonvolatile Memory Design:
Magnetic, Resistive, and Phase Changing (CRC Press, 2011). She received
9 best paper awards and an additional 9 best paper nominations from
international conferences.

Prof. Li is a Distinguished Lecturer of the IEEE CAS society (2018-2019)
and a distinguished speaker of ACM (2017-2020). Prof. Li is a recipient of the
NSF Career Award, DARPA Young Faculty Award (YFA), TUM-IAS Hans
Fischer Fellowship from Germany, and ELATE Fellowship (2022). She is a
fellow of ACM and IEEE.

Authorized licensed use limited to: Duke University. Downloaded on May 24,2023 at 15:57:54 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



