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Abstract

Proton transfer reactions play a critical role in many chemical and biological processes. The
development of computationally efficient approaches to describe the quantum dynamics of proton
transfer, which often involves hydrogen tunneling, is challenging. Herein, the nuclear-electronic
orbital multistate density functional theory (NEO-MSDFT) method is combined with both
Ehrenfest and surface hopping nonadiabatic dynamics methods to describe hydrogen tunneling.
The NEO-MSDFT method treats the transferring hydrogen nucleus quantum mechanically on the
same level as the electrons and incorporates both static and dynamical correlation by mixing
localized NEO-DFT solutions with a nonorthogonal configuration interaction scheme. The other
nuclei are propagated on the NEO-MSDFT vibronic surfaces during the Ehrenfest or surface
hopping dynamics. These methods are applied to proton transfer in malonaldehyde as a
prototypical hydrogen tunneling system. The inclusion of vibronically nonadiabatic effects is
found to significantly impact the proton transfer time and tunneling dynamics. This approach is

applicable to a wide range of other proton transfer reactions.



1. Introduction

Nuclear quantum effects such as hydrogen tunneling are important throughout chemistry
and biology,' as exemplified by photosynthesis®® and DNA synthesis.” The development of
computational methods for describing hydrogen tunneling dynamics in chemical systems is
challenging. The nuclear-electronic orbital (NEO) approach has become an accurate and efficient
method to incorporate nuclear quantum effects in geometry optimizations, reaction paths,
vibrational spectra, and dynamics of molecular systems.®'® This method treats electrons and
specified nuclei, typically protons, quantum mechanically on the same level. In this case, the Born-
Oppenheimer separation is not invoked between the electrons and quantum nuclei but is still
invoked between the subsystem containing the electrons and quantum nuclei and the subsystem
containing the other “classical” nuclei. By solving the mixed nuclear-electronic time-independent

Schrodinger equation at each time step of a molecular dynamics trajectory, the classical nuclei can

move on the vibronic surface that includes the nuclear delocalization and zero-point energy
associated with the quantum nuclei.

Within the NEO framework, both wave function methods® "1 and density functional
theory (DFT) methods®!'% 22! have been developed. Recently, NEO-DFT based approaches have
been successfully used for direct dynamics simulations describing various chemical reactions
involving hydrogen transfer, where the transferring proton is treated quantum mechanically.! 2>
23 For example, the NEO-DFT approach was employed to describe hydride transfer in the C4Ho"
molecular system.'> Additionally, real-time NEO time-dependent DFT (NEO-TDDFT) and real-
time NEO-TDDFT Ehrenfest dynamics were used to describe excited state intramolecular proton

transfer in o-hydroxybenzaldehyde.??>



In the conventional Born-Oppenheimer picture of hydrogen tunneling, the hydrogen
typically moves on a double-well potential energy surface that becomes symmetric or nearly
symmetric, with the hydrogen vibrational wavefunction delocalized over the two wells during
tunneling.?*% In such cases, the NEO-DFT approach usually fails because the transferring proton
density localizes near the hydrogen donor or acceptor, rather than delocalizing between them.?”-?
This non-physical localization is mainly attributed to insufficient inclusion of static and dynamical
electron-proton correlation within the NEO-DFT method, which uses a single product of an
electronic and nuclear determinant as the non-interacting reference system.

Inspired by the conventional electronic multistate density functional theory (MSDFT)

method developed by Gao and coworkers,?*

we developed the NEO multistate density functional
theory (NEO-MSDFT) method?? to describe hydrogen transfer processes that involve a symmetric
(or nearly symmetric) double-well potential energy surface in the conventional Born-Oppenheimer
picture. The NEO-MSDFT approach incorporates both static and dynamical correlation by mixing
two localized NEO-DFT solutions with a nonorthogonal configuration interaction scheme.**° The
ground and excited vibronic states obtained from the NEO-MSDFT approach can delocalize and
become bilobal, which is essential for hydrogen tunneling systems. Moreover, the NEO-MSDFT
method has been shown to accurately predict hydrogen tunneling splittings and proton densities
for fixed classical nuclear configurations.”> The NEO-MSDFT approach has the same
computational cost scaling as the analogous conventional electronic DFT approach because the
number of electronic basis functions is typically much greater than the number of protonic basis
functions. Alternative multireference DFT approaches, as well as the associated challenges, are

discussed elsewhere.>37



Recently, we implemented the analytical gradients of the NEO-MSDFT ground and excited
vibronic state energies with respect to the classical nuclear coordinates.>® These gradients enable
geometry optimizations to identify equilibrium structures and transition states, as well as the
generation of minimum energy paths. We also explored the direct dynamics of the classical nuclei
on the NEO-MSDFT adiabatic ground vibronic state surface and observed intramolecular proton
transfer in malonaldehyde.!® In the adiabatic approximation, however, the quantum proton
responds instantaneously to motions of the classical nuclei. In this regime, within the conventional
Born-Oppenheimer picture of a double-well potential energy surface, the proton always tunnels
when the acceptor well becomes lower in energy than the donor well, regardless of the barrier
height. As shown previously,*® consideration of excited proton vibrational states is necessary to
obtain a reasonable hydrogen tunneling probability. Similarly, contributions from the NEO-
MSDEFT excited vibronic state must be included to accurately describe hydrogen tunneling
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dynamics. Nonadiabatic dynamics approaches such as Ehrenfest dynamics** or surface

39 4344 are reasonable choices for describing hydrogen tunneling on the NEO-MSDFT

hopping
vibronic surfaces.

Herein, we combine the NEO-MSDFT approach with both Ehrenfest dynamics and surface
hopping dynamics. We derive the essential equations and provide the computational details for
conducting these nonadiabatic dynamics simulations. The capability of the NEO-MSDFT
approach for simulating adiabatic and nonadiabatic hydrogen tunneling dynamics is demonstrated
by propagating representative trajectories for proton transfer in malonaldehyde, which is known
to exhibit hydrogen tunneling.*2%4>#7 The objective of this work is to highlight the computational

method rather than to comprehensively investigate the dynamics for this specific system. This

paper is organized as follows. Section 2 provides a brief review of the NEO-MSDFT approach, as



well as the theoretical framework and computational details for combining this approach with
adiabatic, Ehrenfest, and surface hopping dynamics. Section 3 presents the results from different
types of dynamical simulations of proton transfer in malonaldehyde, along with an analysis of
these results. Finally, Section 4 provides a summary of the current work and a discussion of future

directions.

2. Methods and Computational Details

2.1. NEO-MSDFT method
Here we briefly introduce the NEO-MSDFT method for a single quantum proton and two
vibronic states, but the extension to multiple quantum protons and more vibronic states is
straightforward. More details on the formalism and implementation are provided in our previous
papers.®> 38 This treatment pertains to molecular systems with a double-well potential energy
surface for proton transfer in the conventional Born-Oppenheimer picture. The NEO-DFT

approach is employed first to generate two localized nuclear-electronic wave functions,

|‘Pl>:CDf(Df and |‘PH>:CD;CD§, where each localized nuclear-electronic wave function is a

product of Kohn-Sham electronic and protonic determinants, ®°and ®", respectively. Due to the
neglect of static correlation and the approximate electron-proton dynamical correlation energy

treatment, each protonic wave function, ® and @},

obtained from the NEO-DFT approach is
localized near the proton donor or acceptor. The NEO-MSDFT approach is used to construct the
delocalized ground and excited vibronic states by solving a 2 x 2 matrix equation:

HD = SDE (1)

Here S is the overlap matrix between the two localized states



S = |:SI,I SI,II } _ { 1 <LPI |\PH>} (2)
S Sn,n <\Pu |\P1> 1

1Ll

and H is the effective Hamiltonian given by

H H
H= { LI LIl } (3)
H ILI H ILII

In Eq. (2), the off-diagonal matrix element of the overlap matrix, S, or S, is the overlap

L2

between the occupied electronic and protonic Kohn-Sham orbitals for states I and II. In terms of

the electronic and protonic determinants, S, =S, = <CDf CDI"’1> <CI)‘I3 ‘<D‘I’I> In Eq. (3), the diagonal

elements, A\, and H,

ILIT >

are the NEO-DFT energies of the two localized states such that
H, = EMOPT and Hy, = EYPOP™T | The off-diagonal element, H,,, is approximated as

2 1 corr corr
H, :<LP1 |HNEO |\PII>+5SI,II (EI +Ey )

(4)
_ <\P1 | I:]NEO |\PII> +% SLH ( EINEO-DFT _ EINEO-HF + EIII\IEO-DFT _ EIII\IEO-HF)

Here <‘PI|]:INEO|‘PH> is computed at the NEO Hartree-Fock level with the NEO Hamiltonian

A

H\;, using the Kohn-Sham orbitals for states I and II. The NEO Hamiltonian includes the kinetic
energies of the electrons and quantum nuclei, as well as all Coulombic interactions. The correlation
energy E™"or E;™ is expressed as the difference between the NEO-DFT and NEO-HF energies

for state I or 11, respectively, as indicated. The analytical expressions for the NEO-MSDFT ground

and excited states can then be expressed as:



E — 1 HI,I + HH,H - ZSI,IIHI,H M
" 187, 2
_ 1 HLI + HII,II B 2SI,IIHI,II +NM (5)
bo1-SE 2

2 2 2

M = (HI,I _HH,H) (1 _Sl,n) + [2]_]1,11 _(HI,I +HII,II)SI,H:|
To account for the limitations of the electron-proton correlation functional and the
associated inaccuracies in the overlap between the two localized nuclear-electronic wave

functions,*® we applied a correction to the overlap term S . such that S/ =a(S;, Y where o =

LI LI
0.0604 and S = 0.492. This correction function was parameterized for a small model system and
was subsequently verified to be transferrable and effective for predicting accurate tunneling
splittings of five different molecular systems with different geometries.>> We denoted this
modified NEO-MSDFT method with the corrected overlap term as NEO-MSDFT' and will use
this method across all the simulations in this paper without the prime for notational simplicity.
Recently, we also implemented the analytical gradients of the NEO-MSDFT ground and excited
vibronic state energies and applied them to geometry optimizations and the generation of minimum
energy paths for different molecular systems.>*
2.2. Adiabatic, Ehrenfest, and surface hopping dynamics with NEO-MSDFT
In this subsection, we present details of the NEO-MSDFT adiabatic and nonadiabatic

Ehrenfest, and surface hopping dynamics simulations. Herein, the ground and first excited
adiabatic NEO-MSDFT vibronic states are denoted y,(r°,r”;R) and y,(r°,r’;R), respectively,
which have energies Eo and E; given in Eq. (5) and depend parametrically on the classical nuclear

coordinates R. For adiabatic dynamics, the classical nuclei are propagated according to Newton’s

equations of motion on the NEO-MSDFT ground vibronic state:



MR, (1)=-V, <y/0(re,rP;R) | Hyo | wo(re,r";R)> =V, E, (6)

where M; and R; denote the mass and coordinates of the classic nucleus /.
For Ehrenfest dynamics, the time-dependent wave function W (r®,r",#;R) is expanded in
the basis of NEO-MSDFT adiabatic vibronic states:
Y, r",;R) = G (O, (r',r’; R)+ G (Oy, (r',r’;R) (7
The classical nuclei are propagated on the average vibronic surface determined by this time-

dependent wavefunction, leading to the following equations of motion:

MR, (6) =V, (¥ 1", 6R) | Ao | W17, 1:R))

. A 8)
:_Z Z ¢ G, <‘//1‘(re’rp;R) |V, Hxeo ’Wj(reirp;R)>

i=0,1 j=0,1
In the summation, the diagonal terms (i.e., i = j ) are the gradients of the NEO-MSDFT ground

and excited vibronic state energies, Eo and Ej, respectively. Analytical expressions for these

gradients are provided in Ref. 38. The off-diagonal term (i.e., i # j ) are related to the nonadiabatic

coupling vector d;; as follows:

<‘//f(rearp) | VRI:INEO |V/j(rearp)>

P E ©)

d, =y, (8" | Vo, (r°.17)) =

Here and in other equations below, the parametric dependence of the NEO-MSDFT vibronic states
on R is not included for notational simplicity. The explicit expression for the nonadiabatic coupling
vector d;; is given in the Supporting Information (SI).

The time-dependent coefficients, C,(t) and C,(¢), are determined by propagating the time-

dependent Schrodinger equation

ih%\y(rirp,z) = H, , W(r,r" 1) (10)



Substituting Eq. (7) into Eq. (10) leads to the following expression:

oy,
N+ —EG, 11
ot > n ”’J (1)

The nonadiabatic coupling element can be expressed in terms of the nonadiabatic coupling vector

¢,(0)= ZC(t)«w,

i=0,1

d;; and the velocity vector v as

oy,
<x//j %>:dy-v (12)

To avoid numerical instabilities and ensure accuracy even when the nonadiabatic coupling

element exhibits sharp peaks,”® we computed this matrix element with the numerical finite

difference method:*°

(v o+ LEBID) <Ll o0l s aniw@)] a3

We also implemented the norm-preserving interpolation method of Meek and Levine*® and showed
that the results obtained with this method are consistent with the results obtained using Eq. (13)
(see Figure S3). Note that this approach approximates the wave function in the framework of the
Kohn-Sham formalism, similar to nonadiabatic dynamics treatments with conventional electronic
TDDFT.

We also explored surface hopping dynamics on the NEO-MSDFT adiabatic vibronic state
surfaces. In this case, the nuclei evolve on a single adiabatic NEO-MSDFT vibronic state surface

k according to
Mlﬁl (1) ==Vy, <‘//k (r",r";R)| [:[NEO Iz (revrp;R)> ==V E, (14)

Typically instantaneous transitions between adiabatic surfaces are incorporated according to a

stochastic algorithm based on the quantum amplitudes C,(¢) and C,(¢), which are determined by



integrating Eq. (11). To obtain statistically meaningful results from a surface hopping method such
as Tully’s fewest switching algorithm,* a large number of independent trajectories must be
propagated. For the purposes of demonstrating surface hopping with NEO-MSDFT, we used an
alternative approach to avoid propagating a large number of trajectories. Specifically, we
propagated a small set of trajectories and used the Landau-Zener (LZ) formula to estimate the
nonadiabatic transition probability* and determine when the transitions should occur. Within this
context, the LZ transition probability between the adiabatic vibronic states 0 and 1 in the vicinity

of an avoided crossing can be expressed as*

(15)

p 27[VIZII
=exp| — -
P | VREII _VREI | v

where E, and E are the energies of the approximate diabatic states (i.e., the localized NEO-DFT

states) and V[ is the vibronic coupling between the approximate diabatic states expressed as

1

_ HI,I + HII,II
2
1- SI,II

L L
2

Vin = (16)

Note that Eq. (15) is valid only in the avoided crossing regions. When a transition occurs, to
maintain energy conservation, the velocities are adjusted according to a force in the direction of
the nonadiabatic coupling vector.*

In our simulations, the nonadiabatic transitions were considered to occur at the local
maxima of the LZ transition probability within the avoided crossing regions between the vibronic
surfaces. As will be shown below, proton transfer in malonaldehyde exhibits two distinct avoided
crossing regions. Four trajectories were propagated to sample the four distinct pathways, and the
LZ transition probabilities were used to weight these trajectories in a manner that provides a

reasonable estimate of the proton transfer time.

10



2.3. Computational details

The NEO-MSDFT method has been implemented in a developer version of Q-Chem 5.3
to enable calculation of the energies,® analytical gradients,*® and analytical nonadiabatic coupling
vectors. The expression for the analytical nonadiabatic coupling vector is given in the SI. All the
NEO-MSDFT dynamics simulations were carried out using our in-house code with an interface
connecting to Q-Chem. We chose malonaldehyde as a prototypical molecular system exhibiting
hydrogen tunneling®*2% 4547 to illustrate adiabatic, Ehrenfest, and surface hopping dynamics
simulations. The same initial conditions were applied to all dynamics simulations, where each
trajectory starts from the NEO-MSDFT ground state equilibrium structure of malonaldehyde. The
initial velocities for the classical nuclei were assigned in the direction from the equilibrium
geometry toward the transition state geometry with a total kinetic energy corresponding to 150 K.

We applied the fourth-order Runge-Kutta numerical integration method to integrate Eq.
(11), which typically requires a smaller time step than the time step Az required to integrate the
classical equations of motion (Eq. (8)). The nonadiabatic coupling elements were linearly
interpolated between ¢ —Ar/2 to t+At/2, and the NEO-MSDFT vibronic state energies were
linearly interpolated between ¢ and #+ A¢. The integration time step was 0.15 fs for the classical

equations of motion and 0.0003 fs for the time-dependent Schrodinger equation.

Within the NEO-MSDFT framework, we used the B3LYP electronic density functional®!"”
52 and the epc17-2 electron-proton correlation functional,!” together with the cc-pVTZ electronic
basis set> and the PB4-D protonic basis set.>* For each malonaldehyde geometry at each time step,
the transferring proton is represented by two basis function centers that are optimized variationally.

Each basis function center is positioned near either the donor or the acceptor oxygen and contains

11



a set of electronic and protonic basis functions. To accelerate the optimization process at each time
step, first each of the two proton basis function centers was optimized separately for each localized
NEO-DFT state, and subsequently the two proton basis function centers were optimized
simultaneously on the specified adiabatic vibronic surface. This basis function center optimization
procedure was performed on the NEO-MSDFT ground vibronic state surface for adiabatic
dynamics, on the occupied vibronic state surface for surface hopping dynamics, and on either the
ground or mixed vibronic state surface for Ehrenfest dynamics, where these two strategies were
shown to produce similar results (see Figure S4). In some proton transfer reactions, the double-
well potential energy surface can change to a single-well potential energy surface. In this case, the
two basis function centers should smoothly optimize variationally toward the minimum while
remaining sufficiently separated to avoid linear dependencies. In some dynamical trajectories,
however, numerical issues may be encountered if the change occurs over an extremely short time
period, and a smaller time step is required to ensure numerical stability.

The most computationally intensive parts of these calculations are the optimization of the
basis function center positions at each time step, which could be avoided using traveling basis
functions,” and the solution of the coupled-perturbed NEO-SCF equations to compute the
analytical gradients and nonadiabatic coupling vectors. The current NEO-MSDFT nonadiabatic
dynamics code has not been optimized yet for computational efficiency.

The current implementation of the NEO-MSDFT approach is qualitatively but not
necessarily quantitatively accurate for dynamical simulations (see Figure S2). Moreover, the
vibronic states associated with the bending modes of the transferring hydrogen are not included in
the two-state NEO-MSDFT implementation. The proton densities associated with these bending

modes can be computed with NEO-TDDFT or grid-based methods, and they have been found to

12



be mainly perpendicular to the proton densities associated with the stretching modes.>®> These
vibronic states are not expected to couple strongly to the vibronic states of interest for hydrogen
tunneling. However, the approach could be extended to include additional vibronic states if
needed.

The extension to multiple proton transfer reactions is more straightforward. The description
of multiple proton transfer reactions requires two proton basis function centers per transferring
proton and up to 2" localized NEO-DFT states to construct the nonorthogonal configuration
interaction matrix for N transferring protons. When more vibronic states are included, the matrix
equation given by Eq. (1) can be solved using a standard linear algebra library. This framework

allows the proton configurations to change along the reaction pathway.

3. Results and Discussion

3.1. Adiabatic ground state dynamics

In this subsection, we present the results from an adiabatic dynamics trajectory on the
NEO-MSDFT ground vibronic state. In this case, the proton density, as well as the electron density,
responds instantaneously to the movement of the classical nuclei. Figure 1A shows configurations
of the classical nuclei as well as isosurface plots of the quantum proton density along the trajectory.
Similar to our previous investigation using smaller electronic/protonic basis sets,'* the NEO-
MSDEFT ground state trajectory for malonaldehyde shows the proton density evolving from being
localized near the donor oxygen to being delocalized between the two oxygen atoms and finally
being localized near the acceptor oxygen. In the conventional Born-Oppenheimer picture, the
asymmetric, bilobal proton densities at 6, 10, and 15 fs correspond to a slightly asymmetric double-

well potential energy surface, while the single-lobe but slightly delocalized proton density at 12 fs

13



corresponds to the ground proton vibrational state above the barrier on a more symmetric surface.
As expected, the distance between the donor and acceptor oxygen atoms is a minimum at ~12 fs.

Figure 1B presents the distances from the expectation value of the quantum proton position
to the donor oxygen and the acceptor oxygen along the trajectory. Consistent with the movement
of the quantum proton density shown in Figure 1A, the expectation value of the quantum proton
position moves away from the donor oxygen and toward the acceptor oxygen. The quantum proton
is equidistant between the donor and acceptor oxygen atoms (i.e., the red and blue lines cross in
Figure 1B) at ~12 fs, which we denote the proton transfer time for simplicity. Note that for systems
exhibiting recrossings in this region, a more robust definition of the proton transfer time would be
the time required for the proton to form a covalent bond with the acceptor.’® At ~19 fs, the proton
reaches the closest position relative to the acceptor proton and starts to move back toward the
donor oxygen.

The driving force for proton transfer is mainly the movement of the two C—O groups that
bracket the quantum proton. Starting from the equilibrium structure of malonaldehyde, the C-O
bond involving the donor oxygen decreases in length, while the other C—O bond involving the
acceptor oxygen increases in length. At ~12 fs, the configuration of the molecule is close to the
transition state geometry,*® where the two C—O bond lengths are similar. After this time, the C-O
bond involving the donor oxygen continues to decrease, and the quantum proton continues to
transfer to the acceptor oxygen. The donor and acceptor oxygen atoms also move toward each
other until ~12 fs and then move apart again as the trajectory continues. These results agree with
the qualitative characteristics of the minimum energy path on the NEO-MSDFT ground vibronic

state surface.®

14
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Figure 1. Adiabatic dynamics trajectory on the NEO-MSDFT ground vibronic state surface for
malonaldehyde. (A) Configurations along the trajectory, where the quantum proton density is
plotted in cyan with an isosurface value of 0.02. (B) Distance from the expectation value of the
transferring proton position to the donor oxygen (Op) and the acceptor oxygen (Oa) as a function
of time along the trajectory.
3.2. Ehrenfest dynamics

Although the adiabatic dynamics trajectory on the NEO-MSDFT ground vibronic state
surface provides a clear picture of intramolecular proton transfer in malonaldehyde, it neglects the
contribution from the excited vibronic state, which can be important due to the small splitting
between the ground and excited vibronic states. Nonadiabatic dynamics approaches are needed to
provide a more accurate description of this type of process. One such approach is based on
Ehrenfest dynamics, where the classical nuclei move on a mean-field or average potential energy

surface. We combined the NEO-MSDFT method with Ehrenfest dynamics to propagate the

classical nuclei on a vibronic surface that is a linear combination of the ground and excited state
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vibronic surfaces. The solid lines in Figure 2A represent the distances between the expectation
value of the transferring proton position and the donor and acceptor oxygen atoms obtained from
an Ehrenfest dynamics trajectory. The general features of the proton transfer process are similar to
those observed in the adiabatic ground state dynamics trajectory (dashed lines in Figure 2A). The
main difference between the Ehrenfest and adiabatic trajectories is that the quantum proton
transfers slower for the Ehrenfest dynamics trajectory. The proton transfer time is ~17 fs in the
Ehrenfest dynamics trajectory compared to ~12 fs in the adiabatic trajectory. The involvement of
the excited vibronic state slows down the movement of the classical nuclei, especially the change
of the two C—O bond lengths and the decrease of the O—O distance, and thereby slows down proton
transfer.

To understand this behavior, we need to track the role of the NEO-MSDFT excited vibronic
state along the trajectory. Figure 2B provides the quantum probabilities, Co? and C,?, for the NEO-
MSDFT ground and excited vibronic states as a function of time along the Ehrenfest dynamics
trajectory. In the first 5 fs of the trajectory, the quantum probability of the excited state, Ci?, is
almost 0, and therefore the trajectory is propagated almost purely on the ground vibronic state
surface within this time interval (solid and dashed lines are identical in Figure 2A). After 5 fs, C)?
begins to increase, and the NEO-MSDFT excited vibronic state contributes more to the average
vibronic surface. At ~15 fs, the weight of the excited vibronic state reaches its maximum and is
slightly higher than the weight of the ground vibronic state. After 15 fs, Ci? begins to decrease and
reaches a local minimum at ~17 fs and increases again until ~21 fs. After 21 fs, Ci? decreases as
the time-dependent wavefunction becomes almost entirely dominated by the ground vibronic state,

and the transferring proton is localized on the acceptor oxygen. The nonadiabatic coupling element,

<l//0|8!//1 / al‘> , also exhibits peaks in the regions of 15 and 21 fs, as shown in Figure 2C.
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This behavior of the quantum probabilities and nonadiabatic coupling can be understood
in the context of the minimum energy path generated on the NEO-MSDFT ground vibronic state
and the corresponding energies of the excited vibronic state for the geometries along this pathway
(Figure S1). For configurations close to the equilibrium structure, the excited vibronic state energy
is significantly higher than the ground vibronic state energy because the quantum proton is
localized near the donor oxygen (see the proton density in Figure S1). At the transition state
geometry, the quantum proton is a single delocalized lobe equidistant from the donor and acceptor
oxygen atoms (see the proton density in Figure S1). Because of the relatively short oxygen-oxygen
distance at the transition state, the splitting between the ground and excited vibronic states at this
geometry is relatively large. In the conventional Born-Oppenheimer picture, the barrier at the
transition state is so low that the proton vibrational ground state is above the barrier (see the
symmetric proton potential in Figure S1). In contrast, symmetric configurations obtained by
averaging the reactant and product structures lead to significantly smaller tunneling splittings for
malonaldehyde, as shown in Ref. ** for both the NEO-MSDFT method and a numerically exact
grid-based method, but such conformations are not sampled along the minimum energy path or
along trajectories generated at relatively high temperatures. Most interestingly, in the regions
between the equilibrium and transition state structures, the energy difference between the NEO-
MSDFEFT excited and ground vibronic states is very small. In the conventional Born-Oppenheimer
picture, the proton is moving on a slightly asymmetric double well potential energy surface (see
corresponding proton potential in Figure S1). The resulting proton density is bilobal and slightly
asymmetric in both the ground and excited vibronic states (see the proton densities in Figure S1),
corresponding to a small energy splitting. There are two such regions, one on each side of the

transition state, due to the symmetry of malonaldehyde.
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Similar behavior is observed along the Ehrenfest dynamics trajectory, as shown by the
proton densities of the ground and excited vibronic states at the regions of strong nonadiabatic
coupling (i.e., 15 fs and 21 fs in Figure 2D). At the start of the trajectory, the proton density is
localized near the donor oxygen, but at 15 fs, the proton density becomes delocalized, bilobal, and
slightly asymmetric, corresponding to a region of strong nonadiabatic coupling. The proton density
becomes more symmetric with a single lobe at ~17 fs, but then becomes bilobal and slightly
asymmetric again at ~21 fs, corresponding to another region of strong nonadiabatic coupling.
These two regions of strong nonadiabatic coupling are related to the two regions with small energy
splitting on each side of the transition state along the minimum energy path (Figure S1). As the
trajectory progresses, the proton density becomes localized on the acceptor oxygen, where the
nonadiabatic coupling is negligible. These proton densities are qualitatively similar to those plotted
along the minimum energy path (Figure S1). The contribution from the excited vibronic state slows
down proton transfer because it increases the energy barrier along the trajectory. Similar behavior
is illustrated by the minimum energy path in Figure S1: the barrier along the minimum energy path
is clearly higher for a mixture of the ground and excited vibronic states than the ground vibronic

state.
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Figure 2. Ehrenfest dynamics trajectory on the NEO-MSDFT vibronic surfaces for
malonaldehyde. (A) Distance from the expectation value of the transferring proton position to the
donor oxygen (Op) and the acceptor oxygen (Oa) as a function of time from an Ehrenfest dynamics
trajectory (solid lines) and an adiabatic ground vibronic state trajectory (dashed lines, same as
Figure 1B). (B) Quantum probabilities Co? and C:? associated with the NEO- MSDFT ground and
excited vibronic states, respectively, along the Ehrenfest dynamics trajectory. (C) Nonadiabatic
coupling element (NAC) along the Ehrenfest dynamics trajectory. (D) Configurations at 15 fs, 17
fs, and 21 fs with the quantum proton density plotted in cyan for the ground vibronic state and in
purple for the excited vibronic state.

Including the effects of the NEO-MSDFT excited vibronic state via Ehrenfest dynamics
has been shown to influence the proton transfer process in malonaldehyde and to decrease the
proton transfer rate. A well-known limitation of Ehrenfest dynamics, however, is that it is unable

to describe branching processes, where two potential energy surfaces exhibit distinct forces after

a region of strong nonadiabatic coupling. Proton transfer is known to exhibit such branching
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processes.®’ An alternative nonadiabatic dynamics approach, surface hopping, is able to describe
branching processes by propagating on adiabatic potential energy surfaces with instantaneous
transitions incorporated in a manner that reflects the quantum probabilities determined by
integration of the time-dependent Schrodinger equation. As mentioned above, the fewest switches
surface hopping method*® requires the propagation of a large ensemble of trajectories to obtain
reliable results. Given the distinct localized regions of strong nonadiabatic coupling shown in
Figure 2B and 2C, we employed an alternative strategy based on the Landau-Zener probability to
avoid this computational expense.
3.3. Surface hopping dynamics

To demonstrate NEO-MSDFT with surface hopping dynamics, we propagated four
representative trajectories corresponding to the four cases of a transition occurring or not occurring
at each of the two distinct avoided crossing regions (i.e., strong nonadiabatic coupling regions). A
nonadiabatic transition was incorporated when the Landau-Zener probability, given in Eq. (15),
reached a local maximum within an avoided crossing region. Figure 3 and Figure 4 show the
simulation results from two different representative surface hopping trajectories.

For the trajectory shown in Figure 3, two nonadiabatic transitions occur, with the first
transition at 9.6 fs and the second transition at 20.2 fs, corresponding to the two local maxima in
the Landau-Zener probability in these regions. Prior to 9.6 fs, the classical nuclei move on the
NEO-MSDFT ground vibronic state surface, and the trajectory is identical to the previous adiabatic
ground vibronic state trajectory (dashed lines in Figure 3). After the first transition at 9.6 fs, the
nuclei move on the NEO-MSDFT excited vibronic state surface, which slows down proton transfer
for similar reasons as discussed above for the Ehrenfest dynamics trajectory. Specifically, the

barrier to proton transfer is higher on the excited state surface. Thus, the trajectory requires an
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additional 9.3 fs to reach the point where the expectation value of the quantum proton is equidistant
from the donor and acceptor oxygen atoms. The classical nuclei continue to move on the excited
vibronic state surface until the second transition at 20.2 fs, when the nuclei start moving on the
ground vibronic state surface, and the expectation value of the quantum proton continues to
approach the acceptor oxygen. Figure 3B depicts the quantum probabilities for the ground and
excited vibronic states. If enough independent trajectories were generated with Tully’s fewest
switches algorithm,* the fraction of trajectories in a given state i at time # would be C?, except for
complications associated with classically forbidden transitions.

Figure 4 shows another example of a surface hopping trajectory, where a nonadiabatic
transition did not occur at 9.6 fs, even though the Landau-Zener probability reaches a maximum.
This trajectory continues to move on the NEO-MSDFT ground vibronic state and is identical to
the adiabatic ground vibronic state trajectory (dashed lines in Figure 4) until 15.5 fs. At this time,
the Landau-Zener probability reaches the second maximum, and a nonadiabatic transition to the
excited vibronic state occurs. As seen in Figure 4A, however, the crossing between the two curves
(solid red and blue lines) associated with proton transfer occurred at 12.3 fs, which was prior to
the nonadiabatic transition. Such a surface hopping trajectory does not affect the proton transfer
rate when it is defined to be the time at which the expectation value of the transferring proton
position is equidistant from the donor and acceptor oxygen atoms. We also investigated other types
of surface hopping trajectories: (1) no hop allowed along the trajectory and (2) only one hop
allowed at 9.6 fs. The first case (Figure S5) is identical to the adiabatic ground state trajectory. For
the second case (Figure S6), the trajectory is similar to the one with two nonadiabatic transitions
shown in Figure 3 and exhibits an identical proton transfer rate. The slight difference occurs after

20.2 fs, when the trajectory shown in Figure 3 allows a nonadiabatic transition back down to the

21



ground vibronic state surface, while the trajectory shown in Figure S6 remains on the excited

vibronic state surface.
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Figure 3. Representative surface hopping dynamics trajectory on the NEO-MSDFT vibronic
surfaces for malonaldehyde. (A) Distance from the expectation value of the transferring proton
position to the donor oxygen (Op) and the acceptor oxygen (Oa) as a function of time from a
representative surface hopping trajectory (solid lines) and an adiabatic ground vibronic state
trajectory (dashed lines, same as Figure 1B). (B) Quantum probabilities Co®> and Ci? associated
with the NEO-MSDFT ground and excited vibronic states, respectively, along the surface hopping
trajectory (darker line shows occupied state, where the first transition occurs at 9.6 fs and the
second transition occurs at 20.2 fs).
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Figure 4. Representative surface hopping dynamics trajectory on the NEO-MSDFT vibronic
surfaces for malonaldehyde. (A) Distance from the expectation value of the transferring proton
position to the donor oxygen (Op) and the acceptor oxygen (Oa) as a function of time from a
representative surface hopping trajectory (solid lines) and an adiabatic ground vibronic state
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trajectory (dashed lines, same as Figure 1B). (B) Quantum probabilities Co?> and Ci? associated
with the NEO-MSDFT ground and excited vibronic states, respectively, along this surface hopping
trajectory (darker line shows occupied state, where the transition occurs at 15.5 fs).

3.4. Combined analysis

Table 1 provides the proton transfer time obtained from the adiabatic, Ehrenfest, and
surface hopping dynamics simulations with the same initial conditions. Here, the proton transfer
time is defined as the time when the expectation value of the quantum proton position is equidistant
to the donor and acceptor oxygen atoms. As discussed above, the adiabatic ground vibronic state
trajectory predicts the fastest proton transfer time of 12.3 fs. The Ehrenfest dynamics trajectory,
which includes contributions from the excited vibronic state associated with a higher barrier for
proton transfer, delays the time for proton transfer to 16.9 fs. For the surface hopping trajectories,
we estimated the proton transfer time using the four representative trajectories. Two of these
trajectories exhibit a proton transfer time of 18.8 fs, where the nonadiabatic transition occurs at
9.6 fs with a Landau-Zener probability of 0.72. The other two trajectories exhibit a proton transfer
time of 12.3 fs, where a nonadiabatic transition does not occur at 9.6 fs or at any time before the
proton transfers. To estimate the proton transfer time, we computed the weighted sum of these two
proton transfer times using the Landau-Zener probability. This estimate results in a proton transfer
time of 17.0 fs, which is very close to the Ehrenfest dynamics result for this specific system and
set of initial conditions. It is important to note that a comparison to experimental measurements

would require sampling over initial conditions.
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Table 1. Proton Transfer Time® in Malonaldehyde from Different Dynamics Approaches

Approach Time (fs)
adiabatic ground state 12.3
Ehrenfest 16.9
Surface hopping 17.0°

“The proton transfer time is defined as the time when the expectation value of the transferring
proton position is equidistant to the donor and acceptor oxygen atoms. This proton transfer time is
not comparable to experimental measurements because only a single set of initial conditions is
considered.
bEstimated from a weighted sum of four independent trajectories using the Landau-Zener transition
probability.

We also analyzed energy conservation for all of these trajectories. Figure S7 presents some
examples, including the adiabatic ground state trajectory, the Ehrenfest dynamics trajectory, and
one surface hopping trajectory. For the adiabatic ground state trajectory, the total energy exhibits
excellent conservation with fluctuations within 2.0x 107 Hartree. Energy conservation is not quite
as good for the Ehrenfest and surface hopping dynamics trajectories, where the total energy
deviation increases to ~6.0x107° Hartree. Such energy conservation behavior is considered to be
acceptable in most situations and can be improved systematically using a tighter gradient tolerance
for the basis function center optimization at each classical MD time step, as well as a smaller MD
time step. This improvement is shown in Figure S8 for the HCN molecule. Similarly, for the
current study of malonaldehyde, the total energy will be conserved better if a tighter gradient

tolerance and smaller time step are used.
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4. Conclusions

In this paper, we introduced a scheme combining the NEO-MSDFT approach with both
adiabatic and nonadiabatic dynamics simulations of proton transfer reactions. Using
malonaldehyde as a prototypical proton transfer system exhibiting hydrogen tunneling, we
performed nonadiabatic Ehrenfest and surface hopping dynamics on the NEO-MSDFT vibronic
state surfaces. The proton transfer process is analyzed by tracking the expectation value of the
quantum proton position as well as the proton density. Upon inclusion of contributions from the
excited vibronic state via either Ehrenfest or surface hopping dynamics, the proton transfer process
is slowed down. In all cases, the total energy is well conserved, and energy conservation is shown
to be further improved when a tighter gradient tolerance is used for optimizing the proton basis
function centers.

In prior work, the NEO-MSDFT approach was shown to produce quantitatively accurate
hydrogen tunneling splittings for fixed geometries.*> The combination of the NEO-MSDFT
approach with nonadiabatic dynamics methods opens up new possibilities for investigating
hydrogen tunneling dynamics at finite temperature, while including the coupling between the
transferring hydrogen and the other nuclei. Comparison to experimental data obtained at these
temperatures will require the simulation of a large number of nonadiabatic dynamics trajectories
averaged over initial conditions that are consistent with the experimental conditions. Hydrogen
tunneling splittings for comparison with experimental data can be calculated with methods such
as vibronic coupling theory, as applied previously within the NEO framework.*°

Attaining quantitative accuracy with these methods may require further improvement of
the NEO-MSDFT scheme. Such improvements include the development of more accurate

electron-proton correlation functionals and the addition of more vibronic states. Moreover, the
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description of multiple proton transfer reactions will require additional vibronic states. These
extensions represent future directions that will enable a wide range of hydrogen tunneling

simulations.

Supporting Information

Derivation and benchmarking of NEO-MSDFT analytical nonadiabatic coupling vector; NEO-
MSDEFT ground and excited vibronic state energies and proton densities along minimum energy
path; additional representative surface hopping trajectories; total energy conservation from
adiabatic, Ehrenfest, and surface hopping dynamics trajectories; analysis of total energy

conservation for HCN molecule.

Acknowledgement

The authors thank Dr. Alexander Soudackov, Prof. John Tully, Joseph Dickinson, Dr. Christopher
Malbon, Dr. Tao Li, Dr. Jonathan Fetherolf, and Mathew Chow for useful discussions. This work

was supported by the National Science Foundation Grant No. CHE-1954348.

Data Availability Statement

The data that support the findings of this study are available within the article and its Supporting

Information.

26



References

1. Cha, Y.; Murray, C. J.; Klinman, J. P. Hydrogen Tunneling in Enzyme Reactions. Science
1989, 243, 1325-1330.

2. Richardson, J. O.; Pérez, C.; Lobsiger, S.; Reid, A. A.; Temelso, B.; Shields, G. C.; Kisiel,
Z.; Wales, D. J.; Pate, B. H.; Althorpe, S. C. Concerted Hydrogen-Bond Breaking by Quantum
Tunneling in the Water Hexamer Prism. Science 2016, 351, 1310.

3. Vaillant, C. L.; Wales, D. J.; Althorpe, S. C. Tunneling Splittings in Water Clusters from
Path Integral Molecular Dynamics. J. Phys. Chem. Lett. 2019, 10, 7300-7304.

4, Litman, Y.; Richardson, J. O.; Kumagai, T.; Rossi, M. Elucidating the Nuclear Quantum
Dynamics of Intramolecular Double Hydrogen Transfer in Porphycene. J. Am. Chem. Soc. 2019,
141,2526-2534.

5. Gust, D.; Moore, T. A.; Moore, A. L. Solar Fuels Via Artificial Photosynthesis. Acc. Chem.
Res. 2009, 42, 1890-1898.

6. Hammarstrom, L.; Styring, S. Proton-Coupled Electron Transfer of Tyrosines in
Photosystem Ii and Model Systems for Artificial Photosynthesis: The Role of a Redox-Active Link
between Catalyst and Photosensitizer. Energy & Environmental Science 2011, 4, 2379-2388.

7. Stubbe, J.; Nocera, D. G.; Yee, C. S.; Chang, M. C. Y. Radical Initiation in the Class I
Ribonucleotide Reductase: Long-Range Proton-Coupled Electron Transfer? Chem. Rev. 2003,
103,2167-2202.

8. Webb, S. P.; lIordanov, T.; Hammes-Schiffer, S. Multiconfigurational Nuclear-Electronic
Orbital Approach: Incorporation of Nuclear Quantum Effects in Electronic Structure Calculations.
J. Chem. Phys. 2002, 117,4106-4118.

9. Pak, M. V.; Chakraborty, A.; Hammes-Schiffer, S. Density Functional Theory Treatment
of Electron Correlation in the Nuclear—Electronic Orbital Approach. J. Phys. Chem. A 2007, 111,
4522-4526.

10.  Brorsen, K. R.; Yang, Y.; Hammes-Schiffer, S. Multicomponent Density Functional
Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries. J. Phys. Chem.
Lett. 2017, 8, 3488-3493.

11. Yang, Y.; Schneider, P. E.; Culpitt, T.; PavoSevi¢, F.; Hammes-Schiffer, S. Molecular
Vibrational Frequencies within the Nuclear—Electronic Orbital Framework. J. Phys. Chem. Lett.
2019, 70, 1167-1172.

12. Zhao, L.; Wildman, A.; Tao, Z.; Schneider, P.; Hammes-Schiffer, S.; Li, X. Nuclear—
Electronic Orbital Ehrenfest Dynamics. J. Chem. Phys. 2020, 153, 224111.

13. Pavosevi¢, F.; Culpitt, T.; Hammes-Schiffer, S. Multicomponent Quantum Chemistry:
Integrating Electronic and Nuclear Quantum Effects Via the Nuclear—Electronic Orbital Method.
Chem. Rev. 2020, 120, 4222-4253.

14. Schneider, P. E.; Tao, Z.; PavoSevi¢, F.; Epifanovsky, E.; Feng, X.; Hammes-Schiffer, S.
Transition States, Reaction Paths, and Thermochemistry Using the Nuclear—Electronic Orbital
Analytic Hessian. J. Chem. Phys. 2021, 154, 054108.

15. Tao, Z.; Yu, Q.; Roy, S.; Hammes-Schiffer, S. Direct Dynamics with Nuclear—Electronic
Orbital Density Functional Theory. Acc. Chem. Res. 2021, 54, 4131-4141.

16. Xu, X.; Chen, Z.; Yang, Y. Molecular Dynamics with Constrained Nuclear Electronic
Orbital Density Functional Theory: Accurate Vibrational Spectra from Efficient Incorporation of
Nuclear Quantum Effects. J. Am. Chem. Soc. 2022, 144, 4039-4046.

27



17. Pavosevi¢, F.; Culpitt, T.; Hammes-Schiffer, S. Multicomponent Coupled Cluster Singles
and Doubles Theory within the Nuclear-Electronic Orbital Framework. J. Chem. Theory Comput.
2018, 15, 338-347.

18. Pavosevi¢, F.; Rousseau, B. J. G.; Hammes-Schiffer, S. Multicomponent Orbital-
Optimized Perturbation Theory Methods: Approaching Coupled Cluster Accuracy at Lower Cost.
J. Phys. Chem. Lett. 2020, 11, 1578-1583.

19. Fajen, O. J.; Brorsen, K. R. Multicomponent Mp4 and the Inclusion of Triple Excitations
in Multicomponent Many-Body Methods. J. Chem. Phys. 2021, 155, 234108.

20. Yang, Y.; Brorsen, K. R.; Culpitt, T.; Pak, M. V.; Hammes-Schiffer, S. Development of a
Practical Multicomponent Density Functional for Electron-Proton Correlation to Produce
Accurate Proton Densities. J. Chem. Phys. 2017, 147, 114113.

21. Yang, Y.; Culpitt, T.; Hammes-Schiffer, S. Multicomponent Time-Dependent Density
Functional Theory: Proton and Electron Excitation Energies. J. Phys. Chem. Lett. 2018, 9, 1765-
1770.

22. Zhao, L.; Tao, Z.; Pavosevi¢, F.; Wildman, A.; Hammes-Schiffer, S.; Li, X. Real-Time
Time-Dependent Nuclear—Electronic Orbital Approach: Dynamics Beyond the Born—
Oppenheimer Approximation. J. Phys. Chem. Lett. 2020, 11, 4052-4058.

23. Zhao, L.; Wildman, A.; Pavosevi¢, F.; Tully, J. C.; Hammes-Schiffer, S.; Li, X. Excited
State Intramolecular Proton Transfer with Nuclear-Electronic Orbital Ehrenfest Dynamics. J.
Phys. Chem. Lett. 2021, 12, 3497-3502.

24, Wang, Y.; Braams, B. J.; Bowman, J. M.; Carter, S.; Tew, D. P. Full-Dimensional Quantum
Calculations of Ground-State Tunneling Splitting of Malonaldehyde Using an Accurate Ab Initio
Potential Energy Surface. J. Chem. Phys. 2008, 128, 224314.

25. Hammer, T.; Coutinho-Neto, M. D.; Viel, A.; Manthe, U. Multiconfigurational Time-
Dependent Hartree Calculations for Tunneling Splittings of Vibrational States: Theoretical
Considerations and Application to Malonaldehyde. J. Chem. Phys. 2009, 131, 224109.

26. Schroder, M.; Gatti, F.; Meyer, H.-D. Theoretical Studies of the Tunneling Splitting of
Malonaldehyde Using the Multiconfiguration Time-Dependent Hartree Approach. J. Chem. Phys.
2011, /34, 234307.

27.  Pak, M. V.; Hammes-Schiffer, S. Electron-Proton Correlation for Hydrogen Tunneling
Systems. Phys. Rev. Lett. 2004, 92, 103002.

28. Pak, M. V.; Swalina, C.; Webb, S. P.; Hammes-Schiffer, S. Application of the Nuclear-
Electronic Orbital Method to Hydrogen Transfer Systems: Multiple Centers and
Multiconfigurational Waveftunctions. Chemical Physics 2004, 304, 227-236.

29. Gao, J.; Grofe, A.; Ren, H.; Bao, P. Beyond Kohn—Sham Approximation: Hybrid
Multistate Wave Function and Density Functional Theory. J. Phys. Chem. Lett. 2016, 7, 5143-
5149.

30. Grofe, A.; Qu, Z.; Truhlar, D. G.; Li, H.; Gao, J. Diabatic-at-Construction (Dac) Method
for Diabatic and Adiabatic Ground and Excited States Based on Multistate Density Functional
Theory. J. Chem. Theory Comput. 2017, 13, 1176-1187.

31. Lu, Y.; Gao, J. Multistate Density Functional Theory of Excited States. J. Phys. Chem.
Lett. 2022, 7762-7769.

32. Mo, Y.; Bao, P.; Gao, J. Energy Decomposition Analysis Based on a Block-Localized
Wavefunction and Multistate Density Functional Theory. Phys. Chem. Chem. Phys. 2011, 13,
6760-6775.

28



33, Yu, Q.; Hammes-Schiffer, S. Nuclear-Electronic Orbital Multistate Density Functional
Theory. J. Phys. Chem. Lett. 2020, 11, 10106-10113.

34, Skone, J. H.; Pak, M. V.; Hammes-Schiffer, S. Nuclear-Electronic Orbital Nonorthogonal
Configuration Interaction Approach. J. Chem. Phys. 2005, 123, 134108.

35. Thom, A. J. W.; Head-Gordon, M. Hartree—Fock Solutions as a Quasidiabatic Basis for
Nonorthogonal Configuration Interaction. J. Chem. Phys. 2009, 131, 124113.

36. Lischka, H.; Nachtigallova, D.; Aquino, A. J. A.; Szalay, P. G.; Plasser, F.; Machado, F.
B. C.; Barbatti, M. Multireference Approaches for Excited States of Molecules. Chem. Rev. 2018,
118, 7293-7361.

37. Ghosh, S.; Verma, P.; Cramer, C. J.; Gagliardi, L.; Truhlar, D. G. Combining Wave
Function Methods with Density Functional Theory for Excited States. Chem. Rev. 2018, 118,
7249-7292.

38. Yu, Q.; Schneider, P. E.; Hammes-Schiffer, S. Analytical Gradients for Nuclear—Electronic
Orbital Multistate Density Functional Theory: Geometry Optimizations and Reaction Paths. J.
Chem. Phys. 2022, 156, 114115.

39, Hammes-Schiffer, S.; Tully, J. C. Proton Transfer in Solution: Molecular Dynamics with
Quantum Transitions. J. Chem. Phys. 1994, 101, 4657-4667.

40. Crespo-Otero, R.; Barbatti, M. Recent Advances and Perspectives on Nonadiabatic Mixed
Quantum—Classical Dynamics. Chem. Rev. 2018, 118, 7026-7068.

41. Curchod, B. F. E.; Martinez, T. J. Ab Initio Nonadiabatic Quantum Molecular Dynamics.
Chem. Rev. 2018, 118, 3305-3336.

42, Li, X.; Tully, J. C.; Schlegel, H. B.; Frisch, M. J. Ab Initio Ehrenfest Dynamics. J. Chem.
Phys. 2005, 123, 084106.

43. Tully, J. C. Molecular Dynamics with Electronic Transitions. J. Chem. Phys. 1990, 93,
1061-1071.

44. Tully, J. C. Mixed Quantum-Classical Dynamics. Faraday Discussions 1998, 110, 1-13.
45. Coutinho-Neto, M. D.; Viel, A.; Manthe, U. The Ground State Tunneling Splitting of
Malonaldehyde: Accurate Full Dimensional Quantum Dynamics Calculations. J. Chem. Phys.
2004, /21,9207-9210.

46. Hazra, A.; Skone, J. H.; Hammes-Schiffer, S. Combining the Nuclear-Electronic Orbital
Approach with Vibronic Coupling Theory: Calculation of the Tunneling Splitting for
Malonaldehyde. J. Chem. Phys. 2009, 130, 054108.

47.  Kaser, S.; Unke, O. T.; Meuwly, M. Reactive Dynamics and Spectroscopy of Hydrogen
Transfer from Neural Network-Based Reactive Potential Energy Surfaces. New Journal of Physics
2020, 22, 055002.

48. Meek, G. A.; Levine, B. G. Evaluation of the Time-Derivative Coupling for Accurate
Electronic State Transition Probabilities from Numerical Simulations. J. Phys. Chem. Lett. 2014,
5,2351-2356.

49.  Tully, J. C. Perspective: Nonadiabatic Dynamics Theory. J. Chem. Phys. 2012, 137,
22A301.

50. Epifanovsky, E.; Gilbert, A. T. B.; Feng, X.; Lee, J.; Mao, Y.; Mardirossian, N.; Pokhilko,
P.; White, A. F.; Coons, M. P.; Dempwolff, A. L.; Gan, Z.; Hait, D.; Horn, P. R.; Jacobson, L. D.;
Kaliman, I.; Kussmann, J.; Lange, A. W.; Lao, K. U.; Levine, D. S.; Liu, J.; McKenzie, S. C.;
Morrison, A. F.; Nanda, K. D.; Plasser, F.; Rehn, D. R.; Vidal, M. L.; You, Z.-Q.; Zhu, Y.; Alam,
B.; Albrecht, B. J.; Aldossary, A.; Alguire, E.; Andersen, J. H.; Athavale, V.; Barton, D.; Begam,
K.; Behn, A.; Bellonzi, N.; Bernard, Y. A.; Berquist, E. J.; Burton, H. G. A.; Carreras, A.; Carter-

29



Fenk, K.; Chakraborty, R.; Chien, A. D.; Closser, K. D.; Cofer-Shabica, V.; Dasgupta, S.; de
Wergifosse, M.; Deng, J.; Diedenhofen, M.; Do, H.; Ehlert, S.; Fang, P.-T.; Fatehi, S.; Feng, Q.;
Friedhoff, T.; Gayvert, J.; Ge, Q.; Gidofalvi, G.; Goldey, M.; Gomes, J.; Gonzalez-Espinoza, C.
E.; Gulania, S.; Gunina, A. O.; Hanson-Heine, M. W. D.; Harbach, P. H. P.; Hauser, A.; Herbst,
M. F.; Hernandez Vera, M.; Hodecker, M.; Holden, Z. C.; Houck, S.; Huang, X.; Hui, K.; Huynh,
B. C.; Ivanov, M.; Jasz, A.; Ji, H.; Jiang, H.; Kaduk, B.; Kahler, S.; Khistyaev, K.; Kim, J.; Kis,
G.; Klunzinger, P.; Koczor-Benda, Z.; Koh, J. H.; Kosenkov, D.; Koulias, L.; Kowalczyk, T.;
Krauter, C. M.; Kue, K.; Kunitsa, A.; Kus, T.; Ladjanszki, I.; Landau, A.; Lawler, K. V_;
Lefrancois, D.; Lehtola, S.; Li, R. R.; Li, Y.-P.; Liang, J.; Liebenthal, M.; Lin, H.-H.; Lin, Y.-S.;
Liu, F.; Liu, K.-Y.; Loipersberger, M.; Luenser, A.; Manjanath, A.; Manohar, P.; Mansoor, E.;
Manzer, S. F.; Mao, S.-P.; Marenich, A. V.; Markovich, T.; Mason, S.; Maurer, S. A.; McLaughlin,
P.F.; Menger, M. F. S. J.; Mewes, J.-M.; Mewes, S. A.; Morgante, P.; Mullinax, J. W.; Oosterbaan,
K. J.; Paran, G.; Paul, A. C.; Paul, S. K.; PavoSevi¢, F.; Pei, Z.; Prager, S.; Proynov, E. L.; Rk, A.;
Ramos-Cordoba, E.; Rana, B.; Rask, A. E.; Rettig, A.; Richard, R. M.; Rob, F.; Rossomme, E.;
Scheele, T.; Scheurer, M.; Schneider, M.; Sergueev, N.; Sharada, S. M.; Skomorowski, W.; Small,
D. W.; Stein, C. J.; Su, Y.-C.; Sundstrom, E. J.; Tao, Z.; Thirman, J.; Tornai, G. J.; Tsuchimochi,
T.; Tubman, N. M.; Veccham, S. P.; Vydrov, O.; Wenzel, J.; Witte, J.; Yamada, A.; Yao, K;
Yeganeh, S.; Yost, S. R.; Zech, A.; Zhang, 1. Y.; Zhang, X.; Zhang, Y.; Zuev, D.; Aspuru-Guzik,
A.; Bell, A. T.; Besley, N. A.; Bravaya, K. B.; Brooks, B. R.; Casanova, D.; Chai, J.-D.; Coriani,
S.; Cramer, C. J.; Cserey, G.; DePrince, A. E.; DiStasio, R. A.; Dreuw, A.; Dunietz, B. D.; Furlani,
T. R.; Goddard, W. A.; Hammes-Schiffer, S.; Head-Gordon, T.; Hehre, W. J.; Hsu, C.-P.; Jagau,
T.-C.; Jung, Y.; Klamt, A.; Kong, J.; Lambrecht, D. S.; Liang, W.; Mayhall, N. J.; McCurdy, C.
W.; Neaton, J. B.; Ochsenfeld, C.; Parkhill, J. A.; Peverati, R.; Rassolov, V. A.; Shao, Y.;
Slipchenko, L. V.; Stauch, T.; Steele, R. P.; Subotnik, J. E.; Thom, A. J. W.; Tkatchenko, A.;
Truhlar, D. G.; Van Voorhis, T.; Wesolowski, T. A.; Whaley, K. B.; Woodcock, H. L.;
Zimmerman, P. M.; Faraji, S.; Gill, P. M. W.; Head-Gordon, M.; Herbert, J. M.; Krylov, A. L.
Software for the Frontiers of Quantum Chemistry: An Overview of Developments in the Q-Chem
5 Package. J. Chem. Phys. 2021, 155, 084801.

51. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy
Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785.

52.  Becke, A. D. Density-Functional Thermochemistry. lii. The Role of Exact Exchange. J.
Chem. Phys. 1993, 98, 5648-5652.

53. Dunning, T. H., Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations: 1.
The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007-1023.
54. Yu, Q.; Pavosevi¢, F.; Hammes-Schiffer, S. Development of Nuclear Basis Sets for

Multicomponent Quantum Chemistry Methods. J. Chem. Phys. 2020, 152, 244123.
55. Culpitt, T.; Yang, Y.; PavoSevi¢, F.; Tao, Z.; Hammes-Schiffer, S. Enhancing the

Applicability of Multicomponent Time-Dependent Density Functional Theory. J. Chem. Phys.
2019, 750, 201101.

30



For Table of Contents Only

Proton densities for ground and excited vibronic states

31



