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To date, the most effective approach to compiling strict, higher-order functional languages (such as OCaml,
Scheme, and SML) has been to use whole-program techniques to convert the program to a first-order monomor-
phic representation that can be optimized using traditional compilation techniques. This approach, popularized
by MLton, has limitations, however. We are interested in exploring a different approach to compiling such
languages, one that preserves the higher-order and polymorphic character of the program throughout opti-
mization. To enable such an approach, we must have effective analyses that both provide precise information
about higher-order programs and that scale to larger units of compilation. This paper describes one such
analysis for determining the extent of variable bindings. We classify the extent of variables as either register
(only one binding instance can be live at any time), stack (the lifetimes of binding instances obey a LIFO order),
or heap (binding lifetimes are arbitrary). These extents naturally connect variables to the machine resources
required to represent them. We believe that precise information about binding extents will enable efficient
management of environments, which is a key problem in the efficient compilation of higher-order programs.

At the core of the paper is the 3CPS intermediate representation, which is a factored CPS-based intermediate
representation (IR) that statically marks variables to indicate their binding extent. We formally specify the
management of this binding structure by means of a small-step operational semantics and define a static
analysis that determines the extents of the variables in a program. We evaluate our analysis using a standard
suite of SML benchmark programs. Our implementation gets surprisingly high yield and exhibits scalable
performance. While this paper uses a CPS-based IR, the algorithm and results are easily transferable to other
𝜆-calculus IRs, such as ANF.
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1 INTRODUCTION
The power and expressiveness of higher-order programming arises from the packaging of control
and data into first-class values (i.e., functions). Heap-allocated closures [Appel and Jim 1988; Cardelli
1984; Shao and Appel 2000] provide a general mechanism for representing such values at runtime,
but construction of this representation can require significant data copying and allocation.
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For most of the functions in a program, however, such a general-purpose and heavyweight
representation is not necessary. The question is, for which variable bindings can we use more
efficient specialized representations? To answer this question, we need higher-order control-flow
analyses to develop a precise understanding of the control-flow, data-flow, and environment
structure of the code. Such analyses enable the effective management of bindings, which, in turn,
enables an efficient implementation. These analyses must satisfy two properties: first, they must be
precise enough to provide actionable results and, second, they must be scalable to large compilation
units. The focus of this paper is on one such analysis algorithm.
At the core of our approach is a factored continuation-passing-style (CPS) intermediate repre-

sentation (IR) that we call 3CPS.1 The 3CPS name is derived from the fact that we annotate the IR
with information about the extent of variable bindings, which we classify as one of three choices:
register, stack, or heap.2 We describe these choices in the next section and then present a core
calculus that models our IR in Sections 3 and 4. We present our analysis following the traditional
approach of first extending the concrete semantics of 3CPS from Section 4 to a precise collecting
semantics (Section 5) and then abstracting that to define a decidable analysis (Section 6). We follow
these core technical sections with a discussion of our implementation and an evaluation of its
effectiveness. What is somewhat astonishing is how much of the program’s environment structure
can be expressed with the lightweight, high-performance mechanisms of modern processors (that
is, registers and the stack) — and how much of this structure can be revealed by static analysis.
Furthermore, the evaluation demonstrates that our analysis is scalable, in addition to being precise.
Finally, we discuss related work and conclude.

2 SCOPE AND EXTENT
In this paper, we focus on the act of binding variables: that is, what is necessary to associate a
variable with some value as the program’s computation proceeds. In particular, we focus on the
resource management needed to implement bindings. Variable bindings have two axes of existence,
which one might refer to as “spatial” and “temporal:” that is, scope and extent.

The well-understood notion of “scope” determines where in the program some binding is visible
for reference, as determined by the “lexical scope” rule of the 𝜆-calculus. Scope brings with it
the associated notion of “free variables.” There is a producer/consumer relationship at any given
code point between the set of variables in the current scope, and the ones in the free-variable set:
the variables in scope are the bindings being provided to the code point, while the ones in the
free-variable set are the ones being used by the code at that point. The latter set is, of course, a
subset of the former.
The notion of “variable extent” is the lifetime of the variable’s binding. In a language such as

C, for example, any binding of a procedure parameter has an extent which is terminated by the
point in time when the procedure returns: we can say that such a variable has “stack extent,” which
means that each binding can be implemented using a slot in the procedure’s call frame on the
run-time stack. In higher-order functional languages, however, bindings can have a lifetime that
extends beyond the invocation of their binding procedure, which is why we frequently think of
variable bindings as occurring by allocating environment frames in a garbage-collected heap.

It is important to keep in mind that this view of variable binding as heap allocation is simplistic: it
is merely the most general — and, therefore, most heavyweight — implementation choice available

1While we believe that there are significant advantages to using a CPS IR for analysis and optimization, our general approach
and techniques are applicable to other 𝜆-calculus IRs, such as ANF [Flanagan et al. 1993].
2In practice, the IR is annotated with additional information, such as control-flow information.
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to a compiler. Many variables in a program have restricted binding extent, which means that they
can be implemented using significantly lighter-weight mechanisms.
From the compiler’s point of view, it is useful to think of 𝜆 as being a simple interface to a

collection of mechanisms. The compiler’s job is to take each 𝜆 expression that occurs in the program
and use static information to index into the set of possible mechanisms, choosing the most efficient
one that handles the requirements of the term. Some 𝜆 terms will need the general, heavyweight
mechanism of heap-allocated bindings; others can do their bindings on a stack; still others turn
into register-allocation decisions; while others are completely discharged at compile time, and
have no real existence as run-time computational artifacts. The programmer is encouraged to use 𝜆
terms in a profligate way, relying upon the compiler, as described above, to render each 𝜆 term as
efficiently as possible.
A key piece of information that helps a compiler determine the most efficient means of im-

plementing a given 𝜆 expression is the extent of the bindings created when control enters the
expression. The key insight is that the extent of the bindings maps naturally onto the distinct
storage mechanisms of standard hardware:

Register If, whenever some variable is bound to a value, we are guaranteed that there are no
other bindings of that variable “live,” or accessible, in the machine state, then we say the
variable has “register extent,” which permits us to assign the variable a machine register. To
“bind” the variable to some value, we simply move the value into the corresponding register,
which, of course, overwrites any previously created bindings for the variable; this will not be
a problem as there are no live closures over one of these previous bindings.

Stack If, whenever some variable is bound to a value, it is guaranteed that there will be no
uses of that binding after control has returned from the binding 𝜆, then we can allocate the
binding on the run-time stack.

Heap Finally, if a variable’s binding can be referenced after control returns from its binding 𝜆
expression, then we must allocate the binding on some garbage-collected heap. This is the
most general, most heavyweight environment-structure allocation mechanism of last resort.

Note that when we say a variable has “register extent,” we are saying that the variable could,
in principle, be implemented by assigning it a machine register chosen at compile time, on an
abstract machine that had enough registers. The task of assigning all such variables actual machine
registers (or statically fixed memory locations) using liveness-derived interference information is
well understood and not our focus here.

To illustrate, consider the SML function “fun adder x = (fn y => x+y).” In this code, the
parameter x must be bound using a heap-allocated environment frame on entry to adder, as the
binding remains live after the return of its binding function. In contrast, the y variable could be
bound using a slot in the stack’s call frame allocated on entry to the binding fn term. In fact, we
can do even better: because only one binding of y is ever live at any time, we can keep y in a
statically-chosen register. To bind y, we simply move its associated value into the register.
Note that this approach is different from the “flat closure” model that allocates environment

structure when bindings are captured. In our example, this would allocate space for the binding of
x when creating the closure for the inner function, not when entering adder. We can implement
flat closures in our model with a compiler-driven, source-to-source transform that wraps capturing
𝜆 terms in a variable-copying let form; the details are beyond the scope of this paper.

For another example, consider the recursive function that computes the factorial of its parameter
n. If we compute the factorial of 5, then by the time we encounter the n = 0 base case, we will
have six bindings of the same parameter n all simultaneously live; we will reference these bindings
as the program unwinds out of the recursion, doing the pending multiplies. Having multiple
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simultaneously live bindings rules out using a register for the n environment. Each binding of n
goes dead when control returns from its binding term, however, so we can use a stack slot here.
Note that the memory resources we are allocating here (register, stack-frame slot, heap-frame

slot) represent environment structure (that is, bindings associating variables and values), not data
structure (that is, values themselves). The compiler must choose, for each variable in a program,
how to implement its various dynamic bindings. Our focus here is on this decision, and we start
by drawing attention to the key observation that this decision is driven by consideration of each
variable’s lifetime, or extent.

3 THE 3CPS INTERMEDIATE REPRESENTATION
The impact of variable extent on the selection of machine resource to implement environment
structure leads us to making these choices explicit in a compiler intermediate representation
(IR). We propose a very simple IR, which we call 3CPS, that is simply a standard, low-level CPS
representation, augmented by annotating every variable with an “extent mark,” one ofH , S, and
R [Quiring et al. 2021].
Figure 1 shows the grammar of 3CPS. Note that our IR is a “factored” CPS: that is, all variables,

call sites, and 𝜆 terms are syntactically segregated into two classes: “user” variables, calls, and 𝜆
terms, and “continuation” variables, calls, and 𝜆 terms. It is a fundamental property of the CPS
transform from a direct-style program that we can do this factoring, which carries over from the
syntactic domains to the semantic ones: all procedural values can likewise be split into user and
continuation values. “User” procedures are only made by evaluating user 𝜆 terms; these procedures
are only bound to user variables and are only called from user call sites. Likewise, continuation
values are only made from cont forms; are only bound to continuation variables; and are only
called from continuation call sites. Compilers have used factored CPS IRs going back to the Orbit
compiler [Kranz et al. 1986; Kranz 1988] in the 1980s. Unlike other recent works [Cong et al. 2019;
Kennedy 2007; Maurer et al. 2017], we do not introduce special forms or 2nd-class continuations to
support local control flow. Instead, we expect that the compiler to choose the best mechanism for
implementing each particular instance of 𝜆 abstraction.
The cross-product of the user/continuation distinction and the three kinds of extent mark give

us, then, six different kinds of variables, where we write the extent annotation as a superscript:

UVarH =
{
zH, iH, . . .

}
UVarS =

{
zS, iS, . . .

}
UVarR =

{
zR, iR, . . .

}
CVarH =

{
k1H, topcontH, . . .

}
CVarS =

{
k1S, topcontS, . . .

}
CVarR =

{
k1R, topcontR, . . .

}
A full IR for a practical compiler additionally requires some kind of letrec form for creating

circular environment structure and primitive operations (or “primops”) for the built-in atomic
operations the compiler directly handles, such as addition and subtraction. We elide these details
from this presentation to keep things simple and focused; they are straightforward to include.
As is typically the case in a low-level IR, we assume that all syntactic points in a program are

assigned a unique label, which permits us to easily refer to points in the program, and we assume
that all variables in the program are “alphatized,” that is, assigned unique names. Having defined
all program points to have a unique label, we proceed to suppress these labels whenever they are
not required for some specific purpose.

In the syntax productions of Figure 1, we employ the convention of using ellipses “. . .” to mean
“zero or more occurrences of the preceding element.” Thus, a user 𝜆 term ulam has exactly one
user-variable formal parameter 𝑥 , and one or more continuation-variable formal parameters 𝑘𝑖 .
Again, a full IR for a practical compiler would likely extend both user and continuation 𝜆 terms
(and their corresponding call forms) to permit them to be passed multiple user-value arguments, to
allow the compiler to “spread” values across multiple parameters. Again, we elide this detail for

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 114. Publication date: August 2022.



Analyzing Binding Extent in 3CPS 114:5

𝑥 ∈ UVar = UVarH + UVarS + UVarR User variables (three kinds)
𝑘 ∈ CVar = CVarH + CVarS + CVarR Continuation variables (three kinds)
ℓ ∈ Label = a set of labels

ulam ∈ ULam ::= ℓ:(𝜆 (𝑥 k1 k2 . . .) pr) User-procedure abstraction
clam ∈ CLam ::= ℓ:(cont (𝑥) pr) Continuation abstraction

ae, 𝑓 ∈ Arg = ULam + UVar Value expressions
𝑞 ∈ Cont = CLam + CVar Continuation expressions
pr ∈ Prog ::= ℓ:(𝑓 ae q1 q2 . . .) Call to user procedure

| ℓ:(𝑞 ae) Call to continuation (i.e., return)

Fig. 1. Core grammar of the 3CPS intermediate representation.

simplicity. (Note, however, that the analysis implementation we describe in later sections handles
the extra complexities of letrec, primitive operations, and multiple-parameter calls, so that we
can analyze real, non-toy code.)
Although our core IR restricts user and continuation 𝜆 terms to take only a single user-value

parameter, user 𝜆 expressions can have multiple continuation parameters. Being able to pass multiple
continuations to a procedure permits a compiler to implement exception handlers and other non-
local control mechanisms by means of alternate continuations. We additionally assume that user 𝜆
abstractions only close over user variables UVar , never continuation variables CVar . If our source
language does not contain some sort of call-with-current-continuation mechanism, this is a
property of CPS conversion and is simple to maintain through subsequent transformations; it is key
to providing the kind of a simple stack-management policy we develop in the following section.

4 THE 3CPS MACHINE
A program written in 3CPS executes on an abstract machine that has three resources for allocating
environment structure: a register set, a stack, and a heap, all of unbounded size. Environment
structure is allocated on the stack and in the heap in units of “frames.” For the purposes of our
abstract machine, we represent a given frame as a partial function (or table) mapping the variables
bound by that frame to their corresponding values. Thus, we model the stack as a sequence of
frames that advances and retreats as we enter into and return from variable-binding procedures;
likewise, we model the environment heap as a collection of frames that live forever.

Note that our focus in this abstract machine is on environment structure, not data structure: the
elements that are created in the heap and on the stack are variable-binding frames, structures that
associate variables with values, not the values themselves, such as procedure closures, list structure,
arrays, and so forth. (As we see in the following section, our analysis additionally permits us to
determine extent information for values, with little extra work. This is quite useful in practice, but
not the focus of our work here, so we do not develop the necessary machinery in our semantics to
express where values such as closures are allocated.)
Our abstract machine is defined by a small-step operational semantics that steps a machine

with the given resources (that is, a register set, a stack of frames, and a heap of frames). As our
focus is on the management of environment structure, our semantics is environment-based, not
substitution-based. The semantic domains of the machine are given in Figure 2.
Several details of these domains are worth examining. Suppose some user 𝜆 term ulam binds

several parameters. a mix of heap vars, stack vars, and register vars.3 Whenever control enters that
term, the machine allocates two fresh frames: one in the heap, with unbounded extent, and one on

3The ulam term is more likely to have parameters in multiple extent classes in a more full-featured IR where a user 𝜆 term
can take multiple user-value parameters, of course. . .
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fr ∈ Frame = (UVar + CVar) ⇀ (UClo + CClo)
hp ∈ Heap = Contour ⇀ Frame
st ∈ Stack = Frame∗ (Base is st [0]; top is st [|st | − 1].)

regs ∈ Regs = Frame

𝑑 ∈ UClo = ULam × HCEnv × SCEnv
𝑐 ∈ CClo = CLam × HCEnv × SCEnv × StackIndex

𝛽 ∈ HCEnv = Label ⇀ Contour
𝛾 ∈ SCEnv = Label ⇀ StackIndex
StackIndex = N

Contour = N

EvalState = Prog × HCEnv × SCEnv × Heap × Stack × Regs
ApplyState = UClo × Value × CClo+ × Heap × Stack × Regs

∪ CClo × Value × Heap × Stack × Regs

Fig. 2. Semantic domains of 3CPS.

the stack, with “stack” extent. The bindings for the heap-marked parameters are made in the heap
frame; likewise, the bindings for the stack-marked parameters are made in the stack frame. The
register-marked parameters are bound by updating the machine’s global register set with the new
values; any overwritten entries are irrelevant by the rules for register-extent variables.

When control enters a continuation cont term, we do exactly the same thing: we allocate a fresh
heap frame and a fresh stack frame, and bind our three classes of variable in the appropriate places.
Note that continuation terms create heap frames just as user 𝜆 terms do. This is because the extent
of a variable is determined by the code that refers to it, not the code that binds it. While it is true
that continuation-bound variables introduced by the CPS-conversion process to hold intermediate
values can never have free references in user code that escapes the binding context, this is only the
case for the code produced by the CPS converter. A compiler can introduce such free references by
means of optimizing source-to-source transformations later in the compilation process, so we need
to permit this case in the semantics.
All heap frames live in a global frame heap hp; all (live) stack frames live on the stack st; the

register set is modelled as a single frame, regs. If control enters some 𝜆 term multiple times, we can
have multiple bindings of the same variable all simultaneously live in different heap frames (if the
variable is a heap variable), or simultaneously live in different stack frames (if the variable is a stack
variable). If, for example, we have five different frames in the machine’s frame heap all providing
bindings for the variable i, we need some way to determine when the machine is evaluating a
reference to i which binding is visible in the current context. This disambiguation is managed by
means of the lexical context environments 𝛽 and 𝛾 .
Suppose the machine is evaluating code at some point ℓ in the program, and that ℓ appears

nested inside eight binding forms, ℓ0, . . . , ℓ7, that is, eight lexically nested user and continuation
𝜆 terms, where ℓ0 is the topmost term in the program, and ℓ7 is the immediate parent of term ℓ .
The variables lexically visible at point ℓ are all bound by one of these eight forms, and so their
bindings are contained in eight heap frames and up to eight stack frames (after all, control may
have returned back through some of the stack frames for these lexical parent forms, rendering their
stack-bound variables inaccessible).
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A𝑢 : Arg × HCEnv × SCEnv × Heap × Stack × Regs ⇀ UClo

A𝑢 ae 𝛽 𝛾 hp st regs =


⟨ae, 𝛽, 𝛾⟩ if ae ∈ ULam
hp(𝛽 (binder(ae)) ae if ae ∈ UVarH (i.e., ae is heap var)
st [𝛾 (binder(ae))] ae if ae ∈ UVarS (i.e., ae is stack var)
regs ae if ae ∈ UVarR (i.e., ae is reg var)

A𝑐 : Cont × HCEnv × SCEnv × Heap × Stack × Regs ⇀ CClo

A𝑐 𝑞 𝛽 𝛾 st regs =


⟨𝑞, 𝛽,𝛾, |st |⟩ if 𝑞 ∈ CLam
hp[𝛽 (binder(𝑞))] 𝑞 if 𝑞 ∈ CVarH (i.e., 𝑞 is heap var)
st [𝛾 (binder(𝑞))] 𝑞 if 𝑞 ∈ CVarS (i.e., 𝑞 is stack var)
regs 𝑞 if 𝑞 ∈ CVarR (i.e., 𝑞 is reg var)

StackTrim : Stack × CClo+ ⇀ Stack
StackTrim(st, [𝑐1, . . .]) = let len = max𝑖 {sp | ⟨clam, 𝛽, 𝛾, sp⟩ = 𝑐𝑖 }

in st [0..𝑙𝑒𝑛)
Fig. 3. Semantics auxiliary functions

Suppose code point ℓ contains a reference to some variable i that is a stack-bound parameter of,
say, parent term ℓ3. If i is bound by some deeply recursive computation, there may be many binding
frames for i currently live on the stack. Which is the one visible in the current context? This query
is resolved by the lexical frame environment 𝛾 , which, in our example, provides the indices of the
eight stack frames lexically visible in this context. That is, 𝛾 is a partial function mapping the eight
labels ℓ0, . . . , ℓ7 to the locations of the relevant frames on the stack; so 𝛾 ℓ3 is the stack index of the
frame we want. If we think of 𝛾 as an eight-item vector of indices instead of a partial function, then
it becomes clear that 𝛾 is just what a Pascal or Algol compiler would consider a “display.”

Likewise, the lexical frame environment 𝛽 provides the context that indicates which heap frame
to use for a variable reference of the possibly many such frames in the frame heap. This machinery
is essentially the same mechanism as was developed for 0CFA higher-order flow analysis [Shivers
1991].

We represent user procedures UClo as closures: records ⟨ulam, 𝛽, 𝛾⟩ that package up some 𝜆 term
and two lexical frame environments specifying which binding frames are captured by the closure.
Continuations are handled in a similar fashion, as defined by the set CClo, except that creating
continuation closures also records the size of the stack at the time of creation, which incarnates the
informal observation that continuations represent the stack.
As our specification semantics is a classic eval/apply transition system, we have two kinds

of machine state. An eval machine state is a tuple: a program term (the “pc”), the lexical frame
environments 𝛽 and 𝛾 as described above, and the frame heap, frame stack, and register set. The
machine’s job, when in an eval state, is to evaluate the elements of a call (that is, the call’s function
term and all its arguments). Once these values have been produced, the machine transitions to an
apply state, which consists of the usual global machine state (that is, the frame heap, the stack and
the register set), plus the procedure being applied and its argument values. We have two kinds of
apply state, one for applying user procedures; the other, for applying continuations.

We provide the machine’s state transitions in Figure 4 and 5. The transitions are assisted by the
auxiliary functions shown in Figure 3. The auxiliary functions A𝑢 and A𝑐 are used to evaluate the
individual “trivial” elements of a call form (variable references and 𝜆 terms) to values. A 𝜆 term is
evaluated by packaging it up with the current lexical frame environments 𝛽 and 𝛾 to make a closure;
continuation closures additionally capture the size of the current stack, |st |. Variable references are
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⟨⟦(𝑓 ae 𝑞1 𝑞2 . . .)⟧ , 𝛽, 𝛾, hp, st, regs⟩ −→ ⟨proc, arg, conts, hp, st′, regs⟩
where proc = A𝑢 𝑓 𝛽 𝛾 hp st regs

arg = A𝑢 ae 𝛽 𝛾 hp st regs
conts[𝑖] = A𝑐 𝑞𝑖 𝛽 𝛾 hp st regs
st′ = StackTrim(st, conts)

⟨⟦(𝑞 ae)⟧ , 𝛽, 𝛾, hp, st, regs⟩ −→ ⟨𝑐, arg, hp, st′, regs⟩
where 𝑐 = A𝑐 𝑞 𝛽 𝛾 hp st regs

arg = A𝑢 ae 𝛽 𝛾 hp st regs
st′ = StackTrim(st, [𝑐])

Fig. 4. 3CPS eval-to-apply state transitions

handled by looking up the variable in the appropriate frame, as determined by the variable’s extent
mark. For heap and stack variables, we locate the right frame using 𝛽 or 𝛾 , respectively; the binder
function is a how we model mapping a variable to the label of its binding 𝜆 term.

The StackTrim function is responsible for popping stack frames, both on function return (that is,
when calling a continuation), and during a tail call. It takes the current stack and a collection of
continuations, each of which records its stack needs in the fourth element sp of the continuation
closure. The StackTrim function trims the stack back as far as possible while preserving the portion
of the stack captured by each continuation.

As we see in the transition system, it is an invariant that when the machine is in an apply state
for a user procedure, for each continuation argument, the stack at the time the continuation was
created is a prefix of the current stack, and the current stack exactly matches the creation-time
stack for at least one of the continuations.

Likewise, when the machine is in an apply state for a continuation, the current stack is the same
as the stack at the time the continuation was created.
With these definitions in hand, the actual transition system is fairly straightforward. Figure 4

shows the eval-to-apply state-transition schema. They are exactly the transitions of a classic CPS
machine, with two additions. First, we handle variable references according to their extent marks,
looking them up in a heap frame, a stack frame, or the register set as indicated. Secondly, after
using the current context to produce the values needed for the upcoming apply state, we pop any
frames off the stack that are not retained by live continuations. In the case of evaluating a user-call
form, this would mean that the stack’s top frame would be deleted unless one of the 𝑞𝑖 continuation
arguments was a cont form whose closure captured the current frame. This is how tail-call stack
management is provided.
The apply-to-eval transitions are shown in Figure 5. This transition is principally involved in

creating new environment structure — binding incoming argument values to their corresponding
formal parameters.
What is key about our semantics is that it defines an explicit, mechanistic policy for the stack:

when frames are created and pushed on the stack, and when they are popped from the stack.
(It is an odd fact that it is hard to come by formally defined stack-management policies for CPS
languages. It is not uncommon, in our experience, to hear members of our community assert that
CPS languages “cannot use” a stack, which is certainly not the case, as was evinced as far back as
the early 80’s by the T implementation’s Orbit compiler [Kranz et al. 1986; Kranz 1988]. One of the
contributions of this paper is to provide a clear specification, in the form of our semantics, for the
stack-management policy of a CPS language.)
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⟨⟨⟦ℓ:(𝜆 (𝑥 𝑘1 𝑘2 . . .) pr)⟧ , 𝛽, 𝛾⟩, arg, conts, hp, st, regs⟩ −→ ⟨pr, 𝛽 ′, 𝛾 ′, hp′, st′, regs′⟩
where cnt = fresh contour (i.e., unused anywhere in machine state)

hframe = [𝑥 ↦→arg, 𝑘𝑖 ↦→conts[𝑖]] for all 𝑥 , 𝑘𝑖 heap vars
𝛽 ′ = 𝛽 [ℓ ↦→cnt]
hp′ = hp[cnt ↦→hframe]

sframe = [𝑥 ↦→arg, 𝑘𝑖 ↦→conts[𝑖]] for all 𝑥 , 𝑘𝑖 stack vars
𝛾 ′ = 𝛾 [ℓ ↦→ |st |]
st′ = st@ [sframe]

regs′ = 𝑟𝑒𝑔𝑠 [𝑥 ↦→args, 𝑘𝑖 ↦→conts[𝑖]] for all 𝑥 , 𝑘𝑖 reg vars

⟨⟨⟦ℓ:(cont (𝑥) pr)⟧ , 𝛽, 𝛾, tos⟩, arg, conts, hp, st, regs⟩ −→ ⟨pr, 𝛽 ′, 𝛾 ′, hp′, st′, regs′⟩
where cnt = fresh contour (i.e., unused anywhere in machine state)

hframe = [𝑥 ↦→arg] if 𝑥 ∈ UVarH , otherwise []
𝛽 ′ = 𝛽 [ℓ ↦→cnt]
hp′ = hp[cnt ↦→hframe]

sframe = [𝑥 ↦→arg] if 𝑥 ∈ UVarS , otherwise []
𝛾 ′ = 𝛾 [ℓ ↦→ tos]
st′ = st@ [sframe]

regs′ = regs[𝑥 ↦→arg] if 𝑥 ∈ UVarR , otherwise regs

Fig. 5. 3CPS apply-to-eval state transitions

Our stack-management policy correctly handles the eager frame-pop required by tail calls, and
it permits continuations to be invoked with non-local “throws” to implement mechanisms such
as exception handling. In the compiler we are currently developing based on 3CPS, all control is
made explicit, including exceptions. For example, the addition operator takes two continuations:
the “normal” or “success” continuation, which is called on the sum of the operator’s two numeric
operands, when the addition succeeds, and the “error” or exception continuation, which is called
when the addition overflows.

Nailing down when stack frames are created/pushed and destroyed/popped means that we
now have a precise definition of “stack extent:” a variable has stack extent if its binding is never
referenced after the machine pops the stack frame that was allocated on entry to its binding 𝜆 term.

4.1 Who Marks the Variables?
Now that we have defined our machine, we can consider its behavior. First, we should note that it
is possible to write misbehaving code that does not play by the rules of the resource management
encoded by the machine. For example, we can mark variables with stack or register marks that
actually require heap binding. Executing such a program will get stuck in a state attempting to
reference a variable from a stack frame that has been previously popped and is no longer available
in the machine, or simply quietly proceed with the value of the wrong binding.

On the other hand, it is easy to state what “correct” behavior of the machine is. If we simply mark
all variables in a program as heap bound, then it is clear by inspection that what we have is a classic
CPS interpreter, with an associated stack and register set that are never used. The stack advances
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and retreats as we call into and return from user functions, but it contains no bindings, so this is
irrelevant. We can find essentially this exact machine scattered throughout the CPS literature.
We can then regard stack and register markings simply as optimizing transformations (ones

which make use of the more lightweight machine resources) that are required not to alter the
course or final result of the computation.
As Vardoulakis and Shivers showed [Vardoulakis 2012; Vardoulakis and Shivers 2011], some

stack marks can be trivially determined by simple syntactic criteria. (And the structural insights of
this work are, in fact, the proximate source of the research agenda we are developing around the
3CPS IR [Quiring et al. 2021].) For example, any variable that is only captured by cont forms, not by
user 𝜆 terms, can be given stack extent; as this is true of all continuation variables (a property of the
CPS translation that we assume is preserved by compiler transforms) they can all be immediately
demoted from heap to stack extent.
The important question that follows, then, is: can static analysis improve the extent-marking

“yield” beyond the low-hanging fruit of Vardoulakis and Shivers’ simple syntactic criteria? If so,
then we have opened up a new avenue for optimizing the management of environment structure
in higher-order functional programs. This, then, is our agenda for the rest of this paper.

5 COLLECTING SEMANTICS
The task now before us is to develop an abstract-interpretation style analysis that determines
sound extent information for user variables. Given such facts, we may transform the 3CPS program
by re-annotating variables to obtain one that uses lighter-weight allocation mechanisms. The
first step is to define a small-step operational “collecting” semantics which determines all valid
extent information for user variables. This semantics is not computable in general, and so the
second step consists of defining a computable “abstract” semantics that determines a subset (sound
approximation) of the information the collecting semantics does. This abstract interpretation
serves as a computable, performant static analysis that, in practice, appears to find almost all of
the available facts for typical progams. We have designed the concrete semantics such that the
abstraction is straightforward — this means that all of the complexity of the analysis is lifted into
the concrete semantics itself rather than the mapping between the two semantics.
The collecting semantics uses the same syntax as the 3CPS IR, but is agnostic of the current

markings of the variables and effectively operates on an “unannotated” program. In effect, the
collecting semantics treats every variable as heap allocated. We note that the presented analysis can
additionally be used to determine extent information for values such as closures and lists, and while
we occasionally comment on this, the formalism will not be presented. We omit discussion of extent
for continuation-variable bindings, cont terms, and values since their handling mimics that of the
user domains. Including other language features such as letrec, primitives, and nondeterminism
into the analysis is simple. Introducing stateful data structures can prevent the use of an optimization
that increases precision in the abstract semantics which will be discussed when the optimization is
presented.

At a high level, the collecting semantics essentially runs the program as normal while maintaining
information about the extent of each variable for the current progress. The extent information
takes the form of a set of pairs of variables and extent annotations. Since heap extent is always a
valid choice for any variable we restrict the extent annotation focus to stack and register extent.
Formally,

an, ãn ∈ Anno ≜ P(UVar × {R,S})

Initially every variable has every extent, and as the program executes some of these extents are
ruled out as invalid. For example, whenever the program pops a frame established on entry to some
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𝜍 ∈ State ≜ Prog × Env × Addr𝜋 × Store × Store𝜋 × Anno
𝜌 ∈ Env ≜ UVar ⇀ Addr
𝜎 ∈ Store ≜ Addr ⇀ Value
a ∈ Addr ≜ a countably infinite set
uclo ∈ Value ≜ ULam × Env
𝜎𝜋 ∈ Store𝜋 ≜ Addr𝜋 ⇀ Proxy
𝜋 ∈ Proxy ≜ Prog × Env × CValue+ × Addr𝜋
c ∈ CValue ≜ CClo + N
cclo ∈ CClo ≜ CLam × Env
𝑎𝜋 ∈ Addr𝜋 ≜ a countably infinite set

Fig. 6. Collecting semantics domains.

𝜆, we check the bindings for every variable bound by that 𝜆. If a binding is still live (that is, could
potentially be accessed in a future state), then it must have its S annotation removed. For register
extent, whenever a variable is bound we check for other live bindings for that variable — if there
exists another binding then this variable cannot have register extent. In this case the R annotation
is removed from the variable.

The semantic domains of the collecting semantics are defined in Figure 6. Environments 𝜌 ∈ Env
map user variables to addresses and stores 𝜎 ∈ Store map addresses to values. Values are closures,
which contain a user 𝜆 and an environment. Closures do not package any continuation data since
user 𝜆s do not close over continuation variables. User arguments are evaluated with the following
function.

A𝑢 : Arg × Env × Store ⇀ Value
A𝑢 𝑥 𝜌 𝜎 ≜ 𝜎 (𝜌 𝑥)
A𝑢 ulam 𝜌 𝜎 ≜ ⟨ulam, 𝜌⟩

The set of addresses is an arbitrary countably infinite set (e.g., N). The purpose of the various
countably infinite sets is to obtain “new” or “fresh” elements different from any other previously
used during program execution. Writing fresh 𝜎 provides an address which is not in the domain of
𝜎 .

5.1 Continuation Domains
The next step is to model the continuation domains. Perhaps the easiest way to model continuations
would be to mimic the user-domain definitions: continuation variables would map to continuation
addresses in a continuation environment, which would then map to continuation closures (a
continuation 𝜆 along with the necessary environments) in a continuation store. When transitioning
across a call, we would evaluate continuation arguments to their values and bind them as necessary.
Unfortunately, this method would not be able to tell us what is popped when we call a continuation,
since continuations would not track what frames they pop when they are called.
We could try augmenting this approach, allowing continuation closures to contain an index

into the stack as in the 3CPS semantics, along with keeping the current stack depth. Then, when
calling a continuation we can take the difference between these two numbers to obtain the number
of frames popped. Keeping around the explicit stack of the current frames would let us use this
index to determine the actual frames popped. The problem appears when we go to develop the
abstract semantics: it is not simple to create a precise abstraction of the indices and stack that still
allows us to determine what is popped. These approaches actually would work if we only had a
single continuation argument, since we would only ever pop a single frame; multiple continuation
arguments allow for multiple frames to be popped on a call.
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Instead, we present a model for the continuation components whose abstraction is obvious,
precise, and still contains all the information needed to compute what is being popped when
a continuation is called. At a high level, we encode all continuations as well as the indexing
mechanism structurally in a single object. The first insight towards developing this structure is the
fact that the current frames on the stack can be determined by keeping track of the call sites that
are currently “in-progress.” Consider the following example:

(𝜆1 (_ k1 k2) . . . (𝑓 _ k2 (cont4 (_) . . .)))
where 𝑓 refers to (𝜆2 (_ k3 k4) . . . (𝑔 _ (cont5 (_) . . .) k4))

and where 𝑔 refers to (𝜆3 (_ k5 k6) . . . (k6 _))

If the current program state is at the call (k6 _) in 𝜆3, then the call sites in-progress are

(𝑓 _ k2 (cont (_) . . .)) and (𝑔 _ (cont (_) . . .) k4)

in that order and ignoring any further history. Then we know that the stack consists of a frame
over 𝜆1 for the first call, a frame over 𝜆2 for the second, and the most-recent frame over 𝜆3 for
the current program location. In general, the frame that corresponds to a call is over the lexically
innermost 𝜆 that contains the call. This means that if we keep a list of the current calls in-progress
we can reconstruct which 𝜆s correspond to the frames on the stack.

The second key insight is that the precise value that a continuation variable refers to can
be computed using this list of calls. The idea is that the list of calls encodes the dataflow of
the continuation values. Take, for example, k6 in the above example. We know that the most-
recent in-progress function call is (𝑔 _ (cont5 (_) . . .) k4), and we know that k6 is the second
continuation parameter of the 𝜆 to which 𝑔 refers. This means that the value of k6 is the same as
the value of k4, which is the second continuation argument of the call. We can look backwards
once more to find that the value for k4 (and thus k6) is a continuation closure over cont4. In
general we can use the list of in-progress calls as well as the syntactically available information
about continuation variables to determine what continuation variables refer to. Note that as we
track continuation variables backwards we simultaneously obtain a list of the frames that would be
popped upon calling that continuation.

We use such a list of call sites, augmented with some extra “run-time” data, to model continuation
behavior in the collecting semantics, since it allows us to both correctly evaluate continuation
variables to the corresponding continuation closures as well as provide a way to determine the
collection of frames popped. We call the elements of this list proxies — a call site is a “proxy”
for the frame or lexically innermost 𝜆 that contains it. A proxy 𝜋 ∈ Proxy contains the call site
expression to which it belongs, the environment of that call site at the time of execution, and a
list of “continuation values” for the call. A continuation value c ∈ CValue is either a continuation
closure (consisting of a continuation 𝜆 and an environment) obtained by evaluating continuation 𝜆

arguments, or an integer index, obtained by evaluating a continuation variable to its index in its
binding 𝜆’s continuation parameter list. The function IndexOf provides the index of a continuation
variable in the parameter list of the enclosing 𝜆:

IndexOf 𝑘 = 𝑖 where ⟦(𝜆 (𝑥 𝑘1 . . . 𝑘𝑛) pr)⟧ is the 𝜆 term that binds 𝑘 and 𝑘 = 𝑘𝑖

The following function A𝑐 evaluates continuation arguments.

A𝑐 : Cont × Env → CValue
A𝑐 𝑘 𝜌 ≜ IndexOf 𝑘

A𝑐 clam 𝜌 ≜ ⟨clam, 𝜌⟩
We model the list of proxies using addresses and stores. What this choice means is that the program
state contains a proxy address 𝑎𝜋 ∈ Addr𝜋 that points to the most-recent proxy using the proxy
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store 𝜎𝜋 ∈ Store𝜋 , which takes a proxy address to a proxy. Proxies additionally contain a proxy
address pointing to the next proxy in the list; whenever a proxy is created for a call the current proxy
address is packaged into it so that each proxy points to the previously created one. Technically, we
need some sort of HALT proxy to terminate the list — we leave this to the formal proofs.
The next steps are to formalize the dataflow arguments from earlier. The function FindCClo𝜎𝜋

determines the continuation closure associated with a continuation value. It takes a continuation
value and the current proxy address (and is dependent on the proxy store) and returns the continu-
ation closure corresponding to the continuation value as well as the proxy address that points to
the most-recent proxy for that continuation closure:

FindCClo𝜎𝜋 : CValue × Addr𝜋 ⇀ CClo × Addr𝜋
FindCClo𝜎𝜋 cclo 𝑎𝜋 ≜ ⟨cclo, 𝑎𝜋 ⟩
FindCClo𝜎𝜋 𝑖𝑛𝑑𝑒𝑥 𝑎𝜋 ≜ FindCClo𝜎𝜋 c′

𝑖𝑛𝑑𝑒𝑥
𝑎′𝜋

where ⟨_, _, c′1 . . . c′𝑚, 𝑎′𝜋 ⟩ = 𝜎𝜋 𝑎𝜋

If the continuation value is a continuation closure, then we are done. Otherwise the continuation
value is an index whose continuation closure is the same as that of the continuation value of the
previous proxy, at the index. We can then recursively navigate the proxies to eventually find the
desired closure.
As stated earlier, we need to determine the bindings that are popped in order to check stack

extent. Using the proxies, it is possible to determine these exactly: each proxy corresponds to a stack
frame over some 𝜆, and the bindings that we would like to put on that stack frame are all variable
bindings lexically between the 𝜆 and the call. We define the function BVu : Prog → P(UVar) (read:
bound variables) on every program point that returns the set of variables bound lexically between
the innermost user 𝜆 containing that point and that point itself — if the stack frame were to be
popped at exactly that point, any stack-allocated bindings on our frame come from these bound
variables. We can use the environment at call sites (which proxies contain) to obtain the actual
bindings, which are variable-address pairs.

Θ ∈ Bindings ≜ P(UVar × Addr)

We refer to these bindings as the “local bindings” associated with a call site; we use the function
LocalBindings to compute these.

LocalBindings : Prog × Env ⇀ Bindings
LocalBindings pr 𝜌 ≜ {⟨𝑥, 𝜌 𝑥⟩ | 𝑥 ∈ BVu pr}

We now need the functions that determine the bindings that are popped when a continuation is
called. The popped bindings when calling a continuation consist of (1) the set of local bindings
at the continuation call and (2) the bindings associated with each popped frame. We define the
function PoppedBindings𝑐𝜎𝜋 , which determines the set of popped bindings associated with calling a
continuation, taking the current continuation value, the current proxy address, and the current
local bindings and returns the set of bindings that are popped when calling this continuation.

PoppedBindings𝑐𝜎𝜋 : CValue × Addr𝜋 × Bindings ⇀ Bindings
PoppedBindings𝑐𝜎𝜋 cclo 𝑎𝜋 Θ ≜ ∅
PoppedBindings𝑐𝜎𝜋 𝑖𝑛𝑑𝑒𝑥 𝑎𝜋 Θ ≜ Θ ∪ Θ′

where ⟨pr, 𝜌, c′1 . . . c′𝑚, 𝑎′𝜋 ⟩ = 𝜎𝜋 𝑎𝜋
Θ′ = PoppedBindings𝑐𝜎𝜋 c′

𝑖𝑛𝑑𝑒𝑥
𝑎′𝜋 (LocalBindings pr 𝜌)

If the given continuation is a closure, then we do not pop anything, since we do not want to pop
the frame associated with the continuation. Otherwise, we pop the given local bindings along with
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whatever needs to be popped during the recursive tracking of the continuation back through the
proxies.

5.2 Tail Calls
When a tail call is performed, the stack should be popped according to the continuations appearing
at the call site — we should pop as much as possible while preserving the frames required by the
given continuations. In terms of the proxy data structures, we pop proxy by proxy and track the
collection of all continuation values from the tail call back in parallel until we discover the first
point where one of them came from a continuation 𝜆. This point indicates that the said continuation
value is the most recently created and so marks the point to which we should pop. The popped
bindings are all those for the proxies that were popped, including the local bindings associated
with the tail call.

We are not finished though. In order to maintain the dataflow property that allows us to evaluate
continuations by searching through the proxy structure, we must “fix” the now most-recent proxy
so that the continuation values it contains relate correctly to the parameters of the 𝜆 we are calling.

For example, consider the following program fragment.

(𝜆 (_ k1 k2 k3) . . . (𝑓 _ (cont (_) . . .) k2 k3))
where 𝑓 refers to (𝜆 (_ k4 k5 k6) . . . (𝑔 _ k5 k4))

and where 𝑔 refers to (𝜆 (_ k7 k8) . . .)

When the program reaches the call to𝑔, a tail call is performed since both arguments are continuation
variables. This means that the most-recent proxy after the pop, i.e., the proxy for the call to 𝑓 , needs
to become the most-recent proxy once we enter 𝑔. The issue is that if we use the exact proxy created
for the call to 𝑓 then the newly bound continuation variables k7 and k8 would refer to the incorrect
continuation values, since the call to 𝑔 swapped the order between the two. Additionally, the third
𝜆 only has 2 arguments whereas the proxy would contain 3 continuation values. The solution is to
replace the most-recent proxy with the collection of continuation values that correspond with the
new continuation variable bindings. For the example, the new proxy for the call to 𝑓 would contain
the same call site, environment, and proxy address. However, it would only use the continuation
values for the second and first continuation arguments, in that order. We call the replacement the
“fixed” proxy.

The function 𝑃𝑜𝑝𝑃𝑟𝑜𝑥𝑦𝜎𝜋 takes in the proxy for the current user call and “pops” backwards
until a continuation closure is found for one of the current continuation values, returning the
new “most-recent” proxy after the pops. The continuation values in this proxy correspond to the
arguments in the current call. The correct order is maintained at every recursive step. Note that in
the case that the current call contains a continuation 𝜆, we immediately find a continuation closure
and perform no popping since in this case there is no tail call.

𝑃𝑜𝑝𝑃𝑟𝑜𝑥𝑦𝜎𝜋 : Proxy ⇀ Proxy
𝑃𝑜𝑝𝑃𝑟𝑜𝑥𝑦𝜎𝜋 ⟨pr, 𝜌, c1 . . . c𝑛, 𝑎𝜋 ⟩ ≜ ⟨pr, 𝜌, c1 . . . c𝑛, 𝑎𝜋 ⟩ if there is cclo at any c1 . . . c𝑛
𝑃𝑜𝑝𝑃𝑟𝑜𝑥𝑦𝜎𝜋 ⟨_, _, c1 . . . c𝑛, 𝑎𝜋 ⟩ ≜ 𝑃𝑜𝑝𝑃𝑟𝑜𝑥𝑦𝜎𝜋 𝜋𝑓 𝑖𝑥𝑒𝑑 otherwise
where 𝑖𝑛𝑑𝑒𝑥1 . . . 𝑖𝑛𝑑𝑒𝑥𝑛 = c1 . . . c𝑛

⟨pr′, 𝜌 ′, c′1 . . . c′𝑚, 𝑎′𝜋 ⟩ = 𝜎𝜋 𝑎𝜋
𝜋𝑓 𝑖𝑥𝑒𝑑 = ⟨pr′, 𝜌 ′, c′

𝑖𝑛𝑑𝑒𝑥1
. . . c′

𝑖𝑛𝑑𝑒𝑥𝑛
, 𝑎′𝜋 ⟩

The sister function for computing the set of bindings which are popped during this tail call is
PoppedBindings𝜋𝜎𝜋 , which performs in the exact same way of tracking every continuation value

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 114. Publication date: August 2022.



Analyzing Binding Extent in 3CPS 114:15

back simultaneously.

PoppedBindings𝜋𝜎𝜋 : Proxy ⇀ Bindings
PoppedBindings𝜋𝜎𝜋 ⟨_, _, c1 . . . c𝑛, 𝑎𝜋 ⟩ ≜ ∅ if there is cclo at any c1 . . . c𝑛
PoppedBindings𝜋𝜎𝜋 ⟨pr, 𝜌, c1 . . . c𝑛, 𝑎𝜋 ⟩ ≜ Θlocal ∪ Θ otherwise
where Θlocal = LocalBindings pr 𝜌

𝑖𝑛𝑑𝑒𝑥1 . . . 𝑖𝑛𝑑𝑒𝑥𝑛 = c1 . . . c𝑛
⟨pr′, 𝜌 ′, c′1 . . . c′𝑚, 𝑎′𝜋 ⟩ = 𝜎𝜋 𝑎𝜋
𝜋𝑓 𝑖𝑥𝑒𝑑 = ⟨pr′, 𝜌 ′, c′

𝑖𝑛𝑑𝑒𝑥1
. . . c′

𝑖𝑛𝑑𝑒𝑥𝑛
, 𝑎′𝜋 ⟩

Θ = PoppedBindings𝜋𝜎𝜋𝜋𝑓 𝑖𝑥𝑒𝑑

In total, a program state 𝜍 ∈ State consists of a program location pr , an environment 𝜌 and store 𝜎 ,
a proxy address 𝑎𝜋 that points to the proxy for the most-recent call along with a proxy store 𝜎𝜋 ,
and the current set of annotations an.
As discussed previously, as the program state advances it performs checks to ensure the anno-

tations set remains valid. The first of these is for stack extent, which inspects whether popped
bindings (of either a continuation call or a tail call) are also still live. The function CheckS takes
the set of popped bindings Θpopped , the set of live bindings Θlive , and the current set of annotations.
It removes all annotations of the form ⟨𝑥,S⟩ where there is a binding ⟨𝑥, a⟩ that is both popped
and still live.

CheckS : Bindings × Bindings × Anno ⇀ Anno
CheckS Θpopped Θlive an = an \ 𝑘𝑖𝑙𝑙
where 𝑘𝑖𝑙𝑙 = {⟨𝑥,S⟩ | there exists ⟨𝑥, a⟩ ∈ Θpopped ∩ Θlive for some a}

The second of these is for register extent, which checks if there exists a live binding for a variable.
The function CheckR takes the variable in question 𝑥 , the set of live bindings Θlive , and the current
set of annotations an. It removes the annotation ⟨𝑥,R⟩ if there is a live binding for 𝑥 .

CheckR : UVar × Bindings × Anno → Anno
CheckR 𝑥 Θlive an = an \ 𝑘𝑖𝑙𝑙
where 𝑘𝑖𝑙𝑙 = {⟨𝑥,R⟩} if there exists ⟨𝑥, a⟩ ∈ Θlive for some a, ∅ otherwise

The last auxiliary definition needed before discussing the state transition is liveness. Intuitively,
we compute live bindings by starting the with free variable set of the current program point and
use the environment to obtain bindings. Then we can use those bindings with the store to find
closures which close over more bindings. We can continue recursively — everything found is live.
Additionally, we can use the current proxy address to find continuation closures which could be
referenced from the current program point — continuation closures package bindings just as user
closures do. When finding these continuation closures we also obtain another proxy address which
corresponds to the most-recent call at the point of creation for the continuation closure. We can
continue recursively with this proxy address.
We allow for several types of liveness queries, each of which depend on the store and proxy

store: one for a set of variables and an environment, one for closures, one for a set of continuation
variables and a proxy address, and one for a continuation value and a proxy address. Liveness is
modelled as a least fix-point under the following equality relations, since using a computational
recursive definition would fail to terminate in the presence of data circularities (and does not
abstract as well). We define the free user-variable set FVu and free continuation-variable set FVc of
expressions, 𝜆s, and continuation 𝜆s in the expected way. Recall that user 𝜆s may not contain free
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⟨pr = ⟦(𝑓 ae𝑞1 . . . 𝑞𝑛)⟧ , 𝜌, 𝑎𝜋 , 𝜎, 𝜎𝜋 , an⟩⇝State ⟨pr′, 𝜌 ′, 𝑎′𝜋 , 𝜎 ′, 𝜎 ′
𝜋 , an

′′⟩
where uclo, d, c1 . . . c𝑛 = A𝑢 𝑓 𝜌 𝜎, A𝑢 ae 𝜌 𝜎, A𝑐 𝑞1 𝜌 . . . A𝑐 𝑞𝑛 𝜌

⟨⟦(𝜆 (𝑥 𝑘1 . . . 𝑘𝑛) pr′)⟧ , 𝜌𝜆⟩ = uclo
𝜋call = ⟨pr, 𝜌, c1 . . . c𝑛, 𝑎𝜋 ⟩
𝜋 ′ = 𝑃𝑜𝑝𝑃𝑟𝑜𝑥𝑦𝜎𝜋 𝜋call
𝑎′𝜋 = fresh 𝜎𝜋
𝜎 ′
𝜋 = 𝜎𝜋 [𝑎′𝜋 ↦→ 𝜋 ′]

a = fresh 𝜎

𝜌 ′, 𝜎 ′ = 𝜌𝜆 [𝑥 ↦→ a], 𝜎 [a ↦→ d]

Θlive = (live𝜎,𝜎𝜋 uclo) ∪ (live𝜎,𝜎𝜋 d) ∪
⋃

𝑖=1...𝑛
live𝜎,𝜎𝜋 c𝑖 𝑎𝜋

Θpopped = PoppedBindings𝜋𝜎𝜋 𝜋call
an′ = CheckS Θpopped Θlive an
an′′ = CheckR 𝑥 Θlive an′

Fig. 7. Function Calls

continuation variable references.
live𝜎,𝜎𝜋 {𝑥1 . . . 𝑥𝑛} 𝜌 = {⟨𝑥1, 𝜌 𝑥1⟩, . . . , ⟨𝑥𝑛, 𝜌 𝑥𝑛⟩} ∪

⋃
𝑖=1...𝑛

live𝜎,𝜎𝜋 (𝜎 (𝜌 𝑥𝑖 ))

live𝜎,𝜎𝜋 ⟨ulam, 𝜌𝜆⟩ = live𝜎,𝜎𝜋 (FVu ulam) 𝜌𝜆
live𝜎,𝜎𝜋 {𝑘1 . . . 𝑘𝑛} 𝑎𝜋 =

⋃
𝑖=1...𝑛

live𝜎,𝜎𝜋 (IndexOf 𝑘𝑖 ) 𝑎𝜋

live𝜎,𝜎𝜋 ⟨clam, 𝜌𝑐⟩ 𝑎𝜋 = (live𝜎,𝜎𝜋 (FVu clam) 𝜌𝑐 ) ∪ (live𝜎,𝜎𝜋 (FVc clam) 𝑎𝜋 )
live𝜎,𝜎𝜋 𝑖𝑛𝑑𝑒𝑥 𝑎𝜋 = live𝜎,𝜎𝜋 c′

𝑖𝑛𝑑𝑒𝑥
𝑎′𝜋 where ⟨_, _, c′1 . . . c′𝑛, 𝑎′𝜋 ⟩ = 𝜎𝜋 𝑎𝜋

At this point all the tools are in place to construct the transition relation (⇝State) ⊆ State × State
used to step the program state and remove invalid annotations. Taking the limit⋂ {an | 𝜍 ′ = ⟨_, _, _, _, _, an⟩ and 𝜍 ′ is reachable from the initial state via ⇝State *}
provides a final set of annotations describing the true extents of the variables in the program, no
matter the execution trace.

5.3 State Transition
Figure 7 contains the call transition. First the function, user argument, and continuation arguments
of the call are evaluated. Then, a proxy for the current call is created. We tail call if needed using the
function 𝑃𝑜𝑝𝑃𝑟𝑜𝑥𝑦, and use the result as the most-recent proxy, creating a fresh proxy address and
updating the proxy store accordingly. We then replace the current environment with the closure’s
environment (since control is entering the closure), and update this environment and the store
with the new binding. Finally, control enters the function. On the information side, the set of live
bindings is obtained after evaluating the arguments of the call — if a binding is needed to evaluate
the arguments (i.e., a variable is in argument position) it is not live when popping because it has
been used already (unless some live closure has captured it). Every value in the program that is live
can be reached by (1) the function, (2) the argument, or (3) one of the continuation values. We use
the proxy created for the call to determine what the popped bindings are, and then check stack
extent. Finally, we check register extent for the newly bound variable.

Figure 8 contains the continuation call transition. First, the continuation and user argument are
evaluated. Next, the continuation closure that is being called is obtained by chasing the continu-
ation value through the proxy store. We use the continuation closure’s environment as the new
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⟨pr = ⟦(𝑞 ae)⟧ , 𝜌, 𝑎𝜋 , 𝜎, 𝜎𝜋 , an⟩⇝State ⟨pr′, 𝜌 ′, 𝑎′𝜋 , 𝜎 ′, 𝜎𝜋 , an′′⟩
where c, d = A𝑐 𝑞 𝜌, A𝑢 ae 𝜌 𝜎

⟨cclo, 𝑎′𝜋 ⟩ = FindCClo𝜎𝜋 c 𝑎𝜋
⟨⟦(cont (𝑥) pr′)⟧ , 𝜌𝑐⟩ = cclo
a = fresh 𝜎

𝜌 ′, 𝜎 ′ = 𝜌𝑐 [𝑥 ↦→ a], 𝜎 [a ↦→ d]

Θlive = (live𝜎,𝜎𝜋 c 𝑎𝜋 ) ∪ (live𝜎,𝜎𝜋 d)
Θpopped = PoppedBindings𝑐𝜎𝜋 c 𝑎𝜋 (LocalBindings pr 𝜌)
an′ = CheckS Θpopped Θlive an
an′′ = CheckR 𝑥 Θlive an′

Fig. 8. Continuation Calls

environment, and update this environment and the store with the new binding. As before, the set
of live bindings is obtained after evaluating the arguments of the call. We compute the popped
bindings from the continuation value, and then check stack extent. Finally, we check register extent
for the newly bound variable.

5.4 Optimization
It turns out that for checking stack extent we can use a smaller set of live bindings. Since the
unannotated 3CPS IR does not permit stateful data structures, older values cannot reference newer
ones at runtime. What this means is that if a binding is being popped, it is not possible for it to be
reachable from the continuation arguments that are variables, since those continuation closures
were created before the binding. On the other hand, if there are any continuation 𝜆s as arguments,
a pop will not happen at all. So when checking stack extent for function calls we may substitute
the set Θlivelocal for Θlive , where

Θlive = (live𝜎,𝜎𝜋 uclo) ∪ (live𝜎,𝜎𝜋 d) ∪
⋃

𝑖=1...𝑛
live𝜎,𝜎𝜋 c𝑖 𝑎𝜋

Θlivelocal = (live𝜎,𝜎𝜋 uclo) ∪ (live𝜎,𝜎𝜋 d)
We use the term “local” because we do not need to search through the global program state, just
the local state of the current call. We can also do the same for continuation calls: when checking
stack extent we may substitute the set Θlivelocal for Θlive , where

Θlive = (live𝜎,𝜎𝜋 c 𝑎𝜋 ) ∪ (live𝜎,𝜎𝜋 d)
Θlivelocal = (live𝜎,𝜎𝜋 d)

In the presence of stateful data structures we can still use the local sets and separately detect
analyze variables whose bindings “escape” into stateful data structures (e.g., arrays of closures).
Often only a small number of variables behave in this way, and often these variables must be given
heap extent anyways. This means that in practice this optimization applies to checking the extent
of the vast majority of variables. Our implementation employs this optimization.

5.5 Data Extent
Although we do not present data extent here, it is straightforward to modify the semantics to
include it. Liveness would now compute bindings and values, stack extent would check during the
pop if there are any values that were created for the popped frames that are still live. If so, then
these values do not have stack extent. For register extent when creating a closure we would check
the current live values for any instances of another closure for the same 𝜆. In this case the live
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set would be computed before evaluating the arguments, since closure values are created during
argument evaluation.

6 ABSTRACT SEMANTICS
The computable abstract semantics very closely mimics the collecting semantics — as stated earlier
we designed the concrete so that abstraction is straightforward. There are two primary differences.
The first is that we finitize the address sets in order to make the state space finite. Second, the
stores and proxy stores now map to sets of values and sets of proxies which forces transitions to
become non-deterministic. The abstract semantic domains are below.

𝜍̃ ∈ �State ≜ Prog × Ẽnv × �Addr𝜋 × �Store × �Store𝜋 × Anno
𝜌 ∈ Ẽnv ≜ UVar ⇀ �Addr
𝜎 ∈ �Store ≜ �Addr ⇀ �Value
𝑑 ∈ �Value ≜ P(C̃lo)
ũclo ∈ C̃lo ≜ ULam × Ẽnv
𝑐̃ ∈ �CValue ≜ �CClo + N
c̃clo ∈ �CClo ≜ CLam × Ẽnv
𝜋 ∈ �Proxy ≜ Prog × Ẽnv × �CValue+ × �Addr𝜋
𝜎𝜋 ∈ �Store𝜋 ≜ �Addr𝜋 ⇀ P(�Proxy)
𝑎 ∈ �Addr ≜ a finite set
𝑎𝜋 ∈ �Addr𝜋 ≜ a finite set
Θ̃ ∈ �Bindings ≜ P(UVar × �Addr)

For this paper, we use �Addr = UVar and �Addr𝜋 = ULam. In general, any finite set will work, as this
choice determines the precision of the analysis. Our choice for �Addr corresponds to 0-CFA.
Figure 9 contains the abstractions of the auxiliary functions. The abstract evaluation functions

remain much the same, except that evaluating a user 𝜆 becomes a singleton set. The abstract func-
tions for locating continuation closures and popped bindings are now least-fixpoint definitions, as
abstraction can cause circularities. Finding the continuation closure associated with a continuation
value now returns a set of continuation closure-proxy address pairs, since there may be several
choices for where to return and how to pop. Similarly, when computing the new most-recent proxy
for a tail call there may be a set of possible choices. When determining popped bindings (for either
continuation calls or tail calls) we need to union over all possible ways to pop.
Figure 10 provides the abstractions of the annotation checking functions, �CheckS and �CheckR .

These definitions exactly mimic those from the collecting semantics.
Abstract liveness queries are located in Figure 11 and are the straightforward abstraction of

liveness queries in the collecting semantics — instead of handling single (continuation) closures we
need to union over each possible (continuation) closure.

6.1 Abstract State Transition
The abstract state transition relation (⇝�State) ⊆ �State × �State is used to step the abstract program
state. Figure 12 contains the abstract call transition, which is a straightforward abstraction of the
collecting semantics call transition. Due to the abstraction, we now non-deterministically select
a closure from the function value to transition to. To create the proxy address we use the 𝜆 of
the called closure, and to create the address for the user binding we use the variable being bound.
When updating stores we use a join operator ⊔. When joining together two maps that share keys,
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Ã𝑢 : Arg × Ẽnv × �Store
Ã𝑢 𝑥 𝜌 𝜎 ≜ 𝜎 (𝜌 𝑥)
Ã𝑢 ulam 𝜌 𝜎 ≜ {⟨ulam, 𝜌⟩}

Ã𝑐 : Cont × Ẽnv → �CValue
Ã𝑐 𝑘 𝜌 ≜ IndexOf 𝑘

Ã𝑐 clam 𝜌 ≜ ⟨clam, 𝜌⟩�LocalBindings : Prog × Ẽnv ⇀ �Bindings�LocalBindings pr 𝜌 ≜ {⟨𝑥, 𝜌 𝑥⟩ | 𝑥 ∈ BVu pr}�FindCClo𝜎𝜋 : �CValue × �Addr𝜋 ⇀ P(�CClo × �Addr𝜋 )�FindCClo𝜎𝜋 c̃clo 𝑎𝜋 = {⟨c̃clo, 𝑎𝜋 ⟩}�FindCClo𝜎𝜋 𝑖𝑛𝑑𝑒𝑥 𝑎𝜋 =
⋃

⟨_,_,̃𝑐′1 ...𝑐̃′𝑚,𝑎′𝜋 ⟩∈𝜎𝜋 𝑎𝜋

�FindCClo𝜎𝜋 𝑐̃′
𝑖𝑛𝑑𝑒𝑥

𝑎′𝜋

�PoppedBindings𝑐
𝜎𝜋

: �CValue × �Addr𝜋 × �Bindings ⇀ �Bindings�PoppedBindings𝑐
𝜎𝜋

c̃clo _ Θ̃ = ∅�PoppedBindings𝑐
𝜎𝜋

𝑖𝑛𝑑𝑒𝑥 𝑎𝜋 Θ̃ = Θ̃ ∪ Θ̃′

where Θ̃′ =
⋃

⟨pr,𝜌,̃𝑐′1 ...𝑐̃′𝑚,𝑎′𝜋 ⟩∈𝜎𝜋 𝑎𝜋

�PoppedBindings𝑐
𝜎𝜋

𝑐̃′
𝑖𝑛𝑑𝑒𝑥

𝑎′𝜋 ( �LocalBindings pr 𝜌)

�𝑃𝑜𝑝𝑃𝑟𝑜𝑥𝑦𝜎𝜋 : �Proxy ⇀ P(�Proxy)�𝑃𝑜𝑝𝑃𝑟𝑜𝑥𝑦𝜎𝜋 ⟨pr, 𝜌, 𝑐̃1 . . . 𝑐̃𝑛, 𝑎𝜋 ⟩ ≜ {⟨pr, 𝜌, 𝑐̃1 . . . 𝑐̃𝑛, 𝑎𝜋 ⟩} if there is c̃clo at any 𝑐̃1 . . . 𝑐̃𝑛�𝑃𝑜𝑝𝑃𝑟𝑜𝑥𝑦𝜎𝜋 ⟨_, _, 𝑐̃1 . . . 𝑐̃𝑛, 𝑎𝜋 ⟩ ≜ Π̃ otherwise
where 𝑖𝑛𝑑𝑒𝑥1 . . . 𝑖𝑛𝑑𝑒𝑥𝑛 = 𝑐̃1 . . . 𝑐̃𝑛

Π̃ =
⋃

⟨pr′,𝜌 ′ ,̃𝑐′1 ...𝑐̃
′
𝑚,𝑎′𝜋 ⟩∈𝜎𝜋 𝑎𝜋

�𝑃𝑜𝑝𝑃𝑟𝑜𝑥𝑦𝜎𝜋 ⟨pr′, 𝜌 ′, 𝑐̃′
𝑖𝑛𝑑𝑒𝑥1

. . . 𝑐̃′
𝑖𝑛𝑑𝑒𝑥𝑛

, 𝑎′𝜋 ⟩

�PoppedBindings𝜋
𝜎𝜋

: �Proxy ⇀ �Bindings�PoppedBindings𝜋
𝜎𝜋

⟨_, _, 𝑐̃1 . . . 𝑐̃𝑛, 𝑎𝜋 ⟩ = ∅ if there is c̃clo at any 𝑐̃1 . . . 𝑐̃𝑛�PoppedBindings𝜋
𝜎𝜋

⟨pr, 𝜌, 𝑐̃1 . . . 𝑐̃𝑛, 𝑎𝜋 ⟩ = Θ̃local ∪ Θ̃ otherwise
where Θ̃local = �LocalBindings pr 𝜌

𝑖𝑛𝑑𝑒𝑥1 . . . 𝑖𝑛𝑑𝑒𝑥𝑛 = 𝑐̃1 . . . 𝑐̃𝑛

Θ̃ =
⋃

⟨pr′,𝜌 ′ ,̃𝑐′1 ...𝑐̃
′
𝑚,𝑎′𝜋 ⟩∈𝜎𝜋 𝑎𝜋

�PoppedBindings𝜋
𝜎𝜋

⟨pr′, 𝜌 ′, 𝑐̃′
𝑖𝑛𝑑𝑒𝑥1

. . . 𝑐̃′
𝑖𝑛𝑑𝑒𝑥𝑛

, 𝑎′𝜋 ⟩

Fig. 9. Abstract semantics auxiliary functions

the values for the shared keys are unioned in the joined map; key-value pairs that exist in only one
map appear in the joined map unchanged.

Figure 13 contains the abstract continuation call transition, which is a straightforward abstraction
of the collecting semantics continuation call transition. Here we non-deterministically choose a
continuation closure-proxy address pair from the result of finding the continuation closure(s)
associated with the continuation value. The address for the new binding is taken to be the variable
that is being bound.
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�CheckS : �Bindings × �Bindings × Anno ⇀ Anno�CheckS Θ̃popped Θ̃live ãn = ãn \ 𝑘𝑖𝑙𝑙
where 𝑘𝑖𝑙𝑙 = {⟨𝑥,S⟩ | there exists ⟨𝑥, 𝑎⟩ ∈ Θ̃popped ∩ Θ̃live for some 𝑎}�CheckR : UVar × �Bindings × Anno ⇀ Anno�CheckR 𝑥 Θ̃live ãn = ãn \ 𝑘𝑖𝑙𝑙

where 𝑘𝑖𝑙𝑙 = {⟨𝑥,R⟩} if there exists ⟨𝑥, 𝑎⟩ ∈ Θ̃live for some 𝑎, ∅ otherwise

Fig. 10. Abstract annotations management

l̃ive𝜎,𝜎𝜋 {𝑥1 . . . 𝑥𝑛} 𝜌 = {⟨𝑥1, 𝜌 𝑥1⟩, . . . , ⟨𝑥𝑛, 𝜌 𝑥𝑛⟩} ∪
⋃

𝑖=1...𝑛
live𝜎,𝜎𝜋 (𝜎 (𝜌 𝑥𝑖 ))

l̃ive𝜎,𝜎𝜋 𝑑 =
⋃

⟨ulam,𝜌𝜆 ⟩∈𝑑̃

live𝜎,𝜎𝜋 (FVu ulam) 𝜌𝜆

l̃ive𝜎,𝜎𝜋 {𝑘1 . . . 𝑘𝑛} 𝑎𝜋 =
⋃

𝑖=1...𝑛
live𝜎,𝜎𝜋 (IndexOf 𝑘) 𝑎𝜋

l̃ive𝜎,𝜎𝜋 ⟨clam, 𝜌𝑐 , _⟩ 𝑎𝜋 = ( l̃ive𝜎,𝜎𝜋 (FVu clam) 𝜌𝑐 ) ∪ ( l̃ive𝜎,𝜎𝜋 (FVc clam) 𝑎𝜋 )
l̃ive𝜎,𝜎𝜋 𝑖𝑛𝑑𝑒𝑥 𝑎𝜋 =

⋃
⟨_,_,̃𝑐′1 ...𝑐̃′𝑚,𝑎′𝜋 ⟩∈𝜎𝜋 𝑎𝜋

l̃ive𝜎,𝜎𝜋 𝑐̃′
𝑖𝑛𝑑𝑒𝑥

𝑎′𝜋

Fig. 11. Abstract liveness queries

⟨pr = ⟦(𝑓 ae𝑞1 . . . 𝑞𝑛)⟧ , 𝜌, 𝑎𝜋 , 𝜎, 𝜎𝜋 , ãn⟩⇝�State ⟨pr′, 𝜌 ′, 𝑎′𝜋 , 𝜎 ′, 𝜎 ′
𝜋 , ãn

′′⟩
where 𝑑𝑓 , 𝑑, 𝑐̃1 . . . 𝑐̃𝑛 = Ã𝑢 𝑓 𝜌 𝜎, Ã𝑢 ae 𝜌 𝜎, Ã𝑐 𝑞1 𝜌 . . . Ã𝑐 𝑞𝑛 𝜌

⟨ulam = ⟦(𝜆 (𝑥 𝑘1 . . . 𝑘𝑛) pr′)⟧ , 𝜌𝜆⟩ ∈ 𝑑𝑓
𝜋call = ⟨pr, 𝜌, 𝑐̃1 . . . 𝑐̃𝑛, 𝑎𝜋 ⟩
Π̃ = �𝑃𝑜𝑝𝑃𝑟𝑜𝑥𝑦𝜎𝜋 𝜋call
𝑎′𝜋 = (ulam)
𝜎 ′
𝜋 = 𝜎𝜋 ⊔ [𝑎′𝜋 ↦→ Π̃]

𝑎 = (𝑥)
𝜌 ′, 𝜎 ′ = 𝜌𝜆 [𝑥 ↦→ 𝑎], 𝜎 ⊔ [𝑎 ↦→ 𝑑]

Θ̃live = ( l̃ive𝜎,𝜎𝜋 𝑑𝑓 ) ∪ ( l̃ive𝜎,𝜎𝜋 𝑑) ∪
⋃

𝑖=1...𝑛
live𝜎,𝜎𝜋 𝑐̃𝑖 𝑎𝜋

Θ̃popped = �PoppedBindings𝜋
𝜎𝜋

𝜋call

ãn′ = �CheckS Θ̃popped Θ̃live ãn
ãn′′ = �CheckR 𝑥 Θ̃live ãn

′

Fig. 12. Function Calls

6.2 Abstract State Space
At this point we can compute every possible abstract state for a program, but this still is not
feasible to compute. The problem is that there may be two very similar states that are equal
everywhere except for the store, proxy store, and annotation sets. To address this problem we apply
the technique of store-widening [Gilray et al. 2016] which uses only a single store, proxy store, and
annotations set for the whole abstract semantics. Formally, the abstract state space contains an
abstract store, an abstract proxy store, an annotations set, and a set of abstract “configurations”,
which each have a program point, abstract environment, and abstract proxy address. The idea is
that we can take each configuration and transition it under the current abstract store, abstract proxy
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⟨pr = ⟦(𝑞 ae)⟧ , 𝜌, 𝑎𝜋 , 𝜎, 𝜎𝜋 , ãn⟩⇝�State ⟨pr′, 𝜌 ′, 𝑎′𝜋 , 𝜎 ′, 𝜎𝜋 , ãn′′⟩
where 𝑐̃, 𝑑 = Ã𝑐 𝑞 𝜌, Ã𝑢 ae 𝜌 𝜎

⟨c̃clo, 𝑎′𝜋 ⟩ ∈ �FindCClo𝜎𝜋 𝑐̃ 𝑎𝜋

⟨⟦(cont (𝑥) pr′)⟧ , 𝜌𝑐⟩ = c̃clo
𝑎 = (𝑥)
𝜌 ′, 𝜎 ′ = 𝜌𝑐 [𝑥 ↦→ 𝑎], 𝜎 ⊔ [𝑎 ↦→ 𝑑]

Θ̃live = ( l̃ive𝜎,𝜎𝜋 𝑐̃ 𝑎𝜋 ) ∪ ( l̃ive𝜎,𝜎𝜋 𝑑)
Θ̃popped = �PoppedBindings𝑐

𝜎𝜋
𝑐̃ 𝑎𝜋 ( �LocalBindings pr 𝜌)

ãn′ = �CheckS Θ̃popped Θ̃live ãn
ãn′′ = �CheckR 𝑥 Θ̃live ãn

′

Fig. 13. Continuation Calls

⟨̃𝑟, 𝜎, 𝜎𝜋 , ãn⟩ ∈ �StateSpace ≜ P(�Config) × �Store × �Store𝜋 × Anno
𝜉 ∈ �Config ≜ Prog × Ẽnv × �Addr𝜋

⇝ �StateSpace⊆ �StateSpace × �StateSpace
⟨̃𝑟, 𝜎, 𝜎𝜋 , ãn⟩⇝ �StateSpace ⟨̃𝑟 ′, 𝜎 ′, 𝜎 ′

𝜋 , ãn
′⟩

where Σ̃′ = {𝜍̃ ′ | ∃ ⟨pr, 𝜌, 𝑎𝜋 ⟩ ∈ 𝑟̃ such that ⟨pr, 𝜌, 𝑎𝜋 , 𝜎, 𝜎𝜋 , ãn⟩⇝�State 𝜍̃ ′}
𝑟̃ ′ = 𝑟̃ ∪ {⟨pr′, 𝜌 ′, 𝑎′𝜋 ⟩ | ⟨pr′, 𝜌 ′, 𝑎′𝜋 , _, _, _⟩ ∈ Σ̃′}
𝜎 ′ = 𝜎 ⊔

⊔
𝜍 ′ ∈Σ̃′

⟨_,_,_,_,𝜎 ′′,_,_⟩=𝜍 ′

𝜎 ′′ 𝜎 ′
𝜋 = 𝜎𝜋 ⊔

⊔
𝜍 ′ ∈Σ̃′

⟨_,_,_,_,_,𝜎 ′′
𝜋 ,_⟩=𝜍

𝜎 ′′
𝜋 ãn′ =

⋂
𝜍 ′ ∈Σ̃′

⟨_,_,_,_,_,_,ãn′′⟩=𝜍 ′

ãn′′

Fig. 14. Abstract state spaces

store, and annotations set, and then merge together all of the results of the transitions. Merging
means joining all stores and intersecting all annotations sets. Formally this is presented in figure
14. This transition can then be taken to a fixpoint — the final result of the static analysis is the
annotations set at the end.

6.3 Correctness
We show a simulation result4 thst relates the collecting semantics to the abstract semantics. We
define a relation

(≲) ⊆ State × �State
between concrete and abstract states, where the primary result is that if a concrete state is related
to an abstract state and the concrete state can step then there exists a transition for the abstract
state such that simulation is preserved:

(𝜍 ≲ 𝜍̃) ∧ (𝜍 ⇝State 𝜍
′) =⇒ ∃𝜍̃ ′, (𝜍̃ ⇝�State 𝜍̃ ′) ∧ (𝜍 ′ ≲ 𝜍̃ ′).

That is, simulation can be preserved under state transition. For the simulation relation to hold
between two states, the annotations set of the abstract state must be a subset of that in the concrete.
This implies that the intersection over annotation sets for all abstract states (i.e. the result of the
analysis) is a subset of the annotations set for every concrete state, and thus the results of the static
analysis are sound.

4Found at https://zenodo.org/record/6728161.
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One important lemma towards proving simulation is simulation of liveness: if a binding is live
(or popped) in the concrete state the same must occur in the abstract state. One corollary of this
fact is that the liveness optimization for stack extent presented for the collecting semantics can be
used in the abstract. Formally, we can substitute Θ̃livelocal for Θ̃live where

Θ̃live = ( l̃ive𝜎,𝜎𝜋 𝑑𝑓 ) ∪ ( l̃ive𝜎,𝜎𝜋 𝑑) ∪
⋃

𝑖=1...𝑛
live𝜎,𝜎𝜋 𝑐̃𝑖 𝑎𝜋

Θ̃livelocal = ( l̃ive𝜎,𝜎𝜋 𝑑𝑓 ) ∪ ( l̃ive𝜎,𝜎𝜋 𝑑)
in the case of a user call and

Θ̃live = ( l̃ive𝜎,𝜎𝜋 𝑐̃ 𝑎𝜋 ) ∪ ( l̃ive𝜎,𝜎𝜋 𝑑)
Θ̃livelocal = ( l̃ive𝜎,𝜎𝜋 𝑑)

in the case of a continuation call. In the abstract semantics this not only improves the time taken to
check stack extent but also can greatly increase precision, since it can be difficult to distinguish
between abstract bindings that look the same but correspond to different concrete bindings.

7 IMPLEMENTATION AND EVALUATION
Before we invest significant time and effort in building an optimizing backend, we want to em-
pirically evaluate our approach to predict its effectiveness and scalability. To do so, we have
implemented a prototype of the analysis for a substantial subset of the Standard ML (SML) lan-
guage.5 The front-end of our compiler parses, type checks, compiles pattern matches [Le Fessant
and Maranget 2001], and produces an ANF-like intermediate representation (IR). This IR is explicitly
typed, and source-level datatypes and polymorphism are preserved. The IR already supports poly-
morphic recursion (although SML does not) and it should be possible to extend it to support other
fancy type-level features. The front-end also includes a basic optimizer for the IR, which implements
the contraction and uncurrying optimizations from Appel [Appel 1992]. These optimizations use
lexical scoping to determine information flow, but they handle many of the common opportunities
for optimization at a low cost.
Following Vardoulakis and Shivers [Vardoulakis and Shivers 2011], we then do a syntactic

analysis to assign initial marks to variables before conversion to CPS. When converting to CPS, we
mark return and exception continuations as having stack extent, since we currently do not support
first-class continuations. The resulting annotated CPS serves as the baseline for our evaluation, as
well as the input to the analysis. The syntactic approach for determining variable extents is typical
of functional language compilers that do not use higher-order CFA, such as the SML/NJ system.

The implementation of our analysis first computes the abstract state space according to the store
widening method in Figure 14, using a workset algorithm that tracks updates to the stores. An
update consists of either adding new addresses or updating existing addresses to a store. These
changes are used to re-transition configurations which are known to use those addresses, which
generate new store updates. We use type environments to differentiate between polymorphic
contexts, and make use of hash-consing. While we compute the abstract state space, we do not
track extent information. Instead, after the state space is generated, a separate phase is performed
for the extent validity checks.
To check the correctness of our analysis implementation, we run an instrumented interpreter

that uses the collecting semantics to check the actual extent requirements for a variable against
the analysis results. The interpreter computes extent information with perfect precision, but only
5Our implementation supports almost all of the core language, including references and exceptions, as well as structures
and nested structures. The main missing features are record types, signatures, and functors. Our implementation can be
found at https://zenodo.org/record/6806410.
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Table 1. Summary of benchmarks used to evaluate the analysis

Name LOC Description
nucleic 3326 The SML version of the “Pseudoknot” program [Hartel et al.

1996].
boyer 838 The Boyer-Moore benchmark from SML/NJ.
k-cfa 591 A SML port of Matt Might’s kCFA reference implementation.
ratio-regions 548 An image segmentation benchmark from MLton.
mc-ray 487 A SML port of the "Weekend Raytracer" [Shirley 2020].
knuth-bendix 450 The Knuth-Bendix benchmark from SML/NJ.
raytracer 333 The Ray tracer from Impala benchmarks.
SNF 290 The Smith-Normal-Form benchmark from MLton.
tsp 239 A SML port of the Travelling Salesman benchmark from the

Olden benchmarks.
cps-convert 199 A SML implementation of the Danvy-Filinski CPS conver-

sion [Danvy and Filinski 1992].
interpreter 178 An interpreter for a simple language.
parser-comb 168 Using parser combinators to parse a simple expression syntax.
life 122 The Life benchmark from SML/NJ.
derivative 113 A SML port of the symbolic derivation benchmark from Larceny.
nqueens 45 The classic N-Queens benchmark.
quicksort 44 Quicksort of integer lists.
mandelbrot 43 The Mandelbrot benchmark from SML/NJ
safe-for-space 27 An example that tests safe-for-space closure conversion [Shao

and Appel 2000]
cpstak 21 The continuation-passing-style implementation of the Takeuchi

(tak) function ported from Larceny.
filter 11 Filter a list.
tak 10 The Takeuchi (tak) function.
ack 8 Ackermann’s function.

for a specific run of the given program, so it cannot guarantee general soundness of the analysis
across the infinite set of possible executions. However, it was extremely useful in debugging the
implementation — we are now enthusiastic converts to this kind of analysis-debugging technique
and recommend it heartily. To use Cousot’s terminology [Cousot and Cousot 1977], concrete
non-standard semantics have practical utility beyond the realm of the formal.

7.1 Programs
We have run our analysis on over twenty example programs that represent a variety of programming
styles and sizes. While none of these programs are “large,” many of them are typical of the size of
an individual module in a larger system (e.g., several hundred lines of code). The benchmarks are
summarized in Table 1; the reported lines of code does not include comments or whitespace.

The programs represent a variety of programming styles and idioms; a few of them were written
by the authors, but most are ports of previously published benchmarks [Appel 1992; Clinger and
Hansen 2017; Danvy and Filinski 1992; Hartel et al. 1996; Shao and Appel 2000; Shirley 2020].
Table 2 lists the benchmarks alone with the results of evaluation.
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Table 2. Benchmark results

User Variables User 𝜆s
Time Syn. Analysis CFA H-Prom. H-Prom.

Program (ms) # Vars Stk Reg Stk Reg Rate S+R/Tot. Rate
nucleic 576 7809 121 7600 8 7799 97.7% 68 / 69 98.6%
boyer 263 6656 59 6568 16 6638 93.1% 21 / 22 95.5%
k-cfa 107 1521 153 1233 13 1484 82.2% 80 / 80 100.0%
ratio-regions 160 1539 132 1275 7 1515 87.1% 77 / 90 85.6%
mc-ray 42 684 75 548 5 668 82.0% 28 / 35 80.0%
knuth-bendix 185 1471 111 1149 75 1373 89.1% 133 / 149 89.3%
raytracer 56 898 88 763 12 886 100.0% 32 / 32 100.0%
SNF 33 542 40 431 0 528 80.3% 25 / 29 86.2%
tsp 25 497 62 400 20 477 100.0% 21 / 21 100.0%
cps-convert 19 557 40 472 15 521 53.3% 12 / 22 54.5%
interpreter 35 1048 37 991 11 1037 100.0% 17 / 17 100.0%
parser-comb 51 544 30 386 8 523 89.8% 70 / 82 85.4%
life 28 509 17 456 7 500 94.4% 30 / 31 96.8%
derivative 14 469 13 442 9 456 71.4% 10 / 12 83.3%
nqueens 5 100 9 83 0 100 100.0% 6 / 6 100.0%
quicksort 12 351 3 344 4 347 100.0% 3 / 3 100.0%
mandelbrot 4 62 3 53 0 62 100.0% 3 / 3 100.0%
safe-for-space 3 48 3 40 1 46 80.0% 3 / 4 75.0%
cpstak 4 34 0 23 0 28 45.5% 2 / 5 40.0%
filter 3 48 0 46 0 48 100.0% 2 / 2 100.0%
tak 2 26 5 20 5 21 100.0% 1 / 1 100.0%
ack 2 26 1 24 1 25 100.0% 1 / 1 100.0%

7.2 Timing Results
The first question that we wanted to investigate is the scalability of the analysis. For each of the
benchmarks, we report the average wall-clock time required to run the analysis over ten runs. The
data was collected using a lightly-loaded server equipped with two Intel Xeon Gold 6142 CPUs and
64 GB RAM running Ubuntu 16.04.6 LTS. Our system was compiled using Version 110.99 (64-bit)
of SML/NJ. The second column of Table 2 gives the results in milliseconds. As can be seen from
the table, for almost all programs the analysis takes under half a second. The data also suggests
that the asymptotic growth in time is linear in practice (despite the worst-case complexity of the
analysis being 𝑂 (𝑛3)).

We also measured the analysis time for when the basic optimizer was disabled (results omitted
for space). In that case, the analysis typically took 1.5 to 2 times as much time, although the analysis
for unoptimized nucleic was 15 times slower. Since the time required for the basic optimizer is
substantially less than required for analysis, running basic lexical-based optimizations before
analysis is a clear win.

7.3 Precision
The second question to be investigated is the quality and usefulness of the information computed
by our analysis. Since we do not currently have a backend for our system, we use the rate at
which variables and functions are identified as not requiring heap allocation to characterize the
information. As a baseline, we use an extended version of the syntactic criteria described by
Vardoulakis and Shivers [Vardoulakis and Shivers 2011], which puts variables in registers if they
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are not live across function calls, and on the stack if they are not captured by a user 𝜆 occurring
within their binding term.

The results for user variables are given in columns 3–8 of Table 2, which report the total number
of user-variables in the program, the number of variables assigned stack and register extent by
syntactic analysis, and the number assigned stack and register extent by the control-flow analysis.
In the AST every intermediate result is given a name, so there are a large number of variables.
Column 8 reports the percentage of heap-extent variables (as assigned by syntactic analysis) that
are promoted to stack or register extent. These results demonstrate that there is significant room
for improvement beyond Vardoulakis’ simple syntactic criteria and that our analysis is able to
extract that improvement.

The analysis also assigns extents to user 𝜆 terms,6 which are reported in the last three columns
of Table 2. User 𝜆 terms that are marked with stack or register extent can represented without a
heap-allocated closure. The analysis is able to identify effectively those functions that do not require
heap allocation; for those programs that have a low promotion rate (e.g., cpstak), we examined the
CPS IR by hand and verified that the 𝜆 terms with heap extent are correctly marked.

It is worth noting that almost all variables (typically over 98%)7 and most functions have stack or
register extent. This observation supports the folklore that most functional programs are essentially
Pascal programs.
While it is clear that our analysis greatly improves the information available over the baseline,

how good is it in absolute terms? While computing the optimal assignment that is valid for all
executions is undecidable, we can determine the best valid assignment for any given trace of a
program. Such an assignment must be as good or better than the optimal assignment that is sound
for all executions of the program. Using an instrumented interpreter, we compared the results of
the static analysis to the best assignment for a given run of each benchmark. For most benchmarks,
all of the heap variables that could be promoted are identified by the static analysis, although some
of the stack variables identified by the analysis could have been register allocated for the particular
run. These measurements, which are left to the compiler implementation artifact due to space
constraints, show that there is little headroom for improvement.

7.4 Dynamic Allocations
We also measured the dynamic rate of variable promotions. These results show that the promotions
identified by the static analysis are an effective predictor for dynamic behavior. We leave the details
to the compiler implementation artifact, but the overall results suggest that our approach should
allow significant reduction in heap allocation.

8 RELATEDWORK
The large amount of previous work on higher-order flow analysis (dating back to Shivers’ 𝑘-CFA
framework [Shivers 1991]) has focused on improved precision and reduced cost for determining
the control-flow graph for higher-order programs. In contrast, our work is focused on extracting
different information from the program, namely the extents of variable bindings and closure values.
Gilray, et al. [Gilray et al. 2016] discuss abstract address allocators, and prove that the precision
of one such allocator is exactly precise, relative to a machine which does not abstract the control
stack. Such allocators are useful for tuning the analysis precision, and address allocators inspired
from their work can be applied to the CPS setting. The liveness information that we use is similar

6Recall that continuation 𝜆s can always be assigned stack extent.
7We do not have space to present the numbers, but the can be computed by adding the stack and register counts and dividing
by the total number of variables.
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to the statically tracked notion of liveness that drives the abstract garbage collection of Might and
Shivers [Might and Shivers 2006] and Johnson, et al. [Johnson et al. 2014]; in their setting, it is used
to sharpen the precision of CFA.
Vardoulakis and Shivers’ CFA2 [Vardoulakis and Shivers 2011] introduced the idea of marking

variables to distinguish binding extent, and then using these annotations to drive the summarization-
based algorithm for a PDA-based, higher-order flow analysis. The marks in this previous work
were limited to heap- and stack-extent, and it used a simple syntactic criterion to determine which
variables could be marked as stack-extent. As we show in Section 7, our analysis does significantly
better.

Park and Goldberg [Park and Goldberg 1992] present an analysis that tracks information similar
to the stack extent information we track. Later work by Blanchet [Blanchet 1998] does similar
tracking. These papers use an ANF-style language which does not permit the expressive control
flow 3CPS allows. The primary contribution of our work is that our analysis allows more complex
control flow, including the “long-jump” style returns needed for supporting exceptions. Without
such expressive control flow (which is extremely useful in a CPS setting), the analysis simplifies
considerably, as there is no need to track proxies. For the 3CPS language, having this expressive
power and obtaining information about how it is used is crucial to optimizing the compiled program.
Serrano [Serrano and Feeley 1996] uses 0-CFA to spot opportunities to stack-allocate values. Like
MLton, he works with a first-order, post-closure conversion IR. Mohnen [Mohnen 1995] uses a
similar notion of stack and register extent, applying the concepts to the limited problem of allocating
partially applied curried functions.
There is a large corpus of prior work that focusses on allocating values (typically, function

closures) on the stack, as opposed to bindings.We have described several above (Park and Goldberg,
Blanchet, Serrano, et al.). The analytic machinery of these authors could likely be adapted to our
problem (management of bindings), but the key point of our work is to direct attention to the issue
of bindings. Our central message is about environment structure, not data structure — bindings, not
values. It is a different analysis of a different semantic domain with a different goal.

For example, Orbit can occasionally stack-allocate what we call “user” closures. (This fact is not
discussed in the conference papers, but can be found in the details of Kranz’ actual dissertation
and the actual code base.) Nonetheless, Orbit does not take a general approach to considering the
binding extent of non-continuation variables in its CPS IR.

Furthermore, our extent taxonomy is richer than simply resolving the “stackable or not” question.
Our key observation is that there are three specific kinds of extent that allow us to connect the
𝜆-calculus semantics directly to the basic machine resources of the target processor: the memory
heap, the machine stack and the register set. This connection requires more than simply making
statements about “stackability.” This is a new conceptual architecture for a functional-language
compiler, not found in existing systems such as OCaml, SML/NJ, Haskell, Orbit, Bigloo, Chez
Scheme or others.
Bannerjee and Schmidt’s work is an exception to the values-not-bindings focus of most prior

work. However, their technique is an all-or-nothing check that certifies if an entire program can
be run without requiring heap-allocated binding frames; we address the problem of fine-grained
per-variable determination. We also handle much more expressive control-flow, in particular, tail
calls and multiple continuations, which are critical for functional programming. (Tail calls are
particularly tricky, as their early deallocation of a caller’s stack frame can prevent a variable from
having stack extent. We handle this more stringent criterion correctly.)

Compilers such as MLton or Bigloo [Serrano 1995] use extensive static analysis to improve the
quality of compilation — but not for this task. To date, compilers base variable-binding decisions
on simple syntactic criteria. This is why we have been careful to compare our analysis-driven
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approach to a “simple syntactic criteria” baseline. It is important to understand if these criteria are
cheaply getting most of the available yield in terms of classifying bindings, or if they leave a lot on
the table — and if the latter case pertains, how much of this extra can be found by higher-order
flow analyses. The numbers of Table 2 answer both of these questions in favor of our approach.

9 CONCLUSION
The work presented in this paper is the first technical piece of a larger project (the 3CPS project) to
develop a new framework for compiling strict functional languages. Currently, the MLton Standard
ML compiler [Weeks 2006] is the state-of-the-art in this space. It take the approach of whole-program
monomorphization and flow-analysis guided defunctionalization [Cejtin et al. 2000; Reynolds 1972;
Siskind 1999; Tolmach and Oliva 1998] to convert higher-order polymorphic programs into first-
order monomorphic programs that can be optimized using conventional techniques [Aho et al.
2007]. Unfortunately, this approach comes at the cost of requiring whole-program compilation (no
separate compilation) and of not supporting fancier type-level features beyond SML’s Hindley-
Milner polymorphism (e.g., first-class polymorphism and polymorphic recursion).
The 3CPS project (https://github.com/3cps-project) is a new effort to build compiler infrastruc-

ture for strict functional languages that achieves comparable performance to MLton without the
restrictions. Our approach, however, is quite different from MLton’s — indeed, it is almost the polar
opposite. Rather than converting the program to a monomorphic first-order representation at the
earliest opportunity, we choose to focus our optimization efforts on the higher-order representation
of the code. Unlike MLton, our approach will allow us to preserve source-language polymorphism,
and support polymorphic recursion and separate compilation. For our approach to be practical, we
need higher-order control-flow analyses to develop a precise understanding of the control-flow,
data-flow, and environment structure of the code, which is where the results of this paper apply.

Efficient implementation of functional languages requires effective management of bindings. We
have shown that binding extent can be given a static taxonomy that directly ties it to the machine
resources of a standard computer system: the memory heap, the run-time stack, and the register
set. This mechanism provides a rigorous description of the stack-management protocol for CPS
(something which has not been done previously).

We have presented a static flow analysis that classifies variables in this taxonomy. Empirical
evaluation shows that the analysis is scalable for real-world applications (at least assuming separate
compilation) and that it is effective in extracting information that is not accessible through simple
syntactic criteria. In fact, it correctly recognizes that almost all variable bindings and most functions
do not require heap allocation; thus, a compiler using our approach could provide all the power of
higher-order programming with a “pay-as-you-go” run-time cost.
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