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ABSTRACT

Approximate computing (AxC) has been long accepted as a design

alternative for efficient system implementation at the cost of re-

laxed accuracy requirements. Despite the AxC research activities

in various application domains, AxC thrived the past decade when

it was applied in Machine Learning (ML). The by definition approx-

imate notion of ML models but also the increased computational

overheads associated with ML applications–that were effectively

mitigated by corresponding approximations–led to a perfect match-

ing and a fruitful synergy. AxC for AI/ML has transcended beyond

academic prototypes. In this work, we enlighten the synergistic

nature of AxC and ML and elucidate the impact of AxC in designing

efficient ML systems. To that end, we present an overview and tax-

onomy of AxC for ML and use two descriptive application scenarios

to demonstrate how AxC boosts the efficiency of ML systems.

CCS CONCEPTS

• Hardware → Logic circuits; Analog and mixed-signal cir-

cuits; • Computing methodologies →Machine learning.
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1 INTRODUCTION

The failure of Dennard scaling led to the so-called dark silicon prob-

lem [30] and computer designers were forced to explore radical

new approaches to sustain and further improve the efficiency of our

computing systems. Several groundbreaking novelties came from

the field of computing. Among these newly established computing

paradigms, over the past decade, a phenomenal boom is observed

in Approximate Computing (AxC) [60] research. Approximate com-

puting refers to techniques that exploit the inherent error resilience

of several applications to achieve improvements in efficiency (e.g.,

energy and performance) at all layers of the computing stack [60].

For example, prior analysis on a benchmark suite of 12 recognition,

mining and search applications showed that 83% of the runtime is

spent in tasks that are amenable to approximation [15, 60]. The ori-

gins of approximate computing (AxC) can be traced back to various

fields including computer arithmetic (floating point representa-

tion) [63], arithmetic units (adders [54] and multipliers [80]), digital

signal processing (filter design) [27], algorithms (approximation

algorithms) [62], and networking (best-effort packet delivery) [9].

However, the field really took off in the past decade when AxC

intersected with machine learning (ML) [3, 62, 65], which arguably

provides the ideal workload for AxC due to several factors. Many

ML tasks at some level reduce to a problem of function approxima-

tion, where the function is incompletely specified, allowing ample

scope for AxC. Further, the very process used to create models

(training) can be re-purposed to recover from any adverse effects

of approximations. In particular, AxC and deep neural networks

(DNNs)–in which the latest improvements in the accuracy came at

the cost of a great increase in computational requirements– formed

a perfect match [12, 51, 57, 79]. Due to this synergy, the field of AxC

witnessed significant interest and growth, and expanded into new

levels of the computing stack such as approximate hardware. AxC

for ML (e.g., quantization [16], pruning [70], relaxed synchroniza-

tion [42]) has already been adopted in practice and is a key enabler

of the AI hardware roadmap for many companies (e.g., ultra-low

precision [66] and analog hardware [33]).

In this work, we first present an end-to-end view of designing

approximate computing systems for ML, spanning algorithms to
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circuits, and discuss the efficiency benefits accrued from AxC, high-

lighting also current commercial hardware and software that em-

ploy AxC. Next, we present two notable examples of approximate

ML systems. Section 3 focuses on in-memory-computing-based

(IMC-based) approximation for the state-of-the-art Transformer

models. Transformer has become a prominent neural network

model for Neural Language Processing (NLP) applications, with out-

standing results in neural machine translation, entity recognition,

etc. Section 4 discusses the exploitation of approximate computing

as a key enabler for the realization of ultra-resource constrained ML

circuits and specifically of battery powered printed ML classifiers.

Printed electronics form an extreme use-case of embedded ML and

pose a very promising solution to enable computing in application

domains untouchable by silicon-based systems. Concluding, we

discuss some key challenges that need to be addressed to enable

further growth and adoption of AxC, especially in ML.

2 AXC FOR ML: A TAXONOMY

Recognizing the opportunity for significant improvements in perfor-

mance and compute efficiency, developing Approximate Computing

(AxC) techniques for AI/ML applications has been an active area of

research in the past decade. The techniques spanned the entire com-

puting stack from algorithms to circuits. Figure 1 shows a taxonomy

of the various approximate computing techniques targeting AI/ML

applications. Not surprisingly, the most successful techniques are

inherently cross-layered i.e., multiple layers of the compute stack

are co-designed to achieve maximum benefits from the approxi-

mations, while minimizing their impact on end-application output

quality [62]. The following subsections describe the AxC design

techniques at each level of the compute stack in more detail.

2.1 Algorithmic Approximations for AI/ML

The goal of approximation techniques at the algorithm level is to

identify the degree to which computations and data of the appli-

cation can be approximated thereby driving down the compute

and memory requirements and heal the impact of approximations

on end-application quality. The majority of algorithmic approxi-

mations require careful co-design with the hardware layers of the

compute stack to maximally exploit the benefits, while some ap-

proximations can be realized without specialized hardware support.

Some of the popular approximation techniques for AI/ML appli-

cations are listed below:

Quantization or Precision Scaling. Amongst the different ap-

proximation techniques, quantization has proven to be most suc-

cessful technique widely adopted by the industry in the context

of both training and inference of AI/ML models. At a high level,

quantization involves scaling or reducing the number of bits used

to represent the weights and activations. Reducing the numeric

bit-precision super-linearly improves compute efficiency (for exam-

ple, a 16-bit multiplier is roughly ∼4 times lower cost than a 32-bit

multiplier), and linearly reduces memory footprint and bandwidth.

Further, it preserves the regularity in the compute patterns preva-

lent in AI/ML models, which makes it amenable to be integrated

within both general-purpose and accelerator-based designs.

The key challenge in quantization is to ensure that the loss

in numeric precision does not impact functional accuracy. In the

• Architecture support for variable-precision
• Sparsity-optimized architectures
• Approximating cache and memory accesses
• Architectures for Analog in-memory computing

Architectures

• Voltage and Timing over-scaling
• Approximate arithmetic circuits
• Approximate memory circuits
• Analog in-memory processing circuits

Circuits

Algorithms

• Pre-training and post-training quantization
• Compact model design: Manual and automatic
• Pruning / Sparsification
• Data sampling and sub-setting
• Relaxed Synchronization
• Algorithm-specific approximations

Figure 1: Taxonomy of Approximate Computing techniques

for AI/ML across different levels of the compute stack

context of training, research efforts have successfully explored

different 16-bit floating point (FP16) variants viz. IEEE-FP16 (1-5-

10), BFloat (1-8-7) [67] and DLFloat (1-6-9) [1]. More recently, a new

Hybrid-FP8 (HFP8) data format [56], which involves combining

two different FP8 formats—(1,4,3) for activations and weights, and

(1,5,2) for errors—was introduced to lower training requirements

even further.

In the context of inference, the use of fixed-point (FxP) num-

ber representation is quite prevalent. There are two prevailing

approaches to minimize the impact of using reduced-precision FxP

for inference—post-training quantization (PTQ) and quantization-

aware training (QAT). Post-training quantization involves directly

turning a model trained with floating-point representation into a

fixed-point model [83]. The loss in accuracy due to direct quantiza-

tion can be minimized by re-calibrating batchnorm statistics. How-

ever, state-of-the-art PTQ techniques lose considerable model ac-

curacy especially below 8-bits. Quantization-aware training (QAT)

methods, first introduced in AxNN [63], retrain the model by re-

flecting the effect of quantization within the training process so

that the weights can be suitably adapted to heal the impact of

quantization. Popular QAT methods such as Parameterized Activa-

tion Clipping (PACT) and statistics-aware weight binning (SAWB)

achieve state-of-the-art classification accuracy with INT4 precision,

and incur only a small accuracy loss with INT2 across broad range

of domains [17].

It is crucial to note that quantization is typically applied only

to convolution (CONV) and matrix-multiply (GEMM) operations

in an AI/ML model. While CONV/GEMM constitute the bulk of

computations, other auxiliary operations for activation, pooling

and normalization are typically performed in FP16 format. Also,

in some cases, each layer of the AI/ML model is quantized to a

different bit-precision.

Compact Model Design: Manual And Automatic. There is

an urgent need to deploy AI/ML models in extremely resource-

constrained mobile/IoT devices. One approach to facilitate this is

to design compact AI/ML models that achieve near state-of-the-art

accuracies as their large-scale counterparts. Popular neural net-

work topologies such as inverted-bottleneck structures, depth-wise



Approximate Computing and the Efficient Machine Learning Expedition ICCAD 2022, 30 October – 3 November 2022, San Diego, California, USA

seperable convolutions, group convolutions, significantly reduce

the model size and consequently the number of computations. Re-

cently, automatic methods to train compact models such as knowl-

edge distillation [31] and Neural Architecture Search (NAS) [24]

are gaining popularity.

Pruning / Sparsification and Compression. Another increas-

ingly popular approach to reduce model size is pruning. It forces

some weight values in a neural network to zero, thereby eliminat-

ing connections between associated neurons. Pruning sparsifies

the weight tensors, which are then compactly stored and accessed

using sparse representations (e.g., index-value pairs). One of the

key challenges in pruning is that it makes the compute and mem-

ory access pattern irregular and hence does not lend itself well

into hardware acceleration. Recent approaches perform pruning

in a structured fashion that preserves regularity [70]. One popular

example is fine-grained block sparsity, wherein the weight tensor is

split into equi-sized element blocks and each block is restricted to

have a fixed percentage of non-zero elements [48]. Akin to quan-

tization, pruning is performed at training time in order to heal its

impact on accuracy.

In the context of training, which is typically performed in a

distributed system, one of the key bottlenecks to overall through-

put is off-chip communication. Training is parallelized by splitting

the minibatch inputs across multiple learners and their respective

weight gradients need to be accumulated to compute the updated

weight value. To reduce off-chip communication cost, the weight

gradient values are compressed using a number of interesting al-

gorithms [11] that have achieved over >100× compression rates
without loosing model accuracy.

Data Sampling and sub-setting. Data sampling is a technique

where only a subset of elements of a tensor is used for computations.

Sampling reduces the overall tensor footprint, which enables it to

be contained within the lower levels of the memory hierarchy,

alleviating performance bottlenecks due to memory latency and

bandwidth limitations. Sampling techniques [38] typically exploit

value similarity between data-elements present in a region. For

example, in real-world images, adjacent pixels take similar values.

In some cases, sampling can result in some of the computations to

be redundant, which can be eliminated.

Relaxed Synchronization. Relaxed synchronization is a tech-

niquewhich is applied in the context of distributed training. Broadly,

training algorithms require the learners to be synchronized at the

end of each minibatch iteration so that model weights are updated

using the weight gradients from each learner. Relaxed synchroniza-

tion allows the learners to proceed semi-synchronously or even

asynchronously i.e., fast learners do not wait for slow learners to

complete but proceed immediately to the next iteration [82]. The

key trade-off is to ensure that this does not result in requiring

additional training epochs for model convergence.

2.2 Approximate AI/ML Architectures

AI/ML applications find utility under a variety of deployment sce-

narios from cloud to the edge, with differing latency, throughput,

and energy requirements. Hardware specialization/acceleration is

regarded critical to meet the computational demands of AI/ML

models, while a bulk of AI/ML applications are still executed on

general-purpose CPUs owing to cost and form-factor constraints.

Hence, approximations identified at the algorithm level have to ju-

diciously incorporated within a spectrum of compute architectures

from general-purpose processors to application-specific designs to

maximally exploit the benefits from approximate computing.

One of the key tenets for approximate architecture design is that

approximable components should dominate the overall energy con-

sumption. Inherent control front-ends for instruction fetch/decode

etc. needs to be executed in an accurate manner. Hardware accelera-

tors for AI/ML contain arrays of processing elements which exploit

the abundant data parallelism available in these applications with

minimal control components. The execution engines dominate their

overall energy consumption, and hence AxC computing techniques

can be effectively employed to scale their performance and energy.

Some of the design techniques at the architecture level include:

Architecture Support for Variable Precision. As mentioned

earlier, the precision to which the data elements can be quantized

varies widely across application domains, deployment scenarios and

across layers of the model. This necessitates AI/ML architectures

to design execution engines with mixed-precision support, whose

accuracy levels are directly controlled by the software [61]. A key

challenge in embodying mixed-precision support lies in identifying

the right degree of logic sharing across the different precisions. Too

much sharing would lead to poor energy efficiency at any given

precision, whereas a completely decoupled execution pipeline for

each precision would lead to significant area and leakage power

overheads. A variable-precision AI accelerator design is the RaPiD

architecture [66], fabricated at 7nm technology, that supports preci-

sions ranging from 16-bit floating point to 2-bit fixed point, scaling

peak compute capability from 8 TFLOPs to ∼200 TOPS.

Sparsity-optimized Architectures. The model pruning approxi-

mation triggers the need for architectures that can exploit sparsity

in data to benefit performance and energy. Sparsity also naturally

occurs in activations due to the use of ReLU activation function, par-

ticularly in the vision domain. Sparse accelerator architectures [28,

46] under a variety of scenarios—sparsity in one or both operands

(weights and/or activations), support for structured vs. unstructured

sparsity—have been explored in literature. The interplay between

sparsity and quantization is an open challenge. The overheads due

to sparse execution are amplified as the execution engines shrink

with quantization favoring dense computation arrays. In addition

to specialized architectures, sparsity support has also been explored

in the context of general-purpose processors [52]. The key idea is

to dynamically pre-detect and skip a set of future instructions that

are rendered ineffectual due to sparsity.

Approximating Cache and Memory Accesses. The memory

sub-system is often a critical bottleneck to performance and energy

efficiency. Techniques such as quantization and pruning naturally

benefit both compute and memory, but more in favor of compute

due to super-linear reduction in multiple cost and overheads of

sparse index representations. This leaves the memory sub-system

still as the bottleneck. Addressing this challenge, specific approx-

imation techniques targeting the memory sub-system have been

proposed. These include reducing DRAM refresh rates [41], spec-

ulating on the results of loads [43], redirecting accesses to data

already available at a memory level [38], among others.
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Architectures for Analog In-Memory Computing. In-memory

computing is an exciting class of architectures actively explored

in recent years for AI/ML applications. It attempts to overcome

the classical von-neumann bottleneck inherent in any dataflow

architecture that transfer data between the compute and mem-

ory elements. This is achieved by deeply embedding the compute

with the memory array itself. In-memory computing is generally

based on analog processing and has been explored in the context

of SRAM [36] and non-voltatile memories such as ReRAM, MRAM,

or PCM [8]. Section 3 presents a detailed case study outlining an

in-memory accelerator architecture for Transformer models.

2.3 Approximation Circuit Design

Approximate circuits are the basic building block of any approxi-

mate computing system. Techniques such as quantization and other

number representations for AI/ML rely on efficient approximate

circuit design to leverage maximum benefits. From the bottom-up,

approximations at the circuit-level can be classified as: (i) logic ap-

proximation, wherein the logic functionality of a circuit is modified

slightly to realize a disproportionately efficient implementation [64],

(ii) timing approximation, wherein the circuit is designed and op-

erated at an over-scaled voltage-frequency point that benefits effi-

ciency while introducing modest timing errors [62]. Prior research

also focused on designing approximate memory circuits whose

access accuracy can be scaled dynamically at execution time [50].

In summary, the special synergy between AxC and AI/ML has

enabled unprecedented levels of compute efficiency through system-

atic co-design across the compute stack. AxC for AI/ML has tran-

scended beyond academic prototypes. Commercial products—CPUs,

GPUs and accelerators—targeting AI/ML applications embody AxC

techniques such as low precision and fine-grained structured spar-

sity. AxC forms an integral part of the AI/ML roadmap for many

companies.

3 TRANSFORMERS ON IN-MEMORY
ACCELERATORS USE CASE

In-memory computing (IMC) designs can eliminate the cost of data

transfer since the computation is performed within the memory

device. And in-memory computing can be efficiently implemented

using emerging technologies. For instance, resistive random-access

memory (ReRAM) is one of the most promising emerging tech-

nologies and has potentials to perform vector-matrix multiplica-

tions compared with CMOS accelerators [72]. Prior ReRAM-based

processing-in-memory (PIM) works have demonstrated their po-

tentials in improving the efficiency of neural networks training

and inference, such as Brain-State-in-a-Box (BSB) model, deep con-

volutional neural network, and generative adversarial networks

(GAN) [13, 34, 55]. Note that these in-memory computing designs

are essential approximate computing cases. In this section, we dis-

cuss the general approximate in-memory computing and approxi-

mate in-memory computing in Transformer-based models.

3.1 General Approximate IMC

The analog basic of in-memory computing matches the concept of

approximate computing. Take the ReRAM crossbar-based computa-

tion as an example, the weights are programmed as the conductance

Figure 2: The distributions of stochastic noise for 8-bit

ReRAM cells under 𝐹𝑟𝑒𝑞 = 500MHz and 𝑇 = 350K: (a) in a

relative scale, (b) zoomed-in version for relative noise.

of ReRAM cells. Meanwhile, the voltage, which encodes the input

information, is supplied to the word lines. Here, digital-to-analog

and analog-to-digital converters are utilized to assist the signal con-

version between analog and digital domains. When converting the

weight matrix and input into the conductance matrix and voltage,

they use fixed-point encoding with a limited bit precision to repre-

sent computation elements [74]. According to Kirchhoff’s circuit

law and Ohm’s law, the output currents accumulated through the

bit lines represent the matrix-vector multiplication results. In this

case, the analog values stored on the device or supplied to it approx-

imate the values to be computed, and the analog results generated

by the crossbar approximate the final results. Adjusting the data

representation precision can tradeoff the accuracy result and com-

puting efficiency [55]. However, due to the inherent error tolerant

ability of neural networks, limited-precision data representation

will not degrade the accuracy performance [35].

Furthermore, the nonidealities in the IMC system lead the com-

putation to be inaccurate [8]. In the programming stage, the voltage

applied to the electrode layers changes the resistance status of the

ReRAM cell. To be more specific, when a voltage is supplied to the

ReRAM cell, a conductive filament composed of oxygen vacancies

may form. Note that the randomness of generating oxygen vacan-

cies is the primary cause of process variation. The geometry of

oxygen vacancies is unexpected under the same level of voltage

and equivalent circumstances, resulting in a variance in resistance

levels between cycles.

There are statistical models to mimic the influence of IMC non-

idealities. Variation in the resistance of the crossbar array obeys

the lognormal distribution [32, 40], and the reason for this lognor-

mal distribution is the Gaussian distribution of the average gap

distances [76]. Aside from the variation, the IMC with ReRAM

also suffers from thermal noise, shot noise, and random telegraph

noise (RTN) [25]. For detailed noise distributions and analysis, we

refer interested readers to [29, 74].

The stochastic noise for 8-bit ReRAM cell is shown in Figure 2.

The relative noise is calculated with the noise amplitude divided

by the absolute conductance in each cell. In Figure 2(a), the rela-

tive noise of small conductance level is greater than that of large

conductance level, which indicates that the stochastic noise has

a larger impact on small conductance values. As shown in Fig-

ure 2(b), RTN and thermal noise dominate the stochastic noise at

small conductance levels. As the thermal noise increases with the

temperature (𝑇 ) and operating frequency (𝐹𝑟𝑒𝑞), the influence of
stochastic noise will be amplified when the IMC system is running

at high temperature and high frequency.
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The cell variation can accumulate through the accumulation

via each column, and thus the variation of different computing

results may overlap [14]. This overlapping variation problem will

be severe if either the number of word lines or the number of low-

resistance cells gets larger [37]. Therefore, the possible approaches

to minimize the calculation variation are reducing the number of

word lines calculated in each cycle and increasing the number of

high-resistance cells within a specific rounding distance. And the

IMC-based approximate computing by adjusting the number of

word lines will tradeoff between performance and accuracy.

To tackle the problem of variation and noise in IMC, circuit-level

designs with feedback loops can effectively reduce the variation

influence. For instance, a closed-loop circuit design utilizes the infer-

encing results to stabilize the conductance values on the device [71].

Under this circumstance, the conductance values programmed onto

the device are slightly different from the pure-software training

weights because these values are determined with the integration

of the real-device variation. Following the hardware-aware strategy,

the noise injection adaption framework adjusts the conductance

value by taking randomly sampled noise into account [29]. Simi-

larly, the stochastic-noise-aware training method can mitigate the

intrinsic noise in IMC system and improve the inferencing accuracy

under high-frequency and high-temperature settings [74].

3.2 Approximate IMC in Transformer-based
Models

Transformer has become a prominent deep neural network model

with outstanding results in neural machine translation, entity recog-

nition, etc [59]. Transformer-based pre-trained models, such as

Bert [21], have served as the backbone of NLP applications. The

Transformer model consists of an encoder stack and a decoder stack,

which shares similar self-attention-based structure. Figure 3 shows

essential components in Transformer model. The major challenge

of utilizing IMC for efficient Transformer model is that the multi-

head self-attention block brings computation and programming

dependency and severe latency overhead. In prior works of im-

proving the computing efficiency with PIM inference, they utilize

the weight-stationary approach and don’t have to reprogram the

weights during the process [53]. However, the self-attention block

requires the computation of two intermediate results, such as the

Query Q and KeyK , as shown in Figure 3(b). Therefore, performing

the matrix-matrix multiplication (MatMul) of these intermediate

results with PIM will involve the programming of one intermediate

result matrix onto the memory device. The computation phase has

to be paused until the row-by-row matrix programming is com-

pleted. Hence, the computation efficiency will be compromised due

to the compute-after-write dependency [73].

Therefore, it is necessary to design IMC architecture to improve

the computation efficiency of multi-head self-attention block. Re-

Transformer is a ReRAM-based IMC design for Transformer ac-

celeration [73]. This design can accelerate the scaled dot-product

attention of Transformer and eliminate data dependency by avoid-

ing writing the intermediate results using the matrix decomposition

technique. For instance, Key K is the intermediate result from the

computation of K = 𝑋 ·𝑊𝐾 , where 𝑋 is the input and𝑊𝐾 is the

weight matrix related to Key. Instead of computing with KeyK , the

Figure 3: Transformer model structure: (a) encoder structure,

(b) multi-head self-attention module.

Query Q computes with the𝑊𝐾 and 𝑋 successively. Each element
in weight matrix is stored as an 8-bit number in four ReRAM cells,

where each cell represents two bits. And the quantization-aware

training can help maintain the inference accuracy of Transformer

models and encoder-based Bert models [49, 77]. Moreover, a hy-

brid computing unit for softmax computation is proposed, and a

look-up table (LUT) is used for efficient exponential computation.

ReTransformer with 8-bit data representation improves computing

efficiency by 23.21× compared with GPU baseline.
It is also worth noting that the normalization and activation

calculations in Transformer involve nonlinear computations. To

accelerate these computations, recent work NN-LUT proposes LUT-

based neural network approximation to mimic the nonlinear com-

putation with piece-wise linear computation [75]. In addition, the

CORDIC-based iterative method can also approximate the nonlin-

ear computation and be implemented efficiently with IMC [58]. The

approximate computations can boost the computation efficiency

without the sacrification of computing accuracy.

4 PRINTED ML CIRCUITS, AN ULTRA
RESOURCE CONSTRAINED USE CASE

In this section, we use printed electronics as a use case example and

investigate approximate printed ML circuits. More specifically, we

analyze how approximate computing can eventually enable, for the

first time, the realization of battery-powered, high-accuracy, com-

plex printed ML classifiers. It is noteworthy that printed electronics

form an ultra resource constrained environment and constitute an

extreme scenario of embedded ML application.

4.1 Printed Electronics Background

While the Moore’s law has been the guiding force for the progress

of lithography-based silicon Very Large Scale Integration (VLSI)

technologies for higher integration density, these technologies have

a lower bound on costs due to high costs of manufacturing (e.g.,

wafer processing, lithography, and material processing), which, in

turn, increase the costs of packaging, testing, and assembly.

An alternative manufacturing scheme, the so-called printed elec-

tronics, based on low-cost additive manufacturing technologies is

a promising way to target disposables and ultra-low cost margin

domains, especially with conformality needs. Printing technologies
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Figure 4: Inkjet printing process

often rely on mask-less, portable, and additive manufacturing meth-

ods which can greatly reduce costs and production timelines [10].

Printed electronics refers to the fabrication technology that relies

on printing processes, such as jet printing, screen or gravure print-

ing [19]. Figure 4 shows the inkjet printing process of an electrolyte

gated field-effect transistor (EGFET).

Printed electronics technologies are broadly divided into two cat-

egories: 1) additive manufacturing process in which only deposition

steps are involved, and 2) subtractive process involving a series of

additive (deposition) and subtractive (etching) processes, similar to

the silicon-based processing. The low equipment costs along with

the simple additive manufacturing enable ultra low-cost (even sub-

cent) electronic circuits. Nevertheless, printed electronics cannot

match the area and performance characteristics of silicon systems.

The large feature sizes in printed electronics result in high device

latencies and low integration density (orders of magnitude lower

than in silicon VLSI). However, the applications in target domains

typically have extremely low performance and precision require-

ments (e.g., sampling rate of few Hz and few bits precision) which

may be met by printing technologies under acceptable area and en-

ergy constraints. Printed systems have been successfully fabricated,

such as boolean logic [18] and a 32-bit Arm microprocessor [6].

Due to its unique features, printed electronics constitutes a most-

promising solution to eventually enable computing and bring intel-

ligence in applications domains, that have not witnessed yet con-

siderable penetration of computing particularly in the 10-trillion

market of fast moving consumer goods (FMCG) [39] such as smart

packaging, low-end healthcare products, and disposables, to name

a few. As a result, designing printed ML circuits has become the

center of many research activities [22, 44, 45, 68] with remarkable

results. Nevertheless, despite the high efforts and the significant

achievements reported, implementing complex printed ML circuits

is still questionable through conventional computing. The large

hardware overheads in printed electronics mandate a higher de-

gree of optimization that can be achieved only through alternative

computing methods [4, 5, 69].

4.2 Approximate Bespoke ML Classifiers

The potential for large customization, that originates by the non-

recurring engineering (NRE) cost and the low-cost in-situ and on-

demand fabrication–even at low to moderate fabrication volumes–

of printed electronics, enables bespoke implementations [7, 44].

(a) 8-bit multiplier (b) 8-bit comparator

Figure 5: Area variation of a bespoke (a) multiplier and (b)

comparator with respect to the coefficient value [4, 5]

.

In such bespoke circuits, the coefficients of the ML models are

hardwired in the circuit implementation itself, leading to orders

of magnitude lower hardware overheads (e.g., area, power) com-

pared to conventional baseline implementations [7]. Exploiting

the efficiency of a bespoke implementation and coupling it with

approximate computing principles further reduces the hardware

requirements paving the way, for the first time, towards complex,

battery powered printed ML circuits [4, 5]. It is noteworthy that

bespoke circuits enable new types of approximation, allowing for

more customized optimization, dedicated to each model. In bespoke

ML circuits the hardware overheads are highly correlated with

the values of the coefficients of the model. In other words, models

with the same architecture but different coefficients will feature

different hardware requirements. For example, Figure 5 depicts the

area overheads of 8-bit bespoke multipliers (Figure 5(a)) and 8-bit

comparators (Figure 5(b)) for all coefficient values. Note that multi-

pliers and comparators constitute basic building blocks of most ML

algorithms. It is observed, in Figure 5, that different coefficient val-

ues result in significantly different area. As a result, leveraging this

property, by systematically approximating the coefficient values

with hardware friendly ones, high area and consequently power

gains (even up to 100%) can be achieved. In [4, 5] hardware-aware

coefficient approximation is combined with traditional approxima-

tion techniques such as netlist pruning [78] and precision scaling.

Support Vector Machines (SVMs) and MultiLayer Perceptrons

(MLPs) are targeted in [4]. The core function of both SVMs and

MLPs is to calculate a weighted sum. Hence, by replacing each coef-

ficient (in each neuron or classifier) with a more hardware-friendly

value (e.g., from Figure 5(a)) so that the positive errors (replace

with smaller value) and the negative errors (replace with larger

value) cancel out each other, high area savings can be achieved for

a minimal accuracy loss. This approximation is performed at the

software level and the newly obtained model is used to generate

the bespoke circuit. Precision scaling is also leveraged to reduce

the size of the required arithmetic operators. Using only 4 bits for

the inputs and 8 bits for the weights proved to barely impact the

accuracy of all the models examined, delivering almost identical

results to floating-point inference. Then, exploiting the fact that

a significant portion of a circuit’s gates switch very rarely, apply-

ing gate-level pruning at the hardware level (in which such gates

are replaced by a constant 0 or 1) further increases the area gains.

Table 1 presents the hardware overheads of the exact and approx-

imate classifiers when targeting a marginal accuracy loss of 1%.

The datasets for training the models are obtained from the UCI ML
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Table 1: Area and Power evaluation of approximate

MLPs/SVMs for up to 1% accuracy loss [4].

ML Circuit

Exact

Bespoke

Coef. Approx.

& Gate Prune

Ac1 A2 P3 A2 P3 AG4 PG5

Cardio MLP-C 0.88 33 97 17 54 48% 44%

RedWine MLP-C 0.56 18 53 8.0 27 55% 50%

WhiteWine MLP-R 0.53 13.1 40.7 8.0 27 39% 34%

RedWine MLP-R 0.56 7.1 24 3.3 12 53% 49%

RedWine SVM-C 0.57 24 73 7.6 26 68% 65%

Cardio SVM-C 0.90 15 47 8.7 29 43% 38%
1Accuracy. 2Area (cm2). 3Power (mW). 4Area and 5Power Gain
compared to the bespoke baseline.

repository [23]. As shown, for all the examined models, employing

approximate computing delivers large area (above 39%) and power

(above 34%) gains. What is even more important is that most of the

approximated SVMs and MLPs can be powered by a printed battery

(e.g., a Molex 30mW). However, this is not the case for the exact be-

spoke baseline circuits. Among the latter, only the RedWine MLP-R

features adequate power consumption to be battery-powered.

Similarly, printed Decision Trees (DTs) are examined in [5].

Again, the authors exploit the area variation of the comparators

with respect to the coefficient (threshold) value (Figure 5(b)) and

implement a software-based coefficient approximation. In addition,

the circuit is further approximated/optimized by applying precision

scaling at the input port of each bespoke comparator. However,

unlike [4], the error due to coefficient approximation is not linear

and its impact is hard to predict. Therefore, in order to explore the

space and identify for each comparator in the DT, the respective

approximation configuration (i.e., input precision and value for

the coefficient approximation), a non-dominated sorting genetic

algorithm (NSGA-II) is used [5]. To guide the genetic algorithm to

select more area efficient solutions, the accumulated area of the

required comparators is used as a proxy of the DT’s area. Table 2

presents the accuracy, area, and power evaluation of the exact and

approximate DTs. Again, the datasets are obtained from the UCI

ML repository [23]. As shown in Table 2, the approximate DTs

achieve more than 47% area and more than 48% power gains. Most

importantly, all the approximate printed DTs can be powered by a

small Blue Spark printed battery since they feature less than 3mW

power consumption. In addition, the approximate Seeds can also

be self-powered by an energy harvester as its power consumption

is less than 0.1mW. Finally note that the area of the majority of

the approximate DTs is well constrained and as a result they are

perfect candidates for printed applications.

5 LESSONS LEARNED AND OPEN ISSUES

Approximate computing has been considered in a variety of ap-

plication domains as an effective alternative in building efficient

computing systems. Though, approximate computing exploitation

really took off in ML. As widely demonstrated in the state of the

art [3] and presented by several use cases in this paper, approximate

computing and ML form a perfect synergy and their matching not

only feels natural, but it seems mandatory in order to address the

increased computing challenged in ML systems. ML models which

try to approximate and learn the functions, naturally fit with the

concept of approximate computing which, under bounded accuracy

Table 2: Accuracy, Area, and Power evaluation of approxi-

mate Decision Trees [5].

ML Circuit

Exact

Bespoke

Coef. Approx.

& Precision Scaling

Ac1 A2 P3 Ac1 A2 P3 AG4 PG5

Arrhythmia 0.56 163 7.6 0.67 22 1.04 86% 86%

Balance 0.75 68 3.1 0.81 27 1.16 60% 63%

HAR 0.84 551 26.1 0.83 295 13.7 47% 48%

Mammographic 0.76 99 4.5 0.81 8.06 0.38 92% 92%

Seeds 0.89 30 1.4 0.94 2.32 0.09 92% 94%

Vertebral 0.85 58 2.7 0.86 7.84 0.38 86% 86%

1Accuracy. 2Area (cm2). 3Power (mW). 4Area and 5Power Gain
compared to the bespoke baseline.

impacts, try to further reduce the hardware footprint (area, delay,

power) [63, 66] or even address thermal constraints [2, 81] and/or

defend against advertasial attacks [26, 47]

Among a considerable amount of varying approximations for

ML that have been investigated, precision scaling establishes as

the most prominent one, leading to an actual success story. ML

models feature such a high degree of resilience that can tolerate

very aggressive precision scaling, down to only a few bits [17]. It is

noteworthy that many commercial ML and DNN accelerators, such

as GPUs, FPGAs, and TPUs, have already adopted precision scaling

(e.g., from floating point to low precision fixed point arithmetic) as

well as quantized neural networks (QNNs) have become a norm [65,

66]. This further highlights the fact that some of the core concepts

of approximate computing have been well embraced by the ML

community. One of the reasons that precision scaling shined in

ML is that it features a straightforward design and exploitation

and preserves the regularity of compute. In other words, it delivers

very high (and highly correlated) gains in both the compute, the

memory, and the data transfer, not affecting, thus, the application’s

bottleneck. Moreover, it maintains the level of design abstraction

and the link between software and hardware is apparent, leading

also to straightforward quantification of the induced error. On the

other hand, this is not the case for other approximation techniques

(e.g., logic) in which the impact of approximation is irregular and

require extremely slow hardware emulation [20] or circuit simu-

lation [57]. Finally, as discussed in Section 2, to exploit the full

potential of approximation, proper hardware support is required

(e.g., architecture support for variable precision and/or sparsity). On

the other hand, this is not the case in bespoke implementations, as

for example in printed ML circuits and fully parallel FPGA architec-

tures. Bespoke architectures (Section 4) exploit out-of-the-box all

the benefits that may originate from low precision inputs/weights

and pruning. In bespoke ML classifiers, unstructured pruning will

directly result in eliminating the respective multipliers and reduc-

ing the size and potentially the precision of the accumulation tree.

Moreover, low-precision inputs or small-value weights will have

the same impact, i.e., significantly reduced hardware overheads for

multiplications and additions. Hence, such features can be addition-

ally exploited for further approximate ML models in customized

hardware realizations.

Still, despite the early emplacement of approximate computing in

ML, there are still several key challenges that need to be addressed

in order to enable further its growth and adoption. One of the major
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open research challenges of approximate computing, particularly

when combined with machine learning, is the verification, i.e., how

to quantify and bound the accuracy loss due to approximation, par-

ticularly in the context of mission critical tasks and applications.

Related to verification challenges, it is important to quantify (and

prove) the extent of uncertainty and inaccuracy that is imposed by

an approximate computing technique for a specific model since ap-

proximation adds another degree of inaccuracy on top ofMLmodels

which are inherently inexact. An open challenge is to understand

what types of approximations can still be utilized, especially for crit-

ical applications, and what are the limits of approximate computing

in such domains. Moreover, the impact of approximate computing

on the robustness of the MLmodel is merely explored. Approximate

techniques aim mainly in improving performance and/or reducing

energy by removing, however, redundancy from the ML model

and/or by inducing noise in the computations (e.g., approximate

units). A reasonable assumption would be that the model becomes

less robust and, for example, more vulnerable to memory errors.

Nevertheless, this trade-off hasn’t been comprehensively analyzed

yet. Finally, a key challenge refers to the design and optimization of

approximate ML accelerators. While approximate computing can

further simplify design closure and reduce hardware footprint, one

challenge is to ensure that this does not lead to an explosion of the

design space since now the choice of approximation adds additional

decision dimensions. In addition, re-training/approximation-aware

training/quantization-aware training are widely and mainly used

to mitigate the accuracy degradation due to approximation. Still,

re-training (especially in DNNs) can be time consuming, increas-

ing the design cycle time and exacerbating the complexity of the

associated design space exploration. Overall, how to approximate

the design choices for approximate computing seem to be a very

promising research direction in design automation for approximate

computing in the context of machine learning.
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