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Abstract—Malicious  modifications to printed circuit
boards (PCBs) are known as hardware Trojans. These may
arise when malafide third parties alter PCBs premanufacturing
or postmanufacturing and are a concern in safety-critical
applications, such as industrial control systems. In this
research, we examine how data-driven detection can be utilized
to detect such Trojans at run-time. We develop a flexible
and reconfigurable PCB test bed derived from the popular
open-source programmable logic controller (PLC) platform
“OpenPLC.” We then develop a Trojan detection framework,
which utilizes and analyzes multimodal side channels (e.g.,
timing, magnetic signals, power, and hardware performance
counters). We consider defender-configurable input/output (1/O)
loopback test, comparison with design-document baselines,
and magnetometer-aided monitoring of system behavior under
defender-chosen excitations. Our approach can extend to golden-
free environments. Golden (known-good) versions of the PCBs are
assumed not available, but design information, datasheets, and
component-level data are available. We demonstrate the efficacy
of our approach on a range of Trojans instantiated in the test bed.

Index Terms— Anomaly detection, golden-free, machine learn-
ing (ML), printed circuit board (PCB), timing loopback, Trojan
detection.

I. INTRODUCTION

ARDWARE Trojans are malicious alterations to designs

with the aim of introducing faults or undermining
secrecy [1]-[3]. While they are commonly considered in the
integrated circuit (IC) space, where alterations range from
alterations to a single logic gate to the addition of whole
IP blocks to System-on-Chips (SoCs) [3], such Trojans can
also be introduced to printed circuit boards (PCBs) [4]-[6],
where complicated and distributed supply and manufacturing
networks provide opportunities for untrusted parties to alter
or add hardware, firmware, and software implants. Given the
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recent high-profile alleged hack on SuperMicro [7], [8] and
focus by the Defense Advanced Research Projects Agency
(DARPA) [9] it is becoming increasingly important to con-
sider such Trojans, especially when PCBs are destined for
safety-critical systems, for instance, industrial cyber—physical
systems (CPSs).

While other works examine detecting Trojans statically, e.g.,
via device inspection with X-rays [10], we, instead, consider
hardware Trojan detection using operational tests. Multiple
side channels are utilized for anomaly detection, including:
1) analog measurements, such as electromagnetic emissions,
power, and temperature; 2) measurements from communica-
tion and analog/digital input/output (I/O) channels, including
temporal patterns of activity; and 3) digital measurements,
such as hardware performance counters (HPCs), CPU activity,
and access patterns. To perform our analysis, we provide two
novel contributions: first, a methodology for Trojan detec-
tion, which combines the aforementioned measurements in a
side-channel loopback setting, and second, a novel test bed
specifically designed for hardware Trojan research.

Our test bed is derived from the OpenPLC programmable
logic controller (PLC) [11], and we term it the “OpenPLC
NYU Trojan Edition (TE).” It supports static and dynamic
insertion of Trojans via mechanisms built into the PCB, includ-
ing rewiring jumpers, a secondary “Trojan” microcontroller,
software Trojans colocated with the OpenPLC run-time, and
surreptitious communication channels between Trojan compo-
nents on the microcontroller. For evaluating detection strate-
gies, it supports defensive monitoring based on measurements
of digital and analog side channels, including power and
magnetometer sensors. Our example detection methodology
combines and analyzes the side channels using spatiotemporal
feature extraction and machine learning (ML) methods. Given
defender-controlled software-driven excitations and 1/O con-
nections in a side-channel loopback structure, a probabilis-
tic analysis of side-channel patterns flags anomalies against
expected behaviors.

To validate the test bed and approach, we studied a num-
ber of representative machine-in-the-middle (MITM) hard-
ware Trojans. To reduce the reliance on golden/known-good
integrated systems and components, we investigated whether
we can apply techniques in a golden-free setting. Using
design-time information, datasheets, and components with-
out known-good integrated systems, we can disambiguate
side-channel measurements in Trojan-free versus Trojan-
containing PCBs.

Our novelty stems from our particular formulation for
loopbacks in the multimodal setting and the experimental test

1063-8210 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.htm! for more information.

Authonzed licensed use limited to: New York University. Downloaded on May 24,2023 at 18:13:49 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-3488-7004
https://orcid.org/0000-0002-8320-0045
https://orcid.org/0000-0001-8264-7972
https://orcid.org/0000-0001-7989-5617
https://orcid.org/0000-0002-8418-004X

PEARCE et al.: DETECTING HARDWARE TROJANS IN PCBs USING SIDE CHANNEL LOOPBACKS 927

bed designed for research on Trojans and their detection.
We view the detection process as closed loop, whereby a
defender-controlled excitation causes changes, and outputs are
validated across multiple/complementary side channels.

This article is organized as follows. Section II covers the
related work. Section III details the OpenPLC “NYU TE”
test bed. Section IV covers digital and analog side-channel
measurements and their application for Trojan detection.
Section V describes the different methods used to detect
Trojans. Section VI discusses our corpus of representative
Trojans, their effects, and their detection. Section VII presents
the conclusion.

II. RELATED WORK

Most Trojan detection techniques intentionally activate Tro-
jans and detect them by analyzing side-channel data [3],
[12], [13]. These statistics are compared to “golden models.”
Although many approaches have been proposed to detect
Trojans in ICs, including golden-free settings [14]-[20], little
research has been done to detect Trojans at the PCB level [21].

Some studies propose run-time monitoring of side chan-
nels to detect the anomalies in PCBs [6], [22]-[29]. Online
power calculation and assessing the power usage of classes
of genuine components on a PCB and the power used by
the PCB are suggested in [6]. Acoustic side-channel data can
be exploited to breach system security [30]. Electromagnetic
emanations are used in [22] to identify anomalous code
execution in PLCs. In [23], an electromagnetic side-channel-
based spectrum model is developed to assess the detectability
of various hardware Trojans. The electromagnetic fingerprints
of hardware Trojan are shown to be effective in identifying
an infected Trojan [24]. In our work, we use magnetic side
channel to detect the effects of MITM Trojans that modify the
temporal mappings from relay commands to relay switching
behavior. HPCs are used to detect abnormal behavior in
software [26]-[29], [31]. Temperature tracking using thermal
sensors during run-time is another option [32], [33].

Fuzz testing is an approach that can be used to excite
Trojans. Fuzz testing has been shown to be a very successful
approach for exposing flaws in a wide range of software
systems to date [34]. Emerging methods for fuzz testing con-
ventional protocols, such as the industrial protocols MODBUS,
PROFINET-DCP, and ZigBee, discover problems using proto-
col grammar [35] or data gathered from the communication
device [36]. They test the state of the system under test
using FSM models [37] or preset frameworks [38]. In this
work, we use fuzzing degrees of freedom, such as loopback
connections, bit rates, pseudorandom relay commands, and
variations of time intervals between relay command changes.

Another line of defense for detecting Trojans is moving tar-
get defense (MTD). MTD is an effective defense method that
dynamically modifies the features of configurations of a target
system while keeping its core capabilities in order to diversify
its defense mechanism and obfuscate the resultant attack
surfaces. Instruction sets, address space layouts, IP addresses,
port numbers, proxies, virtual machines, and operating systems
are examples of system characteristics (and, hence, possible
relevant aspects of attack surfaces) that may be dynamically
altered to mislead attackers [39]. Existing MTD research

Fig. 1. OpenPLC “NYU TE.” HW Trojans are emulated by Pico module
(red outline, right-most box), with wiring changes supported by jumpers (blue
outline, second-right). Output relays (yellow outline, second-left box, from
left to right, relays have indices 3, 2, 1, an 0) are near the magnetome-
ter/accelerometer (turquoise outline, leftmost box).

has largely concentrated on low-level characteristics, such as
instruction set randomization [40], [41] and address space lay-
out randomization [42], [43]. Other MTDs, such as IP address
randomization [44], [45], virtualization-based MTD [46],
and software-defined networking-based MTD [47], [48], tar-
get network-level characteristics. In addition to varying the
low-level protocol characteristics, additional defensive variety
against attacks in, for example, IoT communication protocols
can be achieved using MTD through communication protocol
dialects [49]. In our work, we use MTD to detect hardware
Trojans that spoof, for example, UART communication by
dynamically modifying parameters, such as MODBUS bit rate.

Timing side channels can detect Trojans that are in
MITM configuration. A thorough investigation of point-to-
point packet delay in an operating tier 4 network is conducted
in [50]. As a method for identifying MITM attacks on mobile
communications, a static analysis approach that uses exact
timing is developed [51]. An approach that includes determin-
ing delays by using the timestamps of TCP packet headers
is proposed in [52]. The effectiveness of timing analysis to
detect a text-messaging MITM attack is illustrated in [53].
We use timing loopbacks to detect MITM hardware that
snoops communication channels, such as UART or GPIO pins.

III. OPENPLC “NYU TE” PLATFORM TO STUDY TROJANS
AND TROJAN DETECTION

This section introduces the threat model and describes the
Trojan PCB test bed. The test bed has: 1) a Raspberry Pi
SBC running embedded Linux that runs application software
and 2) the main board that provides platform I/0 and can
emulate Trojans that are novel, hidden, and trigger-able. Fig. 1
shows the general design of the test bed: the Raspberry Pi
Pico (indicated by the red box) is the primary device used for
emulating Trojan behaviors.

A. Threat Model

In this study, we consider an adversary who intends to
plant a Trojan into a PLC in an MITM configuration. While
the hardware supports run-time modification to sensor data
(i.e., via advanced Trojans), we assume that the onboard
side-channel measurement sensors are trustworthy, as they can
be validated against external sensors if needed.
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MITM Trojans can: 1) snoop on signals passing between
peripherals and the main design and 2) edit relevant signals
passing in and out of the design. The defender needs to
catch the Trojans before the PCB is fielded. As this setting
is predeployment, they control the environmental conditions
(e.g., maintaining ambient conditions include electromagnetic
interference (EMI) and calibrating the side-channel measure-
ment sensors). The defender may use strategies for golden-free
Trojan detection that include: 1) evaluating probabilistic equiv-
alences against expected statistical distributions; 2) using
design-based models to compare side-channel measurements;
and 3) fuzzing hardware parameters, connections, and software
test codes. The tests in this study are carried out separately
without any external loads. Nevertheless, if any external load
is connected or if the tests need to be carried out in the field,
the side-channel sensors can be recalibrated.

While the test bed and Trojan detection methodology may
also be used for pure software Trojans (i.e., in the Raspberry
Pi), we exclude these from this analysis as out of scope.

B. General Function: Programmable Logic Controller

This PCB has applications in industrial control systems,
i.e., as a PLC. Hence, it has features associated with PLCs,
including a resilient 24-V power supply; four relay-isolated
general-purpose outputs for controlling common industrial
equipment (e.g., 24-V dc motors, lamps, and variable fre-
quency drives); four optoisolated 24-V digital inputs for sens-
ing in common industrial equipment (e.g., infrared beams,
mechanical switches, and pneumatic sensors); four high-
impedance 24-V-tolerant analog inputs for reading from
variable-value industrial equipment (e.g., ultrasonic distance
measuring devices); and a half-duplex RS-485 bus to commu-
nicate with other PLCs and I/0 modules via MODBUS.

To implement the PLC, a Raspberry Pi Zero single-board
computer (SBC) module [54] is used as an embedded appli-
cation processor. This SBC can run Linux (Raspberry Pi
OS—a derivative of Debian) giving us a lot of flexibility
and connectivity, including support for HDMI display outputs
and USB giving access to common peripherals, including
keyboards and USB—Ethernet connectors. This enables simple
debugging and support for graphical applications that use
industrial human-machine interfaces (HMIs).

For PLC application software, the platform supports the
use of programs written in the C and Python programming
languages. Though not specifically used in this work, the PLC
also supports the OpenPLC libraries and framework [11]. The
PLC can use any of the IEC 61131-3 languages, including
function blocks, ladder logic, and structured text.

C. Injecting and Configuring Trojans

The primary objective of our platform was to enable the
insertion and configuration of a wide range of CPS-relevant
embedded Trojans. In general, PCB-level Trojans are a super-
set of any malicious change to a design’s hardware. For
example, one can add or remove components, substitute low-
quality components, and alter PCB traces—changing sources,
destinations, and, in certain cases, track widths, although we
consider track width changes out of scope.

Five main features enable Trojan insertion in our platform.

1) Pluggable Trojan Module: In this PCB, insertion of
complex electronic Trojans is achieved via a socket for insert-
ing extra hardware. This socket has a footprint compatible
with Raspberry Pi Pico [55] (red outline in Fig. 1), enabling
straightforward microcontroller-based Trojans while ensuring
flexibility for custom Trojans based on other hardware. Fur-
thermore, by making the module detachable, it can demon-
strate how a Trojan is “added” and “removed” from the design.

Using Pico modules as the primary Trojan-based insertion
platform can enable extremely complex and subtle Trojans:
each module has an on-PCB RP2040 dual-core ARM-MO0+
microcontroller that runs at up to 133 MHz with 264 kB
of SRAM and 2 MB of on-PCB Flash memory. They also
feature USB 1.1 compatible interfaces with device and host
support. This platform supports flexible emulation to feature
static (constant) and dynamic (triggered) malicious behavior.

The socket is designed to fit into the overall PCB such
that it may both observe signals passively and interfere with
the normal operation of the PLC’s peripherals, including the
inputs, outputs, and communication buses. To support this
interference, wiring reconfigurability is provided via a number
of different hardware “jumpers.”

In addition to the socketable Trojan, the Raspberry Pi Zero
SBC is attached to the main PLC PCB via a removable socket.
This may enable other kinds of attacks, where the Raspberry
Pi SBC is compromised, or an editing module is installed
between the SBC and the PCB. An example Trojan here might
be to install a Raspberry Pi Zero W with on-PCB Wi-Fi rather
than the normal version without Wi-Fi.

2) Reconfigurable Wiring Jumpers: In addition to the Tro-
jan’s main socket, reconfigurable jumpers physically present
on the PCB facilitate the ability to reroute certain input and
output signals to enable or disable MITM Trojans. Among
these are the optoisolated inputs, relay outputs, the I2C bus,
and the RS-485 /UART bus. Passive components could be used
to introduce unexpected changes to the electrical characteris-
tics of these signals (for example, we could add a capacitor to
an I12C bus to introduce faults). Reconfigurability is enabled
by “jumper” wires. While, in general, jumper wires are not
suitable for high-speed signals, in PLC applications (which
have low-speed switching rates, e.g., MODBUS at 9600 baud),
these wires are likely to not adversely affect system perfor-
mance. When used in conjunction with the socketable Trojan,
a complete Trojan experiment can tailor the PCB, choosing
which signals are just readable and which are actually editable.
This enables Trojans to change data values, insert delays, and
reroute signals.

3) Software Trojan Support: Though not used in this work,
as the Raspberry Pi Zero SBC at the core of the PLC is running
a Debian Linux-based operating system, additional software
Trojans that may interfere with correct operation may also
be installed into the system. These could include keyloggers,
cryptominers, or ransomware.

4) Back-Channel Communication: The most complex kinds
of Trojans involve both hardware and software changes (or
are capable of changing the behavior of the software from
the hardware). To examine such “multidomain” Trojans, the
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Fig. 2. Different categories of PCB-level Trojan. (a) No Trojan. (c) Snoop

Trojan. (b) Local Trojan. (d) Edit Trojan.

PLC also includes features for back-channel 12C and UART
communication by ensuring the connection between the 12C
and UART pins of the Raspberry Pi SBC and the Pico sockets.
As one example, if configured appropriately, the Pico can send
shell commands to the Pi over the UART.

D. Example Trojans

Four Trojan insertion categories are depicted in Fig. 2.

1) No Trojan: It represents reference baseline performance.

2) Local Trojan: This configuration has software Trojans
executing on Raspberry Pi Zero. These Trojans leak
information or degrade performance. We do not discuss
these Trojans in this article since we focus on hardware
Trojans (i.e., Trojans enabled by introducing a hardware
component, i.e., the Pico).

3) Snoop Trojan: This configuration has Trojans monitoring
the signals passing between the peripherals and the
Raspberry Pi Zero. These signals may be saved to mem-
ory and exfiltrated, or exported via extra connectivity,
such as a USB peripheral on the Pico. Since they do
not change the signals in any way, these are lightweight
MITM Trojans.

4) Edit Trojans: They observe and edit all relevant signals
passing in and out of the design. These Trojans allow
for arbitrary MITM Trojan effects to be inserted into
the signal lines. Trojans can degrade closed-loop system
performance by inserting delays into the signal lines or
modifying signal values. Trojans can leak information by
sending signals to additional I/0 lines or by modifying
signals over I/O channels.

The test bed supports a variety of Trojan triggers, such
as a manual input switch; a trigger when PLC inputs reach
some value once (or repeatedly) or after a predefined sequence;
triggered on observing specific control, addresses, or data bits
on RS-485/UART or I2C buses; timed triggers that activate
after some time; and any combination of these triggers.

E. Features for Defensive Monitoring

In order to monitor the performance of the PLC at run-
time, the test bed supports the measurement of side-channel
signals, as discussed in Section IV. These include on-processor
digital side channels, analog measurements, such as power
and magnetic signals, and timing measurements from I/O
channels measured using defender-configured test software.
For example, an output-editing Trojan may be detected via
timing (it adds delays) or magnetic signature changes (the

output pattern of relays is different than expected) or power
(the relays may consume more/less power than expected), and
these changes occur simultaneously.

To measure power consumption, Hall-effect current mon-
itors are combined with an analog—digital converter. Three
power measurement channels are captured: 1) current draw
of the PCB; 2) current draw of Raspberry Pi; and 3) the
current draw for the separate (Trojan) microcontroller socket.
To measure local vibrations and magnetic fields, a six-axis
accelerometer and a magnetometer-based inertial measurement
unit (IMU) are placed near the relays on the PCB. We chose
this since the functioning of the output relays affects these
side channels and can detect changes in their outputs.

For more flexibility, we added connection points for sensor
expansion. The first of these is a connector for QWIIC periph-
erals (e.g., external magnetometers). The second is power
feeder jumpers, which can be replaced with wires to external
power monitors (e.g., ammeters). Though not directly used in
this study, we used these to calibrate internal sensor readings.

FE. Open-Source Design

As it is a major contribution of this work, the PCB design
developed in this project is made available online.!

IV. MULTIMODAL SIDE-CHANNEL TROJAN DETECTION
A. Side Channels

The test bed supports a range of side-channel measurements.

HPCs: They measure processor activity over time. For
example, HPCs [26]-[29], [31] can measure the number of
occurrences of instructions, cycles, branches, L1/L2/L3 cache
hits, and cache misses. The specific set of HPCs available is
processor-dependent.

Power: Current (power) measurements [6] can be acquired
via on-PCB or off-PCB sensors. Current measurements will
vary based on the internal activities of the PLC. Time-
varying activities may enable the detection of unexpected hard-
ware/software components that increase/decrease the power
draw and variations in temporal patterns of power consump-
tion.

CPU Load and Frequency: CPU activity levels can be
monitored using kernel-level CPU usage measurements. The
Linux kernel separately measures user, system, and idle states.
When a CPU governor dynamically modifies CPU frequency
based on load, CPU frequency readings are a proxy for CPU
usage.

Temperature: Temperature readings [32], [33] from one or
multiple on-PCB sensors can be used to reflect the amount of
activity of PCB components or subsystems.

Accelerometers: Three-axis accelerometers can be used to
measure the acceleration of linear motion in the X-, Y-,
or Z-axes. These sensors can provide indications of motion,
shock, or vibration. In our PLC, which has partly mechanical
components (relays), temporal variations of accelerometer
measurements can provide indicators of hardware operation,
e.g., relay clicking.

Uhttps://github.com/kiwih/nyu-openplec-te
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Magnetometers: Temporal variations of magnetic readings
obtained using magnetometers can be used to sense hardware
operation, e.g., relays on the OpenPLC PCB.

Software Timer: Timing measurements obtained via soft-
ware on the main application processor on the PCB can be
used to measure time intervals between events. Timers can be
used to measure loopback times over different combinations
of I/O channels. The presence of MITM Trojans and other
hardware/software Trojans can cause variations in temporal
behaviors that can be detectable using timing measurements.

Each side channel provides a different view of the sys-
tem’s behavior. Digital side channels, such as HPCs, provide
information on CPU operation and can enable the detection
of Trojan-induced variations in code execution. Power and
temperature side channels provide aggregate views of the PCB
behavior and can detect variations in system-level operation.
Depending on the particular Trojan type/effects, it might be
detectable using some or a combination of side channels.
Fusing side channels can reduce both false negatives and
false positives by detecting anomalies from the perspectives
of different side channels and reducing sensitivity to benign
random variations. The side channels have different sampling
rates and granularities. HPC, accelerometer, magnetometer,
and power are high bandwidth signals and benefit from high
sampling rates. Lower sampling rates typically suffice for
temperature, fan speed, CPU usage, and CPU frequency, which
vary relatively slowly.

Side-Channel Data Collection: Given a PCB, multimodal
side-channel Trojan detection entails collecting time-series
measurements of side-channel signals and analyzing them to
assign probabilistic likelihood scores of whether the measure-
ments match expected system characteristics. The operating
conditions of the system when collecting the side channels
can be controlled by the defender. “Fuzzing” degrees of
freedom to excite the system under different regimes include
defender-controlled software excitations (e.g., running single
or multiple instances of defender-created test codes), I/O
connections and communication parameters, pseudorandom
actuator commands, and hardware/software parameter varia-
tions. These defender-controlled excitations can increase the
detectability of Trojans by measuring side channels over wider
operating conditions, thereby improving detection accuracy
and reducing false positives and false negatives. Controlling
the fuzzing excitations/modes is a moving-target defense since
the adversary does not know when and what fuzzing modes
will be applied.

B. Side-Channel Measurement Framework

We use the OpenPLC “NYU TE” (see Section III) for
our experimental studies of the Trojan detection methodology.
All side channels discussed in this section can be measured
on this PCB. HPCs are measured using Linux perf tool,
CPU load and usage using the Linux /proc/stat file,
and CPU frequency using scaling cur_freq files in
the Linux /sys/devices file system. The temperature of
the core is read from thermal zoneO/temp files under
/sys/devices. The PCB power draw is measured using

an ACS712 Hall-effect current sensor and an ADS1115 ADC,
which is a low power, 16-bit precision, and I2C compatible
ADC. Accelerometer and magnetometer readings are read by
an FXOS8700CQ sensor, which has a 14-bit accelerometer
and a 16-bit magnetometer. All side channels are collected by
a multithreaded framework on the Raspberry Pi Zero. While
some sensors, such as HPCs and temperature, are read locally
on the Pi Zero, current, accelerometer, and magnetometer
readings are read into Raspberry Pi Zero via 12C. While
different side channels have different sampling rates, the data
collection framework ensures consistent timestamps using an
integrated multithreaded architecture with a common time
base. Accelerometer and magnetometer readings are collected
at a sampling rate of 200 Hz. HPCs, CPU usage, CPU
frequency, current, and temperature are collected at 100 Hz.

V. SOFTWARE-DRIVEN MULTIMODAL LOOPBACK
A. Overview of Approach

As shown in Fig. 3, multimodal loopback Trojan detection
applies hardware/software excitations to an uncertain dynamic
system (i.e., PCB on which the absence/presence of a Trojan
is uncertain) and measuring responses from the system. The
system responses are digital and analog side channels in
Section IV. The responses can be used to adapt excitations,
making them response-dependent and, hence, a “closed loop.”
The likelihood that the observed responses correspond to
expected dynamic behavior based on the known design of
the system is probabilistically evaluated. Deviation from the
expected behavior is used to detect a Trojan. This provides
the defender with multiple moving-target defenses (nature of
excitations, responses to measure, and feedback structure from
measured responses to dynamic adaptation of excitations),
making it hard for the attacker to elude detection. This
detection strategy elicits dynamic and closed-loop responses
from the PCB system under defender-controlled operating con-
ditions to probabilistically detect anomalies indicating Trojans.
We consider two instantiations.

1) Statistical distributions of timing measurements under
I/0 loopback configurations to detect deviations from
expected distributions modeled using PCB design infor-
mation and, thereby, detect additional unexpected ele-
ments along I/O lines. Fuzzing degrees of freedom
include which combinations of I/O lines to use for the
loopback connections and parameters, such as bit rates.

2) Time series readings from the three-axis magnetome-
ter to probabilistically estimate relay states and detect
effects of MITM Trojans that modify the temporal map-
pings from relay commands to relay switching behavior.
Fuzzing degrees include pseudorandom relay commands
and variations of time intervals between relay command
changes.

B. Golden-Free Anomaly Detection

The loop back-based Trojan detection can be applied in
multiple contexts: comparing two PCBs (e.g., comparing a
Trojan-inserted PCB with a known-good PCB): a comparison
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Fig. 3. “Closed-loop™ loopback-based Trojan detection.

of a physical PCB with a design-based hypothetical, notional
PCB, rather than a physical known-good PCB (i.e., golden-free
anomaly detection in the absence of a gold-standard integrated
PCB system) and detection of changes within a system over
time (i.e., golden-free anomaly detection that relies on self-
referencing). Strategies for golden-free Trojan detection are
given as follows.

1) Evaluating probabilistic equivalences against expected
statistical distributions for different operating conditions
(e.g., evaluating probability distributions of expected
timing measurements from a digital I/O loopback under
different bit rates against expected distributions based
on the original design and device datasheets).

2) Using design-based models (e.g., comparing magne-
tometer readings under relay command outputs from the
processor with what is expected).

3) Using design-based models of feature-level side-channel
relationships (e.g., correlations between HPC and power
readings based on hardware/software designs).

4) Fuzzing hardware parameters, connections, and software
test codes to increase the visibility of Trojan effects.
By exercising the system over a range of operating
conditions, including those not seen in normal operation,
the excitations may violate assumptions made by the
Trojan (e.g., “normal” bit rates) or push the system
to an edge case to expose Trojan effects. Differential
validation can model expected behavior variations under
excitation changes.

Instead of predicting the exact values of side channels (which
may be infeasible in a golden-free setting), the approach
evaluates the semantic plausibility of side-channel data based
on modeled abstractions/approximations (e.g., probability dis-
tributions, PCB-level behaviors, and semantic side-channel
interrelations).

C. ML Models

To detect lightweight MITM Trojans using timing measure-
ments under digital I/O loopbacks, the observed time series
can be considered as samples from an underlying probability
distribution. Empirical methods for comparing probability dis-
tributions, such as the Kullback—Leibler (KL) divergence, can
be used. In the golden-free setting, the expected probability
distribution can be modeled using design-based behavior under
different bit rates. This can be refined using measurements
from other PCBs and components (e.g., operating system
overheads for read/write for a serial port).

To detect anomalies in observed relay command —
switching behavior using magnetometers, their readings

are used to predict the physical relay states. Since there
are four relays on the OpenPLC PCB, this corresponds
to estimating a 4 x 1 relay state vector. Data for training
the ML model to predict relay states from magnetometer
measurements are obtained in a golden-free setting by
toggling the physical relays and collecting magnetometer
data (e.g., using an external I2C connection to access
magnetometer readings). To mimic low-fidelity data that are
generated using simulation-based methods, the empirically
collected data are used to estimate one-component Gaussian
mixture models that are then used to generate training data.
Using synthetic data instead of the raw data for training
the ML model introduces an information bottleneck, which
mimics the reduced-fidelity data that could be obtained using
off-PCB testing or simulation-based methods.

Since the relays close to the magnetometer generate a
stronger magnetic response than those that are farther away
(see Fig. 1), relay state prediction is difficult for the dis-
tant relays. To detect relay states from the fainter signals
from distant relays, a progressive/residual approach is applied.
Denoting the relays in the order of increasing distance from
the magnetometer as 3,2, 1, and 0, the magnetometer read-
ings M (either at one sampling time or over a sliding time
window) are used to predict relay states 73 and 7, for the two
nearest relays, which generate strong enough magnetometer
responses. Then, using 73 and 7, as auxiliary information
for situational awareness, the data {M,7s;, ;} are used to
predict 7y, the state of the relay which is third in distance
from the magnetometer. Thereafter, using #; and auxiliary
information, the data {M, 73, 7, 71} are used to predict 7y, the
state of the relay which is farthest from the magnetometer.
This progressive/residual approach enables the ML models
to sequentially estimate fainter signals by first estimating
states of relays closest to magnetometers and then using the
estimated states to aid “downstream” ML classifiers of further-
away relays. Random forest models [56] are used for the
prediction tasks M — (f3, f2}, {M,73,f2} — F;, and
{M,73,7F, 71} —> Fo. The generated time series of relay
state predictions is then temporally filtered using separate
median filters per relay to improve accuracy and robustness to
intermittent ambient noise due to other electronic components
on/off the PCB. By correlating generated time series of filtered
relay state predictions and relay commands transmitted from
the processor, anomalies in relay command — switching
behavior are flagged, as discussed in Section VI-F.

VI. RESULTS: TROJANS/TROJAN DETECTION

Using the developed OpenPLC test bed (see Section IIT) and
the side-channel-based Trojan detection methodologies (see
Sections IV and V), experimental results of several sample
types of Trojans and their detection accuracy are presented in
this section. Specifically, we consider MITM Trojans imple-
mented using the configurable jumpers and firmware on the
Pico. The Pico is configured to run at its maximum speed
(100 MHz). A Trojan framework was implemented on the Pico
including firmware/software components, such as ring buffers,
timers, and UART peripherals to facilitate the instantiation of
Trojans.
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While we consider detection of several types of Trojans, it is
to be noted that these are within the unified approach (multi-
modal loopback-based detection of MITM Trojans) discussed
in Sections III-V in the context of two specific instantiations of
the detection methodology (timing-based and magnetometer-
based) in Sections VI-B-VI-F. Anomaly detection using
timing measurements only relies upon “off-line”” design infor-
mation and expected behaviors of a clean system in terms
of software counter-based measurements, variations under bit
rate fuzzing, and so on. Anomaly detection using magnetic
readings is based on flagging discrepancies relative to an
ML model of expected patterns based on “off-line” magnetic
calibrations (or low-fidelity simulated data, as discussed in
Section V). Hence, both the timing-based and magnetometer-
based instantiations represent golden-free applications of the
methodology, as further highlighted in Sections VI-B-VI-F.
The anomaly detection methodologies do not assume any prior
knowledge of the Trojan structures or their effects.

A. GPIO and UART MITM Passthrough Trojans

In Sections VI-B-VI-D, we consider lightweight MITM
passthrough Trojans and efficacy of timing side channels to
detect these along the signal lines. We consider passthrough
Trojans on the GPIO and UART I/O lines. While the PCB
design allows for Pico-resident hardware Trojans that interfere
with the I2C bus, we focus on Trojans that interfere with
the GPIO (such as relay outputs and optoisolator inputs) and
UART channels. To implement passthrough MITM Trojans,
we set the GPIO and UART jumpers to the “editing” posi-
tion. For GPIO signals (relays/optoisolators), we implement a
polling-based architecture that copies GPIO signals from input
to output. For the UART passthrough Trojan, we implement
an interrupt-based architecture where the received data are
retransmitted on the other channel.

B. Timing Channels Detect GPIO MITM Passthrough Trojans

Since the code on the Pico in the MITM passthrough
Trojans is configured to retransmit the signal lines in as light-
weight a way as possible, HPCs and magnetometer readings
are not affected in observable ways. We detect them using a
loopback, as in Fig. 3, where test code on the Pi is configured
to implement a loopback. For GPIO, the test code executes
a loop in which it toggles the digital output, waits for the
digital input to reflect the toggle, and retoggles the output. The
elapsed time is recorded after a preset number of toggles (set
to 500). The expected time is computed based on the expected
operation of the PCB. When the Trojan is present, the elapsed
time under this loopback is longer due to the extra hardware
and logic. The hardware change between the Trojan-free and
Trojan variants for GPIO is shown in Fig. 4(a).

1) Pico-Based GPIO MITM: Fig. 5 (left) shows 5000 sam-
ples of the elapsed time for the 500 loopback cycles each
for the Trojan-free and Trojan configurations. The time taken
for 500 cycles is around 0.1 ms without a Trojan and
around 0.4 ms with a Trojan. To evaluate to what extent the
Trojan-free measurements can be predicted in a golden-free
setting, we can perform “back of the envelope” calculations.

RPi | Pico . Pico . . |Relay
Pin _': Pin | Pin i pouTt
RPi |4 Pico  Pico DIN RPI —* Pico | Pico TPl TX
Pin || Pin Pin UART.(_E.UART UART T Rx |
Trojan MITM Trojan MITM
() (b)

Fig. 4. Trojan MITM diagrams with loopbacks for (a) GPIO and (b) UART.

0.1 ms per sample corresponds to 200 ns per loopback cycle as
the measurement sample corresponds to 500 loopback cycles.
The peripheral clock on the Pi is 250 MHz or a 4-ns clock
period. A test on a generic Raspberry Pi indicates that the
system calls for GPIO in user-space require around 200-240 ns
to emit and sense loopback. This corresponds closely with
the measured Trojan-free time. However, measurements of the
passthrough Trojan indicate that the Trojan adds ~0.3 ms per
sample or ~600 ns per cycle. This extra time is due to the
time taken by the Pico to copy the digital input to the digital
output. The Pico is slower than the Pi, and this additional time
is realistic for the required operation on the Pico.

To analyze the degree to which one can differentiate
between the Trojan-free and Trojan configurations using the
loopback test, we modified the test code on the Pi to record
the number of iterations spent in the delay loop while waiting
for the digital input to record the output toggle. This quantity,
“n_waits,” incremented over the 500 loopback cycles, was
measured for the Trojan-free and Trojan configurations. It was
observed that n_waits is close to zero without a Trojan as
expected since the digital input is physically connected to
the digital output in a loopback and reflects the output toggle
instantaneously. With a Trojan, there are about five waits
per loopback cycle. The additional wait time for the input
to toggle is due to the time required by the Trojan to copy
inputs to outputs along the output line from Pi and along the
input line to Pi.

2) FPGA-Based GPIO Trojan: As the microcontroller-
based Trojans are restricted to the clock rate of the
device (100 MHz), we also implemented a more lightweight
FPGA-based Trojan to study the detectability of even more
stealthy MITM Trojans. For this purpose, we implemented a
GPIO loopback scenario using a Basys 3 FPGA board (with
Artix-7 XC7A35T-1CPG236C) as an FPGA-based MITM Tro-
jan, which was a passthrough-style Trojan capable of discon-
necting I/O signals. Fig. 6 shows 5000 samples of elapsed time
for 500 loopback cycles in the Trojan-free and Trojan settings.
The time required for 500 cycles is approximately 0.16 ms
with the Trojan (i.e., ~0.06 ms more with the Trojan for
500 cycles corresponding to ~120 ns per cycle). The n_waits
measurement incremented over 500 cycles as discussed above
was noted to be ~500 with the Trojan i.e.,, an average of
one wait per loopback cycle compared to ~0 wait per cycle
without the Trojan. This is because, with a pure loopback, the
next GPIO read following a write tends to reflect the updated
bit flip. However, with an MITM Trojan that adds a small
propagation delay, the next read misses the preceding write
while the following read sees it (or a later read depending on
the added delay). The added ~120 ns matches the expected
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Fig. 5. Measurements of elapsed time in GPIO (left) and UART (right)
loopback tests for Trojan-free and Pico-based Trojan configurations.
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Fig. 6. Measurements of elapsed time in GPIO loopback test for Trojan-free
and Trojan configurations with an FPGA as a more lightweight MITM Trojan
instead of the Pico microcontroller.

time for one additional read since, as noted above, a pair of
system calls for a read-write loopback takes ~200-240 ns.

C. Timing Channels Detect UART MITM Passthrough
Trojans

Fig. 4(b) demonstrates the UART loopback arrangement.
As in the GPIO loopback test, the test code is implemented
on the Raspberry Pi to execute a transmit-receive loop. The
elapsed time is recorded after a preset number (set to 100) of
write—read cycles. A time series of 100 measurements under
the Trojan-free and MITM Trojan configurations are shown in
Fig. 5 (right). We set the UART baud rate to 9600, which is
typical for MODBUS communications [57]. To evaluate the
extent to which the Trojan-free measurement can be predicted
in a golden-free setting, the measured elapsed time in the
Trojan-free configuration is ~135 ms per 100 cycles. This
is ~1.35 ms per cycle and around 13 UART clock cycles.
Sending a character with the 8N1 setting (8 bits, no parity
bit, one stop bit) of a UART requires 8-bit data + 1 start
bit 4 1 stop bit = 10 bits. Since UART transmit and receive
occur simultaneously, the expected time is 10/9600 = 1.04 ms.
The added time with the passthrough Trojan is ~107 ms per
100 cycles, i.e., ~1.07 ms per cycle (i.e., around ten UART
clock cycles). This extra time is what Pico needs to copy
10 bits from its UART inputs to its UART outputs.

D. Bit-Rate Fuzzing Detects UART MITM Passthrough
Trojans

Another defense to detect passthrough UART Trojans is
to dynamically vary the UART bit rate (baud). Since the
application of the PCB would call for a specific bit rate
(e.g., 9600 baud in MODBUS communications), the adversary
would assume these bit rates when deploying the Trojan. Even
if the adversary considers variable bit rates, they cannot adapt
on-the-fly to elude detection. Dynamic bit rate fuzzing is a
moving-target defense.

Varying bit rates as a “multirate loopback™ test and the
averages of elapsed times for 100 loopbacks for Trojan-free
and Trojan configurations are shown in Fig. 7 (left). The mean
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Fig. 7. Averages of elapsed time (left: in ms and right: in elapsed cycles)
in multirate UART loopback test for Trojan-free and Trojan configurations.
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Fig. 8. Side-channel data collected with Pico passthrough configuration. In

plot of current measurements, the total current is slightly higher than Pi
current.

time measurements represented as numbers of clock cycles for
one loopback cycle are shown in Fig. 7 (right). It is seen that
increasing the bit rate decreases elapsed times due to faster
communications in the Trojan-free configuration and saturates
due to intrinsic processing overhead on Pi. Measurements
with a Trojan are, however, anomalous. The elapsed times are
spuriously small when the bit rates mismatch between Pi and
Pico, and data corruption causes spurious reads.

It can be seen that, at low bit rates, the number of UART
cycles corresponds to the required minimum number of cycles
to transmit/receive. As the bit rate increases, the processing
overhead on the Pi increases the number of cycles (since each
cycle is shorter). These trends are expected in a Trojan-free
configuration. In the Trojan configuration, a similar anomaly,
as in Fig. 7 (left), is seen, where the mismatch of bit rates
between the Pi and the Pico causes spurious small numbers of
apparent clock cycles, indicating an unexpected element (i.e.,
MITM Trojan) on the signal lines.

Since the bit rate mismatch between Pi and Pico may corrupt
the data, comparing the transmitted and received bytes can also
enable the detection of MITM anomalies. For this purpose,
fractions of matches between transmitted and received bytes
were measured for Trojan-free and Trojan configurations.
While there is a perfect match between transmitted and
received bytes at the nominal bit rate of 9600 baud in both
Trojan-free and Trojan configurations and at any bit rate in
the Trojan-free configuration, the match rate degrades to close
to zero in the Trojan configuration at bit rates other than
9600 baud. The discrepancy between Trojan-free and Trojan
configurations, thus, detects the MITM Trojan.

UART-based fuzzing is simplified in our process as we do
not consider specific external UART devices in the Trojan
designs and experimental tests. This is because our process is
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TABLE 1
RELAY STATE PREDICTION VIA MAGNETIC CHANNEL
Relay | Accuracy | Precision | Recall | Fl-Score
3 0.9996 1.0000 0.9992 0.9996
2 0.9996 0.9992 1.0000 0.9996
1 0.9956 0.9961 0.9950 0.9956
0 0.9467 0.9351 0.9600 0.9474

intended to occur at predeployment, prior to PLC interconnec-
tion with connected devices. The loopback detection functions
by connecting the PCB’s UART transmit port to the receive
port. As such, any Trojan on the PCB that can edit the UART
will interfere with the timing of this loopback, making them
detectable irrespective of any external connections.

Though out of scope in this work, if external devices were
required to be connected, these tests could still occur. In this
scenario, defender-controlled challenge/response pairs to/from
external devices would also feature alternative timing when an
MITM Trojan was present.

E. Magnetic Channels Detect Relay Behavior

When applying  the ML methodology  for
magnetometer-aided prediction of relay states in Section V,
the accuracy for each of the four relays is summarized in
Table 1. As seen in Fig. 1, relays 3, 2, 1, and O are in the
order of increasing distance from the magnetometer. Since the
magnetometer-visible signals corresponding to the relays are
progressively fainter, the accuracy of relay state estimation
reduces as the distance from the magnetometer increases. The
accuracy for the 4 x 1 relay state vector was ~0.945.

Before proceeding to the quantitative results of Trojan
detection in Section VI-F, it is worthwhile to consider a
quick “back-of-the-envelope” calculation on whether accu-
rate magnetometer-based relay state estimation translates into
robust anomaly detection. With a probability p of correct
detection of the relay state from magnetometer measurements,
we expect a clean system to yield around gc = pN matches
of commanded and magnetometer-based estimated relay states
over N magnetometer measurement samples. For simplicity,
we consider a binomial distribution with matches at each
sampling time considered to be independent random vari-
ables. The standard deviation o of the number of matches
is (Np(1 — p))!/2. Consider a Trojan that modifies relay
commands for one or more relays for at least some fraction »
of the total time. Since we consider pseudorandom relay com-
mands when testing for Trojans in Section VI-F, (1/2") is the
probability that the defender-commanded Trojan-overridden
relay commands are identical (where n = 4 is the number of
relays). Hence, with the Trojan, we expect around pur = pN
matches, where p = p(1—#(1—1/2")). While, as noted above,
p =~ 0.945 empirically, consider a less precise estimation
p = 0.8 to evaluate Trojan detection feasibility. For N =
1000 and = 0.05, we obtain uc = 800, oc = 12.65, and
pr = 762.5. Hence, ur is three standard deviations away from
the expected number of matches ¢ in a clean system making
the observed distribution of matches over a time interval highly
unlikely based on the hypothesis of a clean system. Over
longer time intervals, the likelihood of detecting the anomaly is
even higher (with N = 10000 and ur > 9 standard deviations
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Fig. 9. Side-channel data collected with invert Trojan.

away from uc). Therefore, Trojans that manipulate the relay
commands even a very small fraction of time can be detected.

FE. Magnetic Channels Detect Relay Command Edit Trojans

In this section, we consider Trojans that affect relay behav-
ior. These relay-based Trojans are implemented as MITM
behaviors on the Pico and, therefore, can also be detected using
the timing loopback tests discussed above. However, we also
study the detection of the Trojan effects using the magnetic
side channel. This addresses the potential scenario in which
the Pico is replaced by a much faster processor, as this may
reduce the injected delays in signal retransmission such that
they are not detectable by loopback times. Hence, we use the
magnetic side channel to monitor the integrity of the temporal
mappings between Pi-emitted relay commands and the relay
switching behavior. To determine the efficacy of magnetic
side channels to detect temporal anomalies, we consider the
Pico passthrough configuration as the baseline. Sample data
collected from the PCB when it is in Pico passthrough mode
are shown in Fig. 9. Besides side channels discussed in
Section 1V, the figure shows relay commands that are sent
by Pi and expected (average) magnetometer readings for the
relay commands (using Gaussian model in Section V).

We employ the ML approach from Section V to evalu-
ate anomaly likelihoods from sliding time windows of col-
lected side-channel data. We apply the relay state prediction
first to generate a time series of predicted relay states (as
4 x 1 vectors). To excite the relays, we transmit a sequence
of pseudorandom commands from the Pi during the test. The
application of pseudorandom relay commands also represents
a moving-target defense since the attacker does not know the
particular sequences of relay commands that are applied during
the testing of a PCB. We compare the predicted relay states
against the time series of relay commands. By combining
binary indicators of per-relay matches/mismatches with dif-
ferent weights for different relays, we compute a time series
of magnetometer anomaly likelihood scores. We use higher
weights for relays closer to the magnetometer because the
state of these relays can be determined more reliably by the
magnetic readings. A mean filter temporally filtered the time
series of anomaly likelihood scores to reduce false positives
and false negatives. During temporal averaging, we ignore the
time intervals around the relay switching in order to avoid
spurious false positives during transients of physical relay
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Fig. 11. Side-channel data collected with replay Trojan.
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Fig. 12. Side-channel data collected with acoustic Info. Leakage Trojan.
switching. Since we consider Trojans that persist over time,
the characteristic of whether or not a PCB is Trojan-injected
does not change. Evaluation of the PCB requires considering
the majority label over sliding time windows. As long as the
Trojan-free versus Trojan determination is correct over 50%
of the time, the evaluation will be correct.

By configuring the code on the Pico, we implemented
MITM Trojans that modify the temporal mapping of relay
commands to their switching behavior.

The side-channel data collected with the MITM Trojans are
shown in Figs. 9-12.

1) Invert Trojans capture and emit all I/O channels. They
invert the last two bits of relay outputs (relays 1 and 0).
If relay 1 or O is commanded to open, they will close and
vice versa. We choose these relays to test since they are
the farthest from the magnetometer and are the hardest
to measure making them challenging to detect.

TABLE II

TROJAN DETECTION ACCURACY USING SLIDING TIME
WINDOWS OF SIDE-CHANNEL DATA

Trojan Accuracy | Precision | Recall | Fl-Score
Invert Trojan 0.877 0911 0.836 0.872
Delay Trojan 0.959 0.925 1.000 0.961
Replay Trojan 0.959 0.925 1.000 0.961
Acoustic Info. Leakage Trojan 0.943 0.922 0.968 0.945

2) Delay Trojan injects a lag between the external I/0 pins
and the core Pi’s I/O. For the GPIO (relay/optoisolator)
signals, it samples every 10 ms and stores the results in
a ring buffer with 100 elements. Elements are emitted
when they are overwritten. All GPIO has an extra delay
of 1 s. For UART signals (including RS-485), the Pico
is configured to use interrupts to store characters in a
1024-element ring buffer. With each character, it stores
an emit timestamp of 1 s in the future after capture.
A second timer interrupt-based loop checks and emits
the characters at appropriate times.

3) Replay Trojan extends the delay Trojan. The received
data are stored in ring buffers. It is emitted when cap-
tured, so the delay is minimal. However, upon receiving
a trigger signal, the Trojan enters a replay mode, where
new signals are neither captured nor propagated. Instead,
the previous 10 s of the ring buffer is emitted in a loop.
In the tests, the trigger signal was applied before the
side-channel data were collected.

4) Acoustic information leakage Trojan is a variant of the
replay Trojan, which focuses on the UART/RS-485 bus.
The captured data are stored in a 1024-element ring
buffer. Upon data entering the buffer, an override method
takes control of the relay O signal and “clicks” the
relay in an audible pattern. A listener can capture the
signal. This Trojan exfiltrates the UART data via audio.
Since this Trojan leaks UART data as relay clicks, the
magnetometer readings can detect anomalies relative to
expected readings based on transmitted relay commands.

Table II summarizes the detection accuracy of Trojans over
sliding time windows of the side-channel data. The false
positive rate is ~8.15%. This false positive rate quantifies the
accuracy, precision, and F1-score in Table II. The recall is the
% of time windows of the data from the Trojan configuration
marked anomalous. When classifying a PCB as Trojan-injected
or not, it is sufficient to consider the majority label over the
sliding time windows of the binary Trojan likelihood estimates.

VII. CONCLUSION

This study demonstrates using side-channel signals for
anomaly detection in embedded PCB systems using multi-
modal closed-loop monitoring of temporal properties under
software-driven excitations and defender-controlled I/0. When
measured against design-based baselines, timing measure-
ments from I/O channels can detect lightweight MITM Tro-
jans. Using inputs and fuzzing from hardware/software makes
Trojan effects visible. It supports a moving-target defense
where inputs and fuzzing are controlled by the defender. For
our studies, we created a flexible and reconfigurable test bed,
“OpenPLC NYU TE.”
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