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Droplet-based transcriptome profiling of 
individual synapses

Muchun Niu    1,2, Wenjian Cao1,3,11, Yongcheng Wang4,5,12, Qiangyuan Zhu    1,11, 
Jiayi Luo1,6, Baiping Wang1,7, Hui Zheng1,7, David A. Weitz    5,8  & 
Chenghang Zong    1,9,10

Synapses are crucial structures that mediate signal transmission 
between neurons in complex neural circuits and display considerable 
morphological and electrophysiological heterogeneity. So far we still 
lack a high-throughput method to profile the molecular heterogeneity 
among individual synapses. In the present study, we develop a 
droplet-based single-cell (sc) total-RNA-sequencing platform, called 
Multiple-Annealing-and-Tailing-based Quantitative scRNA-seq in Droplets, 
for transcriptome profiling of individual neurites, primarily composed of 
synaptosomes. In the synaptosome transcriptome, or ‘synaptome’, profiling 
of both mouse and human brain samples, we detect subclusters among 
synaptosomes that are associated with neuronal subtypes and characterize 
the landscape of transcript splicing that occurs within synapses. We 
extend synaptome profiling to synaptopathy in an Alzheimer’s disease 
(AD) mouse model and discover AD-associated synaptic gene expression 
changes that cannot be detected by single-nucleus transcriptome profiling. 
Overall, our results show that this platform provides a high-throughput, 
single-synaptosome transcriptome profiling tool that will facilitate future 
discoveries in neuroscience.

Synapses are crucial structures that mediate signal transmission 
between neurons in complex neural circuits. Advances in microscopy 
and electrophysiology techniques have unveiled the morphological 
and electrophysiological heterogeneity existing among individual syn-
apses1–5. To facilitate the characterization of synaptic heterogeneity and 
the construction of a synapse transcriptome atlas, a high-throughput, 
transcriptome-profiling method of individual synaptosomes is greatly 
desired. However, to achieve successful profiling of gene expression 

in individual synaptosomes, new technical features of transcriptome 
profiling beyond the state-of-art scRNA-seq platforms are required. 
First, individual synaptosomes contain smaller quantities of RNA mol-
ecules than single cells or single nuclei. Therefore, a high-sensitivity 
scRNA-seq assay is desired. Second, after synaptosomes are prepared, 
the materials require immediate fixation to prevent notable leakage of 
RNA molecules in downstream steps. Hence, RNA-seq chemistry com-
patible with fixed samples is demanded. Third, to characterize locally 
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second-strand synthesis. The barcoded dT20 hydrogel beads were 
prepared following the procedure described in the inDrop platform10.

It is worth noting that, different from the ultraviolet light 
(UV)-triggered release of the barcoded oligos from the beads in the 
inDrop platform, in the present study we introduced enzymatic release 
chemistry (Supplementary Fig. 1a and Methods). In this chemistry, 
we introduced a deoxyuridine (dU) base in the sequence near the 
5′-end of the barcoded oligos. In the droplet reaction buffer for the 
second-strand synthesis, we included the USER enzyme that can cut 
the oligos at the dU site. As a result, on droplet encapsulation, the dT20 
oligos with cell barcodes were efficiently released from the beads. 
Next, we performed RNA digestion and heat decrosslinking to release 
cDNA from the nuclei. The barcoded dT20 primers then hybridized 
to the poly(A) tail of the cDNA molecules to initiate the second-strand 
synthesis. After the second-strand synthesis was completed, we broke 
the droplets and collected the aqueous phase, followed by the PCR 
reaction to amplify the library for next-generation sequencing (Sup-
plementary Fig. 1b).

To validate the successful single-cell barcoding in MATQ-Drop, 
we performed the standard species-mixing experiment as a con-
trol. We mixed equal numbers of fresh human HEK293T and mouse 
NIH/3T3 cells and then lysed them into nuclei. With the fixed nuclei, 
we performed the MATQ-Drop assay as described above. In the 
present study, we used a small aliquot of droplets to generate the 
sequencing library for technical evaluation. As shown in Fig. 1b, we 
identified 162 unique high-quality cell barcodes. Based on the spe-
cies specificity, we unambiguously assigned them to 81 human 293T 
nuclei, 76 mouse 3T3 nuclei and 5 collision events (Fig. 1c). For each 
assigned cell barcode, we observed high species specificity of unique 
molecular identifiers (UMIs), as shown in Fig. 1d (99.7% for 293T 
nuclei and 99.4% for 3T3 nuclei). In addition, the 162 cell barcodes 
covered 89% of all uniquely mapped reads (Supplementary Fig. 2a–c), 
confirming an extremely low cross-barcode contamination rate. 
For the single-cell total-RNA-seq data generated by MATQ-Drop, we 
did not observe notable UMI inflation (Supplementary Fig. 2d and  
Supplementary Text 1).

It is worth pointing out that the major technical advantage of 
MATQ-Drop, in comparison to matured mRNA-based platforms such 
as 10x Genomics Chromium, is that we can effectively detect nas-
cent RNAs using the reads mapped to intronic regions (Fig. 1e). With 
regard to gene detection sensitivity, at the average sequencing depth 
of ~70,000 raw reads per single nucleus, we detected a median of 21,192 
UMIs and 6,575 genes for single 293T nuclei, and 11,286 UMIs and 4,220 
genes for single 3T3 nuclei (Fig. 1f,g). As shown in Fig. 1h,i, the gene 
detection of MATQ-Drop is significantly higher than the sensitivity 
of other snRNA-seq methods8,13. To further extend the benchmark 
comparison between MATQ-Drop and 10x Genomics Chromium for 
cell atlas construction with tissue samples, we also performed an equal 
footing comparison using the mouse brain samples described below.

Detection of synaptosome subtypes by transcriptome 
profiling
So far, the major approach in transcriptome profiling of synapses has 
been based on bulk samples14. Noticeably, microdissected neurites 
were used to profile the transcriptome of synapses localized at specific 
regions of rat hippocampus samples15. In the present study, in contrast 
to the bulk-based approach, with the development of MATQ-Drop, we 
would like to profile the transcriptome of individual synaptosomes. We 
refer to the transcriptome of individual synaptosomes as a synaptome 
and we profiled the transcriptome of individual synaptosomes isolated 
from both mouse and human brain samples on MATQ-Drop platform.

We first profiled the synaptome of the mouse hippocampus. 
To isolate synaptosomes, we ground out the snap-frozen brain tis-
sue using a Dounce homogenizer (Supplementary Fig. 3a). We then 
performed FACS to enrich Hoechst-negative subcellular structures 

spliced genes in the synapses, a total-RNA-based assay that permits 
simultaneous detection of both mature and nascent RNA is desired.

To meet these specific technical demands, we report, in the present 
study, the development of a droplet-based single-cell total-RNA-seq 
platform. We refer to this assay as Multiple-Annealing-and-Tailing-based 
Quantitative scRNA-seq in Droplets (MATQ-Drop). The development 
of MATQ-Drop is based on the previous chemistry of MATQ-seq6. 
MATQ-Drop works with fixed samples and its effective detection of 
nascent RNA makes it suitable for characterizing local splicing in synap-
tosomes. It is worth noting that, although the commercial 10x Genom-
ics Chromium platform is broadly accessible7–10, SMART-seq-based 
chemistry11 on this platform is mainly designed for quantifying mature 
messenger RNA levels in fresh samples, hence making it unsuitable for 
transcriptome profiling of synaptosomes.

Using the MATQ-Drop platform, we performed the transcriptome 
profiling of single synaptosomes of mouse and human brain samples. 
For convenience, we refer to the transcriptome of synaptosomes as the 
synaptome. In the synaptome data, we were able to identify various 
types of neurites, including different subtypes of synaptosomes and 
neuron–glia junctions. Among different subtypes of synaptosomes, 
we observed presynaptic and postsynaptic clusters, as well as a special 
subcluster associated with the synapses in the process of assembly and 
maturation. Transcriptomic differences between different subclusters 
can be readily detected. With the effective detection of nascent RNAs, 
we also characterized the landscape of intron retention for various 
clusters of synapses. In addition to synaptome profiling, we applied 
MATQ-Drop to profile the transcriptome of single nuclei for the same 
brain samples. With both synaptome and the single-nucleus transcrip-
tome, we were able to connect subclusters of synapses to different 
types of neurons. The differential gene expression and splicing between 
the synapses and neuronal nuclei were then analyzed. Furthermore, 
we profiled the synaptosomes isolated from an AD mouse model. We 
characterized the synaptopathy-associated transcriptome and discov-
ered AD-associated gene expression changes that cannot be detected 
by single-nucleus transcriptome profiling.

With the effective detection of total RNA, we also successfully gen-
erated the cell atlas using only long noncoding RNA (lncRNA) species. 
This result suggests that MATQ-Drop allows the large-scale identifica-
tion of cell-type-specific lncRNA species. Furthermore, based on the sin-
gle -nucleus (sn) transcriptome of the mouse brain, we also conducted 
a benchmark comparison between MATQ-Drop and 10x Chromium. 
Our result shows that MATQ-Drop demonstrated up to 135% improve-
ment in gene detection sensitivity across different cell types when 
compared with the 10x v.3.1 platform. Overall, as a total-RNA-based, 
high-throughput transcriptome platform, MATQ-Drop will provide an 
alternative high-throughput, high-sensitivity, single-cell transcriptome 
platform to the 10x Chromium platform.

Results
The chemistry of MATQ-Drop
In the chemistry of MATQ-Drop (Fig. 1a), we first applied 3% paraformal-
dehyde (PFA) to fix the nuclei. After the crosslinking, we permeabilized 
the nucleus membrane and performed ten cycles of multiple annealing 
with MALBAC (multiple annealing and looping–based amplification 
cycles) primers6,12, which allow efficient hybridization to the internal 
regions of the transcripts (Fig. 1a). As a result, besides the reverse tran-
scriptions initiated from the poly(adenylated) (poly(A)) tails at the 
3′-end of the transcripts, substantial portions of reverse transcriptions 
were also initiated at the internal regions of transcripts, which war-
rants efficient total RNA capture. After the reverse transcription step, 
we washed away the excessive MALBAC primers. We then performed 
in situ poly(A) tailing for the complementary DNA molecules, which 
we refer to as the dA-tailing step. Next, we washed the processed nuclei 
and used microfluidic platforms to encapsulate single nuclei together 
with the barcoded dT20 hydrogel beads in droplets for multiplexed 



Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01635-1

with sizes <5 μm (Supplementary Fig. 3b,c). We want to point out 
that the main reason for conducting this rapid isolation of synapto-
somes is to preserve RNA quantity and quality. In comparison to this 
sorting-based rapid isolation procedure, we also performed synaptome 
profiling using synaptosomes isolated from the standard gradient 
centrifugation-based enrichment method. As a result, we observed a 
significant reduction in gene detection, leading to the poor resolution 
of synaptosome clustering as described below.

With the transcriptome data of individual synaptosomes, we first 
performed the unsupervised clustering analysis following the standard 
Seurat v.4 integration pipeline16. It is interesting that we identified 15 
primary clusters, among which 12 clusters were synapse associated 
(Fig. 2a,b, Supplementary Figs. 4 and 5 and Supplementary Tables 1 

and 2). Among the 12 synapse-associated clusters, we noticed that the 
Syn1 cluster exhibits a 3.5-fold increase of nascent RNA proportion 
compared with the rest of the synapses (average intronic fraction 
29.9% versus 8.5%; Fig. 2c). In Syn2 and Syn4 clusters, we observed the 
upregulation of Grin2b, Pclo and Bsn (Pclo and Bsn are known presyn-
aptic scaffold genes). In contrast, in the Syn3 cluster, we observed the 
upregulation of postsynaptic genes, including Shank1 and Shank3  
(Fig. 2b and Supplementary Table 2).

Besides the overrepresentation of presynaptic features in Syn2 
and Syn4 clusters and postsynaptic features in Syn3 cluster, we also 
observed additional synapse subclusters that are defined by specific 
markers: Syn5: Zbtb20; Syn6: Chd9; Syn7: Purg; Syn8: Nopchap1; Syn9: 
Apc; Syn10: Hivep3; Syn11: Kmt2d; and Syn12: Ksr2 (Fig. 2a,b). Among 
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Fig. 1 | Overview of MATQ-Drop and the performance in species-mixing 
experiment. a, Reaction scheme of MATQ-Drop. In situ reverse transcription and 
poly(A) tailing are performed on the fixed nuclei, which are then encapsulated 
in droplets with barcoded hydrogel beads. Inside the droplet, barcoded dT20 
primers are enzymatically released from the beads to capture the poly(A) tail of 
cDNA released from the nuclei. After the barcoded second-strand synthesis has 
been accomplished, the emulsion is broken and the product can be amplified 
and sequenced. b, Identification of the barcodes representing true nuclei in 
the species-mixing experiment. Barcodes are ordered from the largest to the 
smallest UMI counts. On the UMI counts versus barcode rank plot, the knee 

point (162, red dashed line) indicates the threshold for true nuclei. c, Species 
annotation of the 162 nuclei identified. d, Species specificity of UMIs. e, Fractions 
of UMIs in exons and introns (mean ± s.d.). f,g, Detection sensitivity of MATQ-
Drop in UMI counts (f) and gene counts (g). h,i, Comparison of detection 
sensitivity between MATQ-Drop and other major snRNA-seq methods8,13 for 
single NIH/3T3 nuclei, UMI detection (h) and gene detection (i) (P values 
calculated using two-sided Student’s t-test). d,f–i, Boxplot shows the center 
line and median, box limits the upper and lower quartiles, whiskers the 1.5× 
interquartile range (IQR) and points the outliers.
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their marker genes, mutations in Zbtb20 have been shown to affect 
the synaptic structures by altering ZBTB20 protein localization in 
subneuronal compartments17; Purg (detected in Syn7) was reported 
to display strong and early upregulation during synaptogenesis in 
primary mouse hippocampal neurons18; Ksr2 (detected in Syn12) 
contributes to calcium-mediated ERK (extracellular signal-regulated 

kinase) signaling19. In addition to synapse-associated clusters, we 
also observed axon initial segments and nodes of Ranvier (AIS/NR 
cluster) and neuron–glia junctions including neuron–oligodendro-
cyte junctions (ODC junctions) and neuron–astrocyte junctions (ASC 
junctions) (Fig. 2a,b, Supplementary Fig. 4a,b and Supplementary 
Tables 1 and 2).
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Fig. 2 | The mouse hippocampus cell atlas and synaptome atlas. a, UMAP 
visualization of synaptosome and neuron–glia junction subtypes of the mouse 
hippocampus. b, Violin plots showing the expression of subcellular-type-
enriched markers in different clusters (Syn1: Csmd1, Kcnip4 and Nrg3; Syn2: 
Grin2b; Syn3: Shank1 and Camk2a; Syn4: Pclo; Syn5: Zbtb20; Syn6: Chd9; Syn7: 
Purg; Syn8: Nopchap1; Syn9: Apc; Syn10: Hivep3; Syn11: Kmt2d; Syn12: Ksr; AIS/
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Atp1a2). c, Fraction of intronic UMIs for each synaptosome and neuron–glia 
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neuron; ExSub, subiculum excitatory neuron; Ex1–4, other excitatory neurons 
1–4; In1–2, inhibitory neurons 1–2; ASC1–2, astrocytes 1–2; MG1–3, microglia 1–3. 
e, Volcano plots showing the exon-based DEGs between synapses and neuronal 
nuclei. f, Pathways enriched in the synapses and nuclei, identified through GSEA. 
NES, Normalized enrichment score. g, The average intronic UMI fraction in 
synapses versus neuronal nuclei, with the marginal rug plot indicating density. 
pct, percentage. h, Identification of the unspliced synaptic genes in neurons. 
i, Number of the unspliced synaptic genes grouped by gene type. j, Pathways 
enriched in unspliced and fully spliced genes, identified through preranked GSEA 
based on splicing score.
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Mouse synaptome based on density gradient centrifugation
Next, we used the freshly prepared mouse samples as the control to 
compare the effects of different synaptosome isolation procedures on 
synaptome profiling. We performed synaptome profiling using the syn-
aptosomes isolated from the standard sucrose density gradient-based 
ultracentrifugation protocol. In comparison to the direct sorting-based 
procedure, we observed 53% fewer genes detected per synaptosome 
(median 146 genes versus 306 genes; Supplementary Fig. 6a), which 
is probably due to RNA decay and the leakage during the extensive 
processing time without PFA fixation. Although we still observed some 
evidence of the regional distribution for a few clusters including Syn1 
(Kcnip4), Syn6 (Chd9) and Syn8 (Nopchap1) on the uniform manifold 
approximation and projection (UMAP), the overall clustering result 
has low resolution with certain ambiguity (Supplementary Fig. 6b,c).

Connect the mouse synapse clusters to neuron subtypes
To compare the synaptome with the nucleus transcriptome, next we 
performed single-nucleus transcriptome profiling for the same mouse 
hippocampus. Based on the nascent RNA expression matrix, we identi-
fied nine subtypes of excitatory neurons from different subregions, two 
subtypes of inhibitory neurons, astrocytes (ASCs), oligodendrocyte 
progenitor cells (OPCs), oligodendrocytes (ODCs), microglia (MGs) 
and fibroblasts (Fig. 2d, Supplementary Fig. 7a–d, and Supplementary 
Tables 3 and 4), and an average of 83% of UMIs detected can be attrib-
uted to introns (Supplementary Fig. 7e).

Next, we compared the single-nucleus transcriptome with the 
synaptome to identify the connection between synapse clusters and 
neuron subtypes. It is interesting that we did not identify statistically 
significant connections. This result supports the capture of different 
synapse transcriptomic states with the synaptosomes prepared from 
fresh mouse brain samples20,21. Furthermore, we would like to investi-
gate, among different synaptic states (synapse clusters), whether we 
can identify the subclusters associated with neuron subtypes. To do 
so, we used the highly variable genes across neuronal nuclei (Methods) 
as the coordinates for supervised clustering analysis. As shown in Sup-
plementary Fig. 8a–f, we did observe the evident association between 
the distribution of synaptosomes and different neuronal subtypes. But 
the subclusters are less separated, probably because they share the 
features of the same synaptic states. Based on the mouse synaptome 
data, we conclude that there are two layers of synapse heterogeneities: 
the first layer is associated with synaptic states and the second with 
neuron subtypes.

Differential expression between synapses and nuclei in mice
Next, we performed differentially expressed gene (DEG) analysis 
between synapses and nuclei. Considering the dominance of matured 
mRNA in the synapses, in the present study we used the exon-based 
gene expression matrix for DEG analysis between synapses and nuclei 
to avoid potential bias by gene length. As a result, we identified 3,609 
synapse-enriched genes and 3,992 nucleus-enriched genes (Fig. 2e 
and Supplementary Table 5) (DEGs defined as (abs(log2(fold-change 
(FC)) > log2(1.3)), false discovery rate (FDR) < 0.05)). As expected, 
synapse-enriched genes were overrepresented with synaptic signal-
ing and protein synthesis pathways. In contrast, the nucleus-enriched 
genes were overrepresented with gene regulation, RNA processing and 
DNA repair pathways (Fig. 2f).

Local splicing landscape in mouse hippocampal synapses
Studies have shown that the genes with retained introns are crucial 
for the intraneuronal transport of the transcript22. Furthermore, syn-
aptic alternative splicing is also vital for quick modulation of synaptic 
functions23–26. Next, based on nascent RNA detection in MATQ-Drop 
data, we characterized the synaptic transcripts with intron retention 
(Methods). We observed only a small percentage of unspliced synaptic 
transcripts (81 out of 2015, 4%), including 79 protein-coding genes and 

2 lncRNAs (Fig. 2g–i and Supplementary Tables 6 and 7). When we per-
formed gene set enrichment analysis (GSEA) for the genes preranked by 
splicing z-score (Methods), on one end of the enrichment, the spliced 
transcripts were enriched for basic cellular activities such as protein 
synthesis and metabolism; on the other end of the enrichment, the 
unspliced transcripts were enriched for synapse assembly, organiza-
tion and neuron migration pathways, suggesting the important role 
of local splicing in synaptogenesis (Fig. 2j).

Synaptome profiling of the frozen human brain samples
To test whether the single-synaptosome RNA-seq pipeline can be 
adopted to construct the human synaptome, next we processed the 
frozen human brain hippocampus and prefrontal cortex (PFC) samples 
from two individuals. It is worth noting that we specifically requested 
the dentate gyrus regions of the hippocampus samples. For two human 
hippocampus samples (Supplementary Table 8), we generated the 
transcriptome of 10,428 single subcellular structures (Fig. 3a and Sup-
plementary Fig. 9a) and we observed 11 major clusters corresponding 
to different types of neurite structures. As shown in Supplementary  
Fig. 9b, the batch effects between samples were undetectable. In  
Fig. 3b,c, we annotated these clusters as subtypes of synapses and neu-
ron–glia junctions based on the well-known molecular markers enriched 
in those subcellular structures (Supplementary Table 9 and 10). In total, 
we assigned six synapse-associated clusters: four synapse clusters with 
high RNA abundancy (we denote them as HI-synapses), one synapse 
cluster with lower RNA abundancy (we denote this as LO-synapse)  
(Fig. 3d,e) and another synapse cluster containing relatively higher 
nascent transcripts (we denote this as N-synapse) (Fig. 3a,h). In contrast, 
15 synapse-associated clusters were observed in mouse hippocam-
pus samples. The potential reason for this discrepancy is that mouse 
brain samples were freshly prepared right after the sacrifice of the 
mice, whereas the human brain samples often had long postmortem 
intervals (PMIs, 12 and 13 h, respectively, for the two brain samples we 
sequenced), which could lead to the decay of transcripts and distort 
the synapse clusters. Therefore, synapse states were probably better 
preserved in the mouse samples.

Despite the potential distortion of the transcriptome caused by 
the PMI, when we compared the synaptome profile with single-nucleus 
transcriptome profiles described below, the four HI-synapse clusters 
could be associated with excitatory neurons in CA1, CA3 and DG regions 
and inhibitory neurons, respectively. It is worth pointing out that the 
inhibitory HI-synapse cluster (Synapse_In in Fig. 3a) can be further 
classified into three subtypes by additional subclustering analysis 
(Supplementary Fig. 10a–c). When we profiled the synaptome of two 
human PFC samples, similar clusters of HI-synapses, LO-synapses and 
N-synapses were observed (Supplementary Fig. 11a–c). The HI-synapses 
can also be subclustered into excitatory and inhibitory subtypes. The 
expression of marker genes in each cluster is shown in Supplementary 
Fig. 11d,e. The detection sensitivity is shown in Supplementary Fig. 11f,g.

Additional validation of synaptosome isolation procedure
In the present study, we further validated the synaptosome isolation 
procedure using frozen human brain samples (Methods). First, we 
confirmed the enrichment of synaptic proteins synaptophysin and 
synapsin-1 in the Hoechst-negative subcellular structures using west-
ern blotting (Supplementary Fig. 12a). In addition, we also performed 
immunostaining for the Hoechst-negative particles using presynapse 
marker synaptophysin and postsynapse marker PSD95 (Supplementary 
Fig. 12b–e). Using flow cytometry analysis, we observed that 60.1% of 
Hoechst-negative particles were synaptophysin positive and 38.1% 
were PSD95 positive. Next, we sorted out double-positive particles 
(34.6%) and performed transcriptome profiling. When we combined 
its transcriptome data with the transcriptome data of the total 
Hoechst-negative particles of the same sample, we observed a com-
plete overlap between Hoechst-negative particles and double-positive 
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particles (Supplementary Fig. 12f,g), indicating that the vast major-
ity of Hoechst-negative particles are synaptosomes and neuron–glia 
junctions. It is worth noting that neuron–glia junctions were reported 
to express synaptic proteins27, therefore they were enriched in the 
synaptophysin and PSD95 double-positive population.

We also sorted out the double-negative particles (36.4%) and 
performed transcriptome profiling. As a result, we observed that 
the corresponding transcriptome had extremely low RNA abun-
dance per particle, equivalent to 4% of RNA yield compared with the 
double-positive population (Supplementary Fig. 12h). Hence, when 
we profile the transcriptome of all Hoechst-negative particles, the 
double-negative particles will be effectively filtered out by RNA abun-
dance cutoff and do not contribute to the synaptome. Therefore, we 

conclude that the unbiased profiling of the Hoechst-negative popula-
tion authentically represented the transcriptome of synaptosomes and 
neuron–glia junctions.

Differential expression between human synaptosome 
subtypes
Next, we performed DEG analysis to identify transcriptomic differences 
between the HI-synapses and the LO-synapses for the hippocampus 
synaptome (Fig. 3f and Supplementary Table 11) and the PFC synaptome 
(Supplementary Fig. 11h and Supplementary Table 11). We identified 
1,272 and 807 HI-synapse-enriched genes (abs(log2(FC)) > log2(1.3), 
FDR < 0.05) in the hippocampus and PFC, respectively, both including 
well-established synaptic vesicle genes (SYT1, SYP, SV2A and SORT1)28. 
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Next, we identified 1,179 and 855 LO-synapse-enriched genes in the 
hippocampus and PFC, respectively. Among the enriched genes in the 
LO-synapses, we noticed the dendrite marker gene MAP2 (ref. 29), the 
well-known postsynaptic scaffold genes SHANK1, SHANK3 and DLG4 
(ref. 30) and the postsynaptic gene SYT3 (ref. 31). The differential marker 
genes show the enrichment of presynaptic transcriptomic features 
in the HI-synapses (which resembles mouse Syn2 and Syn4 clusters) 
and the enrichment of postsynaptic transcriptomic features in the 
LO-synapses (which resemble the mouse Syn3 cluster). In the enriched 
functionals and pathways of the HI-synapse cluster, we observed syn-
aptic signaling and axonogenesis in both the hippocampus (Fig. 3g 
and Supplementary Table 12) and the PFC (Supplementary Fig. 11i 
and Supplementary Table 12). For the LO-synapse cluster, the pro-
tein synthesis and mRNA catabolism-related pathways are enriched  
(Fig. 3g, Supplementary Fig. 11i and Supplementary Table 13), 

suggesting that high protein synthesis activities and turnover rates exist 
in the postsynapses. The enrichment of the mRNA catabolism pathway 
in the LO-synapses also explains the low RNA abundance observed in 
these synapses in comparison to HI-synapses.

It is also worth pointing out that, in contrast to the clear difference 
in RNA abundance between HI-synapses and LO-synapses detected 
in the human brain, we did not observe such a discrepancy in mouse 
brains (Supplementary Fig. 4c,d). This difference requires future inves-
tigation. It could be caused by species differences between humans 
and mice or by different RNA decay rates between presynapses and 
postsynapses during the postmortem time. If the postsynapses have 
a much higher RNA decay rate than the presynapses, then, with the 
long PMIs for the human samples we used, a substantial portion of 
RNA in postsynapses might have been decayed before they could be 
captured by MATQ-Drop.
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It is interesting that, although most synapses displayed a low 
intron fraction (7.85%, on average), we did notice that one cluster 
(N-synapses) exhibited a significantly higher intron fraction (30.79% 
on average (Fig. 3h) and PFC data in Supplementary Fig. 13a), which is 
the human counterpart of the mouse Syn1 cluster. Through the DEG 
analysis between N-synapses and the rest of the synapses (Fig. 3i and 
Supplementary Table 14), we observed that the genes enriched in 
N-synapses were overrepresented in synapse assembly and synapse 
organization gene sets (Fig. 3j). In contrast, the genes involved in syn-
aptic signaling were overrepresented in other clusters of synapses  
(Fig. 3j and Supplementary Fig. 13b,c). The results indicate that 
N-synapses represent the immature synapses that are in the process 
of assembly and maturation. The significantly higher percentage of 
intronic reads in the N-synapses also buttresses the important roles 
of unspliced nascent RNA and the related local splicing in the synaptic 
assembly and maturation process.

Transcriptome profiling of human neuron–glia junctions
Besides the clusters of synaptosomes, we also identified two major 
cell–cell junctions formed between neurons and glial cells: ODC junc-
tions and ASC junctions in the hippocampus (Fig. 3a) and PFC (Sup-
plementary Fig. 11a–e). Both the noncompact myelin gene, CNP, and 
compact myelin genes, PLP1 and MBP, were highly expressed in ODC 
junctions (Fig. 3k and Supplementary Table 15). It is worth noting that 
the upregulated genes in the ODC junctions are enriched in the myeli-
nation process (Fig. 3l), which is consistent with the well-known axon–
ODC signaling related to the myelination process32,33. More importantly, 
the detection of transcripts in ODC junctions in our data suggests the 
importance of local translation at the ODC junctions during myeli-
nation. This indication of local translation is also consistent with the 
recent study by Wake et al.34.

In the ASC junctions, we observed the local enrichment of 
ASC-specific genes, for example, GFAP, ATP1A2, AQP4 and SLC1A3 
(Fig. 3m and Supplementary Table 15). These upregulated genes are 
enriched in cell adhesion, proliferation and neurotransmitter uptake 
pathways (Fig. 3l). Consistent with our observation of transcripts 
enriched in the ASC junctions, local translation has also been recently 
observed in astrocyte peripheral processes35. Overall, the transcrip-
tome profiling of neuron–glia junctions allows the comprehensive 
identification of locally translated genes in the cell–cell junctions 
between neurons and glial cells. The functional roles of these genes 
are worth future investigation.

Effective cell atlas construction using only nascent RNAs
To identify the connection between different subtypes of synapto-
somes and different subtypes of neurons, we next applied MATQ-Drop 
to profile the total-RNA-based transcriptome for 8,112 single nuclei 
isolated from two dissected frozen human hippocampi. First, in the 
single-nucleus transcriptome data, we noticed that the portion of reads 
that represented nascent RNAs in the brain samples was significantly 
higher than that in the cell-line samples. We observed that 78% of the 
UMIs were mapped to intronic regions in the brain samples (Fig. 4a), 
in contrast to 63% of intronic reads in the cell lines (Fig. 1e).

Next, we calculated the gene expression matrix based only on the 
unspliced transcript sequence with the reads mapped to the intron 
regions. Using this nascent RNA-based gene expression matrix, we 
evaluated its performance in constructing a cell atlas for the human 
hippocampus samples that we profiled. In Fig. 4b and Supplementary 
Table 16, using the standard Seurat v4 unsupervised clustering pipe-
line, we successfully identified the following ten primary clusters in 
the hippocampal nuclei: two excitatory neuronal subtypes from the 
Cornu Ammonis region (ExCA) and dentate gyrus (ExDG), respec-
tively; three inhibitory neuronal subtypes (In_A, ln_B, ln_C); four glial 
cell types, including two subtypes of ASCs (ASC1–2), OPCs, ODCs and 
MGs. As shown in Supplementary Fig. 14, no batch-to-batch variations 

were observed. In terms of detection sensitivity, the UMI and gene 
detection are shown in Fig. 4c,d. The markers of each cluster were also 
consistent with well-established cell-type-specific markers (Fig. 4e,f 
and Supplementary Table 17), suggesting robust cell typing using a 
nascent-transcript-based gene expression matrix.

Similar to the hippocampus, we also successfully constructed the 
cell atlas for the human PFC sample of the same individuals (Supple-
mentary Fig. 15). With the profiling of 939 single nuclei, we successfully 
identified 15 primary clusters with high confidence, which included 6 
excitatory neuronal subtypes (Ex1–6), 4 inhibitory neuronal subtypes 
(In1–4), 4 glial cell types (including ASCs, OPCs, ODCs and MGs) and 
endothelial cells (ENDs) (Supplementary Fig. 15a–c and Supplementary 
Table 16). The markers of each cluster were also consistent with the 
standard cell-type-specific markers (Supplementary Fig. 15d,e and 
Supplementary Table 17). Based on the expression of the previously 
reported layer-specific markers36, the six excitatory neuron subtypes 
were assigned to different cortical layers (Supplementary Fig. 15h,i). 
Among the inhibitory neurons from both regions, we identified eight 
subtypes with additional subclustering analysis (Supplementary 
Fig. 16a,b and Supplementary Table 18). The unique combinations 
of marker genes were detected in the subtypes of inhibitory neurons 
(Supplementary Fig. 16c,d and Supplementary Table 19).

Differential expression between synapses and nuclei in human
Now with the single-nucleus transcriptome data from the same tissues 
of the synaptome, we were able to connect the subclusters in the synap-
tome to different neuronal nucleus types based on the shared marker 
genes (Fig. 3a and Supplementary Tables 10 and 17). We have identified 
that three HI-synapse clusters could be connected to the excitatory neu-
rons in hippocampal CA1, CA3 and DG regions, and another HI-synapse 
cluster could be connected to inhibitory neurons (Fig. 3a). Next, we 
investigated the differential patterns of RNA expression between the 
synaptic clusters and the associated nuclei in a neuron-type-specific 
manner.

In total, we identified an average of 2,126 synapse-enriched genes 
and 2,548 nucleus-enriched genes (Fig. 4g–j and Supplementary Table 
20). In Fig. 4k,l, we examined the overlapped genes between differ-
ent neuronal subtypes. We identified that there were a total of 4,099 
synapse-enriched genes and a total of 4,848 nucleus-enriched genes; 
549 synapse-enriched genes and 755 nucleus-enriched genes were 
shared by all 4 neuronal subtypes, respectively (Fig. 4k,l). Next, in the 
functional analysis, we observed that the 549 shared synapse-enriched 
genes were overrepresented in the pathways directly related to syn-
aptic signaling (Fig. 4m and Supplementary Table 21). In contrast, the 
755 nucleus-enriched genes were overrepresented in the epigenetic 
regulation and RNA-processing pathways (Fig. 4m and Supplementary 
Table 22).

Local splicing landscape in different subtype of synapses
Similar to the mouse data, for all four clusters in HI-synapses, we 
observed a long tail of outliers with clear evidence of intron retention 
(Fig. 4n, Supplementary Fig. 17a–c and Supplementary Table 23). It is 
worth noting that 84.5% of synaptic transcripts were already spliced 
(intron percentage <5%). Next, we compared the intron percentage 
between synapses and nuclei for each gene and calculated the splic-
ing z-score (Fig. 4o, Supplementary Fig. 17d–f and Supplementary 
Table 24). We then performed GSEA with the genes preranked by the 
splicing z-score and we observed that the essential cellular functions 
such as translation, protein folding and metabolism were signifi-
cantly enriched in the fully spliced genes (Fig. 4p). This result con-
firms that the fully spliced genes detected in synapses are mainly 
responsible for basic cellular functions. Based on the splicing z-score, 
we also identified the unspliced genes with statistical significance. 
In total, we detected 256 genes from different HI-synapse subtypes, 
including 49 lncRNAs, 11 pseudogenes and 196 protein-coding genes  
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(Fig. 4q). It is of interest that only 41 unspliced protein-coding genes 
were shared by all 4 synapse subclusters (Fig. 4r). This result indicates 
that a significant portion of local synaptic splicing is uniquely associ-
ated with specific synapse types.

Characterization of synaptopathy in AD synaptome
As a hallmark of AD, β-amyloid plaques are known to impair synaptic 
function and induce synaptopathy. It has been shown that β-amyloid 
plaques can induce an inflammatory response that activates MGs 
to prune synapses37,38 and block postsynaptic N-methyl-D-aspartic 
acid receptors and, therefore, suppress trans-synaptic signaling39. 
Current profiling of transcriptomic changes associated with AD 

has been done only with snRNA-seq40,41. In the present study, we 
applied the MATQ-Drop to characterize the synaptome changes in 
the 5xFAD mouse model and examine whether different synapse 
subtypes have different responses to β-amyloid plaques. In total, we 
profiled the transcriptome of 6,989 single nuclei and 20,456 single 
Hoechst-negative particles isolated from two wild-type (WT) and two  
5xFAD mice.

From single-nucleus transcriptome data, we first observed a 
2.3-fold overrepresentation of ODCs compared with WT mice in 
terms of cell-type composition (Fig. 5a). This result is probably due 
to the response to axon demyelination. We also observed a 5.4-fold 
increase of the major MG subtype (MG1) in the 5xFAD mice, indicating 
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Fig. 5 | AD-associated synaptopathy. a, The comparison of cell frequency for 
ODC and MG1 cells between 5xFAD mice and WT mice. Two-sided Student’s t-test 
was performed and P values were indicated on the plot. b, immunofluorescence 
staining and quantification of ODC marker OLIG2 and MG marker IBA1 in 
5xFAD and WT mouse hippocampus brain sections (three mice per genotype, 
mean ± s.d., Student’s t-test). c, Heatmap showing the fold-change of intron-
based DEGs (abs(log2(FC)) > log2(1.3), FDR < 0.05) between 5xFAD and WT mice 
in different types of nuclei. d, Functional enrichment of the DEGs between 
the single-nucleus transcriptome of 5xFAD and WT for different cell types. e, 

Heatmap showing the fold-change of DEGs (abs(log2(FC)) > log2(1.3), FDR < 0.05) 
between 5xFAD and WT mice in different synaptosome and neuron–glia junction 
subtypes. f, Pathways enriched in 5xFAD synapses compared with WT mice. g, 
Heatmap showing the fold-change of synapse–AD–DEGs shared by at least six 
subtypes and their intron-based expression fold-changes in the AD nuclei. h, 
immunofluorescence staining and quantification of C1q-tagged synapses in 
5xFAD and WT mouse hippocampus brain sections (three mice for each genotype 
and three sections for each mouse, mean ± s.d.; two-sided Student’s t-test was 
performed).
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comparison between 10x Chromium and MATQ-Drop. a, UMAP visualization 
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nucleus transcriptome of the human hippocampus. b, Heatmap showing the 
scaled expression levels of cell-type-specific lncRNA genes. c, UMAP feature plot 
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clustering results using only lncRNA expression matrix from the single-nucleus 
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Chromium41. i,j, LncRNA detection sensitivity (UMI count (i) and gene count 
(j)) compared with 10x Chromium41. g–j, The data were derived from two 
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results with 10x Chromium v.3.1 mouse brain single-nucleus transcriptome 
dataset. m, UMAP showing the lncRNA-based unsupervised clustering results 
with 10x Chromium v.3.1 data, cell types and subtypes colored based on the 
transcript-based clustering in l.
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an activated inflammatory response (Fig. 5a). The increased pro-
portions of ODCs and MGs in 5xFAD models are consistent with 
previous studies40,41 and are further confirmed through the immu-
nofluorescence staining on the brain sections (Fig. 5b). Next, for 
each neuronal subtype and glial cell type, we identified the DEGs 
associated with AD based on nascent RNA (Fig. 5c and Supplemen-
tary Table 25) and mature RNA, respectively (Supplementary Fig. 18 
and Supplementary Table 26). In particular, we observed that MGs 
consistently displayed the highest numbers of DEGs, suggesting 
more sensitive roles of these cells in disease response compared 
with other cell types (Fig. 5c and Supplementary Fig. 18), which 
are also consistent with the previous study42. When we performed 
GSEA, myelination and multiple inflammatory response pathways, 
including cell killing, complement activation and chemokine pro-
duction, were enriched in AD across various cell types (Fig. 5d). It is 
worth emphasizing that, although similar pathways were enriched 
in GSEA for different cell types (Fig. 5d), the DEGs are not identical 
for different cell types (Fig. 5c), suggesting that there are different 
response mechanisms to the amyloid pathology among different  
cell types.

Next, we identified DEGs of each cluster of synapses and neu-
ron–glia junctions between the 5xFAD and WT mice in the hippocam-
pal synaptome (Fig. 5e). In total, 410 genes with significant DEGs 
(abs(log2(FC)) > log2(1.3), FDR < 0.05) were identified among differ-
ent clusters, among which 42 genes were shared by more than half of 
synapse clusters and 246 genes were unique to single clusters (Fig. 5e 
and Supplementary Table 27). In line with the single-nucleus results, 
neuroinflammatory response, complement activation and myelination 
pathways were significantly enriched in the AD synaptosomes (Fig. 5f), 
indicating the general inflammatory stress associated with β-amyloid 
plaques. In addition, we also observed the enrichment of cell junction 
disassembly and negative regulation of exocytosis pathways, indicating 
synapse loss and decreased synaptic function. The subtype-specific 
pathway enrichments for different synapse clusters are summarized 
in Supplementary Fig. 19.

For the 42 AD DEGs shared by all synapse subtypes, we plotted  
the corresponding gene expression changes in nuclei in Fig. 5g  
(nascent RNA-based DEGs; top: nuclei, bottom: synapses). It is worth 
noting that 24 synapse AD DEGs cannot be detected from the nucleus 
transcriptome data. Furthermore, eight genes exhibited opposite 
dysregulation directions from the DEG changes based on the nucleus 
transcriptome data. It is interesting that we also observed that three 
complement component genes, C1qa, C1qb and C1qc, were signifi-
cantly upregulated in the synapses but not significantly in the nuclei, 
indicating a potential role of local translation of these components 
in complement-mediated synapse pruning. It is desirable to unveil 
how these complement component transcripts are transported to 
the abnormal synapses that require pruning. Consistent with the 
transcriptome results, in the immunofluorescence staining, we 
also observed a significant increase of C1q puncta and a decrease of 
PSD95 puncta in the 5xFAD hippocampus compared with WT mice, 
suggesting increased complement-related inflammation response 
and synapse loss. More importantly, the percentage of C1q-tagged 
synapses increased by approximately fourfold in the 5xFAD hip-
pocampus, which validated the upregulated, complement-mediated 
synapse pruning in AD (Fig. 5h). Compared with the overall hippocam-
pus area, the C1q puncta numbers demonstrated more dramatic 
fold-changes in the synapses, which highlighted the synapse-related  
pathology in AD.

We also observed the bifurcated expression of two calcium/
calmodulin-dependent protein kinase II (CaMKII) genes: Camk2a 
and Camk2d (Fig. 5g, red-labeled genes), which suggest a switch of 
CaMKII isoforms in AD that potentially impacted synaptic plasticity43.  
Other unique DEGs observed in the synapses are also worth detailed 
investigation for their functional roles in the future.

Construction of cell atlas using only lncRNA species
It is worth pointing out that, different from mature RNA-based drop-
let platforms, the total RNA-based chemistry of MATQ-Drop allows 
the efficient detection of lncRNAs. Next, we examined whether we 
could successfully identify the cell types using only the lncRNA expres-
sion matrix. The successful construction of a cell atlas using only 
lncRNA species will indicate that cell-type-specific lncRNA species 
or cell-type-specific composition of lncRNA species exist. As shown 
in Fig. 6a, by unsupervised clustering, we achieved robust construc-
tion of the cell atlas for the human hippocampus at the cell-type and 
-subtype resolution. The clustering result is also consistent with nascent 
RNA-based clustering (Supplementary Table 28). The lncRNA-based 
cell atlas of human PFC was also successfully constructed (Supple-
mentary Fig. 20a–h and Supplementary Text 2). Our results show that 
cell-type-specific lncRNA markers can be systematically identified by 
MATQ-Drop (Fig. 6b,c and Supplementary Table 29).

For the mouse hippocampus, we also successfully constructed 
the cell atlas using only lncRNA species (Fig. 6d). The cluster-
ing result is highly consistent between lncRNA-based and nascent 
RNA-based clustering (Fig. 2d and Supplementary Table 30). As a 
result, cell-type-specific lncRNA markers were systematically identified  
(Fig. 6e, Supplementary Fig. 21a,b and Supplementary Table 31). It is 
worth noting that lncRNAs with poly(A) tails can also be detected using 
SMARTer chemistry on the Fluidigm platform44. However, MATQ-Drop 
chemistry allows the detection of the complete spectrum of lncRNAs, 
including those with poly(A) tails and those without poly(A) tails. 
Furthermore, the droplet platform offers higher throughput than the 
Fluidigm platform in identifying cell-type-specific lncRNA species.

Benchmark comparison between MATQ-Drop and 10x 
Chromium
Using the MATQ-Drop-based, single-nucleus transcriptome data of 
mouse hippocampus, we next performed a benchmark comparison 
against the 10x Chromium 3′ v.3.1 platform with the mouse brain 
single-nucleus transcriptome dataset by 3′ v.3.1 chemistry (10x 
Genomics online data; https://www.10xgenomics.com/resources/
datasets/5k-adult-mouse-brain-nuclei-isolated-with-chromium-nucle
i-isolation-kit-3-1-standard). For equal footing comparison, we down-
sampled the sequencing depth to allow the samples to reach the same 
sequencing saturation level of 45% (Fig. 6f). When counted based on 
transcripts, MATQ-Drop detected a median of 11,148 UMIs and 3,392 
genes for single neuronal nuclei, and 5,634 UMIs and 2,346 genes 
for glial nuclei. Both are significantly higher than the 10x Chromium 
data (median 5,836 UMIs and 2,618 genes for single neuronal nuclei 
or 1,513 UMIs and 994 genes for single glial nuclei; Fig. 6g,h). Overall, 
MATQ-Drop demonstrated up to 135% (neurons 30%, ASCs 128%, OPCs 
121%, ODCs 99%, MGs 135%) sensitivity improvement compared with 
10x Chromium v.3.1 platform.

In Fig. 6i (UMI count) and Fig. 6j (gene count), we compared the 
sensitivity of the MATQ-Drop and 10x Chromium v.3.1 platform in the 
detection of lncRNA. Although statistically significant, both methods 
demonstrated essentially comparable lncRNA gene detection in neu-
rons, whereas MATQ-Drop demonstrated an approximately onefold 
improvement of lncRNA detection in glial cell types compared with 
10x Chromium. However, when we examined the 10x Chromium data 
in detail, we noticed that a single lncRNA gene, Malat1, contributed to 
60% of the total UMI count (Fig. 6k). This biased detection is probably 
due to the large portion of the AT-rich sequence in this gene, therefore 
allowing more efficient internal hybridization by oligo(dT) primers 
than other genes. In contrast, we did not observe a substantial contri-
bution by one gene in MATQ-Drop.

This biased lncRNA detection in 10x Chromium could preclude 
it from generating a high-resolution, lncRNA-based cell atlas. In the 
unsupervised clustering based on only lncRNA with 10x Chromium 
v.3.1 data (Fig. 6l,m), we observed that, although different neuron 
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types and glial cell types were well separated, the excitatory neuronal 
subtypes (Ex1–4) cannot be well distinguished. Overall, in terms of 
lncRNA gene detection, MATQ-Drop shows significantly less bias than 
10x Chromium and, as a result, MATQ-Drop performs better in identify-
ing subtypes of cells.

Discussion
In the present study, we developed a total RNA detection-based, 
high-throughput scRNA-seq assay. Supported by the chemistry and 
sensitivity of MATQ-Drop, we profiled the transcriptome of individual 
synapses in high throughput. We successfully detected different sub-
types of synaptosomes and other types of junctions between neurons 
and nonneuronal cells. The enrichment of different functional pathways 
between synaptosome subtypes was also observed, supporting the 
existence of phenotypical heterogeneity between different synapto-
somes. We also showed that different synaptosome subtypes could be 
connected to different types of neurons.

It is worth pointing out that, during the process of synaptosome 
isolation, we cannot completely rule out potential contamination 
by the RNA molecules released from the cytoplasm and nuclei. How-
ever, we reason that the contamination is random and infrequent 
and, therefore, will not skew the gene expression profile of individual 
synaptosomes. This reasoning is supported by our robust detection of 
synaptosome clusters across different brain samples. It is also worth 
pointing out that another potential source of contamination could be 
the condensates dissociated from the nucleus or cytoplasm. These con-
densates are probably enriched with a large number of RNA transcripts 
that may affect our clustering analysis. In the present study, we reason 
three possible scenarios for condensate contamination. The first sce-
nario is that the synaptosomes could be contaminated by a common 
type of condensate. To examine this, we identified the common genes 
detected in >50% of synaptosomes. Under this criterion, only 17 genes 
were detected using human hippocampus synaptome data. From the 
gene ontology (GO)-CC (cellular component) functional enrichment 
with Padj < 0.01, we observed that all enriched GO terms are synapse 
related. Therefore, we can exclude the possibility of contamination 
of common condensate from the cytoplasm or nucleus. The second 
scenario is that the synaptosomes are contaminated by heterogeneous 
condensates, which then lead to the different clusters we observed in 
the data. However, we have observed clear synapse-related marker 
genes for different clusters in both mouse and human synaptome 
data, and the functional enrichment between clusters is also related 
to the synapses. The third scenario is that the synaptosomes are con-
taminated by both common and heterogeneous condensates. But the 
rationale described above for ruling out the first two scenarios can 
be used to refute this scenario. Overall, we would like to point out the 
potential sources of contamination that could affect the specificity of 
our approach. On the other hand, based on the reasoning described 
above, we expect these condensate contaminations to be infrequent 
and random; therefore, they will not affect our clustering analysis and 
functional analysis that are based on hundreds of individual synapto-
somes in each cluster.

Besides synaptome profiling, MATQ-Drop can also be used to 
construct a cell atlas. More importantly, we showed that we could 
successfully construct a cell atlas using only lncRNA species. Overall, 
the MATQ-Drop platform permits the efficient characterization of 
synaptic heterogeneity and large-scale cell atlas construction. In the 
future, MATQ-Drop can be readily applied to other neurological and 
neurodegenerative diseases and shed new insights into understanding 
synaptic biology. It could also be used as a new tool to construct the 
brain connectome.

Online content
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maries, source data, extended data, supplementary information, 
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Methods
Microfluidic device design and fabrication
The design and fabrication of the hydrogel bead generation device 
and the cell encapsulation device have been previously described45.

Barcoded bead synthesis
The hydrogel bead production and barcode synthesis procedures 
were based on the work by Zilionis et al.45. Two modifications were 
introduced in hydrogel bead production. First, the Acrydite-modified 
oligonucleotide (sequence in Supplementary Table 32) was designed 
to contain a dU base instead of a photocleavable moiety. Therefore, 
the primers can be released by the USER enzyme (New England Biolabs 
(NEB)) instead of UV exposure. The dim illumination step is eliminated. 
Second, the concentration of the Acrydite-modified DNA primer was 
reduced to 40 μM in the acrylamide–primer mix.

After hydrogel bead production, two rounds of split and pool were 
performed for barcode synthesis. In each round, the hydrogel beads 
were split into 144 wells; each well contained primers with a unique 
barcode as the template (sequences in Supplementary Table 32). Bst 
2.0 warm-start DNA polymerase was used for barcode extension. The 
reaction was set at 55 °C for 3 h for the first round of split and pool, 
and 52 °C for 3 h for the second round. After each extension step, the 
reaction was quenched with a 1.5 volume of 25 mM EDTA and leftover 
template oligonucleotides were denatured by alkaline and washed away 
after the protocol. Exonuclease I digestion was performed to remove 
primers with failed barcode extension.

Cell culture
HEK293T and NIH/3T3 cells were grown in Dulbecco’s modified Eagle’s 
medium/High Glucose medium (Gibco) with 10% fetal bovine serum 
(FBS, Gibco). Cell culture was passaged every 2–3 d.

Mice
The C57BL/6 WT and 5xFAD mice were obtained from the Jackson 
Laboratory. Mice were housed four per cage in a pathogen-free mouse 
facility with free access to food and water on a 12-h light:dark cycle at 
the ambient temperature of 20.0–22.2 °C and humidity of 30–70%. 
Female mice were used for all experiments. All procedures were per-
formed following the National Institutes of Health (NIH) guidelines 
and approval of the Baylor College of Medicine Institutional Animal 
Care and Use Committee.

Immunofluorescence staining
Animals were perfused transcardially with 4% PFA in 0.1 M phosphate- 
buffered saline (PBS), pH 7.4, under ketamine (300 mg kg−1) and xyla-
zine (30 mg kg−1) anesthesia. Brains were harvested, postfixed in the 
same fixative overnight at 4 °C, dehydrated with 30% sucrose in PBS 
and serially sectioned at 30-μm thickness on a sliding microtome 
(Leica). For immunofluorescence, sections were permeabilized in 
PBS/0.1% Triton X-100 for 30 min and blocked with 4% normal don-
key serum in PBS/0.1% Triton X-100 for 1 h at room temperature. 
Sections were then incubated with primary antibodies in 2% serum 
in PBS/0.1% Triton X-100 overnight at 4 °C: OLIG2 (EMD Millipore, 
catalog no. AB9610), IBA1 (Wako, catalog no. 019–19741), β-amyloid 
(clone 6E10, BioLegend, catalog no. 803001), C1q (clone 4.8, Abcam, 
catalog no. ab182451) and PSD95 (clone 6G6-1C9, Millipore, cata-
log no. MAB1596). Sections were then washed and incubated with 
donkey-anti-mouse Alexa Fluor-488-conjugated secondary anti-
body (Invitrogen, catalog no. A-21202) or donkey-anti-rabbit Alexa 
Fluor-555-conjugated secondary antibody (Invitrogen, catalog no. 
A-31572) for 1 h at room temperature. After washing with PBS, sections 
were incubated with DAPI to stain the nucleus. Images were captured 
using a Laser-Scanning Confocal Microscopy (Leica) and quantified 
with ImageJ. Three animals in each group and three sections from 
each animal were analyzed.

Mouse hippocampus dissection
Mice aged about 9 months were deeply anesthetized with ketamine 
(300 mg kg−1) and xylazine (30 mg kg−1) solution, intraperitoneally, and 
perfused with saline. The brains were removed from the skull and adult 
mouse brain hemispheres were separated in half; the hippocampus 
was isolated from each hemisphere and immediately frozen in liquid 
nitrogen.

Cell-line nucleus preparation
Cells were trypsinized and washed twice with PBS. An equal number 
of HEK293T cells and NIH/3T3 cells were mixed, and then lysed into 
nuclei by incubating with the ice-cold lysis buffer (10 mM Tris-HCl, 
pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1% NP-40 and 0.1% Tween-20) on 
ice for 5 min. Before fixation, the nuclei were washed with 3× wash 
buffer (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 3 mM MgCl2, and 0.1% 
Tween-20). For each wash, the nuclei were first centrifuged at 500g and 
4 °C for 3 min, the supernatant was aspirated and the nuclei pellet was 
resuspended in the wash buffer. After the third wash, we resuspended 
the nuclei in the fixation buffer (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 
3 mM MgCl2, 0.2% Tween-20 and 3% PFA) and incubated at room tem-
perature for 10 min on an end-over-end rotator to fix the nuclei. Fixa-
tion was quenched by mixing with 3:20 volume of 2.5 M glycine. The 
fixed nuclei were washed twice with the wash buffer and then passed 
through a 40-μm cell strainer.

Human brain nucleus preparation from frozen samples
Frozen human brain tissues were requested from NIH NeuroBioBank, 
with the sample information summarized in Supplementary Table 8. We 
followed the protocol developed by Krishnaswami et al.46 to isolate the 
nuclei from the frozen brain samples. Briefly, the tissues were homog-
enized with a Dounce homogenizer and 0.1% Triton X-100, followed by 
3% PFA fixation at room temperature for 10 min. After quenching and 
washing away residual PFA, the homogenate was stained with Hoechst. 
Fluorescence-activated nucleus sorting was performed to unbiasedly 
collect the Hoechst-positive single nuclei.

Human brain synaptosome preparation from frozen samples
The method for synaptosome preparation is similar to nucleus prepa-
ration, but with two major differences: (1) Triton X-100 was omitted 
in the homogenization buffer; (2) the Hoechst-negative population 
with a diameter <5 μm was sorted by FACS. The detailed procedure is 
described as follows. First, an ~2-mm3 section of frozen brain tissues was 
chopped and rinsed in the homogenization buffer (250 mM sucrose, 
25 mM KCl, 5 mM MgCl2, 10 mM Tris-HCl, pH 8.0, 1 μM dithoithreitol 
(DTT), 1× Halt protease inhibitor cocktail (Thermo Fisher Scientific) 
and 0.2 U μl−1 of RNase in ribonuclease inhibitor (Promega)). The tis-
sue was then transferred to the Dounce homogenizer (Wheaton) and 
homogenized using five strokes with the loose pestle and ten strokes 
with the tight pestle. The homogenate was passed through a 40-μm 
cell strainer and centrifuged at 1,500g for 10 min at 4 °C. The pellet was 
immediately resuspended in 25 mll of fixation buffer (10 mM Tris-HCl, 
pH 7.5, 10 mM NaCl, 3 mM MgCl2 and 3% PFA) and incubated at room 
temperature for 10 min. Fixation was quenched by mixing with a 3:20 
volume of 2.5 M glycine. The fixed subneuronal structures were washed 
with wash buffer (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 3 mM MgCl2 
and 0.1% Tween-20) once, passed through another 40-μm cell strainer 
and stained with Hoechst. FACS was then performed on a BD FACSAria 
instrument to enrich the Hoechst-negative synaptosome population 
<5 μm in diameter, calibrated using standard beads.

Immunostaining of the brain synaptosomes
The fixed subneuronal structures were permeabilized with 0.2% Triton 
X-100 in PBS for 10 min on ice and then pelleted by 3,000g centrifuga-
tion at 4 °C for 5 min. Blocking of nonspecific binding was performed by 
incubating the samples with 5% bovine serum albumin (BSA) in PBS at 
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room temperature for 30 min with rotation. The following primary anti-
bodies were used for immunostaining: rabbit-anti-synaptophysin (clone 
SP11, Invitrogen, catalog no. MA5-14532, 1:60) and mouse-anti-PSD95 
(clone 6G6-1C9, Invitrogen, catalog no. MA1-045, 1:400). Primary anti-
body binding was performed by a 80-min incubation with 0.5% BSA in 
PBS on an end-over-end rotor at room temperature. The samples were 
washed 3× with 1 ml of PBS and 0.5% BSA. Secondary antibody binding 
was performed by a 40-min incubation with 0.5% BSA in PBS on an 
end-over-end rotor at room temperature, with the following second-
ary antibodies: goat-anti-rabbit Alexa Fluor-647 (Invitrogen, catalog 
no. A21244, 1:1,667) and goat-anti-mouse-Cy3 (Invitrogen, catalog no. 
A10521, 1:1,667). The subneuronal structures were washed 3×, stained 
with Hoechst 33342 and then submitted to flow cytometry on a BD 
FACSAria instrument. The flow cytometry data were analyzed using BD 
FACSDiva v.8.0.1 software.

Western blotting
To recover protein from fixed samples, we resuspended the samples 
in the fixation lysis buffer (500 mM Tris-HCl, pH 7.4, 2% sodium dode-
cylsulfate, 25 mM EDTA, 100 mM NaCl, 1% Triton X-100, 1% NP-40 and 
1× Halt protease inhibitor cocktail) and heated at 90 °C for 2 h. Protein 
concentration was quantified by BioRad DC Protein Assay and 0.5 μg 
of total protein was loaded for each western blot using the standard 
protocol. The following primary antibodies were used in the present 
study: synaptophysin (clone SP11, Invitrogen, catalog no. MA5-14532, 
1:200), synapsin-I (clone D12G5, Cell Signaling Technology, catalog no. 
5297, 1:1,000), CNPase (clone 11-5B, Millipore, catalog no. MAB326R, 
1:500), glial fibrillary acidic protein (GFAP; clone GA5, Millipore, catalog 
no. MAB360, 1:1,000) and β-actin (clone AC-15, Sigma-Aldrich, catalog 
no. A1978, 1:2,000).

Permeabilization
Permeabilization of the PFA-fixed subcellular structures is required 
for efficient primer hybridization. To permeabilize the subcellular 
structures, we resuspended them in ice-cold PBS with 1% Triton X-100 
and incubated them on ice for 5 min. The permeabilized subcellular 
structures were washed twice with ice-cold PBS containing 0.2% Triton 
X-100, and then adjusted to the concentration of ~2,300 subcellular 
structures per μl before proceeding with reverse transcription.

MATQ-Drop procedure
In situ reverse transcription. For ~25,000 subcellular structures, 
we prepared the following in situ reverse transcription mix: 4 μl of 5× 
first-strand buffer (Invitrogen), 1 μl of 0.1 M DTT, 1 μl of 1.8% Triton 
X-100, 0.5 μl of 10 mM dNTP, 0.5 μl of RNaseOUT (Invitrogen), 2 μl of 
11.5 μM MALBAC primer mix, 1 μl of Superscript III reverse transcriptase 
(Invitrogen) and 11 μl of fixed subcellular structures resuspended in 
PBS. Ten cycles of multiple annealing ramping from 8 °C to 50 °C were 
performed for efficient primer hybridization and reverse transcription.

In situ poly(A) tailing. The residual primers and any primer dimers 
were first washed away and the subcellular structures were resus-
pended in 14.5 μl of PBS with 0.2% Triton X-100. Next, 1 μl of 1 mM dATP 
(mixed with 3 μM ddATP), 2 μl of 10× terminal transferase buffer (NEB), 
2 μl of 2.5 mM CoCl2 and 0.5 μl of terminal transferase (NEB) were sub-
sequently added to the subcellular structure suspension. The in situ 
poly(A) tailing reaction was incubated at 37 °C for 4 h and quenched 
with 1.6 μl of 0.5 M EDTA. In the reaction, we spiked in 1:333 of ddATP 
to prevent the poly(A) tail from growing too long, at the cost of losing 
1 − (332/333)20 = 6% of the amplicons with a poly(A) tail that was too 
short (<20) for efficient second-strand synthesis.

Barcoded second-strand synthesis. The fixed subcellular structures 
carrying poly(A)-tailed cDNA were washed and individual subcellular 
structures were encapsulated with barcoded dT20 hydrogel beads 

and the 2× reaction mix using the microfluidic platform as previously 
described45. After droplet encapsulation, the reaction was first incu-
bated at 37 °C for 45 min to release the primers from the beads by USER 
enzyme (NEB); meanwhile, cDNA was released from RNA templates due 
to RNA digestion by RNase H (NEB) and RNase If (NEB) digestion. Next, 
a 3-h incubation at 72 °C is performed to allow cDNA to diffuse out of 
the nucleus. We performed ten cycles of (48 °C, 2 min and 72 °C, 1 min) 
to allow the barcoded dT20 primers to hybridize to the poly(A) tail of 
the released cDNA and Deep Vent (exo-) DNA polymerase (NEB) will 
initiate extension from the barcoded dT20 primers and accomplish 
second-strand synthesis. It is worth noting that this procedure does 
not involve a melting step, so each amplicon can only be converted to 
one double-strand DNA fragment.

Post-barcoding cleanup. After the barcoded second-strand synthe-
sis was completed, the droplet emulsion was broken by mixing the 
emulsion with 1H,1H,2H,2H-perfluoro-1-octanol (Sigma-Aldrich) in the 
presence of EDTA, which immediately quenches polymerase activity 
on droplet breakage and therefore prevents barcode crosstalk. The 
remaining hydrogel beads in the aqueous phase were removed by 
centrifugation and the supernatant was purified with 1× AMPure XP 
beads (Beckman) and eluted in 37.5 μl of nucleus-free water.

The ddTTP sealing of unused bead primers. To minimize barcode 
crosstalk in the amplification step, it is critical to quench the residual 
barcoded bead primers by ddTTP. We prepared the following ddTTP 
sealing mix: 37.5 μl of purified product, 0.5 μl of 10 mM ddTTP, 5 μl of 
10× terminal transferase buffer, 5 μl of 2.5 mM CoCl2 and 1 μl of terminal 
transferase, and incubated at 37 °C for 3 h. The product was purified 
with 1× AMPure XP beads (Beckman) and eluted in 41 μl nucleus-free 
water.

Library amplification. PCR was performed to amplify 41 μl of the 
purified product by adding 5 μl of 10× ThermoPol Buffer (NEB), 2.5 μl 
of 10 μM GAT27 primer (GTG AGT GAT GGT TGA GGA TGT GTG GAG), 
1 μl of 10 mM dNTP and 0.5 μl of Deep Vent (exo-) DNA polymerase. The 
following PCR program was used: 95 °C 2 min, 16–18 cycles of (95 °C, 
20 s; 63 °C, 20 s; 72 °C 2 min) and 72 °C, 3 min. The amplified product 
was purified with 0.9× AMPure XP beads (Beckman) and the yield 
quantified by Qubit (Invitrogen).

Sequencing of MATQ-Drop library
Sequencing library preparation. The transposase approach was used 
for sequencing library construction (Supplementary Fig. 1b). For each 
MATQ-Drop library, 10 ng of the amplified product was mixed with 
5 μl of tagmentation DNA buffer (Illumina) and 0.6 μl of tagmentation 
DNA enzyme 2 (TDE2, Illumina), and the volume was brought up to 
10 μl by adding nuclease-free water. The transposition mix was incu-
bated at 55 °C for 15 min. Next, the reaction was quenched by adding 
0.4 μl of 0.5 M EDTA and the transposase was released by 50 °C heating  
for 30 min.

To introduce the i5 index, the following 38.25 μl of reaction mix 
was prepared and added to each tube: 4 μl of 10× ThermoPol Buffer 
(NEB), 2 μl of 0.1 M MgSO4, 1 μl of 10 mM dNTP, 1.75 μl of 10 μM Illumina 
Nextera N5XX indexed primer (AAT GAT ACG GCG ACC ACC GAG ATC 
TAC AC (i5 index) TCG TCG GCA GCG TC), 1.75 μl of 10 μM MATQ-P700 
primer (ACG TGT GCT CTT CCG ATC TCG CCG AAG ATG GTT GAG GA
T GTG TGG AGA TA), 0.7 μl of Deep Vent (exo-) DNA polymerase and 
28.8 μl of nuclease-free water. The reaction was set on a thermal cycler 
with the following program: 65 °C, 1 min; 72 °C, 4 min; 95 °C, 2 min; and 
7 cycles of (95 °C, 20 s; 57 °C, 30 s; and 72 °C, 1 min) and 72 °C, 2 min. The 
product was purified with 0.9× AMPure XP beads and eluted in 16 μl of 
nuclease-free water.

To introduce the i7 index, we prepared the following PCR reaction: 
16 μl of preamplified product, 2 μl of 10× ThermoPol Buffer, 0.5 μl of 
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10 μM P5-22b primer (AAT GAT ACG GCG ACC ACC GAG A), 0.5 μl of 
10 μM P7-i7-MATQ indexed primer (CAA GCA GAA GAC GGC ATA CGA 
GAT (i7 index) GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T), 
0.4 μl of 10 mM dNTP and 0.3 μl of Deep Vent (exo-) DNA polymerase. 
The reaction was set on a preheated thermal cycler with the following 
program: 95 °C, 2 min; 5 cycles of (95 °C, 20 s; 61 °C, 20 s; and 72 °C, 
1 min) and 72 °C, 2 min. The product was purified with 0.85× AMPure 
XP beads (Beckman) and eluted in 20 μl of nuclease-free water.

Sequencing. Libraries were pooled and quantified following the Illu-
mina manual and the pooled libraries were sequenced on the Illumina 
Nextseq 500 platform with 150 cycle sequencing kit. Customized read 
2 primer (CGC CGA AGA TGG TTG AGG ATG TGT GGA GAT A) was used 
following the Illumina manual. The sequencing cycles were either: 
read 1: 110 cycles; index 1: 6 cycles; index 2: 6 cycles; and read 2: 45 
cycles; or read 1: 76 cycles; index 1: 8 cycles; index 2: 8 cycles; and read 
2: 45 cycles. The library information is summarized in Supplementary 
Tables 33 and 34.

MATQ-Drop raw data processing
Raw sequencing fastq files were generated using the standard Illumina 
bcl2fastq (v.2.20) software. The 3′-poly(A) tail of cDNA on read 1 was 
trimmed with cutadapt47 v.3.1 paired-read mode, with the read-length 
filtering criteria: --minimum-length=30 --pair-filter=any. Next, a cus-
tomized Python script was used to assign the read 2 cell barcode 
sequences to the predefined combination of barcode1 and barcode2 
sequences (Supplementary Table 32) with a maximum two mismatches 
allowed for each segment of the barcode. Umi_tools48 (v.1.1.1) ‘extract’ 
command was used to extract the reads with successfully assigned 
cell barcodes. Extracted read 1 was mapped to the hg19 genome (or 
a combined genome of hg19 and mm10) with STAR49 v.2.5.3a and the 
uniquely mapped reads with mapping scores no smaller than 250 were 
used for downstream analysis. The filtered reads were assigned to genes 
by featureCounts50 v.2.0.1 with Gencode annotation gtf files (human: 
v.19, mouse: v.M10) and the assignment was based on transcript feature 
(-t transcript) with strandness (-s 2). For the reads with unambiguously 
assigned gene features, the umi_tools ‘count’ command was used to 
generate the transcript-based digital gene expression matrix (param-
eter: --per-gene --gene-tag=XT --per-cell –method=directional).

To determine the cell barcodes that represent true nuclei instead of 
background crosstalk, we plotted out the (UMI counts) versus (barcode 
rank by UMI) plot, and the knee point was determined as the threshold 
for true nuclei (exemplified in Fig. 1b). Next, the cell barcodes repre-
senting true cells were used to generate the transcript-based gene 
expression matrix for true nuclei.

To generate the exon-based gene expression matrix, we first fil-
tered out the reads with unambiguously assigned transcript-based gene 
features. We then reran featureCounts assignment with exon feature 
only (-t exon) and strandness (-s 2), followed by umi_tools count. The 
intron-based gene expression matrix was derived by subtracting the 
exon-based gene expression matrix from the transcript-based gene 
expression matrix.

Benchmark analysis raw data processing
Benchmark analysis were performed against 10x Chromium 3′ v.3.1 
platform with the following dataset: 5k Adult Mouse Brain Nuclei Iso-
lated with Chromium Nuclei Isolation Kit.

We followed the same criteria and references in the raw data process-
ing as MATQ-Drop. In detail, the cell barcode and UMI were extracted 
using the Umi_tools v.1.1.1 following the user manual and the cell number 
threshold was automatically determined by the umi_tools software. Next, 
the extracted reads were mapped to the mm10 genome with Gencode 
v.M10 gtf as gene model annotation reference using STAR v.2.5.3a. The 
uniquely mapped reads with mapping scores no smaller than 250 were 
used for downstream analysis. The filtered reads were assigned to genes 

by featureCounts v.2.0.1 with the Gencode v.M10 gtf file and the assign-
ment was based on transcript feature (including both exon and intron, or 
exon only) with strandness. For the reads with unambiguously assigned 
gene features, the umi_tools ‘count’ command was used to generate the 
transcript-based digital gene expression matrix (parameter: --per-gene 
--gene-tag=XT --per-cell –method=directional). Sensitivity comparison 
was performed by subsampling datasets to the same sequencing satura-
tion, which is defined as 1 − (n_deduped_reads / n_reads).

Clustering analysis
Data filtering. Nuclei with mitochondrial UMI percentages >5% were 
excluded for downstream analysis. In synaptome data, synapses with 
mitochondrial UMI percentages <5% were excluded for downstream 
analysis. Then, mitochondrial and ribosomal genes were removed 
from the gene expression matrix. Low-quality nuclei with <200 intronic 
genes were excluded and the nuclei with UMIs in the top 0.5% quantile 
were removed. Low-quality, Hoechst-negative subneuronal structures 
with <100 intronic genes were excluded and those with UMIs in the top 
0.5% quantile were also removed.

Unsupervised clustering. Standard Seurat4 integration pipeline with 
SCTransform normalization was used for clustering analysis51,52. Briefly, 
the intron-based (for nuclei) or the transcript-based (for synapses) 
gene expression matrix was normalized based on regularized negative 
binomial regression. Doublets were identified by the R package Dou-
bletFinder53 v.2.0 with a stringently estimated doublet rate (5%). Next, 
datasets of different biological samples were integrated following the 
Seurat scRNA-seq integration vignette. Principal component analysis 
and graph-based clustering were performed with the integrated data 
slot. Visualization of the clustering was accomplished with UMAP. Mark-
ers for each cluster were identified by the MAST54 algorithm embedded 
in the Seurat package with the following parameters: only.pos=TRUE, 
min.pc=0.25, logfc.threshold=0.5 for nuclei or logfc.threshold=0.25 
for synapses. Cell types were empirically assigned based on the overlap 
between cluster markers and canonical cell-type-specific markers. 
The above pipeline also applies to subclustering and lncRNA-based 
clustering analyses, except that the doublet identification and removal 
step were skipped because we used only the nuclei passing the ‘singlet’ 
filter described above.

Doublet removal. Doublets were identified and removed by the R 
package DoubletFinder53 v.2.0 with a stringently estimated doublet 
rate (5%).

Markers for each cluster were identified by the MAST54 algorithm 
embedded in the Seurat package with the following parameters: only.
pos=TRUE, min.pct=0.25 and logfc.threshold=0.5. Cell types were 
empirically assigned based on the cluster markers and the expression 
of canonical cell-type-specific markers.

The same pipeline applies to subclustering and lncRNA-based 
clustering analyses, except that the doublet identification and removal 
steps were skipped because we used only the nuclei passing the ‘singlet’ 
filter described above. For lncRNA-based clustering, only the top 1,000 
variable features were used for PCA.

DEG analysis
For the cluster populations of interest, a pseudobulk count matrix 
was assembled for each biological sample by summarizing the total 
UMI counts. Next, bulk DEGs were identified with edgeR55 v.3.16. A 
gene is defined as ‘differentially expressed’ if abs(log2(FC)) > log2(1.3) 
and Benjamini–Hochberg FDR < 0.05. It is worth noting that, com-
pared with the single-cell approach, the pseudobulk approach yields 
robust fold-change calculation when the two datasets show large dif-
ferences in UMI detection, for example, nuclei versus synapses. The 
transcript-based gene expression matrix was used for DEG analysis 
among different subneuronal structures, whereas the exon-based 
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gene expression matrix was used for DEG analysis between synapses 
and nuclei. GO enrichment analysis of the DEGs was performed using 
the Database for Annotation, Visualization and Integrated Discovery 
(DAVID), and we used the shared expressed genes (counts per mil-
lion (c.p.m.) > 2) as the background list. GSEA was performed on the 
log2(c.p.m. + 1) matrix with the pseudobulk.

Identification of unspliced genes
For each type of subcellular structure, a gene is defined as ‘expressed’ 
if detected in at least 5% of the subcellular structures. For each neuron 
type, only the expressed genes shared by presynapses and nuclei were 
kept for analysis. The average intron percentages of the transcripts in 
presynapses (pct_intronsyn) and nuclei (pct_intronnucleus) were computed, 
respectively, and the splicing score (SS) at the synapse is defined as:

For a transcript that is fully unspliced at the synapse, SS = 0, whereas 
for a transcript that is fully spliced at the synapse, SS = 1. For each neu-
ronal type, the distribution shows a peak at 1, with a long tail toward 
0. Therefore, we transform the SS into z-scores and a gene is consid-
ered unspliced if splicing z-score <−2.58 (equivalent to P < 0.01), and 
pct_intronnucleus > 0.25. The SS metrics were used in preranked GSEA.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The raw sequencing files are available in Gene Expression Omnibus 
(GEO) database under accession no. GSE199346.
The following public datasets were used in the present study for 
benchmark comparison: (1) DroNc-seq and Drop-seq on 3T3 cell line 
(https://singlecell.broadinstitute.org/single_cell/study/SCP128/
dronc-seq-and-drop-seq-on-3t3-cell-line#study-download), (2) GEO 
accession no. GSE106678 and (3) 5k Adult Mouse Brain Nuclei Iso-
lated with Chromium Nuclei Isolation Kit (10x Genomics, https://
www.10xgenomics.com/resources/datasets/5k-adult-mouse-brain
-nuclei-isolated-with-chromium-nuclei-isolation-kit-3-1-standard).
The mm10 genome can be accessed at https://www.ncbi.nlm.nih.gov/
assembly/GCF_000001635.20 and the Gencode gene annotation file 
at https://www.gencodegenes.org/mouse/release_M10.html. The hg19 
genome can be accessed at https://www.ncbi.nlm.nih.gov/data-hub/
genome/GCF_000001405.25 and the Gencode gene annotation file at 
https://www.gencodegenes.org/human/release_19.html.

Code availability
The analysis code customized for MATQ_Drop sequencing data is avail-
able at https://github.com/zonglab/MATQ_Drop.
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