CLARK MEASURES FOR RATIONAL INNER FUNCTIONS
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ABSTRACT. We analyze the fine structure of Clark measures and Clark isometries asso-
ciated with two-variable rational inner functions on the bidisk. In the degree (n, 1) case,
we give a complete description of supports and weights for both generic and exceptional
Clark measures, characterize when the associated embedding operators are unitary, and
give a formula for those embedding operators. We also highlight connections between
our results and both the structure of Agler decompositions and study of extreme points
for the set of positive pluriharmonic measures on 2-torus.

1. INTRODUCTION

A bounded analytic function ¢: D? — C is said to be inner if |¢(¢)| = 1 for almost
every ¢ € T?, where D is the unit disk and T is the unit circle. In the one-variable case,
each inner function v defines a class of positive Borel measures {o, }oer on T that satisfy

1_|¢ /|C_|Z|2 «(¢), forzeD.

o —9(2)]? — 2

These measures have a number of important applications and properties; among other
results, they are the spectral representing measures for rank 1 unitary perturbations
of certain compressed shift operators and via Alexandrov’s theorem, they disintegrate
Lebesgue measure, see [11, 16] for comprehensive introductions to this classical theory.
Generalizations of these measures to the polydisk D? were recently studied by E. Doubtsov
n [12]; other multivariate generalizations of Clark theory can be found in [3, 18]. In this
paper, we obtain precise information about both the two-variable Clark measures on the
bidisk defined in [12] and associated isometries, in the setting of two-variable rational
inner functions.

1.1. Notation and Setup. To define Clark measures on the bidisk, we need some no-
tation. Denote the Poisson kernel on D? by

_ _ (=120 =)
PZ(C)_P(Z7C) T |C1_Zl‘2|<2_22|2 )

and the Cauchy kernel for the bidisk by
Cu(2) = Clz,w) =

for z € D?, ¢ € T?,
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Recall that C(-,-) acts as the reproducing kernel for the Hardy space H?(D?), which
consists of all analytic functions f: D? — C satisfying the norm boundedness condition

1£2 == sup / F(rO)Pdma(¢) < oo.
1.JT2

0<r<

Here, ms denotes normalized Lebesgue measure on T? and later, we will use m to denote
normalized Lebesgue measure on T. For f € H?(D?) and ¢ € T?, we let f*(¢) denote
the non-tangential value of f at . Recall that f*({) exists for a.e. ¢ € T?, see Chapter
XVII, Theorem 4.8 in [35]. Also, throughout this paper, we will slightly abuse notation
by using z, ¢ to refer to points from both C and C?, but the meaning should be clear from
the context.

Let ¢ be a non-constant inner function on D? and let o € T. Since z — R[(a +
#(2))/(a— ¢(z))] is a positive pluriharmonic function on the bidisk, there exists a unique
positive Borel measure o, on T? called a Clark measure such that

0t o)) _ 1=l _ .
w(2208) - S~ [ i

for all z € D2. Observe that

< 00,

B (et s0)) 1 ]6(0)
[ 00 = [ PO.0donic) = <a - ¢<o>> = o= o(0)p

SO 04 is a finite measure. Since o, is a finite Borel measure on T2, it is actually a Radon
measure and basic measure theory (see for example [14, Proposition 7.9]) implies that
C(T?) is dense in L?*(o,). Furthermore, as linear combinations of the Poisson kernels
{P.}.cp2 are dense in C(T?), they are also dense in L*(o,). Finally, as asserted in [12],
the support of each o, should be contained in the closure of the set {¢ € T?: ¢*(¢) = a}.
This support condition can also be verified directly in the case when ¢ is a rational inner
function.

There are close connections between the Clark measures o, and the model space asso-
ciated with the function ¢ defined by

K, = H*(D?) © ¢H*(D?).
Then the reproducing kernel for K is given by
k(z,w) = ku(2) = (1 = 3(0)$(2))Cu(2), for z,w € D,

In [12], Doubtsov defined an embedding map J,: K, — L?*(0,) by first specifying it on
reproducing kernels as

Jalkw](€) = (1 — ag(w))Cy(¢), for w € D? ¢ € T?,
then showing this definition preserves inner products on linear combinations of reproduc-
ing kernels, and finally extending it to all of K4 using density.

In one variable, it is a classical fact (see [11, Chapter 9] or [16, Chapter 11]) that the
analogous embedding is in fact a unitary for each inner function and each o € T. In
the higher-dimensional setting, Doubtsov [12, Theorem 3.2] shows that .J, is a unitary
operator if and only if the bidisk algebra A(D?) is dense in L?(c,,). He also gives examples
showing that the two-variable embeddings J, can fail to be unitary. In this paper, we
investigate this phenomenon as part of our detailed study of two-variable Clark measures
associated with rational inner functions, i.e. with functions that are both rational and
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inner on D?. Tt is worth noting that we restrict to this two-variable situation (rather than
a more general d-variable setting) because many of our key tools, which include Agler
decompositions, certain model space properties, and well-understood unimodular level
set behaviors, do not extend to even the three-variable setting, see [10, 20].

To describe the structure of two-variable rational inner functions, or RIF's, we require
some notation. For a polynomial p € Clzy, 23], let deg,p denote the degree of p in
z; and set degp = (degy p,deg,p). Then if a pair of nonnegative integers m satisfies
m = (my,my) > degp, which means m; > deg; p and my > deg,p, we can define the
m-reflection of p as

p(z) = 2{"2"p(1/71,1/%).
Rudin and Stout [31, 33] showed that each RIF ¢ is of the form

where v € T, p has no zeros on D?, p is some m-reflection of p, and p, p share no common
factors. We define deg ¢ = degp > degp. To simplify our notation, we will assume v = 1
for the duration of the paper. It is worth noting that, in the one-variable setting, each
RIF is a finite Blaschke product and extends analytically to some disk containing D in its
interior.

Unlike this one-variable situation, two-variable rational inner functions can possess
boundary singularities. For example,

22122 — 21— 22

(1) ¢(2) =

has a singularity at (1,1) € T?. More generally, if ¢ = p/p and p(7) = 0 for some 7 € T?,
then 7 is a singularity of ¢ in the sense that ¢ cannot be extended continuously to a
neighborhood of 7; see [29, Corollary 1.7]. Moreover, if p(7) = 0, then p(7) = 0 and so
Bézout’s theorem gives a bound on the number of zeros p (or equivalently, the number
of singularities ¢) can have on T?. Specifically, if degp = (my, ms) and degp = (ny,ns),
Bézout’s theorem implies that p and p have exactly nyms+nom; common zeros in C,, x C,
counted according to intersection multiplicity, where C., denotes the Riemann sphere; see
p. 1287 in [21]. If all such common zeros of p and p occur on T?, we say p is T?-saturated.
As the intersection multiplicity of such common zeros on T? must be even, ¢ can have at
most mimy distinct singularities on T2, see [21].

Still, these RIF singularities are somewhat mild. Indeed, if ¢ is a RIF, then [21,
Corollary 14.6] states that for each ¢ € T?, including any points ¢ where p(¢) = 0, the
non-tangential value ¢*(¢) exists and is unimodular. For more information about the zero
set of p, denoted Z,, see [1, 21].

2—2’1—22

1.2. Overview of Results. The body of this paper begins with Section 2, which provides
some information about the Clark measures o, associated to a general RIF ¢. Specifically,
Theorem 2.1 gives a simple proof that o, cannot possess any point-masses (a fact noted
earlier in [28]), and the section also gives further information about the closed set

(2) Co == {C € T*: 5(¢) = ap(O)},

which contains the support of .
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From Section 3 onward, we study RIFs ¢ = 1_; with deg ¢ = (n, 1). In a sense, these are

the simplest two-variable RIFs, but the constructions from [8, 9] and the examples in our
Section 5 show that they can still be quite complicated. First, note that for these RIFs,

(3) p(2) = p1(21) + z2p2(21)
is a polynomial of degree at most (n, 1) that does not vanish on D?,

P(2) := 22P1(21) + P2(21), where each pi(21) = 2{'pi(1/21),
the polynomials p, p share no common factors, and p has at most n distinct zeros on T2. In
Subsection 3.1, we recall some important properties about the model spaces and formulas
associated to such RIFs. For example, such RIFs possess a specific Agler decomposition
or sums of squares formula of the form

(4)  pE)p(w) —p(z)p(w) = (1 — z1w1) Z Rj(2)Rj(w) + (1 — 2202)Q(2)Q(w)

where Ry,..., R,,Q € C[z, 29, deg R; < (n —1,1), and deg @ < (n,0).

In Subsection 3.2, we study some preliminary objects, which are key in analyzing both
the Clark measures o, and the isometric operators J, associated to ¢. Those objects are
detailed in the following definition:

Definition 1.1. Fiz ¢ = p/p with deg ¢ = (n,1) and a € T. Define the following:

o The points (T1,\1), ..., (Tm, Am) are the zeros of p on T?. Here, 0 < m < n.

e B, is the rational function
pi(2) — apa(z)
(5) Ba(z) = —
api(z) — pa(2)
where any common factors of the numerator and denominator have been cancelled.

e E, and Ly, are the sets in T? defined by E, := {((,Ba(¢)) : ¢ € T} and Ly, =
{e} xT fork=1,...,m.

o W, is the function on T defined by

Wa(C) — ’p~1(<)’2 — |p2<C)‘2
P1(C) — ap2(Q)?
Lastly, we say a € T is an exceptional value for ¢ if there is a k such that ¢*(1g, \p) = «
and o € T is a generic value for ¢ otherwise.

Subsection 3.3 contains our first main result, the following complete characterization
of the Clark measures o, associated to a given degree (n,1) RIF ¢:

Theorem 1.2. For a € T, the Clark measure o, satisfies

[ 10) d0u0) = [ 1B a6+ Yot [ 1) dm(c)

for all f € L'(0,), where dv, = Wadm, the functions B, Wy, are from Definition 1.1,
and the constants ¢ are nonzero (and positive) if and only if ¢* (T, \x) = .
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When they are non-zero, the constants ¢ can be obtained from the formula in (26).
We should note that although Clark measures can often be computed in the one-variable
case, very little is known in this two-variable setting. Indeed, this theorem can be viewed
as a significant generalization of Example 4.3 in [12], which described o, for the specific
degree (1,1) RIF given in (1), and of Example 3 in [25], which includes the case where
¢(2) = 22b(z1), for b a finite Blaschke product with 6(0) € R. Because of its length, the
proof of Theorem 1.2 is broken into two pieces, Propositions 3.8 and 3.9.

In Section 3.4, we prove our other main result, a formula for the isometry J, : K5 —
L?*(0,) and an exact characterization of when it is unitary:

Theorem 1.3. Fiz o € T.

1. For each each f € Ky, (Jof)(C) = f*(C) for oq4-a.e. ¢ € T2
ii. J, : Ky — L*(0,) is unitary if and only if « is a generic value for ¢.

This result is in contrast to the one-variable case, where .J, is always unitary. Here,
by computing the non-tangential values of ¢ at its finite number of singularities, this
theorem allows us to easily identify whether a given J, is unitary. Part (i) is true in the
one-variable setting and follows from a famous (and more general) result of Poltoratski
about normalized Cauchy transforms, see [30] and [11, Theorem 10.3.1]. Thus, our result
can be viewed as a partial two-variable analogue of Poltoratski’s result. Again, due to
length, we break the proof into two pieces, Propositions 3.10 and 3.12.

Section 4 connects our (n, 1) results to two related areas of study. First, in Theorem 4.1,
we connect Theorem 1.2 to the theory of Agler decompositions and use our results about
0, and J, to establish formulas for some of the polynomials R; in (4). Then, we observe
that this study of Clark measures can be put into a more general context. Specifically,
let P(T?) denote the set of Borel probability measures on T? equipped with the topology
of weak-+ convergence and define

Py = {f € Hol(D?) : Rf(2) > 0 and f(0,0) =1},

which is compact in the topology of uniform convergence on compact subsets of D?. Let
M : Py — P(T?) denote the map that takes each f € P, to the unique Borel probability
measure [y with

1) = [ PAOns(Q) for z e D

Then both P, and its image M (P,) are compact convex sets and by the Krein-Milman
theorem, equal the closed, convex hull of their extreme points. It is also easy to show
that f is an extreme point of P, if and only if sf is an extreme point of M (P,). In [32],
Rudin posed the question

“What are the extreme points of Py (or equivalently, of M (P3))?”

While this question is still open, a number of interesting examples and related results
(often in the n-variable situation) have been proved by Forelli [15], Knese [22], and Mc-
Donald [25, 26, 27, 28]. As the Clark measures o, are trivially in M (Ps) when ¢(0) = 0,
it makes sense to consider our investigations in the context of Rudin’s question and these
subsequent results. In particular, the following is a quick corollary of Theorem 1.2 and a
theorem from [22]:

Corollary 1.4. Let ¢ = g be a degree (n,1) RIF with p(0,0) =0. If a € T, then:
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i. If « is an exceptional value for ¢, then o, is not an extreme point of M(Pz).
ii. If p is saturated, degp = degp, and « is generic for ¢, then o, is an extreme point

Of M(PQ)

Part (i) of this corollary shows that in our setting, the more complicated Clark mea-
sures cannot be extreme points of M(Py). Meanwhile part (ii) coupled with our earlier
characterizations provide explicit formulas for some extreme points of M (Ps). We should
mention that these appear somewhat related to the measures studied in [25, Example 3.

In the last section, we use our results to compute the Clark measures and study the
J, isometries associated to several degree (n,1) RIFs. First, in Example 5.1, we use our
results to recover Example 4.3 in [12]. Then in Example 5.2, we apply our results to
a more complicated degree (2,1) RIF with a single singularity and in Example 5.4, we
study a degree (3,1) RIF with two singularities. Finally, in Example 5.6, we investigate
a degree (3,3) RIF ¢ with a singularity at (1,1). In particular, we show that although
¢*(1,1) = —1 and hence o = —1 is an exceptional value for ¢, the operator J_; is unitary.
This demonstrates that, in its current form, Theorem 1.3(ii) does not extend to general
RIFs.
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2. CLARK MEASURES FOR RIF's

We begin with some remarks about Clark measures associated with general RIFs on
the bidisk, before focusing on the degree (n,1) case. First, the following result appears
to be known, see for instance [28, p.732] and [23], but here, we give a simple proof in the
RIF case by adapting some of the arguments from the one-variable proof of [11, Theorem
9.2.1].

Theorem 2.1. If ¢ is a nonconstant RIF on D? and o € T, then o, does not possess
any point masses.

Proof. Without loss of generality, we will show that o, does not possess a point mass at
(1,1). First, applying [12, Proposition 2.6] with w = (0, 0) yields

1 N 1 — ¢(2)$(0,0)
®) /T (1= 20)(1 - @G)daa(g) (1= ae(2)(1 — ag(0,0))

Observe that §(z) := ¢(z, z) is a nonconstant finite Blaschke product. Then for 0 < r < 1,
set z = r and multiply both sides of (6) by (1 —r)? to get

(7) /EQ ( (1 - T)Z do (<> _ (1 - T’)2(1 B 9(7“)0( ))

L—rG)(1—rG)  ° (1 —ab(r))(1 —ab(0))
Observe that

o a-rr {1 iC=(1,),
11}2 (1—rl)(1 =71l { 0  otherwise.
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Since o, is a finite measure, the dominated convergence theorem implies
. (1—r)
lim = —do,(() =0.{(1,1)}.
As 0 is a nonconstant finite Blaschke product, 6(1) exists and equals some A € T and its
derivative #'(1) exists and is nonzero, see [17, Lemma 7.5]. If A # «, then

(1 —7)*(1 — 6(r)6(0))

1 - \0(0)

im — — = lim(1 — r)? — — =0
r/1(1—ab(r))(1l —ad(0)) /1 (I —aX)(1—ab(0))
If A = a, then
im (1=’ ~6(r)6(0)) _ 1= a8(0) - lim L= lim(1 —r)
v/ (1—af(r))(1—af(0) a—0(0) r160(1)—0(r) rr
1
:a'é”(l) -0=0.
Equating the two sides in (7) implies that 0,{(1,1)} = 0. O

We can say a little bit more about Clark measures associated with RIFs. The papers
8, 9] include several results concerning boundary behavior of two-variable RIFs, and in
particular, the structure of their unimodular level sets. Recall from (2) that for a € T
and ¢ = p/p,

Ca ={C € T*: p(¢) = ap({)}-

Then each C, satisifes C, = {¢ € T?: ¢*({) = a} U (2, N T?), and as was shown in
[9, Theorem 2.8], the components of C, can be locally parametrized using one-variable
analytic functions. Intuitively speaking, this implies that, for each «, the Clark measure
0, of any two-variable RIF has support contained in a one-dimensional subset of T?. (We
should mention that, technically speaking, the result in [9] was proved for ¢ = f—z with
degp = deg p, but that assumption does not appear to materially affect the conclusions.)
As an aside, we also note that general pluriharmonic measures on T? can have substantially
larger, and even two-dimensional support, viz. [28].

It should be noted that knowing that o, is a Clark measure associated with some RIF
and is supported on some set of the form {{ € T?: p(¢) = ap(()} does not suffice to
determine that measure (or its associated RIF) uniquely. Indeed, one can exhibit (see

Example 5.2) two different RIFs ¢y = f}—i and ¢y = ﬁ‘i whose Clark measures are not mul-

tiples of each other but are both supported on the same set {¢ € T?: p;(¢) = ap1(¢)} =
{¢ € T?%: po(¢) = apz(¢)} for some o € T. Thus, in order to study Clark measures
and isometries for two-variable RIFs, we will need to perform a structural analysis of the
measures o, that goes beyond determining their supports.

3. CLARK MEASURES FOR DEGREE (n,1) RIFS

Throughout the rest of this paper, we let ¢ = p/p denote a fixed degree (n, 1) rational
inner function for some n > 1. Recall that we can decompose p as in (3). Then the
polynomials p, p share no common factors. Moreover, p has no zeros on D? U (D x T) U
(T x D) and at most n distinct zeros on T2. See for example, Lemma 10.1, the proof of
Corollary 13.5, and Appendix C in [21].
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Remark 3.1. For a given degree (n,1) RIF function ¢ and o € T, recall the objects from
Definition 1.1 and define the following additional objects:

e 1, is the measure on T defined by dv, := W,dm.
e () and Ry, ..., R, are the polynomials given in Theorem 3.2.
e by,...,b, are the rational functions in the disk algebra A(D) from Proposition 3.5.

e For f € Ky, h,q1,..., g, are the H*(D) functions given in Theorem 3.2.

Finally, recall that @ € T is an exceptional value for ¢ if there is a k such that
¢* (1, \) = a and a € T is a generic value for ¢ otherwise.

3.1. Model Space Preliminaries. Clark measures are closely related to the model space
K, and so, we pause to record some known facts about K in the degree (n, 1) case.

Theorem 3.2. There are polynomials Q, Ry, ..., R, € C[z, 22 such that deg R; < (n —
1,1), deg@Q < (n,0) and for z,w € C?,

®)  pl2)p(w) = p(z)p(w) = (1 — zw) Z R;(2)Rj(w) + (1 — 22w2)Q(2)Q(w).

Furthermore, each R; and () vanish at each (1y, \;) and a function f € Ky if and only if
there exist g1, ..., gn, h € H*(D) such that

(9) f(2) = F(@h(2) + ) T(2)gi(z2)  for z € D2,
j=1
Finally, if f € Ky is written as in (9), then
£ 117, = 1f Ve = 1Bl2m) + D 951l m)-
j=1

Proof. As this result is not new, we just give some intuition and references for the different
components of the theorem. First, note that on H?(ID?), there are two shift operators,
M., and M.,,, defined by (M., f)(z) = z:f(z) for i = 1,2. Let S be the maximal M,,-
invariant subspace of Ky, where M., is multiplication by z;. Then, while not obvious, it
is true that Sy := K, © S is invariant under M.,,, see [4, 5]. Let K;, Ky denote the
reproducing kernels of the two Hilbert spaces
(10) ST O M, 5P i= H(Ky) and S5 © M., S5"™ = H(K,),
respectively. This yields the Agler decomposition

1-— Qﬁ(Z)qb(U)) = (]_ — zlwl)Kg(z,w) + (1 - ZQU_JQ)KI(Z7 w)

Since ¢ is a degree (n, 1) RIF, one can show that dim #(K;) = 1 and dim H(K>) = n. Let
@/p be an orthonormal basis for H(K7) and Ry /p, ..., R,/p be an orthonormal basis for
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H(Ks3). One can show that the @, R; are polynomials with deg @ < (n,0) and deg R; <
(n —1,1) and each @, R; vanishes at each (73, \;). Furthermore,

L QEEEW SRR ()
s p(z)p(w) falew le p(z)p(w)

and substituting the formulas into the Agler decomposition and multiplying through by
the denominator gives (8). For the details, see for example [4, 6, 19] and the references
within.

The characterization of functions in Ky from (9) follows from the fact that the repro-
ducing kernel k(z,w) of K, satisfies

n

bow) = —— 3 B@AW 1 Q0w

1 — 29wy i p(2)p(w) " 1 =z, p(z)m

and from standard properties of reproducing kernels. A proof of the formula for the norm
of functions in K can be found, for example, in Remark 2.3 in [7]. O

3.2. Support Sets and Consequences. In this subsection, we obtain some information
about the objects from Definition 1.1 and Remark 3.1. First, recall that C, from (2)
contains the support of o,. The following lemma gives some crucial insight into when C,
contains a line.

Lemma 3.3. For v € T, the set C, contains {7y} x T if and only if v = 1 for some k
and ¢* (g, A\p) = a.

Proof. Observe that {v} x T C C, if and only if ¢*(, (2) = « for all {; € T, except maybe
at one ¢ where p(v, () = 0.

Thus, for the forward direction, we can assume ¢*(7, () = « (except maybe at one (5).
As our assumptions imply deg p(v,(2) = 1, the polynomials p(~,-), p(7, ) must share a
common factor with a zero on T, say (2o — ). This implies that p(v,5) = p(~, 5) = 0.
Thus, (v, 8) = (Tk, Ax) for some k.

Set 7 := (7, \x) and write

n+1 n+1
ZP (1 —2z) and p(z ZQ]T—Z
j=M

where P; and (); are homogeneous polynomials in 21, 2o of degree j and M > 1. Define
A = ¢*(7). By [21, Propositions 14.3, 14.5], Q@ = APy, and since p, p share no common
factors, we can conclude that M =1 and P; contains a term czy with ¢ # 0. Then

Ac(Ar — G2)

a=o(r, Q) = ——5
¢( k CQ) C()\k _ CQ)

so a = ¢*(7). Similarly, if o« = ¢*(7) for some 7 = (7%, \x), the above equality and
arguments imply that we also have a = ¢*(7y, (3) for all ( € T\ {A\} and so {7} x T is
in C,. [

The following theorem gives additional information about the behavior of the function
B, and set C,.

Theorem 3.4. Let o € T. Then the following statements hold.

:A’
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. The function B, is a finite Blaschke product.

ii. p—ap and p1 —aps do not possess any repeated linear factors (z; —~)* with v € T.

iii. Let a be a generic value of ¢. Then deg B, = n and C,, equals E,,.

iv. Let o be an exceptional value of ¢ and (after reordering if necessary), assume
O (i, \i) = fork=1,... ,E. Then deg By, =n — £ and C, is Eo U (Us_ Ly,).

V. B (Tk)—)\ka’I"k}—l

vi. If C, contains Ly, then for all 2y € D with 2 + )\k, B (Tk,ZQ) equals a fixed
nonzero constant C.

Proof. Fix o € T and recall the definition of B, from (5). To establish (i), observe that if

r=apy —p2, then 7=ap —ps,
where 7(2z1) = z{‘r(%). As |r((1)| = |7(¢1)| on T and

7(z1)
r(z1)’
this shows that |B,((1)] = 1 a.e. on T. As ¢ is nonconstant, |¢(zy,0)| = |£—f(z1)| <lonD
and so, ap; — ps is nonvanishing on . Thus, after cancelling any common factors from its
numerator and denominator, B, is a finite Blaschke product. Moreover, these cancelled
factors are always of the form (z; — ), where v € T.

To establish (ii), we first show that p — ap has no repeated linear factor with a zero
from T. By way of contradiction, assume p — ap is divisible by some (z; —v)? with v € T.
Then, {v} x T C C, and for (s & {\1,..., A}, we have ¢(7, () = « and

_ pop 9B _ 90
2(5,¢:) = %( ) = B (.6) = 0

Fix any A € T with A € {\,..., A\n}. Then ¢r(z1) := ¢(21,A) is a nonconstant finite
Blaschke product and so, ¢/ (y) # 0. See, for example, Lemma 7.5 in [17]. Since

0
04 $h(7) = 22(3.0) =0
by the above argument, we obtain the requisite contradiction. To prove the result for

P1 — aps, proceed by way of contradiction and assume that it has a factor (z; — v)? with
~v € T. Then py — ap; possesses the same factor. Then the equality

(11) p(2) — ap(z) = 2z (P1(21) — ap2(21)) + (Pa(21) — api(21))
implies that p — ap is also divisible by (21 — 7)?, a contradiction.

To establish (iii) and (iv), let v;,...,7, denote the zeros of p; — apy in T. Part (ii)
implies that they are distinct. Then (11) gives

Bu(z1) =«

(12) B(z) = ap(z) = q(z1) (22 = 1/Ba(21)) [ [ (21 = ),

where ¢ € C[z] does not vanish on T since it is the numerator of B,, once the common terms
between the numerator and denominator have been cancelled. Equation (12) immediately
shows that C, is the union of E, and the set of lines {7} x T for k = 1,...,¢. To compute
deg B,, note that deg(p; — apy) = n. This occurs because since |¢| < 1 on D? we have
|p1(0)] > |p2(0)| and thus, the coefficient of the degree n term in p; —aps is nonzero. Thus,
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deg B, = n — /, its original degree minus the number of cancelled terms or equivalently,
the number of lines of the form {y} x T in C,.

To finish (iii), let « be generic. By Lemma 3.3, C, cannot contain any lines of the form
{7} x T and so, our arguments give C, = E,, and deg B, = n.

To finish (iv), let a be exceptional and (after reordering if necessary), assume ¢*(7x, A\x) =
afork=1,...,¢. Then Lemma 3.3 implies that Ly, ..., L, are exactly the lines of the form
{7} x T in C,. Then the above arguments imply C,, = F,, U (U{_, L) and deg B, =n — (.

To prove (v), let 7 := (7%, \x) and note that since p(7) = p(7) = 0, it follows by
definition that 7 € C,. First assume that ¢*(7) # «. Then C, = E, and so it must be
the case that

1 -
(Ths Ak) = (7%, m) = (T, Ba(T1)),
as needed. Now if ¢*(7) = «, it follows that {7} x T C C,. Then as in the proof of

Lemma 3.3, we can write:
n+1

(b —ap)(z) =) _(Q; —aP)(z = 7) = (1 — 21)G(2),

=2
where @);, P; are homogeneous polynomials of degree j and G is a polynomial. Here, we
used the fact that Q)1 = aP; and deg(p—ap) < (n,1). From this, it is clear that G(7) = 0.
Since (21 — 73) divides p — ap, (11) implies that it also divides p; — aps. Thus,
(7 — 21)G(2) = (D1 — ap2)(21) (22 — 1/Ba(21)) = r(21) (7 — 21) (22 — 1/ Ba(21))

for some r € C[z]. By (ii), we know that () # 0. Dividing through by (7, — z1) and
plugging in 7 implies Ay = 1/B, (%) = Ba(T%)-

To prove (vi), assume Ly = {73} x T C C,. Then the same arguments as in (v) imply
that

(13) (P — ap)(2) = r(z1)(z1 — ™) (22 — 1/Ba(21)),
for some r € Clz] with () # 0. Then for 2z, € C\ {\¢}, we have ¢(7y, 22) = a and we
can use (13) to conclude

op Op
§7¢(Tk722) — 0z1 0z1 (Tk,ZQ) _ T<Tk)(22 k) _ T(Tk:)’
! P c(z9 — k) c
for some ¢ # 0. O
We can also use the set C, to refine our understanding of the polynomials Ry, ..., R,,Q

from Theorem 3.2 as follows:

Proposition 3.5. Ry,..., R,,Q satisfy the following properties:

i For i € T, [Q(QII° = (G = Ip2(G)P
ii. For z € D", Rj(z) = 1;(21) (1 — Ba(21)22) + 22Q(21)b;(21), for some unique r; €
Clz] with degr; < (n — 1) and rational b; € A(D).

Proof. Part (i) follows from some algebra; substituting z = w = ({3, 22) into (8) gives

p(C1, 22)|* = (¢, 22) [ = (1 — |22]3)]Q(&) -
The left-hand-side becomes

p1(C1) + 2202(C) P — |221(C) + p2(C) [P = (1 — |22)?) (Ipa () = [p2(C1) )
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and dividing by (1 — |22|?) gives the desired formula.
For (ii), recall that p(z) = ap(z) whenever zo = 1/B,(z1). Substituting zo = 1/B,(#1)
and wy = 1/B,(wy) into (8) gives

0= (1—z1w1) Y Rj(21,1/Ba(21)) R; (w1, 1/ B (w1))+(1=1/Ba(21)1/ Ba(w1))Q(21) Q(w1),

j=1

for all z1,w; where B,(z1) # 0. We can rewrite this as

1— Ba<21)Ba(w1)
1-— 21w

Q(21)Q(wy),

By (21)Ba(wr) ZRj(Zl7 1/Bo(21)) Rj(w1,1/Ba(w1)) =

for z;,w; € D. Then the right-hand-side is the reproducing kernel of the one-variable
model space Kp, := H2(D)& B,H%(D) (which is composed of rational functions in A(D),
see [16, Chapter 5]) times the @ term. To finish the proof, fix R; and by Theorem 3.2,
write
Rj(z) = rj(21) + 2245 (21),
for r;,q; € C[z]. Then standard properties of reproducing kernels imply that for some
bj € K Bas
Ba(z1)rj(21) 4 ¢;(21) = b;j(21)Q(21)

for z; € D. Solving this for ¢; and substituting back into the formula for R; yields the
desired result. U

In what follows, we will also require information about the weight function W

o W) = W00 =

Lemma 3.6. The function W from (14) satisfies the following properties:

for (z,¢) € T2

i. W is well defined and continuous on T2, except possibly at the finite set of points
(o, 1) where a is exceptional for ¢ and Ly, C C,.

ii. For a € T, W, has at most a finite number of discontinuities on T, all of which
are removable. So, W, equals a bounded, continuous function m-a.e. on T.

Proof. For (i), assume that p;(¢) —zp2(¢) vanishes at some ((,z) € T2 Then (11) implies
that p(¢, ) —ap((,-) =0, s0 {(} x T C C,. Then Lemma 3.3 implies that ¢ = 7, for some
k, x is exceptional, and L, C C,.

For (ii), first observe that if a is generic, then (i) implies W, is continuous, and
hence bounded, on T. If « is exceptional, after reordering the singularities of ¢, assume
Ly, ..., L, are exactly the lines in C,. Then by the proof of Theorem 3.4,

¢
(51— apa)(2) = a(2) [[ (= — 7).
k=1
for some g € C|[z] that is non-vanishing on T. Similarly, Theorem 3.2 and Proposition 3.5
imply that for ( € T,

P2 (OF = 12O = QO =] 1€ = mlPIr(O),
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for some r € C[z]. Thus, for ¢ # m,...7,

2
Wa() = [z -

This shows that the only possible singularities W, could have on T are at 7y,...,7, and

any such singularities must be removable. 0

3.3. Clark Measure Formulas. Recall that the Clark measures associated to ¢ are
characterized via Theorem 1.2. In the proof we will require the following lemma, which
is a consequence of standard measure-theory facts. We include its proof here for the ease
of the reader.

Lemma 3.7. Let 0 be a Borel measure on T? and let (s = g(¢1) be a continuous curve in
T2. If W is a continuous function defined on T such that

(15) /fcg (Qdm(<) for il f € C(T?),
then (15) holds for all f € L' (o

Proof. For ease of notation, set dv = Wdm. Then v is a Borel measure on T. Furthermore,
if £ C T? is a Borel set, then

(16) E, :={( € T : there exists (, € T with (¢1,() € EN{(¢,9(C)) : ¢ € T}}

is the projection of a Borel set in T? onto its first coordinate. This implies that E, is an an-
alytic set and its characteristic function is Lesbesgue measurable and hence, v-measurable,
see for example Chapter 13 in [13]. We will use E, frequently because x (¢, 9(¢)) = x&, ()
for ( € T. The following proof has three steps.

Step 1: Establish (15) for f = yp, where U is an arbitrary open set in T?. Let {K,}>2,
be a sequence of nested compact sets with U = |J,, K,,. Then, by Urysohn’s lemma, there
exists a sequence {f,,}°°, of continuous functions on T? having 0 < f,, < 1 on T? and

fn=1 on K, and f,=0 on U°.
Then lim, o fn(¢) = xv(C) for every ¢ € T?, and since v is a finite measure, we can
apply the dominated convergence theorem to obtain

o) = lim [ F(Q)do(O) = Tim [ 16 0(OMvl€) = [ xu (o€,

n—0o0

as desired.

Step 2: Establish (15) for f = yg, where F is an arbitrary Borel set in T2. Since o is
a finite Borel measure on T?, and hence is Radon, for each n € N there exists a compact
set K, and an open set U, such that K, C £ C U, and o(U, \ K,) < 1/n. Urysohn’s
lemma again guarantees the existence of a sequence {f,,}°°, of continuous functions with
0<f. <1, f,=1o0n K,, and f, =0 on Uy. Since

L1 = x0)01 do0) < [ xii, Qdo(©) = o0\ ) <
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we have || f — full11(0) < 1/n and f, — fin L'(0) as n — oo. Since the f, are continuous,
this implies

[ 3600 = tim [ £(0do(c) = i [ £ aO)vC)

n—oo

Because xg, < fn < xv, on T2, we then obtain

(17) [ o) < [ £(0do0) < [ G alcan©

and as xx, < xr < xv, on T?

(18) / yien (G 9(O)(C) < / V(6 g(O)di(C) < / 30 (€ 9(0)av(C).

Combining (17) and (18) gives

[ xe(@aot) = [ xatc. o010 < I = il
[ 1100 = [ xe(C.o(0)in0)

g%+/<xUn—xKn>< 9())dv(C)
=1+0U,\ K,) <

for all n, where we used Step 1 applied to U, \ K,, = U,, N K. Letting n — oo gives (15)
for f = x&.

_|_

Step 3: Establish (15) for a general f € L'(c). Pick a sequence {f,}°°; of continuous
functions on T? such that f, — f in L'(0) and pointwise o-almost everywhere on T2
Then there exists some Borel set E C T? with o(F) = 0 such that if f,({) - f(),
n — oo, then ¢ € E. Then, if f,,(¢,9(¢)) - f(¢,9(¢)) then ¢ € E,, where E, is defined
n (16). By Step 2, v(E,) = o(E) = 0. Hence

(19) falC,9(Q)) = f(C,9(¢)) for v-ae(eT.
Since the f,, are continuous, we have
L1520 = (01010 = [ 14:(6,9(6)) = il (0] a(0)
’]T2

This implies that {f,,(¢,¢(¢))}52, is a Cauchy sequence and hence has a limit F in L'(v),
and by (19) we must have F' = f in L'(v). Then L'-convergence gives

5100 = tim [ 1,©do(©) = lim [ £ a(0ivlc) = [ (¢ a0avtc)

which gives (15) for f. O

Now we proceed to the proof of Theorem 1.2. We split the proof into two propositions;
the first considers generic values for ¢ and the second considers exceptional values for ¢.
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Proposition 3.8. Let a € T be a generic value for ¢. Then for all f € L*(0y,),

(20) [, #) doutc) = [ ¢ BaT0) ),
T2 T
where dv, = Wyodm and By, W, are from Definition 1.1.

Proof. For each fixed 2 € D, define the function

a L Oé-{-gb(Zl,ZQ)
22(21> T o — ¢(21722)

Recall that ¢ has no singularities on T xD. Furthermore, since « is generic, if ¢((1, 22) = «
for ¢, € T, then 2, = 1/B,(¢;) € T. Thus, ¢, € A(D) and for all z; € D,

121\

[ R (2(0) dm(0)

If zy € D and ¢ € T, then the computation in the proof of Proposition 3.5(i) gives
p(C 22)|* = 1B(C, 22)|* = (1= |22) (Ip1 (O = [p2(O))
which one can use to obtain
R (0 () = LGP G PG | L-lal QP ~IpOF
- la —o(C 22)[*  lap(C,22) = P(C 22) |20 — Ba(Q)]? lew2(€) — pr(Q)

This implies that

R (¢ (1)) =

for z; € D.

L]z 1|z [p(QF - |p2(C)|2d
1|21 = ¢ |20 — Bo(Q)]? lap2(¢) — pi(Q)I?

_ / P.(¢, Ba(Q))Wa(Q)dm(C).

Thus, by the definition of o, we can conclude that

[ P05(0) = [ P¢ Bl 0)

T

m(¢)

Since finite linear combinations of Poisson functions P, are dense in C(T?), this formula
extends to all functions in C(T?). Since W, is bounded by Proposition 3.6, the formula
extends to f € L'(0,) by Lemma 3.7. O

Let us now consider the exceptional a values for ¢.

Proposition 3.9. Let a € T be an exceptional value for ¢ and (after re-ordering the zeros
of p on T? if necessary and applying Theorem 3.4 (iv)), assume Co = E,U(UL_,Ly.). Then
for all f € L'(0,),

(21) Q)doa (¢ /f ())dva (¢ +ch/f T, ¢) dm(C

where dv, = Wadm, B,, W, are from Definition 1.1, and c{,...,c; > 0.




16 BICKEL, CIMA, AND SOLA

Proof. Recall that aa is supported on C, = E, U (Us_,Ly,). Since the L;, are disjoint and

E,N Ly ={(m, B }, which has o, measure 0, we only need to show
(22) /f e (dalO) = [ FC Tl Odm(©)
(23) FOX(Odon(O) = / F (11, Q)dm(<)
T T
for f € L'Y(0,) and k = 1,...,¢, where xg denotes the characteristic function of a

set £ C T2 Then Lemma 3.6 implies W, is bounded on T (with at most ¢ removable
singularities) and by Lemma 3.7, we need only establish (22) and (23) for f € C(T?).

To ease notation, throughout this proof, for any F defined on T?, we will use F,, to
denote F, () := F((, B,(¢)) and F}, to denote Fi(¢) := F(x, ().

Part 1. We first prove (22). To that end, fix a small € > 0 and define
Sez{CET:mkin\C—Tﬂ < €}

and define S/, analogously. By Lemma 3.6 and the definition of B,, we can find a small

arc A, C T centered at « such that both W(x,() and B(x,() := B,({) are uniformly

continuous on A, % (T\S¢/2). Choose (a,,) € T such that each o, is generic and (a,,) — a.

Then by [12, Corollary 2.2], (04, ) converges weak-* to o,.
To exploit that fact, let W, be a continuous function on T such that

Ue=1onT\S, YV.=0o0n S, 0¥ . <1onS \Sp.
Fix f € C(T?). By our assumptions and by Proposition 3.8,

- F(QOV(Cr)doa(C) = hm F(QO¥(¢)doa, (C)

T2

n—oQ

(24) = lim [ f,, () V() dv,, (¢ /fa U (C) dv,(Q),
T

where the last equality follows because

/mn W (€)= £ (OWalO)| W(O)Am(Q) < sup |(fu, War — FalWa) ()] = 0,

CET\SE/Q

as n — oo because f,(C)W (z, () is uniformly continuous on A, x (T'\ S/2). Furthermore,
observe that since W (¢;) = 0 on each Ly, we have

N F(OxE.(C)doa(C) — N F(O¥e(G)doa(C)| < /1r2 IFOI = We(G))xe. (C)doalC)
< [ f @200 ((Se x T) N Eq).

Here, (S, x T) N E, is the intersection of the curve E, with thin strips in T?, see Figure
1. Letting € \, 0 and using the dominated convergence theorem gives

lim o (S x T) 1 Ea) = 0 (ugzl(fk, Ba(fk))) —0.

This in turn implies that

., F(OxE.(C)doa(C) = h{n F(QVe(Cr)doq ().
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N

T

‘ PBr I

FIGURE 1. This shows the set (S, x T) N E, graphed on [—7,7]?. E, is
the red curve, 1y, Ty, T3 are the black tics on the horizontal axis, and S, x T
is the union of thin gray strips.

As f, and W, are both bounded, we can also conclude that

i / F(O(C) dva(C / £(0) dva(C

Combining these last two equalities with (24) yields (22).

Part 2. Now we prove (23). We will show that for z € D?, (23) holds for P,. Since
linear combinations of these are dense in C(T?), the result will follow. To that end, fix
0 <7 < 1. Then the definition of o, gives

a+ o(rm, 22))

25 P - do () =R| ————=
(25) [ RoneolOrtontc) = (S50
We will multiply both sides by (1 —r) and let r 1. First, observe that for ¢ € T?

{ 0 if ¢ # 7,

hm(l — T)P(er,zz)(C) = 2Pz2(<2) if Cl = Tk.

r, 1
Then by the dominated convergence theorem,
lim (1 - T)P(TTk,ZQ)(<>d0-a(<) = / 2Pz2 <C2)XLk (C)dga(C)
T‘/‘l TQ TQ
Observe that L, C C, actually implies that ¢(7y,20) = « for all 2z, € D. Furthermore,
since ¢ is analytic at each (73, 29), we have

lim ¢(z1,22) = a and lim w = 997 2) == C #0,

21Ty 21Ty 21— Tk S o=
by Theorem 3.4 (vi). Then Carathéodory’s theorem, see (VI-3) in [34], implies
1—
lim |¢(T7—k722)| — Cde — |C|

r A1 1—r
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and so
— _ 2
lim % (<1 r)(a+ ¢<m,z2>>> i (1 — ) L1007 )|
r/1 Oé—(]ﬁ(TTk,ZQ) r /1 ‘a_(b(TTk’ZQ)P
Y Ok S [l i B
r/1 CY—gb(TTk,ZQ) 1—17r | |
Now set
(26) o_ 1 1 -
Cl = — = — .
I 12, 2)]

Then (25) and our subsequent computations combine to give

| Pa(@11, (00 = 6 = [ Pu(Odm(©)

T
Multiplying both sides by P,, (7x) establishes (23) for f = P, and completes the proof. O

3.4. Properties of J,. Recall that the isometry J,: Ky — L*(o,) is obtained by first
defining the operator on reproducing kernels k,, as

Jolkw](C) = (1 — ag(w))Cy(¢), for w € D? ¢ € T,
and then extending it to the rest of K. Theorem 1.3 details our main results about J,,
which are proved below in two propositions.
First, unlike the one-variable case, these isometries .J, need not be unitary. The exact
situation in our setting is encoded in the following result:

Proposition 3.10. The isometric embedding J, : Ky, — L*(04) is unitary if and only if
a is a generic value for ¢.

Proof. (=) Assume that « is generic. By Theorem 3.2 in [12], we need only show that
A(D?) is dense in L%*(o,). Since o, is a finite Radon measure, C(T?) is dense in L?(o,)
and by the Stone-Weierstrass theorem, the set of two-variable trigonometric polynomials
is dense in C'(T?) and hence, in L*(o,). Thus, to show J, is unitary, we need only show
that each two-variable trigonometric polynomial agrees with some function in A(D?) on
E,,, which contains the support of o,.

Let h(¢) = ("¢} be an arbitrary trigonometric monomial. To construct a function in
A(D?) that agrees with h on E,, first define t1,t, € A(D?) by t,(2) = 21 and t5(2) = 2».
Then, recall from Theorem 3.4 (iii) that deg B, = n. Write B, = v[[}_, bs;, wherey € T
and each b,, = (z — a;)/(1 — @;z) is the Blaschke factor with zero a; € D. Let Let b
denote the inverse function of bz, and define s, sy € A(D?) by

s1(z) = b7 [(’y ﬁ ba; (21)) Zz} ;

and $2(z) = B,(z1). Then, restricting to E,, we have

(@ Ba0) = b3 [ (VT ) (YT T, (©0)] = ! T (00 =

I
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and $2(C, Bo(C)) = Ba((). As
h(¢. Ba(Q)) = ("Ba(()"

h agrees with one of ¢!l ¢mlglnl - gmlglnl “gImlglnl o0 B, Taking linear combinations of
these shows that every two-variable trigonometric polynomial agrees with some F' € A(D?)
on F, and completes the proof of this forward direction.

(<) Assume that « is exceptional and ¢*(7x, \x) = . By way of contradiction, assume
that A(D?) is dense in L?*(0,). Let f({) = (. By assumption, there is a sequence
(fn) € A(D?) that converges to f in L?*(c,). Then by Theorem 1.2, there is a ¢ > 0 such
that

J 17000 =l OPdm(O) < I = Fllo = 0

as n — oo. Since each f,(7,-) is in H*(D), so is the limit function f(7,-). Since
f(m,¢) = ¢, it is clearly not in H?*(ID) and so, we obtain the needed contradiction. [

We can also identify a formula giving the isometric operator J,. To do that, we require
the following lemma describing the behavior of the non-tangential values of functions from
the model space K.

Lemma 3.11. If f € K, then f* exists and agrees with a Borel measurable function
oq-a.e. on T? and

[ 15 @R = [ 17 Baavnc +ch [ 17 cPan(o

where dv, = Wydm, the functions B,, W, are from Deﬁmtwn 1.1, and the ¢ are from
Theorem 1.2.

Proof. By Theorem 3.2, there exist gi,. .., gn, h € H*(D) such that

f(z) =

(2)h(z1) + > "(2)g;(z), for z € D”.

j=1
Let A C T be a Borel set with m(A) = 0 such that h,gy,..., g, have non-tangential
limits at all ¢ € T\ A. To finish the set-up, assume (z") = (27, 25) — (74, (2) € T? non-
tangentially, where (5 # Ar. Then since (z; — 7) is a factor of @ and @/p is continuous
near (Tk) CQ);
(27) lim %(z”)h(z{l)

n—oo

Sl

: 1
S fim |2 = mellibllee Z=mm S m VL= e =0,

where we also used the reproducing property of H? and the non-tangential property of
(2"). Similarly, if B, equals some constant v € T, then each Ay = 4 and in Proposition
3.5, each b; = 0 and (2, — 7) divides R;. Thus, arguments analogous to those in (27)
imply that if (27) = (27, 28) — (¢1,7) € T? non-tangentially with ¢; € T\ {71,...,7m},
then

lim %(zn)gj(z;‘) =0, forj=1,...,n

n—oo

This implies that f*(¢) exists for all ¢ € T2\ A, where
A={(m, M) k=1,....myU((A\{m,....7}) x T)U(T x A\ {7}),
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where we only include 7 if B, is constant. By definition, A is a Borel set and we claim
0a(A) = 0. Since o, has no point masses, it is immediate that

oo{(Tk, \e) 1 k=1,...,m})=0.

Set Ay = (A\{7,...,7m}) X T. Then as A; N Ly = ) for each k and Lemma 3.6 shows
W, is bounded, we can use Theorem 1.2 to compute

OalAy) = /T v (G BalO)dva(€) < /T xa(Q)dm(¢) = 0.

If B, is non-constant, set Ay = T x A. Again by Theorem 1.2, there are constants cf

such that .
Ddvac) + Y- [ el Qim0
k=1 T

m({¢ € T: Ba(¢) € A}) + D cpm(A) =0,

0l Az) = /T OR(N:

where the first set has Lebesgue measure 0 because non-constant finite Blaschke products
are smooth, have non-zero derivatives on T, and are locally invertible on T. Hence, the
preimage B, !'(A) must have measure 0 because A does. If B, = « is constant, set

Ay =T x (A\{#}). Then

Oal(Ay) = / (A dva(Q) + 3 / Yoo (75, O)dm(C) = 0

by the definition of A,. Thus, f* exists o,-a.e. on T2. Finally, observe that
F(¢) = limsup R(f(r()) + i limsup S(f(r¢))
r, 1 r, 1

is Borel measurable since each f,(¢) := f(r¢) is continuous on T2 and F = f* on T2\ A
and hence o,-a.e. Our prior arguments also imply f*((, B,(()) = F(¢, Ba(C)) for v4-
a.e. ( € T and f*(x, () = F (7%, () for m-a.e. ( € T. To finish the proof, for each n € N,
define the Borel set

Dy ={C €T [F(Q)] < n}.
Then Theorem 1.2 combined with the monotone convergence theorem gives

/|f )Pdoa(¢) = hm/ |F(O))*xp, (¢)doy(¢)
- im ( / (Fxo (¢ QDR donlc) + 3t | 1<F><Dn><rk,<>\2dm<o>

= [ GBI a0 +ch/!f 5, Q) Pdm(Q),

which is what we needed to show. O

Using that lemma, we can now identify a formula for J,.
Proposition 3.12. For each each f € K, the isometry J, : K, — L*(0,,) satisfies
(Jaf)(C) = [*(C) for oq-a.e. ¢ € T2



CLARK MEASURES FOR RIFS 21

Proof. Fix f € K,. By Lemma 3.11, f* exists and equals a Borel-measurable function
o4-a.e. on T2, We claim that f* € L?(0,) and

(28) 1 Ne2oa) S 1155
where the implied constant does not depend on f. To see this, use Theorem 3.2 to write
f(z):% h(z —1—2 2)gij(z2) for z € D?

and g,..., 9., h € H*(D). By the proof of Lemma 3.11, this formula extends to T? via
non-tangential limits both Lebesgue and o,-a.e. By Proposition 3.5, there is a b; € A(DD)
such that

BulQ)| = |(D( Bal0)] 15(C)1:

for all ¢ € T. Working through the definitions and applymg Proposition 3.5 give

 p@©QP =IO |~ 2 11O = [p2(Q)?
G BalOIWl) = G =Tt ™ ~ P O G O
forall € T\ {7,...,7m}. If B, is non-constant, this immediately implies that

|f (€, Ba(Q))Pdva(C)

s [ 1@

_ / B + Z 16517175 (Bal(C))Pdm (<)

=1

(1A (¢ |2+Z|b )19 (Ba(O) ) WalC)dmi(<)

S (Il + " 1190 Balle) S 11,
j=1

where g is the function in H?*(D) whose Taylor coefficients are the complex conjugates
of those of g. In this computation, we used Theorem 3.2 and the well-known fact that
composition by a non-constant finite Blaschke product B, induces a bounded operator
on H?(D), see Theorem 5.1.5 in [24]. Here, the implied constant does not depend on f.

If B, is constant, then the one-variable model space K B, = {0}, so each b; = 0 and

/ (¢ BalO)) PWa(Q)dim(C) = [hl2 < |11,

Similarly, for each 1 < j < mn and 1 < k < m, Proposition 3.5 gives constants M, and
dj;, such that for ¢ # Ay,

B,
2(m.¢) =0 and (7, Q) = Mjk# =: dip;

since both the numerator and denominator are linear and by Theorem 3.4 (v), vanish at
Ar. This shows

& [ 17 OPn(©) £ 350? [ QP dm(c) < 11
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By Lemma 3.11, this shows f* € L?*(o,). Furthermore, if we define a linear map 7, :
Ky — L*(o,) by (Tnf) = f*, then T, is bounded. Moreover, observe that for ¢ €

Co \ {(11, M), -, (T, Am) }, we have
Tulkw)(Q) = (1 — ad(w))Cu(¢) = Ja[ku](C).

Thus, these functions are equal in LQ(UQ). Since T, and J, agree on a dense set of
functions in Ky, it follows that T, = J,, which completes the proof. 0

4. APPLICATIONS

The results from Section 3 have implications for the structure of Agler decompositions
and connections to the study of extreme measures from [22, 25, 28] and the references
therein. In this section, we again assume ¢ = % is a degree (n, 1) rational inner function
and throughout, will use the notation denoted earlier in Definition 1.1 and Remark 3.1.

4.1. Agler Decompositions. Recall that each such ¢ possesses an Agler decomposition
from Theorem 3.2 arising from a particular orthonormal list in K. Moreover, the poly-
nomial @) in that decomposition can be computed directly on T via Proposition 3.5. In
the case of exceptional «, we can apply Theorem 1.2 to specify some of the remaining
polynomials Ry, ..., R, from (8).

Theorem 4.1. Let a € T be exceptional for ¢ and (after reordering if necessary) assume
O* (e, \x) = « for k = 1,...,0. Using Theorem 3./ (w), write B, = b /0%, where
degbl =mn — (. Then in (8), we can take

(29) Ry() = dg (B2(21) = 2204 (20) ) TT (21 = 7).
1%7!2?2

forj =1,..., 4, where each d} > 0 is chosen so c?|]Rj/p(Tj,~)H§{2(D) =1 and ¢ is from
Proposition 3.9.

Proof. To begin, we need to recall several facts discussed in the proof of Theorem 3.2.
Namely, there exist reproducing kernels K, Ky : D? x D? — C defined in (10) such that

1 —¢(z)p(w) = (1 — z1w1) Ko (z,w) + (1 — z0w9) K1 (2, w).
Moreover, the associated Hilbert spaces H(K;) and H(K,) are subspaces of Ky =
H?*(D)? & ¢H?*(D?). Then the polynomials Ry, ..., R, from (8) are exactly obtained by
specifying that the list R;/p, ..., R,/p be an orthonormal basis for H(Kj,). Then to es-
tablish our desired result, we need only show that for the R; defined in (29), the functions
Ry/p,..., Re/p are in H(K,) and they form an orthonormal set there (or equivalently are
orthonormal as elements in /).

To that end, as in Theorem 3.2, let R /Dy ,Rn /p be some orthonormal basis for
H(K,). Recall that Kp, := H2(D) & B,H?(D) denotes the one variable model space
associated to B,. Then Proposition 3.5 implies that for each j, there is a unique polynomial
7; with deg7; <n — 1 and function b; € KBa such that

Ri(z) = fj(zl)(l - Ba(21)22> + 20Q(21)bj(21).
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Define a linear map T': Span{]%l, o ,én} — KBQ by first specifying T(f%j) = b; and then
extending by linearity. As dim K, = n—/, it follows that dim(ker T') > ¢. If R € ker(T),
then for some r with degr < n,

(30) R(2) = r(2)(1 = Bu(n)oa) = g 2% (1 len) =22 (o)) = o) (B o) = ath ).

where ¢ € C|z] with deg ¢ < £. Note that the set of such R has dimension ¢. By comparing
dimensions, each R given in (30) must be in ker(7") and hence, each R given in (30) satifies
R/p € H(K>). In particular, this implies that each R; from (29) satisfies R;/p € H(K>).

To show Ry/p, ..., Ry/p are orthonormal in Ky, we use Proposition 3.9 and Theorem
3.12. First, observe that those two results combine to imply that R;/p(7;,-) € H*(D)\{0},

so dj is well defined. Then, one can use the fact that each R; vanishes on E, and each
Ly with 1 <k </ and k # j to conclude:

G5, = G (5) 2 (5))

— [ 546 Bl G Bl ivalc) + 3065 [ (0O B, ) dimlc)

—0+ Y [ B 0B dn(©

k=i or k=3

1 iti=g

10 ifi#j
Thus, {R1/p, ..., Ry/p} is an orthonormal set in K4 and hence in H(K>), which completes
the proof. 0

4.2. Extreme Points. Recall that P, = {f € Hol(D?) : Rf(z) > 0 and f(0,0) = 1} and
M : Py — P(T?) is the map that takes f € P, to the unique Borel probability measure
py on T? with

1) = [ PAOns(©) for z e D

for some f € Py and f is an extreme point of P, if and only if s is an extreme point of
M (Ps). As mentioned in the introduction, Forelli, McDonald, and Knese have proved a
number of interesting results related to such extreme points. For example, Knese proved
the following result in [22, Theorem 1.5]:

Theorem 4.2. Let q be a polynomial with no zeros on D? and let G be the reflection
of ¢ with degq = degq. Assume that q is T?-saturated, G, q share no common factors,
G(0,0) =0, and q — q is irreducible. Then f := Z—J_rg 18 an extreme point of Ps.
As mentioned in the introduction, our results in the (n, 1) setting coupled with Theorem
4.2 yield Corollary 1.4, which we restate here for convenience.

Corollary. 1.4. Assume p(0,0) =0 and let « € T. Then

i. If a is an exceptional value for ¢, then o, is not an extreme point of M(P3).
ii. If degp = degp, p is T?-saturated, and o is generic for ¢, then o, is an extreme
point of M(Ps).
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Proof. For (i), without loss of generality, assume ¢*(74, A\y) = a for k = 1,...,¢. By
Proposition 3.9, we can write

7a(C) = 11a(C) + €1 (07, (C1) @ m(G2))
for a positive Borel measure p, on T? and ¢ > 0. As ¢(0,0) = 0, we have
1= 0a(T?) = pta(T?) + cf,
and as j1,(T?) > 0, we have ¢ < 1. Then i, := ﬁpa is a probability measure and
(31) 7a(C) = (1 = 1) fta(C) + €7 (0, (G1) @ m(C2)) ,

SO 04 is a convex combination of two probability measures on T2. Clearly, the second one
is in M (Ps), as

p(2E2) - LBE R0 da() e mc).

T — 2 B \21—71\2 B

For the first, observe that for each z € D?,
a+ o(z oT1+ 2 R
l_lc‘llm< ( ) -G - 1) :/ PZ(C)d/La(C) > 0.
']1‘2

a—¢(2) T — 2
This implies that i, € M(Ps) and by (31), 0, is not an extreme point in M (Ps).
For (ii), choose A € T with A = o, define ¢ = Ap, and set
at+¢ ap+p q+q
f= = — = -
a—¢ ap—p q—(q
Then G—q = A\(p—ap) must be irreducible. To see this, assume that G—gq is not irreducible.
Then (11) implies that (p—ap)(z1, 22) = q(21)7 (21, 22), for some nonconstant polynomials
¢, and furthermore ¢ must divide both the numerator and denominator of B, given in
(5), before common factors are cancelled. As ap; — po is nonvanishing on D, the structure
of B, implies that each zero v of ¢ must satisfy v € T. Since ¢ is nonconstant, it has at
least one such zero v and then {7y} x T C C,. By Lemma 3.3, this implies « is exceptional

and gives the needed contradiction.
By Theorem 4.2, f is an extreme point of P, and so o, from Theorem 1.2 is extreme

in M(PQ) ]

5. EXAMPLES

We illustrate our results by examining some specific RIFs and their associated Clark
measures in detail. For the first example, we can confirm our general findings at excep-
tional values « via direct computation.

Ezxample 5.1. Let
) . 22122 — 21 — k9

B
P(2) =
(2) o
essentially the example considered in [12]. We have the sums of squares decomposition
p(2)]” = ()" = (1 = [22[*)2]1 = 21" + (1 = |21 [")21 = 2/

and for each o € T, the associated B, is

z
z) 2 — 21— 29

221 — 14+«

B, =
(1) 200 — azy + 21
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Note that if « = —1, then B_; = 1. If a # —1, then 2a — az; 4+ 2; does not vanish on T.
Thus if a # —1, then by Proposition 3.8, for all f € L?(0,), we have

C2-¢P
Q)doa( , Ba( d :
and by Theorem 3.10, the isometric embeddmg Jo : Ky — L*(0,) is unitary. Finally, if
a = —1, then |2z; — 1 + a]?> = 4]z, — 1|%. By the given sums of squares decomposition,

L—1[6(=)] _ Ip(x)]* — 1p(2)]?
la—d(2)>  |ap(z) — p(2)[?
_ p(2)” = Ip(2)[?
|22 = 12| = p2(21) — pr(21)
_ (= laP)2)l — 21+ (1 = [[)2]1 — )
|zo — 1|2 - 4]z — 1)?

_1 1_|Z2’2+1—|2’1’2 7
2 ‘22—1’2 ‘21—1’2

which shows 0, = $(61(¢1) ® m(¢2) + m(¢1) ® 61(¢)). This was observed in [12], and

confirms the contents of Theorem 1.2. Note in particular that (zl, 29) = —2%,
so that 882 (1, z3) = —2 independent of zs.
See Figure 2(a) for a visual representation of the sets C,. ¢

Now let us consider a RIF that was not studied in [12], and again illustrate how the
exceptional measure o, can be identified using both our results and concrete Agler de-
compositions.

Ezample 5.2. Let ¢ = g, where
p(2) =4 — 20 — 321 — 2120 + 27 and P(z) = 42720 — 27 — 32129 — 21 + 20

This example was introduced by Agler-MCCarthy-Young in [2]. In [21, Section 15], Knese
provides the following sums of squares decomposition:

p(2)* = [p(2)]* = 4(1 = 22|11 = 21" +4(1 = |21]*) (|1 = 211 = 22* + 21 — z12]%) .
The only singularity of ¢ occurs at (1,1). For each o € T, setting ¢(z) = « and solving
for z5 yields zo = 1/B4(21), where
422 =321+ 14+ a+az

B,
(21) = 4oy — 3z100 + zla + zl + 2

As ¢ has only one singularity, by previous discussions, the denominator of B,, can vanish at
a point on T for at most one a.. This occurs at & = —1, where B_; reduces to B_1(z) = z
and ¢ = —1 has the additional solution z; = 1. Thus, we can apply Proposition 3.8 to
a # —1 to obtain: for all f € L'(a,),

11!
)i =%t Tt aracp MO

By Theorem 3.10, the isometric embeddmg Jo : Ky — L?*(0y,) is unitary for every a # —1.
Let us now examine the exceptional value « = —1 = ¢*(1,1). A computation shows

p(2) +p(2) = 4(1 = 21)(1 = 2129),

Q)doa(¢ fCB
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3k

3t

(a) Level curves for ¢ = (22129 — 21 — (b) Level curves for ¢ = (42329 — 2% —
22)/(2 — z1 — z2) corresponding to a = 1 32120 — 21 + 22)/(4 — 22 — 321 — 2122 +
(black), o = €'™/4 (gray), a = €™/? (or- 2?) corresponding to a = 1 (black), a =
ange), and a = €3™/* (pink). Level set e/t (gray), a = €™/ (orange), and o =
corresponding to exceptional value o = e¥7/4 (pink). Level set corresponding to
—1 marked in red. exceptional value @ = —1 marked in red.

FIGURE 2. Supports of o, for two different RIFs.

and hence, for a« = —1, we have

1—[6(=)]” _  Ip(x)]* = 1p(2)]?
o —@(2)]2 16|1 — 21 2|1 — 2120)?
By the sums of squares formula above, we then obtain
1—|¢(2))? :1” o 1 — [2f? L—]a|>  11-|af
4 N1 = 2122 |1 — 212212 2|1 — 2|?

o —¢(2)]?
LA -z )l =P+ A =)l -z  11-|af

4 |1—2’122|2 2|1—Z1|2

1
211 — 212
+4\ 21

The second term is evidently the Poisson integral of the measure O'(_Ql) = 3(61(G) ®
m1(¢2)), which matches what we get from computing g—i(l,@) = —2 and taking the
reciprocal of its absolute value.

1)
-1

The first term arises from the measure o] on T? having

[ 100 = 4 [ 160 - cPam(o)

as can be seen by examining the Fourier coefficients

L k=1
D) L k=1+1
1) )
o (k1) = {
1 (k1) -5 Il=k+1

0 otherwise
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FIGURE 3. Generic level curves for (42329 — 23 + 23 — 32, — 1) /(4 — 20 +
2129 — 32329 — 2329) corresponding to several values of o (black, gray, orange,
pink). Level sets corresponding to exceptional values & = —1 and o = 1

marked in green and red, respectively.

and computing the Poisson integral of a(fl) explicitly. The specific form of a(fl) of course
agrees with Theorem 1.2 once we set a = —1 to get W_1(({) = % = }1|C — 1%
Level curves C, for several values of « are displayed in Figure 2(b). ¢

Remark 5.3. The RIF ¢ = 2 with
p(2) =2 — 2129 — {2y and P(z) =223z — 2 — 1

has a singularity at (1,1), and ¢*(1,1) = —1 so that & = —1 is an exceptional value.
One verifies that the associated B_1(z1) = 21 so that o_; for this example is supported
on the same set as the exceptional Clark measure in Example 5.2. However, we have

T
W= v aic s ar

which collapses to W_1(¢) = 1 at the exceptional value, meaning that the two Clark
measures do not coincide.

Our next example is a degree (3,1) RIF with two different singularities on T?. Here,
we are able to observe qualitative differences in W, for the two corresponding exceptional
values of a that reflect the finer distinctions between the two singularities.

Ezxample 5.4. Let
p(z) =4 — 29 + 2129 — Szf,@ — szQ and p(z) = 42«?22 _ zf + 212 ~ 3z -1
and set ¢ = g. This function has singularities at (1,1) and (—1,1), and the associated

exceptional a-values are ¢*(1,1) = —1 and ¢*(—1,1) = 1. Level sets for this example are
displayed in Figure 3; see also [9, Example 7.4].

For av #£ 1, —1, we have
a—az + 30z + 423 + azd
14+4a+32z — 22+ 23

Ba(zl> =
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Note that for « = —1, we get

21— 1328 4+1 328 +1
n—13+22 3+

a Blaschke product of degree 2, while for a = 1,

21+ 1528 =220 4+1 52— 22 +1
z21+1 28 —221+5 B 22 —221+5

another degree 2 Blaschke product. The graphs {(¢, B_1({)) and {(¢, B1({))} together
with vertical lines at (; = 1 and (; = —1 constitute supp(c_1) and supp(oy ), respectively.
We further read off that

pi(z1) =4 and po(z) = —1+2 — 327 — 23
so that, with W, as in Remark 3.1,
16 — [1— ¢ +3¢% + ¢°)?

W, (() = .
(© 4¢3 + a3 + 3al? — af + of?
After some simplifications, we find that

B_l(zl) =

Bl(21> =

I s (eI

4¢3 + a® + 3aC? — af + af*’
For the exceptional values o = 41, the weights in the point mass parts of o4, can be
obtained by computing

Wa(2)

¢ ¢
62’1( 722) an Zl( 722) )
which imply
1 1 1
1 1
¢, =———=1 and ¢ =———"—"7=—.
LR ) L) 2
(Note that ¢(0,0) = —3 so that the Clark measures o4 are not probability measures in

this example.) Putting & = £1 in W, we have cancellation in numerator and denomina-
tor, and we obtain

¢+

W_1(¢) = W
e ¢ 1PIC+ 12
WO = 5o 301

This gives us a complete description of the exceptional Clark measures.

Furthermore, observe that, W_;(1) # 0 and so, W_; does not vanish at the z;-coordinate
of the singularity with non-tangential value —1. In contrast, Wi(—1) = 0, so W; does
vanish at the z;-coordinate of the singularity with non-tangential value 1. This mirrors
the singular behavior in Example 5.2, where function W_; vanishes at ( = 1, the z;-
coordinate of the singularity where ¢*(1,1) = —1. This pattern suggests a connection with
contact order, which was studied in [8] and governs the integrability of partial derivatives
of a RIF ¢; in that sense, higher contact order indicates a stronger singularity. In our
computations, the singularities at (1,1) in Example 5.2 and at (—1,1) in this example
(where the exceptional W, vanish at the zj-coordinate of the associated singularity) are
instances of singularities where ¢ exhibits contact order 4; the singularities in Example 5.1
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and at (1, 1) in this example (where the exceptional W, do not vanish at the z;-coordinate
of the associated singularity) are singularities where ¢ exhibits contact order 2, the lowest
possible contact order. ¢

Remark 5.5. It would interesting to investigate how the exact nature of a singularity
7 € T? (contact order, number of branches of p coming together at 7, etc) of a RIF is

reflected in the associated exceptional Clark measure. For example, if ¢ = % is a general

degree (m,n) RIF having contact order at least 4, does the corresponding exceptional
Clark measure have a density along C, that vanishes at 77

Our final example is a rational inner function having bidegree (3, 3), and is not covered
by our general results. It serves as a counterexample showing that Proposition 3.10 fails
for higher-degree RIF's, and illustrates some complexities that arise from the fact that for
RIFs of bidegree (m,n) with m,n > 2, a general a-level set is not necessarily parametrized
by a single function.

Ezample 5.6. Let ¢(z) = g(z) where
p(2) =2 — 222 — 2125 and  P(2) = 2122(22325 — 21 — 29).

This example is obtained by applying the level line embedding construction described in
9, Section 6.1] to the essentially T?-symmetric polynomial

r(z) = (1 — 2i2)(1 — 2123).

As is guaranteed by the embedding construction, we have p(1,1) = 0 = p(1,1) and

¢*(1,1) = —1, as well as
PAp=2(1—212)(1 — 223).

These facts can also be checked directly. We also note that p and p, and hence ¢, are in-
variant under the simultaneous coordinatewise rotations z; + €*™32; and z; +— e=27/3;.
Some level sets of ¢ are displayed in Figure 4.

Recall from Example 5.1 that |2 — z — y|* — |22y — 2z — y[*> = (1 — |z|*)2]1 — y* +
(1 — |y|?)2|1 — z|*>. Substituting x = 2?25 and y = 222 into this formula, we get the
decomposition

|2_Z%ZQ —zlz§|2 — |22fz§’ —2%22 —zlz§|2 =(1- |z%z2|2)2|1 —zlz§|2+ (1— |zlz§|2)2|1 —zf22|.

It follows that

1—[¢(2)?  11—efz® 11— |z23)

T+6(z)P 21— 232 2[1— 22
and by computing Fourier coefficients, one can show that the two expressions on the right
are the Poisson integrals of the measures having

[ 10 = [ 16 Thim(©) and [ 10 = [ 1 0)im(c)

respectively. By Doubtsov’s Theorem 3.2 in [12], which applies to general RIFs, J_; is
unitary if and only if the bidisk algebra is dense in L%(o_y).

Let us show that this is indeed the case. By definition, hy(2) = 21 and he(2) = 2o are
elements of A(D?). Next consider the function g;(z) = z; and the function

fi(2) = 21z + (1 — 222) 25 € A(D?).
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FIGURE 4. Level curves for (22325 — 2229 — 2122) /(2 — 2329 — 2123) corre-

sponding to o = 1 (black) and o = €™/? (orange). Level set corresponding
to exceptional value « = —1 marked in red.
Since B B L B B
fi(C, ) =¢C+ (1 =) =C= (¢, %)
and

fi(C Q) =CC+ (1= = =a(*¢)
we have g; = f; on the support of o_;. A similar computation shows that the bidisk
algebra function
f2(2) =21z + (1 — 2123) 23

coincides with go(2) = Z» on supp(o_1). Thus, if g(¢) = ({"(} is any trigonometric
polynomial, then, on the support of o_1, ¢ coincides with one of functions h‘{”‘h‘;‘, h|1m| 2'"‘,

Imlpnland A £ which are all in A(D?). Since the trigonometric polynomials are
dense in C(T?), which in turn is dense in L*(o_;), A(D?) is also dense. Thus, J_; is
unitary even though o = —1 is the non-tangential value of ¢ at a singularity. ¢
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