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Abstract 

Proton transfer reactions play a critical role in many chemical and biological processes. The 

development of computationally efficient approaches to describe the quantum dynamics of proton 

transfer, which often involves hydrogen tunneling, is challenging. Herein, the nuclear-electronic 

orbital multistate density functional theory (NEO-MSDFT) method is combined with both 

Ehrenfest and surface hopping nonadiabatic dynamics methods to describe hydrogen tunneling. 

The NEO-MSDFT method treats the transferring hydrogen nucleus quantum mechanically on the 

same level as the electrons and incorporates both static and dynamical correlation by mixing 

localized NEO-DFT solutions with a nonorthogonal configuration interaction scheme. The other 

nuclei are propagated on the NEO-MSDFT vibronic surfaces during the Ehrenfest or surface 

hopping dynamics. These methods are applied to proton transfer in malonaldehyde as a 

prototypical hydrogen tunneling system. The inclusion of vibronically nonadiabatic effects is 

found to significantly impact the proton transfer time and tunneling dynamics. This approach is 

applicable to a wide range of other proton transfer reactions. 
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1. Introduction 

Nuclear quantum effects such as hydrogen tunneling are important throughout chemistry 

and biology,1-4 as exemplified by photosynthesis5-6 and DNA synthesis.7 The development of 

computational methods for describing hydrogen tunneling dynamics in chemical systems is 

challenging. The nuclear-electronic orbital (NEO) approach has become an accurate and efficient 

method to incorporate nuclear quantum effects in geometry optimizations, reaction paths, 

vibrational spectra, and dynamics of molecular systems.8-16 This method treats electrons and 

specified nuclei, typically protons, quantum mechanically on the same level. In this case, the Born-

Oppenheimer separation is not invoked between the electrons and quantum nuclei but is still 

invoked between the subsystem containing the electrons and quantum nuclei and the subsystem 

containing the other “classical” nuclei. By solving the mixed nuclear-electronic time-independent 

Schrodinger equation at each time step of a molecular dynamics trajectory, the classical nuclei can 

move on the vibronic surface that includes the nuclear delocalization and zero-point energy 

associated with the quantum nuclei.  

Within the NEO framework, both wave function methods8, 17-19 and density functional 

theory (DFT) methods9-10, 20-21 have been developed. Recently, NEO-DFT based approaches have 

been successfully used for direct dynamics simulations describing various chemical reactions 

involving hydrogen transfer, where the transferring proton is treated quantum mechanically.15, 22-

23 For example, the NEO-DFT approach was employed to describe hydride transfer in the C4H9
+ 

molecular system.15 Additionally, real-time NEO time-dependent DFT (NEO-TDDFT) and real-

time NEO-TDDFT Ehrenfest dynamics were used to describe excited state intramolecular proton 

transfer in o-hydroxybenzaldehyde.22-23  
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In the conventional Born-Oppenheimer picture of hydrogen tunneling, the hydrogen 

typically moves on a double-well potential energy surface that becomes symmetric or nearly 

symmetric, with the hydrogen vibrational wavefunction delocalized over the two wells during 

tunneling.24-26 In such cases, the NEO-DFT approach usually fails because the transferring proton 

density localizes near the hydrogen donor or acceptor, rather than delocalizing between them.27-28 

This non-physical localization is mainly attributed to insufficient inclusion of static and dynamical 

electron-proton correlation within the NEO-DFT method, which uses a single product of an 

electronic and nuclear determinant as the non-interacting reference system.  

Inspired by the conventional electronic multistate density functional theory (MSDFT) 

method developed by Gao and coworkers,29-32 we developed the NEO multistate density functional 

theory (NEO-MSDFT) method33 to describe hydrogen transfer processes that involve a symmetric 

(or nearly symmetric) double-well potential energy surface in the conventional Born-Oppenheimer 

picture. The NEO-MSDFT approach incorporates both static and dynamical correlation by mixing 

two localized NEO-DFT solutions with a nonorthogonal configuration interaction scheme.34-35 The 

ground and excited vibronic states obtained from the NEO-MSDFT approach can delocalize and 

become bilobal, which is essential for hydrogen tunneling systems. Moreover, the NEO-MSDFT 

method has been shown to accurately predict hydrogen tunneling splittings and proton densities 

for fixed classical nuclear configurations.33 The NEO-MSDFT approach has the same 

computational cost scaling as the analogous conventional electronic DFT approach because the 

number of electronic basis functions is typically much greater than the number of protonic basis 

functions. Alternative multireference DFT approaches, as well as the associated challenges, are 

discussed elsewhere.36-37 
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Recently, we implemented the analytical gradients of the NEO-MSDFT ground and excited 

vibronic state energies with respect to the classical nuclear coordinates.38 These gradients enable 

geometry optimizations to identify equilibrium structures and transition states, as well as the 

generation of minimum energy paths. We also explored the direct dynamics of the classical nuclei 

on the NEO-MSDFT adiabatic ground vibronic state surface and observed intramolecular proton 

transfer in malonaldehyde.15 In the adiabatic approximation, however, the quantum proton 

responds instantaneously to motions of the classical nuclei. In this regime, within the conventional 

Born-Oppenheimer picture of a double-well potential energy surface, the proton always tunnels 

when the acceptor well becomes lower in energy than the donor well, regardless of the barrier 

height. As shown previously,39 consideration of excited proton vibrational states is necessary to 

obtain a reasonable hydrogen tunneling probability. Similarly, contributions from the NEO-

MSDFT excited vibronic state must be included to accurately describe hydrogen tunneling 

dynamics. Nonadiabatic dynamics approaches40-41 such as Ehrenfest dynamics42 or surface 

hopping39, 43-44 are reasonable choices for describing hydrogen tunneling on the NEO-MSDFT 

vibronic surfaces. 

Herein, we combine the NEO-MSDFT approach with both Ehrenfest dynamics and surface 

hopping dynamics. We derive the essential equations and provide the computational details for 

conducting these nonadiabatic dynamics simulations. The capability of the NEO-MSDFT 

approach for simulating adiabatic and nonadiabatic hydrogen tunneling dynamics is demonstrated 

by propagating representative trajectories for proton transfer in malonaldehyde, which is known 

to exhibit hydrogen tunneling.24-26, 45-47 The objective of this work is to highlight the computational 

method rather than to comprehensively investigate the dynamics for this specific system. This 

paper is organized as follows. Section 2 provides a brief review of the NEO-MSDFT approach, as 
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well as the theoretical framework and computational details for combining this approach with 

adiabatic, Ehrenfest, and surface hopping dynamics. Section 3 presents the results from different 

types of dynamical simulations of proton transfer in malonaldehyde, along with an analysis of 

these results. Finally, Section 4 provides a summary of the current work and a discussion of future 

directions. 

 

2. Methods and Computational Details 

2.1. NEO-MSDFT method 

Here we briefly introduce the NEO-MSDFT method for a single quantum proton and two 

vibronic states, but the extension to multiple quantum protons and more vibronic states is 

straightforward. More details on the formalism and implementation are provided in our previous 

papers.33, 38 This treatment pertains to molecular systems with a double-well potential energy 

surface for proton transfer in the conventional Born-Oppenheimer picture. The NEO-DFT 

approach is employed first to generate two localized nuclear-electronic wave functions, 

e p

I I I =   and 
e p

II II II =  , where each localized nuclear-electronic wave function is a 

product of Kohn-Sham electronic and protonic determinants, e and p , respectively. Due to the 

neglect of static correlation and the approximate electron-proton dynamical correlation energy 

treatment, each protonic wave function, p

I  and p

II , obtained from the NEO-DFT approach is 

localized near the proton donor or acceptor. The NEO-MSDFT approach is used to construct the 

delocalized ground and excited vibronic states by solving a  2 × 2 matrix equation: 

 =HD SDE   (1) 

Here S is the overlap matrix between the two localized states 
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I,I I,II I II

II,I II,II II I

1

1

S S

S S

   
= =   

    
S   (2) 

and H is the effective Hamiltonian given by 

 
I,I I,II

II,I II,II

H H

H H

 
=  
 

H  (3) 

In Eq. (2), the off-diagonal matrix element of the overlap matrix, 
I,IIS  or 

II,IS , is the overlap 

between the occupied electronic and protonic Kohn-Sham orbitals for states I and II. In terms of 

the electronic and protonic determinants, 
e e p p

I,II II,I I II I IIS S= =     . In Eq. (3), the diagonal 

elements, 
I,IH  and 

II,IIH , are the NEO-DFT energies of the two localized states such that 

NEO-DFT

I,I IH E=  and 
NEO-DFT

II,II IIH E= . The off-diagonal element, 
I,IIH , is approximated as 

 
( )

( )

corr corr

I,II I NEO II I,II I II

NEO-DFT NEO-HF NEO-DFT NEO-HF

I NEO II I,II I I II II

1ˆ
2

1ˆ
2

H H S E E

H S E E E E

=   + +

=   + − + −

   (4) 

Here I NEO IIĤ   is computed at the NEO Hartree-Fock level with the NEO Hamiltonian 

NEOĤ  using the Kohn-Sham orbitals for states I and II. The NEO Hamiltonian includes the kinetic 

energies of the electrons and quantum nuclei, as well as all Coulombic interactions. The correlation 

energy corr

IE or corr

IIE  is expressed as the difference between the NEO-DFT and NEO-HF energies 

for state I or II, respectively, as indicated. The analytical expressions for the NEO-MSDFT ground 

and excited states can then be expressed as: 
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I,I II,II I,II I,II

0 2

I,II

I,I II,II I,II I,II

1 2

I,II

22 2

I,I II,II I,II I,II I,I II,II I,II

21

1 2

21

1 2

( ) (1 ) 2 ( )

H H S H M
E

S

H H S H M
E

S

M H H S H H H S

 + − −
=  

−   

 + − +
=  

−   

 = − − + − + 

 (5) 

To account for the limitations of the electron-proton correlation functional and the 

associated inaccuracies in the overlap between the two localized nuclear-electronic wave 

functions,33 we applied a correction to the overlap term
I,IIS such that I,II I,II( )S S  =  where  α = 

0.0604 and β = 0.492. This correction function was parameterized for a small model system and 

was subsequently verified to be transferrable and effective for predicting accurate tunneling 

splittings of five different molecular systems with different geometries.33 We denoted this 

modified NEO-MSDFT method with the corrected overlap term as NEO-MSDFT′ and will use 

this method across all the simulations in this paper without the prime for notational simplicity. 

Recently, we also implemented the analytical gradients of the NEO-MSDFT ground and excited 

vibronic state energies and applied them to geometry optimizations and the generation of minimum 

energy paths for different molecular systems.33  

2.2. Adiabatic, Ehrenfest, and surface hopping dynamics with NEO-MSDFT 

In this subsection, we present details of the NEO-MSDFT adiabatic and nonadiabatic 

Ehrenfest, and surface hopping dynamics simulations. Herein, the ground and first excited 

adiabatic NEO-MSDFT vibronic states are denoted e p

0( , ; ) r r R  and e p

1( , ; ) r r R , respectively, 

which have energies E0 and E1 given in Eq. (5) and depend parametrically on the classical nuclear 

coordinates R. For adiabatic dynamics, the classical nuclei are propagated according to Newton’s 

equations of motion on the NEO-MSDFT ground vibronic state: 
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e p e p

0 NEO 0 0
ˆ( ) ( , ; ) | | ( , ; )

I II IM t H E = − = −R RR r r R r r R   (6)  

where MI and RI denote the mass and coordinates of the classic nucleus I.  

 For Ehrenfest dynamics, the time-dependent wave function 
e p( , , ; )t r r R  is expanded in 

the basis of NEO-MSDFT adiabatic vibronic states: 

 e p e p e p

0 0 1 1( , , ; ) ( ) ( , ; ) ( ) ( , ; )t C t C t  = +r r R r r R r r R    (7) 

The classical nuclei are propagated on the average vibronic surface determined by this time-

dependent wavefunction, leading to the following equations of motion: 

 

e p e p

NEO

* e p e p

NEO

0,1 0,1

ˆ( ) ( , , ; ) | | ( , , ; )

ˆ( , ; ) | | ( , ; )

I

I

I I

i j i j

i j

M t t H t

C C H 
= =

= −  

= −  

R

R

R r r R r r R

r r R r r R
  (8) 

In the summation, the diagonal terms (i.e., i j=  ) are the gradients of the NEO-MSDFT ground 

and excited vibronic state energies, E0 and E1, respectively. Analytical expressions for these 

gradients are provided in Ref. 38. The off-diagonal term (i.e., i j ) are related to the nonadiabatic 

coupling vector dij as follows: 

 

e p e p

NEOe p e p

ˆ( , ) | | ( , )
( , ) | ( , )

i j

ij i j

j i

H

E E

 
 


=  =

−

R

R

r r r r
d r r r r   (9) 

Here and in other equations below, the parametric dependence of the NEO-MSDFT vibronic states 

on R is not included for notational simplicity. The explicit expression for the nonadiabatic coupling 

vector dij is given in the Supporting Information (SI). 

 The time-dependent coefficients, 0 ( )C t  and 1( )C t , are determined by propagating the time-

dependent Schrodinger equation 

 e p e p

NEO
ˆ( , , ) ( , , )i t H t

t


 = 


r r r r   (10) 
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Substituting Eq. (7) into Eq. (10) leads to the following expression: 

 
0,1

( ) ( ) i
j i j i ij

i

i
C t C t E

t


 

=

  
= − + 

 
   (11) 

The nonadiabatic coupling element can be expressed in terms of the nonadiabatic coupling vector 

dij and the velocity vector v as 

 i
j ij

t





= 


d v   (12) 

To avoid numerical instabilities and ensure accuracy even when the nonadiabatic coupling 

element exhibits sharp peaks,48 we computed this matrix element with the numerical finite 

difference method:39  

 
( / 2) 1

( / 2) ( ) | ( ) ( ) | ( )
2

i
j j i j i

t t
t t t t t t t t

t t


    

 +
 +  + − +
  

  (13) 

We also implemented the norm-preserving interpolation method of Meek and Levine48 and showed 

that the results obtained with this method are consistent with the results obtained using Eq. (13) 

(see Figure S3). Note that this approach approximates the wave function in the framework of the 

Kohn-Sham formalism, similar to nonadiabatic dynamics treatments with conventional electronic 

TDDFT. 

We also explored surface hopping dynamics on the NEO-MSDFT adiabatic vibronic state 

surfaces. In this case, the nuclei evolve on a single adiabatic NEO-MSDFT vibronic state surface 

k according to 

 
e p e p

NEO
ˆ( ) ( , ; ) | | ( , ; )

I II I k k kM t H E = − = −R RR r r R r r R  (14) 

Typically instantaneous transitions between adiabatic surfaces are incorporated according to a 

stochastic algorithm based on the quantum amplitudes 0 ( )C t  and 1( )C t , which are determined by 
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integrating Eq. (11). To obtain statistically meaningful results from a surface hopping method such 

as Tully’s fewest switching algorithm,43 a large number of independent trajectories must be 

propagated. For the purposes of demonstrating surface hopping with NEO-MSDFT, we used an 

alternative approach to avoid propagating a large number of trajectories. Specifically, we 

propagated a small set of trajectories and used the Landau-Zener (LZ) formula to estimate the 

nonadiabatic transition probability49 and determine when the transitions should occur. Within this 

context, the LZ transition probability between the adiabatic vibronic states 0 and 1 in the vicinity 

of an avoided crossing can be expressed as49 

 
2

I,II

II I

2
exp

| |

V
P

E E

 
= −   −  R R v

  (15) 

where IE  and IIE  are the energies of the approximate diabatic states (i.e., the localized NEO-DFT 

states) and 
I,IIV  is the vibronic coupling between the approximate diabatic states expressed as 

 I,I II,II

I,II I,II I,II2

I,II

1

1 2

H H
V H S

S

+
= −

−
  (16) 

Note that Eq. (15) is valid only in the avoided crossing regions. When a transition occurs, to 

maintain energy conservation, the velocities are adjusted according to a force in the direction of 

the nonadiabatic coupling vector.39  

In our simulations, the nonadiabatic transitions were considered to occur at the local 

maxima of the LZ transition probability within the avoided crossing regions between the vibronic 

surfaces. As will be shown below, proton transfer in malonaldehyde exhibits two distinct avoided 

crossing regions. Four trajectories were propagated to sample the four distinct pathways, and the 

LZ transition probabilities were used to weight these trajectories in a manner that provides a 

reasonable estimate of the proton transfer time. 
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2.3. Computational details 

The NEO-MSDFT method has been implemented in a developer version of Q-Chem 5.350 

to enable calculation of the energies,33 analytical gradients,38 and analytical nonadiabatic coupling 

vectors. The expression for the analytical nonadiabatic coupling vector is given in the SI. All the 

NEO-MSDFT dynamics simulations were carried out using our in-house code with an interface 

connecting to Q-Chem. We chose malonaldehyde as a prototypical molecular system exhibiting 

hydrogen tunneling24-26, 45-47 to illustrate adiabatic, Ehrenfest, and surface hopping dynamics 

simulations. The same initial conditions were applied to all dynamics simulations, where each 

trajectory starts from the NEO-MSDFT ground state equilibrium structure of malonaldehyde. The 

initial velocities for the classical nuclei were assigned in the direction from the equilibrium 

geometry toward the transition state geometry with a total kinetic energy corresponding to 150 K. 

We applied the fourth-order Runge-Kutta numerical integration method to integrate Eq. 

(11), which typically requires a smaller time step than the time step Δt required to integrate the 

classical equations of motion (Eq. (8)). The nonadiabatic coupling elements were linearly 

interpolated between / 2t t−  to / 2t t+ , and the NEO-MSDFT vibronic state energies were 

linearly interpolated between t and t t+ .  The integration time step was 0.15 fs for the classical 

equations of motion and 0.0003 fs for the time-dependent Schrodinger equation.  

Within the NEO-MSDFT framework, we used the B3LYP electronic density functional51-

52 and the epc17-2 electron-proton correlation functional,10 together with the cc-pVTZ electronic 

basis set53 and the PB4-D protonic basis set.54 For each malonaldehyde geometry at each time step, 

the transferring proton is represented by two basis function centers that are optimized variationally. 

Each basis function center is positioned near either the donor or the acceptor oxygen and contains 
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a set of electronic and protonic basis functions. To accelerate the optimization process at each time 

step, first each of the two proton basis function centers was optimized separately for each localized 

NEO-DFT state, and subsequently the two proton basis function centers were optimized 

simultaneously on the specified adiabatic vibronic surface. This basis function center optimization 

procedure was performed on the NEO-MSDFT ground vibronic state surface for adiabatic 

dynamics, on the occupied vibronic state surface for surface hopping dynamics, and on either the 

ground or mixed vibronic state surface for Ehrenfest dynamics, where these two strategies were 

shown to produce similar results (see Figure S4). In some proton transfer reactions, the double-

well potential energy surface can change to a single-well potential energy surface. In this case, the 

two basis function centers should smoothly optimize variationally toward the minimum while 

remaining sufficiently separated to avoid linear dependencies. In some dynamical trajectories, 

however, numerical issues may be encountered if the change occurs over an extremely short time 

period, and a smaller time step is required to ensure numerical stability.  

The most computationally intensive parts of these calculations are the optimization of the 

basis function center positions at each time step, which could be avoided using traveling basis 

functions,23 and the solution of the coupled-perturbed NEO-SCF equations to compute the 

analytical gradients and nonadiabatic coupling vectors. The current NEO-MSDFT nonadiabatic 

dynamics code has not been optimized yet for computational efficiency. 

The current implementation of the NEO-MSDFT approach is qualitatively but not 

necessarily quantitatively accurate for dynamical simulations (see Figure S2). Moreover, the 

vibronic states associated with the bending modes of the transferring hydrogen are not included in 

the two-state NEO-MSDFT implementation. The proton densities associated with these bending 

modes can be computed with NEO-TDDFT or grid-based methods, and they have been found to 
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be mainly perpendicular to the proton densities associated with the stretching modes.55 These 

vibronic states are not expected to couple strongly to the vibronic states of interest for hydrogen 

tunneling. However, the approach could be extended to include additional vibronic states if 

needed.  

The extension to multiple proton transfer reactions is more straightforward. The description 

of multiple proton transfer reactions requires two proton basis function centers per transferring 

proton and up to 2N localized NEO-DFT states to construct the nonorthogonal configuration 

interaction matrix for N transferring protons. When more vibronic states are included, the matrix 

equation given by Eq. (1) can be solved using a standard linear algebra library. This framework 

allows the proton configurations to change along the reaction pathway. 

 

3. Results and Discussion 

3.1. Adiabatic ground state dynamics 

In this subsection, we present the results from an adiabatic dynamics trajectory on the 

NEO-MSDFT ground vibronic state. In this case, the proton density, as well as the electron density, 

responds instantaneously to the movement of the classical nuclei. Figure 1A shows configurations 

of the classical nuclei as well as isosurface plots of the quantum proton density along the trajectory. 

Similar to our previous investigation using smaller electronic/protonic basis sets,15 the NEO-

MSDFT ground state trajectory for malonaldehyde shows the proton density evolving from being 

localized near the donor oxygen to being delocalized between the two oxygen atoms and finally 

being localized near the acceptor oxygen. In the conventional Born-Oppenheimer picture, the 

asymmetric, bilobal proton densities at 6, 10, and 15 fs correspond to a slightly asymmetric double-

well potential energy surface, while the single-lobe but slightly delocalized proton density at 12 fs 
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corresponds to the ground proton vibrational state above the barrier on a more symmetric surface. 

As expected, the distance between the donor and acceptor oxygen atoms is a minimum at ~12 fs. 

Figure 1B presents the distances from the expectation value of the quantum proton position 

to the donor oxygen and the acceptor oxygen along the trajectory. Consistent with the movement 

of the quantum proton density shown in Figure 1A, the expectation value of the quantum proton 

position moves away from the donor oxygen and toward the acceptor oxygen. The quantum proton 

is equidistant between the donor and acceptor oxygen atoms (i.e., the red and blue lines cross in 

Figure 1B) at 12 fs, which we denote the proton transfer time for simplicity. Note that for systems 

exhibiting recrossings in this region, a more robust definition of the proton transfer time would be 

the time required for the proton to form a covalent bond with the acceptor.39 At 19 fs, the proton 

reaches the closest position relative to the acceptor proton and starts to move back toward the 

donor oxygen.  

The driving force for proton transfer is mainly the movement of the two C–O groups that 

bracket the quantum proton. Starting from the equilibrium structure of malonaldehyde, the C–O 

bond involving the donor oxygen decreases in length, while the other C–O bond involving the 

acceptor oxygen increases in length. At 12 fs, the configuration of the molecule is close to the 

transition state geometry,38 where the two C–O bond lengths are similar. After this time, the C–O 

bond involving the donor oxygen continues to decrease, and the quantum proton continues to 

transfer to the acceptor oxygen. The donor and acceptor oxygen atoms also move toward each 

other until 12 fs and then move apart again as the trajectory continues. These results agree with 

the qualitative characteristics of the minimum energy path on the NEO-MSDFT ground vibronic 

state surface.38 
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Figure 1. Adiabatic dynamics trajectory on the NEO-MSDFT ground vibronic state surface for 

malonaldehyde. (A) Configurations along the trajectory, where the quantum proton density is 

plotted in cyan with an isosurface value of 0.02. (B) Distance from the expectation value of the 

transferring proton position to the donor oxygen (OD) and the acceptor oxygen (OA) as a function 

of time along the trajectory. 

 

3.2. Ehrenfest dynamics 

Although the adiabatic dynamics trajectory on the NEO-MSDFT ground vibronic state 

surface provides a clear picture of intramolecular proton transfer in malonaldehyde, it neglects the 

contribution from the excited vibronic state, which can be important due to the small splitting 

between the ground and excited vibronic states. Nonadiabatic dynamics approaches are needed to 

provide a more accurate description of this type of process. One such approach is based on 

Ehrenfest dynamics, where the classical nuclei move on a mean-field or average potential energy 

surface. We combined the NEO-MSDFT method with Ehrenfest dynamics to propagate the 

classical nuclei on a vibronic surface that is a linear combination of the ground and excited state 
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vibronic surfaces. The solid lines in Figure 2A represent the distances between the expectation 

value of the transferring proton position and the donor and acceptor oxygen atoms obtained from 

an Ehrenfest dynamics trajectory. The general features of the proton transfer process are similar to 

those observed in the adiabatic ground state dynamics trajectory (dashed lines in Figure 2A). The 

main difference between the Ehrenfest and adiabatic trajectories is that the quantum proton 

transfers slower for the Ehrenfest dynamics trajectory. The proton transfer time is 17 fs in the 

Ehrenfest dynamics trajectory compared to 12 fs in the adiabatic trajectory. The involvement of 

the excited vibronic state slows down the movement of the classical nuclei, especially the change 

of the two C–O bond lengths and the decrease of the O–O distance, and thereby slows down proton 

transfer.  

To understand this behavior, we need to track the role of the NEO-MSDFT excited vibronic 

state along the trajectory. Figure 2B provides the quantum probabilities, C0
2 and C1

2, for the NEO-

MSDFT ground and excited vibronic states as a function of time along the Ehrenfest dynamics 

trajectory. In the first 5 fs of the trajectory, the quantum probability of the excited state, C1
2, is 

almost 0, and therefore the trajectory is propagated almost purely on the ground vibronic state 

surface within this time interval (solid and dashed lines are identical in Figure 2A). After 5 fs, C1
2 

begins to increase, and the NEO-MSDFT excited vibronic state contributes more to the average 

vibronic surface. At 15 fs, the weight of the excited vibronic state reaches its maximum and is 

slightly higher than the weight of the ground vibronic state. After 15 fs, C1
2 begins to decrease and 

reaches a local minimum at 17 fs and increases again until 21 fs. After 21 fs, C1
2 decreases as 

the time-dependent wavefunction becomes almost entirely dominated by the ground vibronic state, 

and the transferring proton is localized on the acceptor oxygen. The nonadiabatic coupling element, 

0 1 t   , also exhibits peaks in the regions of 15 and 21 fs, as shown in Figure 2C. 
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This behavior of the quantum probabilities and nonadiabatic coupling can be understood 

in the context of the minimum energy path generated on the NEO-MSDFT ground vibronic state 

and the corresponding energies of the excited vibronic state for the geometries along this pathway 

(Figure S1). For configurations close to the equilibrium structure, the excited vibronic state energy 

is significantly higher than the ground vibronic state energy because the quantum proton is 

localized near the donor oxygen (see the proton density in Figure S1). At the transition state 

geometry, the quantum proton is a single delocalized lobe equidistant from the donor and acceptor 

oxygen atoms (see the proton density in Figure S1). Because of the relatively short oxygen-oxygen 

distance at the transition state, the splitting between the ground and excited vibronic states at this 

geometry is relatively large. In the conventional Born-Oppenheimer picture, the barrier at the 

transition state is so low that the proton vibrational ground state is above the barrier (see the 

symmetric proton potential in Figure S1). In contrast, symmetric configurations obtained by 

averaging the reactant and product structures lead to significantly smaller tunneling splittings for 

malonaldehyde, as shown in Ref. 33  for both the NEO-MSDFT method and a numerically exact 

grid-based method, but such conformations are not sampled along the minimum energy path or 

along trajectories generated at relatively high temperatures. Most interestingly, in the regions 

between the equilibrium and transition state structures, the energy difference between the NEO-

MSDFT excited and ground vibronic states is very small. In the conventional Born-Oppenheimer 

picture, the proton is moving on a slightly asymmetric double well potential energy surface (see 

corresponding proton potential in Figure S1). The resulting proton density is bilobal and slightly 

asymmetric in both the ground and excited vibronic states (see the proton densities in Figure S1), 

corresponding to a small energy splitting. There are two such regions, one on each side of the 

transition state, due to the symmetry of malonaldehyde. 
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Similar behavior is observed along the Ehrenfest dynamics trajectory, as shown by the 

proton densities of the ground and excited vibronic states at the regions of strong nonadiabatic 

coupling (i.e., 15 fs and 21 fs in Figure 2D).  At the start of the trajectory, the proton density is 

localized near the donor oxygen, but at 15 fs, the proton density becomes delocalized, bilobal, and 

slightly asymmetric, corresponding to a region of strong nonadiabatic coupling. The proton density 

becomes more symmetric with a single lobe at 17 fs, but then becomes bilobal and slightly 

asymmetric again at 21 fs, corresponding to another region of strong nonadiabatic coupling. 

These two regions of strong nonadiabatic coupling are related to the two regions with small energy 

splitting on each side of the transition state along the minimum energy path (Figure S1). As the 

trajectory progresses, the proton density becomes localized on the acceptor oxygen, where the 

nonadiabatic coupling is negligible. These proton densities are qualitatively similar to those plotted 

along the minimum energy path (Figure S1). The contribution from the excited vibronic state slows 

down proton transfer because it increases the energy barrier along the trajectory. Similar behavior 

is illustrated by the minimum energy path in Figure S1: the barrier along the minimum energy path 

is clearly higher for a mixture of the ground and excited vibronic states than the ground vibronic 

state. 
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Figure 2. Ehrenfest dynamics trajectory on the NEO-MSDFT vibronic surfaces for 

malonaldehyde. (A) Distance from the expectation value of the transferring proton position to the 

donor oxygen (OD) and the acceptor oxygen (OA) as a function of time from an Ehrenfest dynamics 

trajectory (solid lines) and an adiabatic ground vibronic state trajectory (dashed lines, same as 

Figure 1B). (B) Quantum probabilities C0
2 and C1

2 associated with the NEO- MSDFT ground and 

excited vibronic states, respectively, along the Ehrenfest dynamics trajectory. (C) Nonadiabatic 

coupling element (NAC) along the Ehrenfest dynamics trajectory. (D) Configurations at 15 fs, 17 

fs, and 21 fs with the quantum proton density plotted in cyan for the ground vibronic state and in 

purple for the excited vibronic state. 

 

Including the effects of the NEO-MSDFT excited vibronic state via Ehrenfest dynamics 

has been shown to influence the proton transfer process in malonaldehyde and to decrease the 

proton transfer rate. A well-known limitation of Ehrenfest dynamics, however, is that it is unable 

to describe branching processes, where two potential energy surfaces exhibit distinct forces after 

a region of strong nonadiabatic coupling. Proton transfer is known to exhibit such branching 
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processes.39 An alternative nonadiabatic dynamics approach, surface hopping, is able to describe 

branching processes by propagating on adiabatic potential energy surfaces with instantaneous 

transitions incorporated in a manner that reflects the quantum probabilities determined by 

integration of the time-dependent Schrödinger equation. As mentioned above, the fewest switches 

surface hopping method43 requires the propagation of a large ensemble of trajectories to obtain 

reliable results. Given the distinct localized regions of strong nonadiabatic coupling shown in 

Figure 2B and 2C, we employed an alternative strategy based on the Landau-Zener probability to 

avoid this computational expense. 

3.3. Surface hopping dynamics 

To demonstrate NEO-MSDFT with surface hopping dynamics, we propagated four 

representative trajectories corresponding to the four cases of a transition occurring or not occurring 

at each of the two distinct avoided crossing regions (i.e., strong nonadiabatic coupling regions). A 

nonadiabatic transition was incorporated when the Landau-Zener probability, given in Eq. (15), 

reached a local maximum within an avoided crossing region. Figure 3 and Figure 4 show the 

simulation results from two different representative surface hopping trajectories.  

For the trajectory shown in Figure 3, two nonadiabatic transitions occur, with the first 

transition at 9.6 fs and the second transition at 20.2 fs, corresponding to the two local maxima in 

the Landau-Zener probability in these regions. Prior to 9.6 fs, the classical nuclei move on the 

NEO-MSDFT ground vibronic state surface, and the trajectory is identical to the previous adiabatic 

ground vibronic state trajectory (dashed lines in Figure 3). After the first transition at 9.6 fs, the 

nuclei move on the NEO-MSDFT excited vibronic state surface, which slows down proton transfer 

for similar reasons as discussed above for the Ehrenfest dynamics trajectory. Specifically, the 

barrier to proton transfer is higher on the excited state surface. Thus, the trajectory requires an 
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additional 9.3 fs to reach the point where the expectation value of the quantum proton is equidistant 

from the donor and acceptor oxygen atoms. The classical nuclei continue to move on the excited 

vibronic state surface until the second transition at 20.2 fs, when the nuclei start moving on the 

ground vibronic state surface, and the expectation value of the quantum proton continues to 

approach the acceptor oxygen. Figure 3B depicts the quantum probabilities for the ground and 

excited vibronic states. If enough independent trajectories were generated with Tully’s fewest 

switches algorithm,43 the fraction of trajectories in a given state i at time t would be Ci
2, except for 

complications associated with classically forbidden transitions. 

Figure 4 shows another example of a surface hopping trajectory, where a nonadiabatic 

transition did not occur at 9.6 fs, even though the Landau-Zener probability reaches a maximum. 

This trajectory continues to move on the NEO-MSDFT ground vibronic state and is identical to 

the adiabatic ground vibronic state trajectory (dashed lines in Figure 4) until 15.5 fs. At this time, 

the Landau-Zener probability reaches the second maximum, and a nonadiabatic transition to the 

excited vibronic state occurs. As seen in Figure 4A, however, the crossing between the two curves 

(solid red and blue lines) associated with proton transfer occurred at 12.3 fs, which was prior to 

the nonadiabatic transition. Such a surface hopping trajectory does not affect the proton transfer 

rate when it is defined to be the time at which the expectation value of the transferring proton 

position is equidistant from the donor and acceptor oxygen atoms. We also investigated other types 

of surface hopping trajectories: (1) no hop allowed along the trajectory and (2) only one hop 

allowed at 9.6 fs. The first case (Figure S5) is identical to the adiabatic ground state trajectory. For 

the second case (Figure S6), the trajectory is similar to the one with two nonadiabatic transitions 

shown in Figure 3 and exhibits an identical proton transfer rate. The slight difference occurs after 

20.2 fs, when the trajectory shown in Figure 3 allows a nonadiabatic transition back down to the 
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ground vibronic state surface, while the trajectory shown in Figure S6 remains on the excited 

vibronic state surface.  

 
 

Figure 3. Representative surface hopping dynamics trajectory on the NEO-MSDFT vibronic 

surfaces for malonaldehyde. (A) Distance from the expectation value of the transferring proton 

position to the donor oxygen (OD) and the acceptor oxygen (OA) as a function of time from a 

representative surface hopping trajectory (solid lines) and an adiabatic ground vibronic state 

trajectory (dashed lines, same as Figure 1B). (B) Quantum probabilities C0
2 and C1

2 associated 

with the NEO-MSDFT ground and excited vibronic states, respectively, along the surface hopping 

trajectory (darker line shows occupied state, where the first transition occurs at 9.6 fs and the 

second transition occurs at 20.2 fs). 

 

 
 

Figure 4. Representative surface hopping dynamics trajectory on the NEO-MSDFT vibronic 

surfaces for malonaldehyde. (A) Distance from the expectation value of the transferring proton 

position to the donor oxygen (OD) and the acceptor oxygen (OA) as a function of time from a 

representative surface hopping trajectory (solid lines) and an adiabatic ground vibronic state 
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trajectory (dashed lines, same as Figure 1B). (B) Quantum probabilities C0
2 and C1

2 associated 

with the NEO-MSDFT ground and excited vibronic states, respectively, along this surface hopping 

trajectory (darker line shows occupied state, where the transition occurs at 15.5 fs). 

 

  

3.4. Combined analysis 

Table 1 provides the proton transfer time obtained from the adiabatic, Ehrenfest, and 

surface hopping dynamics simulations with the same initial conditions. Here, the proton transfer 

time is defined as the time when the expectation value of the quantum proton position is equidistant 

to the donor and acceptor oxygen atoms. As discussed above, the adiabatic ground vibronic state 

trajectory predicts the fastest proton transfer time of 12.3 fs. The Ehrenfest dynamics trajectory, 

which includes contributions from the excited vibronic state associated with a higher barrier for 

proton transfer, delays the time for proton transfer to 16.9 fs. For the surface hopping trajectories, 

we estimated the proton transfer time using the four representative trajectories. Two of these 

trajectories exhibit a proton transfer time of 18.8 fs, where the nonadiabatic transition occurs at 

9.6 fs with a Landau-Zener probability of 0.72. The other two trajectories exhibit a proton transfer 

time of 12.3 fs, where a nonadiabatic transition does not occur at 9.6 fs or at any time before the 

proton transfers. To estimate the proton transfer time, we computed the weighted sum of these two 

proton transfer times using the Landau-Zener probability. This estimate results in a proton transfer 

time of 17.0 fs, which is very close to the Ehrenfest dynamics result for this specific system and 

set of initial conditions. It is important to note that a comparison to experimental measurements 

would require sampling over initial conditions. 
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Table 1. Proton Transfer Timea in Malonaldehyde from Different Dynamics Approaches 

Approach Time (fs) 

adiabatic ground state 12.3 

Ehrenfest 16.9 

Surface hopping 17.0b 

aThe proton transfer time is defined as the time when the expectation value of the transferring 

proton position is equidistant to the donor and acceptor oxygen atoms. This proton transfer time is 

not comparable to experimental measurements because only a single set of initial conditions is 

considered. 
bEstimated from a weighted sum of four independent trajectories using the Landau-Zener transition 

probability. 
 

 

We also analyzed energy conservation for all of these trajectories. Figure S7 presents some 

examples, including the adiabatic ground state trajectory, the Ehrenfest dynamics trajectory, and 

one surface hopping trajectory. For the adiabatic ground state trajectory, the total energy exhibits 

excellent conservation with fluctuations within 2.0×10-5 Hartree. Energy conservation is not quite 

as good for the Ehrenfest and surface hopping dynamics trajectories, where the total energy 

deviation increases to ~6.0×10-5 Hartree. Such energy conservation behavior is considered to be 

acceptable in most situations and can be improved systematically using a tighter gradient tolerance 

for the basis function center optimization at each classical MD time step, as well as a smaller MD 

time step. This improvement is shown in Figure S8 for the HCN molecule. Similarly, for the 

current study of malonaldehyde, the total energy will be conserved better if a tighter gradient 

tolerance and smaller time step are used. 
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4. Conclusions   

In this paper, we introduced a scheme combining the NEO-MSDFT approach with both 

adiabatic and nonadiabatic dynamics simulations of proton transfer reactions. Using 

malonaldehyde as a prototypical proton transfer system exhibiting hydrogen tunneling, we 

performed nonadiabatic Ehrenfest and surface hopping dynamics on the NEO-MSDFT vibronic 

state surfaces. The proton transfer process is analyzed by tracking the expectation value of the 

quantum proton position as well as the proton density. Upon inclusion of contributions from the 

excited vibronic state via either Ehrenfest or surface hopping dynamics, the proton transfer process 

is slowed down. In all cases, the total energy is well conserved, and energy conservation is shown 

to be further improved when a tighter gradient tolerance is used for optimizing the proton basis 

function centers. 

In prior work, the NEO-MSDFT approach was shown to produce quantitatively accurate 

hydrogen tunneling splittings for fixed geometries.33 The combination of the NEO-MSDFT 

approach with nonadiabatic dynamics methods opens up new possibilities for investigating 

hydrogen tunneling dynamics at finite temperature, while including the coupling between the 

transferring hydrogen and the other nuclei. Comparison to experimental data obtained at these 

temperatures will require the simulation of a large number of nonadiabatic dynamics trajectories 

averaged over initial conditions that are consistent with the experimental conditions. Hydrogen 

tunneling splittings for comparison with experimental data can be calculated with methods such 

as vibronic coupling theory, as applied previously within the NEO framework.46  

Attaining quantitative accuracy with these methods may require further improvement of 

the NEO-MSDFT scheme. Such improvements include the development of more accurate 

electron-proton correlation functionals and the addition of more vibronic states. Moreover, the 
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description of multiple proton transfer reactions will require additional vibronic states. These 

extensions represent future directions that will enable a wide range of hydrogen tunneling 

simulations.  
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Derivation and benchmarking of NEO-MSDFT analytical nonadiabatic coupling vector; NEO-
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path; additional representative surface hopping trajectories; total energy conservation from 

adiabatic, Ehrenfest, and surface hopping dynamics trajectories; analysis of total energy 

conservation for HCN molecule. 
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23. Zhao, L.; Wildman, A.; Pavošević, F.; Tully, J. C.; Hammes-Schiffer, S.; Li, X. Excited 

State Intramolecular Proton Transfer with Nuclear-Electronic Orbital Ehrenfest Dynamics. J. 

Phys. Chem. Lett. 2021, 12, 3497-3502. 

24. Wang, Y.; Braams, B. J.; Bowman, J. M.; Carter, S.; Tew, D. P. Full-Dimensional Quantum 

Calculations of Ground-State Tunneling Splitting of Malonaldehyde Using an Accurate Ab Initio 

Potential Energy Surface. J. Chem. Phys. 2008, 128, 224314. 

25. Hammer, T.; Coutinho-Neto, M. D.; Viel, A.; Manthe, U. Multiconfigurational Time-

Dependent Hartree Calculations for Tunneling Splittings of Vibrational States: Theoretical 

Considerations and Application to Malonaldehyde. J. Chem. Phys. 2009, 131, 224109. 

26. Schröder, M.; Gatti, F.; Meyer, H.-D. Theoretical Studies of the Tunneling Splitting of 

Malonaldehyde Using the Multiconfiguration Time-Dependent Hartree Approach. J. Chem. Phys. 

2011, 134, 234307. 

27. Pak, M. V.; Hammes-Schiffer, S. Electron-Proton Correlation for Hydrogen Tunneling 

Systems. Phys. Rev. Lett. 2004, 92, 103002. 

28. Pak, M. V.; Swalina, C.; Webb, S. P.; Hammes-Schiffer, S. Application of the Nuclear-

Electronic Orbital Method to Hydrogen Transfer Systems: Multiple Centers and 

Multiconfigurational Wavefunctions. Chemical Physics 2004, 304, 227-236. 

29. Gao, J.; Grofe, A.; Ren, H.; Bao, P. Beyond Kohn–Sham Approximation: Hybrid 

Multistate Wave Function and Density Functional Theory. J. Phys. Chem. Lett. 2016, 7, 5143-

5149. 

30. Grofe, A.; Qu, Z.; Truhlar, D. G.; Li, H.; Gao, J. Diabatic-at-Construction (Dac) Method 

for Diabatic and Adiabatic Ground and Excited States Based on Multistate Density Functional 

Theory. J. Chem. Theory Comput. 2017, 13, 1176-1187. 

31. Lu, Y.; Gao, J. Multistate Density Functional Theory of Excited States. J. Phys. Chem. 

Lett. 2022, 7762-7769. 

32. Mo, Y.; Bao, P.; Gao, J. Energy Decomposition Analysis Based on a Block-Localized 

Wavefunction and Multistate Density Functional Theory. Phys. Chem. Chem. Phys. 2011, 13, 

6760-6775. 



29 

 

33. Yu, Q.; Hammes-Schiffer, S. Nuclear-Electronic Orbital Multistate Density Functional 

Theory. J. Phys. Chem. Lett. 2020, 11, 10106-10113. 

34. Skone, J. H.; Pak, M. V.; Hammes-Schiffer, S. Nuclear-Electronic Orbital Nonorthogonal 

Configuration Interaction Approach. J. Chem. Phys. 2005, 123, 134108. 

35. Thom, A. J. W.; Head-Gordon, M. Hartree–Fock Solutions as a Quasidiabatic Basis for 

Nonorthogonal Configuration Interaction. J. Chem. Phys. 2009, 131, 124113. 

36. Lischka, H.; Nachtigallová, D.; Aquino, A. J. A.; Szalay, P. G.; Plasser, F.; Machado, F. 

B. C.; Barbatti, M. Multireference Approaches for Excited States of Molecules. Chem. Rev. 2018, 

118, 7293-7361. 

37. Ghosh, S.; Verma, P.; Cramer, C. J.; Gagliardi, L.; Truhlar, D. G. Combining Wave 

Function Methods with Density Functional Theory for Excited States. Chem. Rev. 2018, 118, 

7249-7292. 

38. Yu, Q.; Schneider, P. E.; Hammes-Schiffer, S. Analytical Gradients for Nuclear–Electronic 

Orbital Multistate Density Functional Theory: Geometry Optimizations and Reaction Paths. J. 

Chem. Phys. 2022, 156, 114115. 

39. Hammes-Schiffer, S.; Tully, J. C. Proton Transfer in Solution: Molecular Dynamics with 

Quantum Transitions. J. Chem. Phys. 1994, 101, 4657-4667. 

40. Crespo-Otero, R.; Barbatti, M. Recent Advances and Perspectives on Nonadiabatic Mixed 

Quantum–Classical Dynamics. Chem. Rev. 2018, 118, 7026-7068. 

41. Curchod, B. F. E.; Martínez, T. J. Ab Initio Nonadiabatic Quantum Molecular Dynamics. 

Chem. Rev. 2018, 118, 3305-3336. 

42. Li, X.; Tully, J. C.; Schlegel, H. B.; Frisch, M. J. Ab Initio Ehrenfest Dynamics. J. Chem. 

Phys. 2005, 123, 084106. 

43. Tully, J. C. Molecular Dynamics with Electronic Transitions. J. Chem. Phys. 1990, 93, 

1061-1071. 

44. Tully, J. C. Mixed Quantum-Classical Dynamics. Faraday Discussions 1998, 110, 1-13. 

45. Coutinho-Neto, M. D.; Viel, A.; Manthe, U. The Ground State Tunneling Splitting of 

Malonaldehyde: Accurate Full Dimensional Quantum Dynamics Calculations. J. Chem. Phys. 

2004, 121, 9207-9210. 

46. Hazra, A.; Skone, J. H.; Hammes-Schiffer, S. Combining the Nuclear-Electronic Orbital 

Approach with Vibronic Coupling Theory: Calculation of the Tunneling Splitting for 

Malonaldehyde. J. Chem. Phys. 2009, 130, 054108. 

47. Käser, S.; Unke, O. T.; Meuwly, M. Reactive Dynamics and Spectroscopy of Hydrogen 

Transfer from Neural Network-Based Reactive Potential Energy Surfaces. New Journal of Physics 

2020, 22, 055002. 

48. Meek, G. A.; Levine, B. G. Evaluation of the Time-Derivative Coupling for Accurate 

Electronic State Transition Probabilities from Numerical Simulations. J. Phys. Chem. Lett. 2014, 

5, 2351-2356. 

49. Tully, J. C. Perspective: Nonadiabatic Dynamics Theory. J. Chem. Phys. 2012, 137, 

22A301. 

50. Epifanovsky, E.; Gilbert, A. T. B.; Feng, X.; Lee, J.; Mao, Y.; Mardirossian, N.; Pokhilko, 

P.; White, A. F.; Coons, M. P.; Dempwolff, A. L.; Gan, Z.; Hait, D.; Horn, P. R.; Jacobson, L. D.; 

Kaliman, I.; Kussmann, J.; Lange, A. W.; Lao, K. U.; Levine, D. S.; Liu, J.; McKenzie, S. C.; 

Morrison, A. F.; Nanda, K. D.; Plasser, F.; Rehn, D. R.; Vidal, M. L.; You, Z.-Q.; Zhu, Y.; Alam, 

B.; Albrecht, B. J.; Aldossary, A.; Alguire, E.; Andersen, J. H.; Athavale, V.; Barton, D.; Begam, 

K.; Behn, A.; Bellonzi, N.; Bernard, Y. A.; Berquist, E. J.; Burton, H. G. A.; Carreras, A.; Carter-



30 

 

Fenk, K.; Chakraborty, R.; Chien, A. D.; Closser, K. D.; Cofer-Shabica, V.; Dasgupta, S.; de 

Wergifosse, M.; Deng, J.; Diedenhofen, M.; Do, H.; Ehlert, S.; Fang, P.-T.; Fatehi, S.; Feng, Q.; 

Friedhoff, T.; Gayvert, J.; Ge, Q.; Gidofalvi, G.; Goldey, M.; Gomes, J.; González-Espinoza, C. 

E.; Gulania, S.; Gunina, A. O.; Hanson-Heine, M. W. D.; Harbach, P. H. P.; Hauser, A.; Herbst, 

M. F.; Hernández Vera, M.; Hodecker, M.; Holden, Z. C.; Houck, S.; Huang, X.; Hui, K.; Huynh, 

B. C.; Ivanov, M.; Jász, Á.; Ji, H.; Jiang, H.; Kaduk, B.; Kähler, S.; Khistyaev, K.; Kim, J.; Kis, 

G.; Klunzinger, P.; Koczor-Benda, Z.; Koh, J. H.; Kosenkov, D.; Koulias, L.; Kowalczyk, T.; 

Krauter, C. M.; Kue, K.; Kunitsa, A.; Kus, T.; Ladjánszki, I.; Landau, A.; Lawler, K. V.; 

Lefrancois, D.; Lehtola, S.; Li, R. R.; Li, Y.-P.; Liang, J.; Liebenthal, M.; Lin, H.-H.; Lin, Y.-S.; 

Liu, F.; Liu, K.-Y.; Loipersberger, M.; Luenser, A.; Manjanath, A.; Manohar, P.; Mansoor, E.; 

Manzer, S. F.; Mao, S.-P.; Marenich, A. V.; Markovich, T.; Mason, S.; Maurer, S. A.; McLaughlin, 

P. F.; Menger, M. F. S. J.; Mewes, J.-M.; Mewes, S. A.; Morgante, P.; Mullinax, J. W.; Oosterbaan, 
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