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The accurate description of nuclear quantum effects, such as zero-point energy, is important for modeling a wide
range of chemical and biological processes. Within the nuclear-electronic orbital (NEO) approach, such effects are
incorporated in a computationally efficient way by treating electrons and select nuclei, typically protons, quantum
mechanically with molecular orbital techniques. Herein, we implement and test a NEO coupled cluster method that
explicitly includes the triple electron-proton excitations, where two electrons and one proton are excited simultaneously.
Our calculations show that this NEO-CCSDTeep method provides highly accurate proton densities and proton affinities,
outperforming any previously studied NEO method. These examples highlight the importance of the triple electron-
electron-proton excitations for an accurate description of nuclear quantum effects. Additionally, we also implement and
test the second-order approximate coupled cluster with singles and doubles (NEO-CC2) method, as well as its scaled-
opposite-spin (SOS) versions. The NEO-SOS′-CC2 method, which scales the electron-proton correlation energy as well
as the opposite-spin and same-spin components of the electron-electron correlation energy, achieves nearly the same
accuracy as the NEO-CCSDTeep method for the properties studied. Because of its low computational cost, this method
will enable a wide range of chemical and photochemical applications for large molecular systems. This work sets the
stage for a wide range of developments and applications within the NEO framework.

I. INTRODUCTION

Multicomponent quantum chemistry methods, in which
more than one type of particle (e.g., electrons, positrons, nu-
clei, or photons) is treated quantum mechanically, are promis-
ing theoretical tools for describing various types of inter-
esting chemical phenomena.1–3 Among different multicom-
ponent approaches,1,4,5 the nuclear-electronic orbital (NEO)
method1,6 treats all electrons and specified nuclei, typically
protons, quantum mechanically on the same footing with
molecular orbital techniques. In this way, many important nu-
clear quantum effects, such as zero-point energy, proton de-
localization, and hydrogen tunnelling, as well as non-Born-
Oppenheimer effects, are included during energy and reaction
path calculations in a computationally efficient way.

The simplest method that can be formulated within the
NEO framework is NEO-Hartree-Fock (NEO-HF),6 in which
the wave function is represented as a direct product of single
electronic and single protonic Slater determinants. Because
the NEO-HF method treats electrons and protons as uncor-
related particles, the predictions obtained from this method,
such as proton densities and resulting properties, are highly in-
accurate and unreliable.1,7,8 Analogous to conventional elec-
tronic structure methods, there are two main strategies to in-
corporate the missing correlation effects between quantum
particles: density functional theory (DFT)9–11 and wave func-
tion theory.4,6–8,12–16 In the NEO-DFT method, both electron-
electron and electron-proton correlation effects are included
via correlation functionals in a computationally practical
manner.10,11 Because this method balances accuracy and com-
putational cost, it is suitable for treatment of large molecular
systems. However, a disadvantage of the NEO-DFT method
is that it is not systematically improvable, and it suffers from

the same problems that are inherent to conventional DFT
methods,17 such as self-interaction error.18

As an alternative to NEO-DFT, the wave function based
methods, such as the NEO coupled cluster (NEO-CC)
methods,7,8,12–14,19,20 are systematically improvable and pa-
rameter free. The NEO-CC methods use the exponentiated
cluster operator to incorporate the correlation effects between
quantum particles (i.e., electrons and protons) via single, dou-
ble, and higher excitation ranks.21–23 The truncation of the
cluster operator up to a certain excitation rank establishes
the NEO-CC hierarchy. For example, truncation of the clus-
ter operator to include up to single and double electronic and
protonic excitations, as well as double electron-proton ex-
citations, defines the NEO coupled cluster with singles and
doubles (NEO-CCSD) method.7 Previously we showed that
the NEO-CCSD method accurately predicts proton densi-
ties, energies, and vibrationally averaged geometries.7,8 More
recently, the computational efficiency of the NEO-CCSD
method was enhanced by the density fitting (DF) scheme,14

which significantly reduces the memory requirements. This
strategy enabled calculations of proton affinities of much
larger molecules than previously possible, as well as the study
of relative stabilities of protonated water tetramers with all
nine protons treated quantum mechanically.14 The reliabil-
ity and robustness of the NEO-CCSD method has sparked an
interest in development of other NEO wave function based
methods, most notably the computationally attractive scaled-
opposite-spin orbital optimized second-order Møller-Plesset
perturbation theory (NEO-SOS′-OOMP2) method,13,24 which
scales the electron-proton correlation energy as well as the
opposite-spin components of the electron-electron correlation
energy.

In the NEO-CCSD method, truncation of the cluster oper-
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ator to include up to double electron-proton excitations rep-
resented a compromise between accuracy and computational
efficiency, as well as simplicity of implementation.7 In order
to account for some of the missing electron-proton correla-
tion, in our previous work we used a larger electronic basis
set for the quantum proton(s) than for the other nuclei.7 Al-
though this strategy works well by providing accurate pre-
dictions of different properties for the studied systems,7,8,14

it might not be general for all systems. In this work, we move
beyond the NEO-CCSD method by implementing the NEO-
CCSDTeep method, which also includes electron-electron-
proton triple excitations. The importance of such triple ex-
citations was observed recently in the context of perturba-
tion theory.25 Additionally, we implement and investigate a
novel and computationally efficient second-order approximate
coupled cluster with singles and doubles (NEO-CC2) method
and its scaled-opposite-spin version (NEO-SOS′-CC2). Anal-
ogous to its electronic counterpart,26–28 the NEO-CC2 method
can be used as a computationally efficient alternative to
the equation-of-motion coupled cluster methods for excited
states.29,30 Moreover, in order to calculate protonic densities
with these methods, we also implement the Λ-equations us-
ing automatic differentiation.31 The developments and tests
performed within this work highlight the robustness and reli-
ability of the NEO-CC methods.

II. THEORY

In this section we describe the multicomponent wave func-
tion approaches in which electrons and protons are treated
quantum mechanically. We note that the extension to other
multicomponent fermionic systems, such as where positrons
instead of protons are treated quantum mechanically, is
straightforward.1

The NEO coupled cluster correlation energy is calculated
from the energy Lagrangian as8

ENEO-CC = ⟨0e0p|(1+ Λ̂)e−T̂ ĤNEOeT̂ |0e0p⟩. (1)

In this equation, ĤNEO is the second-quantized normal-
ordered (with respect to the NEO-HF reference state, |0e0p⟩)
NEO Hamiltonian that is expressed as

ĤNEO = F p
q aq

p +
1
4

gpq
rs ars

pq +FP
Q aQ

P +
1
4

gPQ
RS aRS

PQ −gpP
qQaqQ
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where aq1q2...qn
p1 p2...pn = a†

q1
a†

q2
...a†

qnapn ...ap2ap1 are normal-ordered
second-quantized excitation operators written in terms of
fermionic creation/annihilation (a†/a) operators. The lower-
case indices i, j,k, l, ..., a,b,c,d, ..., and p,q,r,s, ... denote
occupied, unoccupied, and general electronic spin orbitals,
whereas the corresponding uppercase indices denote protonic
orbitals. Additionally, F p

q = ⟨q|F̂e|p⟩ is a matrix element of
the electronic Fock operator and gpq

rs = gpq
rs −gqp

rs = ⟨rs|pq⟩−
⟨rs|qp⟩ is an antisymmetrized two-electron repulsion tensor
element. Their protonic counterparts FP

Q and gPQ
RS are defined

analogously, and gpP
qQ = ⟨qQ|pP⟩ is the electron-proton attrac-

tion tensor element. The Einstein summation convention over
repeated indices is utilized throughout this manuscript.

In Eq. (1), T̂ = tµ aµ and Λ̂ = λ µ aµ are excitation and de-
excitation cluster operators, respectively, where aµ = a†

µ =

{aa
i ,a

A
I ,a

aA
iI ,a

ab
i j ,a

AB
IJ ,a

abA
i jI ,aaAB

iIJ , ...} is a set of single, double,
and higher excitation operators, and µ is an excitation rank.
Moreover, tµ and λ µ are unknown wave function parameters
(amplitudes) that are determined by minimizing Eq. (1) with
respect to λ µ and tµ , respectively:

∂ENEO-CC

∂λ µ
= ⟨0e0p|aµ e−T̂ ĤNEOeT̂ |0e0p⟩= 0, (3)

∂ENEO-CC

∂ tµ

= ⟨0e0p|(1+ Λ̂)[e−T̂ ĤNEOeT̂ ,aµ ]|0e0p⟩= 0. (4)

The last two equations are known as the t-amplitude equations
and the Λ-equations, respectively. The truncation of the cluster
operator T̂ up to a certain excitation rank µ establishes the
NEO-CC hierarchy.

In our previous work,7,8,14 the cluster operator T̂ was de-
fined as

T̂ = t i
aaa

i + tI
AaA

I + t iI
aAaaA

iI +
1
4

t i j
abaab

i j +
1
4

tIJ
ABaAB

IJ . (5)

Because the highest level of electron-proton excitation is the
simultaneous single electronic and single protonic excitations
due to aaA

iI , we will refer to this method as NEO-CCSD
throughout this manuscript. In the present work, we imple-
ment and explore the NEO-CC method with the cluster oper-
ator defined as

T̂ = t i
aaa

i + tI
AaA

I + t iI
aAaaA

iI +
1
4

t i j
abaab

i j +
1
4

tIJ
ABaAB

IJ +
1
4

t i jI
abAaabA

i jI .

(6)
This cluster operator explicitly includes simultaneous double
electronic and single protonic excitations. Although the to-
tal excitation rank of the operator aabA

i jI is triple, the highest
excitation rank of a single particle (in this case electrons) is
double, and therefore this method is denoted NEO-CCSDTeep.
Although the addition of one extra term into the cluster oper-
ator may seem to be a trivial extension, the t-amplitude equa-
tions of the new NEO-CCSDTeep method have roughly four
times more terms than the NEO-CCSD method. Therefore, the
derivation and implementation of the working equations for
the NEO-CCSDTeep method require a significant amount of
effort. The computational cost of the NEO-CCSD and NEO-
CCSDTeep methods scales as O(N6), where N is a measure of
the system size, although the NEO-CCSDTeep method has a
greater prefactor than the NEO-CCSD method. For electron-
dominated systems with one quantum-proton (as considered
in the present study), the majority of the computation time
for the NEO-CCSD method is spent in determining the t i j

ab
amplitudes. On the other hand, the NEO-CCSDTeep method
has an additional set of t-amplitude equations for determin-
ing the t i jI

abA amplitudes. The total cost for the NEO-CCSDTeep

method is expressed roughly as the cost of determining the t i j
ab

amplitudes multiplied by the number of protonic basis func-
tions.
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The programmable expressions for the t-amplitude equa-
tions of the NEO-CCSDTeep method are obtained by utiliz-
ing the generalized Wick’s theorem.22,23,32 The Λ-equations
can in principle be derived in the same way,8 but because
they have 50% more terms than the t-amplitude equations,8,31

their derivation and implementation is a daunting task. Alter-
natively, the unknown λ µ amplitudes can be calculated with
the aid of automatic differentiation, as illustrated in our pre-
vious work.31 Within this procedure, the Lagrangian given
in Eq. (1) is constructed by augmenting the NEO-CC en-
ergy

(
⟨0e0p|e−T̂ ĤNEOeT̂ |0e0p⟩

)
with the t-amplitude equa-

tions from Eq. (3) weighted by the Lagrange multipliers λ µ .
Therefore, if the t-amplitude equations are available, con-
struction of the Lagrangian is straightforward. Once the La-
grangian is available, both tµ and λ µ are calculated with au-
tomatic differentiation. A significant advantage of this proce-
dure is that it does not require derivation and implementation
of the Λ-equations, thereby immensely reducing the coding
effort.

The calculated wave function parameters tµ and λ µ allow
calculation of various important molecular properties, one of
which is the proton density that is used to validate the accu-
racy of NEO methods.8 Accurate proton densities are crucial
for calculation of molecular properties, such as vibrationally
averaged geometries and zero-point energies.1,11 The proton
density is calculated from

ρp(rp) = ∑
PQ

γ
Q
P φP(rp)φQ(rp), (7)

where γ
Q
P is the total one-particle reduced density matrix that

is defined as γ
Q
P = γNEO-HF+ γ̃

Q
P . Here, γNEO-HF is the NEO-HF

one-particle reduced density matrix, and γ̃
Q
P is the NEO-CC

one-particle reduced density matrix defined by

γ̃
Q
P = ⟨0e0p|(1+Λ)e−T̂ aQ

P eT̂ |0e0p⟩. (8)

In Eq. (7), φP is a protonic orbital and rp is the proton coordi-
nate.

In this work, we also explore the second-order coupled clus-
ter (NEO-CC2) method within the NEO framework, which
can be regarded as an approximate NEO-CCSD method. In
the NEO-CC2 method, the singles t-amplitude equations re-
main the same and are equivalent to those of the NEO-CCSD
method, whereas the doubles t-amplitude equations are ap-
proximated as

⟨0e0p|aµ2

(
H̄ +[F̂ , T̂2]

)
|0e0p⟩= 0. (9)

Here, aµ2 = {aiI
aA,a

i j
ab,a

IJ
AB} is the double de-excitation oper-

ator, H̄ = e−T̂1ĤNEOeT̂1 is the normal-ordered T̂1-similarity
transformed NEO Hamiltonian, and F̂ = F p

q aq
p +FP

Q aQ
P is the

normal-ordered second-quantized Fock operator. The cluster
operators used in this expression are defined as

T̂1 = t i
aaa

i + tI
AaA

I (10)

and

T̂2 = t iI
aAaaA

iI +
1
4

t i j
abaab

i j +
1
4

tIJ
ABaAB

IJ . (11)

Due to the approximations introduced in the NEO-CC2
method, the computational cost scales as O(N5).

The NEO-CC2 method is closely related to the NEO-MP2
and NEO-OOMP2 methods. The NEO-MP2 method is ob-
tained by setting the singles amplitudes in the NEO-CC2
method to zero, whereas the NEO-OOMP2 method is ob-
tained by using the unitary rotations of orbitals instead of
the exponentiated singles operator. The working equations of
the NEO-CC2 and NEO-OOMP2 methods are very similar, as
discussed in the context of their purely electronic counterparts
in Ref. 33. Calculations of the Λ-equations and protonic den-
sity are performed analogously with the NEO-CC2 method as
with the NEO-CCSD and NEO-CCSDTeep methods.

The computational efficiency and accuracy of the
NEO-CC2 method can be enhanced with the SOS ap-
proach,27,28,34,35 in which the opposite-spin and same-spin
components of the electron-electron correlation energy are
scaled differently. In the context of the NEO method, the ac-
curacy can be further enhanced by scaling the electron-proton
contribution of the correlation energy,13 leading to the NEO-
SOS′-CC2 method. Within this approach, the working singles
and doubles amplitude equations are modified as follows:

⟨0e0p|aµ1

(
H̄ + ∑

σ ,σ ′
cσ ,σ ′ [H̄, T̂ σ ,σ ′

2,ee ]+ cep[H̄, T̂2,ep]
)
|0e0p⟩= 0,

(12)

⟨0e0p|aµ2

(
H̄ + ∑

σ ,σ ′
cσ ,σ ′ [F̂ , T̂ σ ,σ ′

2,ee ]+ cep[F̂ , T̂2,ep]
)
|0e0p⟩= 0,

(13)
respectively. The NEO-SOS′-CC2 energy is calculated from

ENEO-SOS′-CC2 =⟨0e0p|
(
H̄ + ∑

σ ,σ ′
cσ ,σ ′ [H̄, T̂ σ ,σ ′

2,ee ]

+ cep[H̄, T̂2,ep]
)
|0e0p⟩.

(14)

In the last three equations, σ /σ ′ indicates α/β electron spin,
cσ ,σ ′ = {cos = cαβ = cβα ,css = cαα = cββ} are electron spin-

specific scaling coefficients, T̂ σ ,σ ′

2,ee = 1
2 t

iσ j
σ ′

aσ b
σ ′ a

aσ b
σ ′

iσ j
σ ′ is the spin-

specific purely electronic cluster operator, T̂2,ep = t iI
aAaaA

iI is the
electron-proton cluster operator, and cep is the scaling coeffi-
cient for the electron-proton correlation energy contribution.
In the conventional electronic structure SOS-CC2 method,
the opposite-spin and the same-spin scaling parameters are
cos = 1.3 and css = 0.0, respectively.28,34 Neglecting the same-
spin electron-electron correlation allows implementation of
the SOS-CC2 and NEO-SOS′-CC2 methods with O(N4) scal-
ing.28,34

Throughout this work, we apply density fitting36,37 to ap-
proximate the four-center two-particle integrals from Eq. (2)
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as14,38

gpq
rs = (rp|sq)

≈ ∑
MN

(rp|M)(M|N)−1(N|sq), (15a)

gPQ
RS = (RP|SQ)

≈ ∑
M′N′

(RP|M′)(M′|N′)−1(N′|SQ), (15b)

gpP
qQ = (pq|QP)

≈ ∑
M′N′

(pq|M′)(M′|N′)−1(N′|QP). (15c)

In these equations, M and N indices denote auxiliary elec-
tronic basis functions, and M′ and N′ indices denote auxiliary
protonic basis functions. Within the density fitting approach,
the four-center two-particle integrals (here expressed in the
chemist notation) are approximated in terms of the three-
center and two-center two-particle integrals, thereby signifi-
cantly reducing the memory requirements.

III. RESULTS

The NEO-CCSD, NEO-CCSDTeep, NEO-CC2, and NEO-
SOS′-CC2 methods were implemented in an in-house version
of the Psi4NumPy quantum chemistry software.39 All the im-
plemented methods rely on the density fitting scheme for ap-
proximating the four-center two-particle integrals. The pro-
grammable expressions of the t-amplitude equations for the
NEO-CCSDTeep method have been derived with the SeQuant
software.40 The Λ-equations were solved using automatic dif-
ferentiation with the procedure described elsewhere.31 Au-
tomatic differentiation was performed using the TensorFlow
v2.1.0 program.41 The NEO methods were used to calculate
proton densities for the FHF− and HCN molecules, as well
as proton affinities for a set of 12 small molecules.7 All of
the calculations were performed at the equilibrium geome-
tries optimized with the conventional electronic CCSD/aug-
cc-pVTZ level of theory. In the present study, the calculations
employed the aug-cc-pVXZ42,43 electronic basis set along
with its matching aug-cc-pVXZ-RI44,45 electronic auxiliary
basis set, where the basis set cardinal number is X=D,T,Q,5.
Moreover, the quantum protons were treated with the PB4-F2
(4s3p2d2f) nuclear basis set46 as well with an even-tempered
8s8p8d8f auxiliary nuclear basis set with exponents ranging
from 2

√
2 to 32.47 The electronic and nuclear basis sets for

the quantum hydrogen were centered at the hydrogen position
optimized with the CCSD method.

To assess the accuracy of the novel NEO methods, we
computed the proton densities for the FHF− molecule and
the HCN molecule. The benchmark densities were calcu-
lated with the Fourier Grid Hamiltonian (FGH) method,48

which is numerically nearly exact for these two systems.
The FGH reference density was obtained at the conventional
CCSD/aug-cc-pVDZ level of theory. For consistency with
these NEO calculations, in the FGH method, only the hydro-
gen was treated quantum mechanically and the other nuclei
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FIG. 1. On-axis proton density for the FHF− molecule calculated
with the reference FGH (black solid curve), NEO-HF (red solid
curve), NEO-CC2 (blue dashed curve), NEO-CCSD (green dotted
curve), and NEO-CCSDTeep (mangenta dashed-dotted curve) meth-
ods. The NEO calculations employ the aug-cc-pV5Z electronic basis
set. The fluorine atoms are positioned at -1.1335 Å and 1.1335 Å,
and the proton basis functions are centered at the origin. The on-axis
proton density is along the line that connects the two fluorine atoms.
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FIG. 2. On-axis proton density for the HCN molecule calculated with
the reference FGH (black solid curve), NEO-HF (red solid curve),
NEO-CC2 (blue dashed curve), NEO-CCSD (green dotted curve),
and NEO-CCSDTeep (mangenta dashed-dotted curve) methods. The
NEO calculations employ the aug-cc-pV5Z electronic basis set. The
carbon atom is positioned at -1.058 Å, the nitrogen atom is positioned
at -2.206 Å. and the proton basis functions are centered at the origin.
The on-axis proton density is along the line that connects the carbon
and nitrogen atoms.

were fixed. Figures 1 and 2 show on-axis one-dimensional
slices of the proton densities for these two molecules cal-
culated with the NEO-HF, NEO-CC2, NEO-CCSD, NEO-
CCSDTeep, and FGH methods. The on-axis proton density is
along the line that connects the heavy atoms, which are either
two fluorine atoms (for FHF−) or carbon and nitrogen atoms
(for HCN). Both the NEO and FGH three-dimensional proton
densities are normalized to unity.

To quantify the difference between the proton densities ob-
tained with the NEO methods and the FGH method, we com-
puted the root-mean-square deviations (RMSDs). The RMSD
values for both the FHF− and HCN molecules calculated
with the NEO-HF, NEO-CCSD, NEO-CCSDTeep, NEO-CC2,
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TABLE I. Root-Mean-Square deviation (RMSD)b values of the pro-
ton density calculated with a NEO method relative to the FGH refer-
ence density.b

FHF−c HCNd

method aDZ aTZ aQZ a5Z aDZ aTZ aQZ a5Z
NEO-HF 0.75 0.75 0.73 0.73 0.75 0.75 0.74 0.73

NEO-CCSD 0.41 0.26 0.15 0.13 0.48 0.36 0.25 0.23
NEO-CCSDTeep 0.39 0.21 0.08 0.06 0.46 0.32 0.20 0.18

NEO-CC2 0.44 0.33 0.25 0.23 0.50 0.43 0.36 0.34
NEO-SOS-CC2 0.45 0.34 0.26 0.24 0.51 0.44 0.37 0.35
NEO-SOS′-CC2 - - 0.06 - - - 0.18 -

a The RMSD values are given in atomic units. The RMSD is calculated as
the square root of the average of the squares of the density differences
between the proton densities obtained with the NEO and the FGH
methods for every grid point.

b The FGH reference density was obtained at the conventional
CCSD/aug-cc-pVDZ level of theory.

c The fluorine atoms are positioned at -1.1335 Å and 1.1335 Å. The cubic
grid with 32 points in each direction spans the range from -0.5610 Å to
0.5984 Å.

d The carbon atom is positioned at -1.058 Å and the nitrogen atom is
positioned at -2.206 Å. The cubic grid with 32 points in each direction
spans the range from -0.7258 Å to 0.7742 Å.

and NEO-SOS′-CC2 methods and with different basis sets
are given in Table I. As discussed previously,1,7 the NEO-
HF method produces proton densities that are too localized,
mainly due to the inadequacies of the mean-field description.
This behavior is depicted by the solid red curves in Figs. 1
and 2. Additionally, Table I shows that the NEO-HF exhibits
the largest RMSD values, which remain nearly constant with
increase of the basis set size.

Inclusion of the correlation effects between quantum par-
ticles with any of the studied NEO-CC methods significantly
improves the calculated proton densities. Because the NEO-
CC2, NEO-CCSD, and NEO-CCSDTeep methods constitute
a NEO-CC hierarchy, the calculated proton densities are im-
proved in that order, where NEO-CCSDTeep exhibits the high-
est degree of accuracy, as depicted in Figs. 1 and 2 for
both systems. Moreover, Table I also indicates that the NEO-
CC2 method yields the largest RMSD, whereas the NEO-
CCSDTeep method yields the lowest RMSD among the stud-
ied NEO-CC methods. Table I also shows that the proton den-
sity depends strongly on the electronic basis set size for all of
these NEO-CC methods and that very extensive electronic ba-
sis sets are required for achieving quantitative accuracy. The
performance of the NEO-CCSD method is closer to that of the
NEO-CCSDTeep method than to the NEO-CC2 method for the
proton densities. Nevertheless, inclusion of the triple electron-
electron-proton excitations significantly improves upon the
NEO-CCSD method. Thus, inclusion of even higher order
excitations in the NEO-CC methods is expected to provide
more accurate proton densities that approach the FGH refer-
ence curve in a systematic manner but at higher computational
cost.

As introduced previously in the context of the NEO-
OOMP2 method,13 the performance of the NEO-CC2 method
can be enhanced by the SOS′ approach, in which differ-

ent correlation energy contributions are scaled with addi-
tional parameters. For the NEO-SOS-CC2 method, the dif-
ferent spin contributions to the electron-electron correlation
energy are scaled with parameters cos = 1.3 and css = 0.0
for the opposite-spin and same-spin electron-electron cor-
relation contributions, respectively. These parameters were
determined previously in the context of electronic structure
methods.34 As shown in Table I, this parametrization for
NEO-SOS-CC2 gives almost the same proton density RMSDs
as those obtained with the NEO-CC2 method, mainly because
the protonic orbitals are not influenced significantly when
only the electron correlation energy is modified. In the NEO-
SOS′-CC2 method, the electron-proton correlation energy is
also scaled by the parameter cep. We determined the optimal
cep = 1.6 parameter by minimizing the difference between
the proton density RMSD calculated with the NEO-SOS′-
CC2/aug-cc-pVQZ and NEO-CCSDTeep/aug-cc-pV5Z meth-
ods. The proton densities calculated with the NEO-SOS′-CC2
method for both molecular systems are virtually indistinguish-
able from those calculated with the NEO-CCSDTeep method,
and therefore they are not included in Figs. 1 and 2 for clarity.

To further test the accuracy of these NEO methods, we
used them to calculate the proton affinities for a set of 12
small molecules7 and compared the predicted proton affini-
ties to the experimental values. Within the NEO framework,
the proton affinity of a species A is calculated as PA(A) =
EA −EHA+ +5/2RT .11,52 In this expression, EA is the energy
of species A calculated with the conventional electronic struc-
ture method, and EHA+ is the energy of species HA+ calcu-
lated with the corresponding NEO method, where the hydro-
gen H is treated quantum mechanically. The last term in this
expression, 5/2RT (R and T are the ideal gas constant and
the temperature, respectively), accounts for conversion from
energy to enthalpy and the change in translational energy. Be-
cause the NEO method inherently includes the zero-point en-
ergy contribution of the quantum proton into the energy calcu-
lation, this approach does not require calculation of a Hessian.
The vibrational zero-point energies associated with the other
nuclei are assumed to be unchanged upon protonation, which
has been shown to be a reasonable approximation.7

Table II presents the absolute deviations of the calculated
proton affinities from experimental data, as obtained with
different NEO methods and electronic basis sets. The re-
sults indicate a systematic improvement of the calculated pro-
ton affinities as the basis set cardinal number (X=D,T,Q,5)
increases. Because the NEO-CCSDTeep recovers a greater
amount of the correlation energy, the results obtained with this
method are more accurate than the results obtained with the
NEO-CCSD method. For a large electronic basis set, aug-cc-
pV5Z, the NEO-CCSDTeep method provides MUEs that are
within both chemical (∼ 0.05 eV) and experimental (∼ 0.09
eV) accuracy.51 Note that the NEO-CCSD method does not
produce an MUE that is within chemical accuracy even with
the largest electronic basis set employed. These results show
that in order to achieve chemical accuracy with the NEO-CC
methods, it is important to incorporate the triple excitations
where two electrons and one proton are excited simultane-
ously. In our previous work,7 the missing electron-proton cor-
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TABLE II. Absolute Deviation and Mean Unsigned Error (MUE) of Proton Affinities (in electron volts) with Respect to Experimental Data.a

NEO-CCSD NEO-CCSDTeep NEO-CC2 NEO-
SOS′-CC2

molecule experiment aDZ aTZ aQZ a5Z aDZ aTZ aQZ a5Z aDZ aTZ aQZ a5Z aQZ
CN− 15.31 0.58 0.30 0.24 0.18 0.55 0.26 0.18 0.12 0.71 0.46 0.43 0.38 0.01
NO−

2 14.75 0.40 0.20 0.13 0.08 0.36 0.15 0.06 <0.01 0.76 0.59 0.53 0.49 0.03
NH3 8.85 0.35 0.20 0.11 0.05 0.32 0.16 0.06 <0.01 0.47 0.35 0.29 0.24 0.08

HCOO− 14.97 0.42 0.22 0.12 0.05 0.39 0.18 0.07 0.01 0.74 0.58 0.51 0.45 0.02
HO− 16.95 0.46 0.21 0.12 0.05 0.42 0.16 0.05 0.02 0.83 0.64 0.58 0.54 0.11
HS− 15.31 0.55 0.32 0.25 0.14 0.52 0.27 0.18 0.07 0.74 0.51 0.47 0.38 0.04
H2O 7.16 0.42 0.23 0.16 0.10 0.39 0.19 0.10 0.05 0.55 0.39 0.33 0.29 <0.01
H2S 7.31 0.34 0.20 0.13 0.04 0.31 0.15 0.07 0.02 0.47 0.29 0.17 0.26 0.11
CO 6.16 0.40 0.21 0.16 0.11 0.38 0.17 0.11 0.06 0.36 0.19 0.17 0.13 0.12
N2 5.12 0.43 0.24 0.17 0.14 0.41 0.20 0.12 0.08 0.52 0.35 0.30 0.28 0.04

CO2 5.60 0.37 0.22 0.17 0.12 0.34 0.18 0.11 0.06 0.57 0.44 0.40 0.36 0.01
CH2O 7.39 0.35 0.19 0.11 0.06 0.31 0.14 0.05 <0.01 0.52 0.40 0.34 0.30 0.04
MUE 0.42 0.23 0.16 0.09 0.39 0.18 0.09 0.04 0.60 0.44 0.39 0.34 0.05

a Experimental values obtained from Refs. 49–51

relation of the NEO-CCSD method due to these triple exci-
tations was included by using a larger electronic basis set for
the hydrogen nuclei treated quantum mechanically than for
the other nuclei. In particular, the calculations were performed
with the aug-cc-pVTZ basis set for the classical nuclei and the
aug-cc-pVQZ basis set for the quantum nuclei. This combi-
nation of electronic basis sets produced an MUE of 0.04 eV
for these proton affinities with the NEO-CCSD method, as re-
ported previously in Ref. 7. With the NEO-CCSDTeep, chem-
ical accuracy is achieved without such mixed basis sets.

In the future, the basis set incompleteness error could be
tackled by a NEO variant of explicitly correlated methods.53

Alternatively, the basis set incompleteness error can be miti-
gated by a basis set extrapolation scheme.54 Although the dif-
ferent correlation energy contributions (i.e., electron-electron
and electron-proton) have a different rate of convergence to
the complete basis set, here we used the established extrapo-
lation scheme54 developed for electron correlation and applied
it to the correlation energy obtained with the NEO-CCSD
methods with the aug-cc-pVTZ and aug-cc-pVQZ basis sets.
The resulting MUEs for the NEO-CCSD and NEO-CCSDTeep
methods are 0.10 eV and 0.05 eV, respectively, which are in
excellent agreement with the results obtained with the aug-cc-
pV5Z basis set (0.09 eV and 0.04 eV, respectively). Develop-
ing strategies to handle the slow convergence of the basis set
represents an interesting research direction for the future.

The NEO-CC2 method provides the largest MUE among
the NEO-CC methods due to the inadequate treatment of
the correlations between quantum particles. Scaling of the
electron-electron and electron-proton correlation contribu-
tions to the correlation energy in the NEO-SOS′-CC2 method
reduces the MUE to only 0.05 eV, which is in excellent agree-
ment with the NEO-CCSDTeep/aug-cc-pV5Z method (MUE
of 0.04 eV). The employed scaling parameters are cos = 1.3,
css = 0.0, and cep = 1.6, as determined above by fitting to the
proton densities. Interestingly, we found that this value of cep
is also optimal for proton affinities. Therefore, the NEO-SOS′-
CC2 method provides results that are within both chemical

(∼ 0.05eV) and experimental (∼ 0.09eV) accuracy, making
it a viable computationally efficient alternative to the NEO-
CCSDTeep method.

IV. CONCLUSIONS

This paper presents the NEO-CCSDTeep method, which in-
cludes simultaneous double electronic excitations and single
protonic excitations. The proton densities of the FHF− and
HCN molecules computed with this method are in excellent
agreement with the grid-based reference, outperforming all
previously studied NEO methods. The Λ-equations that are
necessary for obtaining the protonic density are calculated
with automatic differentiation, which does not require explicit
implementation of these equations. Our calculations also il-
lustrate that the NEO-CCSDTeep method, in conjunction with
consistent basis sets, produces proton affinities within experi-
mental and chemical accuracy, in contrast to lower-level NEO-
CC methods. These results demonstrate the importance of the
triple electron-electron-proton excitations for a quantitatively
accurate description of the nuclear quantum effects.

We also developed and tested the NEO-CC2 method. As
a rather crude approximation of NEO-CCSD and NEO-
CCSDTeep, the properties predicted with NEO-CC2 are not
accurate. The related NEO-SOS′-CC2 method, which scales
the same-spin and opposite-spin components of the electron-
electron correlation energy and the electron-proton correla-
tion energy, achieves nearly the same level of accuracy as the
NEO-CCSDTeep method. An appealing feature of the NEO-
SOS′-CC2 method is that it can be implemented with O(N4)
computational scaling, and it can be used as an alternative to
the NEO-CCSDTeep method for large molecular systems.

Moreover, the NEO-SOS′-CC2 method can be extended to
treat excited states. A key advantage of this method is that it
will be suitable for the description of excitations with dou-
ble excitation character, in which both an electron and a pro-
ton are excited simultaneously. Such excitations correspond
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to an excited proton vibrational state associated with an ex-
cited electronic state, and they are essential for various pho-
tochemical processes such as photoinduced proton transfer
and proton-coupled electron transfer. Lastly, this work shows
that the NEO-CCSDTeep method can serve as a reference in
parametrization of the computationally more efficient meth-
ods, such as NEO-DFT and NEO-SOS′-MP2, as it was used
directly here for parametrizing the NEO-SOS′-CC2 method.
Thus, the developments presented in this work open up many
research paths for future theoretical developments and appli-
cations to systems exhibiting significant nuclear quantum ef-
fects.
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