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Synapses are crucial structures that mediate signal transmission

between neurons in complex neural circuits and display considerable
morphological and electrophysiological heterogeneity. So far we still

lack a high-throughput method to profile the molecular heterogeneity
among individual synapses. In the present study, we develop a
droplet-based single-cell (sc) total-RNA-sequencing platform, called
Multiple-Annealing-and-Tailing-based Quantitative scRNA-seq in Droplets,
for transcriptome profiling of individual neurites, primarily composed of
synaptosomes. In the synaptosome transcriptome, or ‘synaptome’, profiling
of both mouse and human brain samples, we detect subclusters among
synaptosomes that are associated with neuronal subtypes and characterize
the landscape of transcript splicing that occurs within synapses. We

extend synaptome profiling to synaptopathy in an Alzheimer’s disease

(AD) mouse model and discover AD-associated synaptic gene expression
changes that cannot be detected by single-nucleus transcriptome profiling.
Overall, our results show that this platform provides a high-throughput,
single-synaptosome transcriptome profiling tool that will facilitate future
discoveries in neuroscience.

Synapses are crucial structures that mediate signal transmission
between neuronsin complex neural circuits. Advances in microscopy
and electrophysiology techniques have unveiled the morphological
and electrophysiological heterogeneity existingamong individual syn-
apses' . Tofacilitate the characterization of synaptic heterogeneity and
the construction of asynapse transcriptome atlas, a high-throughput,
transcriptome-profiling method of individual synaptosomesis greatly
desired. However, to achieve successful profiling of gene expression

inindividual synaptosomes, new technical features of transcriptome
profiling beyond the state-of-art scRNA-seq platforms are required.
First,individual synaptosomes contain smaller quantities of RNA mol-
ecules than single cells or single nuclei. Therefore, a high-sensitivity
scRNA-seqassay is desired. Second, after synaptosomes are prepared,
the materials require immediate fixation to prevent notable leakage of
RNA moleculesin downstream steps. Hence, RNA-seq chemistry com-
patible with fixed samples is demanded. Third, to characterize locally

'Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. ?Integrative Molecular and Biomedical Sciences Graduate
Program, Baylor College of Medicine, Houston, TX, USA. *Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
“Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. *Wyss Institute of Bioinspired Engineering, Harvard University,
Cambridge, MA, USA. Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX, USA. "Huffington Center on Aging, Baylor
College of Medicine, Houston, TX, USA. ®Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge,

MA, USA. °Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA. °McNair Medical Institute, Baylor College

of Medicine, Houston, TX, USA. "Present address: Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key
Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China. ?Present address: Liangzhu Laboratory, Zhejiang University Medical

Center, Hangzhou, China.

e-mail: weitz@seas.harvard.edu; czong@bcm.edu

Nature Biotechnology



Article

https://doi.org/10.1038/s41587-022-01635-1

spliced genes in the synapses, a total-RNA-based assay that permits
simultaneous detection of both mature and nascent RNA is desired.

Tomeet these specifictechnicaldemands, we report, inthe present
study, the development of a droplet-based single-cell total-RNA-seq
platform. Werefer to thisassay as Multiple-Annealing-and-Tailing-based
Quantitative scRNA-seq in Droplets (MATQ-Drop). The development
of MATQ-Drop is based on the previous chemistry of MATQ-seq°.
MATQ-Drop works with fixed samples and its effective detection of
nascent RNA makesit suitable for characterizing local splicing in synap-
tosomes. Itis worth noting that, although the commercial 10x Genom-
ics Chromium platform is broadly accessible’’°, SMART-seq-based
chemistry” on this platformis mainly designed for quantifying mature
messenger RNA levelsin fresh samples, hence making it unsuitable for
transcriptome profiling of synaptosomes.

Using the MATQ-Drop platform, we performed the transcriptome
profiling of single synaptosomes of mouse and human brain samples.
For convenience, we refer to the transcriptome of synaptosomes as the
synaptome. In the synaptome data, we were able to identify various
types of neurites, including different subtypes of synaptosomes and
neuron-glia junctions. Among different subtypes of synaptosomes,
we observed presynaptic and postsynaptic clusters, as well as aspecial
subcluster associated with the synapsesin the process of assembly and
maturation. Transcriptomic differences between different subclusters
canbereadily detected. With the effective detection of nascent RNAs,
we also characterized the landscape of intron retention for various
clusters of synapses. In addition to synaptome profiling, we applied
MATQ-Drop to profile the transcriptome of single nuclei for the same
brainsamples. Withboth synaptome and the single-nucleus transcrip-
tome, we were able to connect subclusters of synapses to different
typesof neurons. The differential gene expressionand splicing between
the synapses and neuronal nuclei were then analyzed. Furthermore,
we profiled the synaptosomes isolated from an AD mouse model. We
characterized the synaptopathy-associated transcriptome and discov-
ered AD-associated gene expression changes that cannot be detected
by single-nucleus transcriptome profiling.

Withthe effective detection of total RNA, we also successfully gen-
erated the cell atlas using only long noncoding RNA (IncRNA) species.
This result suggests that MATQ-Drop allows the large-scale identifica-
tion of cell-type-specificIncRNA species. Furthermore, based on the sin-
gle-nucleus (sn) transcriptome of the mouse brain, we also conducted
abenchmark comparison between MATQ-Drop and 10x Chromium.
Our result shows that MATQ-Drop demonstrated up to 135% improve-
ment in gene detection sensitivity across different cell types when
compared with the 10x v.3.1 platform. Overall, as a total-RNA-based,
high-throughput transcriptome platform, MATQ-Drop will provide an
alternative high-throughput, high-sensitivity, single-cell transcriptome
platform to the 10x Chromium platform.

Results

The chemistry of MATQ-Drop

Inthe chemistry of MATQ-Drop (Fig. 1a), we first applied 3% paraformal-
dehyde (PFA) to fix the nuclei. After the crosslinking, we permeabilized
the nucleus membrane and performed ten cycles of multiple annealing
with MALBAC (multiple annealing and looping-based amplification
cycles) primers®?, which allow efficient hybridization to the internal
regionsof the transcripts (Fig.1a). Asaresult, besides the reverse tran-
scriptions initiated from the poly(adenylated) (poly(A)) tails at the
3’-end of the transcripts, substantial portions of reverse transcriptions
were also initiated at the internal regions of transcripts, which war-
rants efficient total RNA capture. After the reverse transcription step,
we washed away the excessive MALBAC primers. We then performed
insitu poly(A) tailing for the complementary DNA molecules, which
we refer to as the dA-tailing step. Next, we washed the processed nuclei
and used microfluidic platforms to encapsulate single nuclei together
with the barcoded dT20 hydrogel beads in droplets for multiplexed

second-strand synthesis. The barcoded dT20 hydrogel beads were
prepared following the procedure described in the inDrop platform™.

It is worth noting that, different from the ultraviolet light
(UV)-triggered release of the barcoded oligos from the beads in the
inDrop platform, inthe present study we introduced enzymaticrelease
chemistry (Supplementary Fig. 1a and Methods). In this chemistry,
we introduced a deoxyuridine (dU) base in the sequence near the
5’-end of the barcoded oligos. In the droplet reaction buffer for the
second-strand synthesis, we included the USER enzyme that can cut
theoligos atthe dU site. Asaresult, ondroplet encapsulation, the dT20
oligos with cell barcodes were efficiently released from the beads.
Next, we performed RNA digestion and heat decrosslinking to release
cDNA from the nuclei. The barcoded dT20 primers then hybridized
tothe poly(A) tail of the cDNA molecules toinitiate the second-strand
synthesis. After the second-strand synthesis was completed, we broke
the droplets and collected the aqueous phase, followed by the PCR
reaction to amplify the library for next-generation sequencing (Sup-
plementary Fig.1b).

To validate the successful single-cell barcoding in MATQ-Drop,
we performed the standard species-mixing experiment as a con-
trol. We mixed equal numbers of fresh human HEK293T and mouse
NIH/3T3 cells and then lysed theminto nuclei. With the fixed nuclei,
we performed the MATQ-Drop assay as described above. In the
present study, we used a small aliquot of droplets to generate the
sequencing library for technical evaluation. As shown in Fig. 1b, we
identified 162 unique high-quality cell barcodes. Based on the spe-
cies specificity, we unambiguously assigned them to 81 human 293T
nuclei, 76 mouse 3T3 nuclei and 5 collision events (Fig. 1c). For each
assigned cell barcode, we observed high species specificity of unique
molecular identifiers (UMIs), as shown in Fig. 1d (99.7% for 293T
nuclei and 99.4% for 3T3 nuclei). In addition, the 162 cell barcodes
covered 89% of all uniquely mapped reads (Supplementary Fig.2a-c),
confirming an extremely low cross-barcode contamination rate.
For the single-cell total-RNA-seq data generated by MATQ-Drop, we
did not observe notable UMl inflation (Supplementary Fig. 2d and
Supplementary Text 1).

It is worth pointing out that the major technical advantage of
MATQ-Drop, in comparison to matured mRNA-based platforms such
as 10x Genomics Chromium, is that we can effectively detect nas-
cent RNAs using the reads mapped to intronic regions (Fig. 1e). With
regard to gene detection sensitivity, at the average sequencing depth
of~70,000 raw reads per single nucleus, we detected amedian 0f 21,192
UMiIs and 6,575 genes for single 293 T nuclei, and 11,286 UMIs and 4,220
genes for single 3T3 nuclei (Fig. 1f,g). As shown in Fig. 1h,i, the gene
detection of MATQ-Drop is significantly higher than the sensitivity
of other snRNA-seq methods®". To further extend the benchmark
comparison between MATQ-Drop and 10x Genomics Chromium for
cellatlas construction with tissue samples, we also performed an equal
footing comparison using the mouse brain samples described below.

Detection of synaptosome subtypes by transcriptome
profiling
So far, the major approachin transcriptome profiling of synapses has
been based on bulk samples™. Noticeably, microdissected neurites
were used to profile the transcriptome of synapses localized at specific
regions of rat hippocampus samples”. In the present study, in contrast
tothebulk-based approach, with the development of MATQ-Drop, we
would like to profile the transcriptome of individual synaptosomes. We
refer to the transcriptome of individual synaptosomes as asynaptome
and we profiled the transcriptome of individual synaptosomes isolated
fromboth mouse and human brainsamples on MATQ-Drop platform.
We first profiled the synaptome of the mouse hippocampus.
To isolate synaptosomes, we ground out the snap-frozen brain tis-
sue using a Dounce homogenizer (Supplementary Fig. 3a). We then
performed FACS to enrich Hoechst-negative subcellular structures
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Fig.1| Overview of MATQ-Drop and the performance in species-mixing
experiment. a, Reaction scheme of MATQ-Drop. Insitu reverse transcription and
poly(A) tailing are performed on the fixed nuclei, which are then encapsulated
indroplets with barcoded hydrogel beads. Inside the droplet, barcoded dT20
primers are enzymatically released from the beads to capture the poly(A) tail of
cDNA released from the nuclei. After the barcoded second-strand synthesis has
beenaccomplished, the emulsion is broken and the product can be amplified
and sequenced.b, Identification of the barcodes representing true nucleiin

the species-mixing experiment. Barcodes are ordered from the largest to the
smallest UMI counts. On the UMI counts versus barcode rank plot, the knee
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point (162, red dashed line) indicates the threshold for true nuclei. ¢, Species
annotation of the 162 nucleiidentified. d, Species specificity of UMIs. e, Fractions
of UMIs in exons and introns (mean + s.d.). f,g, Detection sensitivity of MATQ-
Drop in UMI counts (f) and gene counts (g). h,i, Comparison of detection
sensitivity between MATQ-Drop and other major snRNA-seq methods®" for
single NIH/3T3 nuclei, UMI detection (h) and gene detection (i) (P values
calculated using two-sided Student’s ¢-test). d,f-i, Boxplot shows the center

line and median, box limits the upper and lower quartiles, whiskers the 1.5x
interquartile range (IQR) and points the outliers.

with sizes <5 pum (Supplementary Fig. 3b,c). We want to point out
that the main reason for conducting this rapid isolation of synapto-
somes is to preserve RNA quantity and quality. In comparison to this
sorting-based rapidisolation procedure, we also performed synaptome
profiling using synaptosomes isolated from the standard gradient
centrifugation-based enrichment method. As aresult, we observed a
significantreductionin gene detection, leading to the poor resolution
of synaptosome clustering as described below.

With the transcriptome data of individual synaptosomes, we first
performed the unsupervised clustering analysis following the standard
Seurat v.4 integration pipeline'. It is interesting that we identified 15
primary clusters, among which 12 clusters were synapse associated
(Fig. 2a,b, Supplementary Figs. 4 and 5 and Supplementary Tables 1

and2). Amongthe 12 synapse-associated clusters, we noticed that the
Synl cluster exhibits a 3.5-fold increase of nascent RNA proportion
compared with the rest of the synapses (average intronic fraction
29.9% versus 8.5%; Fig. 2c).In Syn2 and Syn4 clusters, we observed the
upregulation of Grin2b, Pclo and Bsn (Pclo and Bsn are known presyn-
apticscaffold genes). In contrast, in the Syn3 cluster, we observed the
upregulation of postsynaptic genes, including ShankI and Shank3
(Fig.2b and Supplementary Table 2).

Besides the overrepresentation of presynaptic features in Syn2
and Syn4 clusters and postsynaptic features in Syn3 cluster, we also
observed additional synapse subclusters that are defined by specific
markers: SynS: Zbtb20; Syn6: Chd9; Syn7: Purg; Syn8: Nopchap1; Syn9:
Apc; Syn10: Hivep3; Synll: Kmt2d; and Syn12: Ksr2 (Fig. 2a,b). Among
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Fig.2| The mouse hippocampus cell atlas and synaptome atlas. a, UMAP
visualization of synaptosome and neuron-glia junction subtypes of the mouse
hippocampus. b, Violin plots showing the expression of subcellular-type-
enriched markers in different clusters (Synl: Csmd1, Kcnip4 and Nrg3; Syn2:
Grin2b; Syn3: Shankl and Camk2a; Syn4: Pclo; Syn5: Zbtb20; Syn6: Chd9; Syn7:
Purg; Syn8: Nopchapl; Syn9: Apc; Syn10: Hivep3; Syn1l: Kmt2d; Syn12: Ksr; AIS/
NR: Ank3 and Ank2; ODC junctions: Mbp and Mobp; ASC junctions: Slcla2 and
Atpla2). c, Fraction of intronic UMIs for each synaptosome and neuron-glia
junction cluster in the mouse hippocampus. d, UMAP visualization of 19 cell
populations identified in the primary clustering analysis. EXCA1A-B, CA1
excitatory neuron A-B; ExCA3, CA3 excitatory neuron; ExDG, DG excitatory

GOBP_cellular_respiration

NES

neuron; ExSub, subiculum excitatory neuron; Ex1-4, other excitatory neurons
1-4;In1-2, inhibitory neurons 1-2; ASC1-2, astrocytes 1-2; MG1-3, microglia1-3.
e, Volcano plots showing the exon-based DEGs between synapses and neuronal
nuclei. f, Pathways enriched in the synapses and nuclei, identified through GSEA.
NES, Normalized enrichment score. g, The average intronic UMl fractionin
synapses versus neuronal nuclei, with the marginal rug plotindicating density.
pct, percentage. h, Identification of the unspliced synaptic genes in neurons.

i, Number of the unspliced synaptic genes grouped by gene type. j, Pathways
enrichedin unspliced and fully spliced genes, identified through preranked GSEA
based onsplicing score.

their marker genes, mutations in Zbtb20 have been shown to affect
the synaptic structures by altering ZBTB20 protein localization in
subneuronal compartments”; Purg (detected in Syn7) was reported
to display strong and early upregulation during synaptogenesis in
primary mouse hippocampal neurons'®; Ksr2 (detected in Syn12)
contributes to calcium-mediated ERK (extracellular signal-regulated

kinase) signaling'. In addition to synapse-associated clusters, we
also observed axon initial segments and nodes of Ranvier (AIS/NR
cluster) and neuron-glia junctions including neuron-oligodendro-
cytejunctions (ODC junctions) and neuron-astrocyte junctions (ASC
junctions) (Fig. 2a,b, Supplementary Fig. 4a,b and Supplementary
Tables1land?2).
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Mouse synaptome based on density gradient centrifugation

Next, we used the freshly prepared mouse samples as the control to
compare the effects of different synaptosomeisolation procedures on
synaptome profiling. We performed synaptome profiling using the syn-
aptosomesisolated from the standard sucrose density gradient-based
ultracentrifugation protocol. Incomparison to the direct sorting-based
procedure, we observed 53% fewer genes detected per synaptosome
(median 146 genes versus 306 genes; Supplementary Fig. 6a), which
is probably due to RNA decay and the leakage during the extensive
processing time without PFA fixation. Although we still observed some
evidence of the regional distribution for a few clustersincluding Syn1
(Kcnip4), Syn6 (Chd9) and Syn8 (Nopchapi) on the uniform manifold
approximation and projection (UMAP), the overall clustering result
has low resolution with certain ambiguity (Supplementary Fig. 6b,c).

Connect the mouse synapse clusters to neuron subtypes

To compare the synaptome with the nucleus transcriptome, next we
performed single-nucleus transcriptome profiling for the same mouse
hippocampus. Based on the nascent RNA expression matrix, we identi-
fied nine subtypes of excitatory neurons from different subregions, two
subtypes of inhibitory neurons, astrocytes (ASCs), oligodendrocyte
progenitor cells (OPCs), oligodendrocytes (ODCs), microglia (MGs)
and fibroblasts (Fig.2d, Supplementary Fig. 7a-d, and Supplementary
Tables3and 4), and an average of 83% of UMIs detected can be attrib-
uted to introns (Supplementary Fig. 7e).

Next, we compared the single-nucleus transcriptome with the
synaptome to identify the connection between synapse clusters and
neuron subtypes. Itis interesting that we did not identify statistically
significant connections. This result supports the capture of different
synapse transcriptomic states with the synaptosomes prepared from
fresh mouse brain samples®*?. Furthermore, we would like to investi-
gate, among different synaptic states (synapse clusters), whether we
can identify the subclusters associated with neuron subtypes. To do
so, we used the highly variable genes across neuronal nuclei (Methods)
asthe coordinates for supervised clustering analysis. As shownin Sup-
plementary Fig. 8a-f, we did observe the evident association between
the distribution of synaptosomes and different neuronal subtypes. But
the subclusters are less separated, probably because they share the
features of the same synaptic states. Based on the mouse synaptome
data, we conclude that there are two layers of synapse heterogeneities:
the first layer is associated with synaptic states and the second with
neuron subtypes.

Differential expression between synapses and nucleiin mice
Next, we performed differentially expressed gene (DEG) analysis
between synapses and nuclei. Considering the dominance of matured
mRNA in the synapses, in the present study we used the exon-based
gene expression matrix for DEG analysis between synapses and nuclei
to avoid potential bias by gene length. As aresult, we identified 3,609
synapse-enriched genes and 3,992 nucleus-enriched genes (Fig. 2e
and Supplementary Table 5) (DEGs defined as (abs(log,(fold-change
(FC)) >log,(1.3)), false discovery rate (FDR) < 0.05)). As expected,
synapse-enriched genes were overrepresented with synaptic signal-
ingand protein synthesis pathways. In contrast, the nucleus-enriched
geneswere overrepresented with gene regulation, RNA processing and
DNA repair pathways (Fig. 2f).

Local splicing landscape in mouse hippocampal synapses

Studies have shown that the genes with retained introns are crucial
for the intraneuronal transport of the transcript®. Furthermore, syn-
apticalternative splicingis also vital for quick modulation of synaptic
functions®?°. Next, based on nascent RNA detection in MATQ-Drop
data, we characterized the synaptic transcripts with intron retention
(Methods). We observed only asmall percentage of unspliced synaptic
transcripts (81out of 2015,4%), including 79 protein-coding genes and

2IncRNAs (Fig. 2g-iand Supplementary Tables 6 and 7). When we per-
formed gene set enrichment analysis (GSEA) for the genes preranked by
splicing z-score (Methods), on one end of the enrichment, the spliced
transcripts were enriched for basic cellular activities such as protein
synthesis and metabolism; on the other end of the enrichment, the
unspliced transcripts were enriched for synapse assembly, organiza-
tion and neuron migration pathways, suggesting the important role
oflocal splicing in synaptogenesis (Fig. 2j).

Synaptome profiling of the frozen human brainsamples

To test whether the single-synaptosome RNA-seq pipeline can be
adopted to construct the human synaptome, next we processed the
frozen human brain hippocampus and prefrontal cortex (PFC) samples
fromtwo individuals. Itis worth noting that we specifically requested
the dentate gyrus regions of the hippocampus samples. For two human
hippocampus samples (Supplementary Table 8), we generated the
transcriptome of 10,428 single subcellular structures (Fig. 3aand Sup-
plementary Fig. 9a) and we observed 11 major clusters corresponding
to different types of neurite structures. As shown in Supplementary
Fig. 9b, the batch effects between samples were undetectable. In
Fig.3b,c, we annotated these clusters as subtypes of synapses and neu-
ron-gliajunctions based onthe well-knownmolecular markers enriched
inthose subcellular structures (Supplementary Table 9 and 10). In total,
we assigned six synapse-associated clusters: four synapse clusters with
high RNA abundancy (we denote them as HI-synapses), one synapse
cluster with lower RNA abundancy (we denote this as LO-synapse)
(Fig. 3d,e) and another synapse cluster containing relatively higher
nascent transcripts (we denote this as N-synapse) (Fig. 3a,h).In contrast,
15 synapse-associated clusters were observed in mouse hippocam-
pus samples. The potential reason for this discrepancy is that mouse
brain samples were freshly prepared right after the sacrifice of the
mice, whereas the human brain samples often had long postmortem
intervals (PMls,12and 13 h, respectively, for the two brain samples we
sequenced), which could lead to the decay of transcripts and distort
the synapse clusters. Therefore, synapse states were probably better
preserved in the mouse samples.

Despite the potential distortion of the transcriptome caused by
the PMI, when we compared the synaptome profile with single-nucleus
transcriptome profiles described below, the four HI-synapse clusters
could be associated with excitatory neuronsin CAl, CA3and DGregions
and inhibitory neurons, respectively. It is worth pointing out that the
inhibitory HI-synapse cluster (Synapse_In in Fig. 3a) can be further
classified into three subtypes by additional subclustering analysis
(Supplementary Fig.10a-c). When we profiled the synaptome of two
human PFC samples, similar clusters of HI-synapses, LO-synapses and
N-synapseswere observed (Supplementary Fig.11a-c). The HI-synapses
canalsobesubclustered into excitatory and inhibitory subtypes. The
expression of marker genesin each clusterisshowninSupplementary
Fig.11d,e. The detectionsensitivity is showninSupplementary Fig. 11f,g.

Additional validation of synaptosome isolation procedure

In the present study, we further validated the synaptosome isolation
procedure using frozen human brain samples (Methods). First, we
confirmed the enrichment of synaptic proteins synaptophysin and
synapsin-1linthe Hoechst-negative subcellular structures using west-
ernblotting (Supplementary Fig.12a).In addition, we also performed
immunostaining for the Hoechst-negative particles using presynapse
marker synaptophysin and postsynapse marker PSD95 (Supplementary
Fig.12b-e). Using flow cytometry analysis, we observed that 60.1% of
Hoechst-negative particles were synaptophysin positive and 38.1%
were PSD95 positive. Next, we sorted out double-positive particles
(34.6%) and performed transcriptome profiling. When we combined
its transcriptome data with the transcriptome data of the total
Hoechst-negative particles of the same sample, we observed a com-
plete overlap between Hoechst-negative particles and double-positive
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Fig.3| The human hippocampus synaptome atlas. a, UMAP visualization of
synaptosome and neuron-glia junction subtypes of the human hippocampus.
b,c, UMAP feature plots (b) and violin plots (c) showing the expression of
subcellular-type-enriched markers in different clusters (HI-synapse: SYP; CA1
excitatory HI-synapse (Synapse_ExCA1): FNDCI; CA3 excitatory HI-synapse
(Synapse_ExCA3): TSPANIS; DG excitatory HI-synapse (Synapse_ExDG): SEMASA;
inhibitory HI-synapse (Synapse_In): SLC6A1; LO-synapses: SHANKI and SHANK3;
ODC junctions: MBP, PLPI and HIPK2; ASC junctions: AQP4 and GFAP).

d,e, Detection sensitivity for each cluster in UMI counts (d) and gene counts (e).
f, Volcano plot showing the DEGs between hippocampus HI-synapses and LO-

synapses. g, Pathway enrichment of hippocampus HI-synapse-enriched and LO-
synapse-enriched genes. Fold enrichment is labeled next to the dots. h, Fraction
ofintronic UMIs for each synaptosome and neuron-gliajunction cluster in the
human hippocampus. i, Volcano plot showing the DEGs between N-synapses
and other synapses in the hippocampus. j, Pathway enrichment of hippocampus
N-synapse-enriched and other-synapse-enriched genes. Fold enrichment
islabeled next to the dots. k, Volcano plot showing the DEGs between ODC
junctions and LO-synapses. I, Pathway enrichment of ODC junction-enriched
and ASC junction-enriched genes. Fold enrichment is labeled next to the dots.
m, Volcano plot showing the DEGs between ASC junctions and LO-synapses.

particles (Supplementary Fig. 12f,g), indicating that the vast major-
ity of Hoechst-negative particles are synaptosomes and neuron-glia
junctions.Itisworth noting that neuron-gliajunctions were reported
to express synaptic proteins?, therefore they were enriched in the
synaptophysin and PSD95 double-positive population.

We also sorted out the double-negative particles (36.4%) and
performed transcriptome profiling. As a result, we observed that
the corresponding transcriptome had extremely low RNA abun-
dance per particle, equivalent to 4% of RNA yield compared with the
double-positive population (Supplementary Fig. 12h). Hence, when
we profile the transcriptome of all Hoechst-negative particles, the
double-negative particles will be effectively filtered out by RNA abun-
dance cutoff and do not contribute to the synaptome. Therefore, we

conclude that the unbiased profiling of the Hoechst-negative popula-
tionauthentically represented the transcriptome of synaptosomes and
neuron-gliajunctions.

Differential expression between human synaptosome
subtypes

Next, we performed DEG analysis toidentify transcriptomic differences
between the HI-synapses and the LO-synapses for the hippocampus
synaptome (Fig.3fand Supplementary Table 11) and the PFC synaptome
(Supplementary Fig. 11h and Supplementary Table 11). We identified
1,272 and 807 HI-synapse-enriched genes (abs(log,(FC)) > log,(1.3),
FDR < 0.05) inthe hippocampus and PFC, respectively, bothincluding
well-established synaptic vesicle genes (SYT1, SYP, SV2A and SORTI)*.
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Fig. 4 |Nascent RNA-based cell atlas of the human hippocampus. a, Fractions
of UMIsin exons and introns (mean + s.d.; P5818: n = 4,127 single nuclei; P5844:
n=3,985single nuclei). b, UMAP visualization of 11 cell populations identified in
the primary clustering analysis. EXCA, CA excitatory neuron; ExDG, DG excitatory
neuron; In_A-C, inhibitory neuron A-C; ASC1-2, astrocyte 1-2; T, T cells.
c,d, Detection sensitivity for each hippocampus cluster in UMI counts (c) and
gene counts (d). e, UMAP feature plots showing the log(normalized expression)
ofthe well-established, cell-type-specific markers in different clusters (excitatory
neuron: SLC17A7; CAneuron: FNDCI; DG neuron: SEMASA; inhibitory neuron:
GAD2; ASCs: AQP4 and GFAP; OPC: CSPG4; ODC: MBP; MG: C3; T: CD96).f, Violin
plots showing the marker gene expression level in different clusters. h, UMAP
visualization of clustering results using only IncRNA expression matrix, colored
by nascent RNA-based annotation. g-j, Volcano plots showing the exon-based
DEGs between HI-synapses and nuclei for four neuronal subtypes. EXCA, CA
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excitatory neurons (g); EXDG, DG excitatory neurons (h); InHippo, hippocampal
inhibitory neurons (i); EXPFC, prefrontal cortex excitatory neurons (j). kI, Venn
diagram showing the overlap of synapse-enriched (k) or nucleus-enriched

(I) genes among four neuronal subtypes. m, Pathway enrichment of shared
synapse-enriched and nucleus-enriched genes. Fold enrichment is labeled

next to the dots. n, The average intronic UMI fraction in HI-synapses versus
nuclei of CA excitatory neurons, with the marginal rug plot indicating density.
o, Identification of the unspliced synaptic genes in CA excitatory neurons.

p, Pathways enriched in fully spliced genes, identified through preranked GSEA
based onsplicing score. NES, normalized enrichment score. q, Number of the
unspliced synaptic genes grouped by gene type.r, Venn diagram of the unspliced
synaptic genes across four neuronal subtypes and the list of 41 protein-coding
genes detected in all four neuronal subtypes.

Next, we identified 1,179 and 855 LO-synapse-enriched genes in the
hippocampus and PFC, respectively. Among the enriched genesin the
LO-synapses, we noticed the dendrite marker gene MAP2 (ref. 29), the
well-known postsynaptic scaffold genes SHANK1, SHANK3 and DLG4
(ref.30) and the postsynaptic gene SYT3(ref. 31). The differential marker
genes show the enrichment of presynaptic transcriptomic features
in the HI-synapses (which resembles mouse Syn2 and Syn4 clusters)
and the enrichment of postsynaptic transcriptomic features in the
LO-synapses (which resemble the mouse Syn3 cluster). In the enriched
functionals and pathways of the HI-synapse cluster, we observed syn-
aptic signaling and axonogenesis in both the hippocampus (Fig. 3g
and Supplementary Table 12) and the PFC (Supplementary Fig. 11i
and Supplementary Table 12). For the LO-synapse cluster, the pro-
tein synthesis and mRNA catabolism-related pathways are enriched
(Fig. 3g, Supplementary Fig. 11i and Supplementary Table 13),

suggesting that high protein synthesisactivities and turnover rates exist
inthe postsynapses. The enrichment of the mRNA catabolism pathway
inthe LO-synapses also explains the low RNA abundance observed in
these synapses in comparison to HI-synapses.

Itisalsoworth pointing out that, in contrast to the clear difference
in RNA abundance between HI-synapses and LO-synapses detected
in the human brain, we did not observe such a discrepancy in mouse
brains (Supplementary Fig. 4c,d). This difference requires future inves-
tigation. It could be caused by species differences between humans
and mice or by different RNA decay rates between presynapses and
postsynapses during the postmortem time. If the postsynapses have
amuch higher RNA decay rate than the presynapses, then, with the
long PMlIs for the human samples we used, a substantial portion of
RNA in postsynapses might have been decayed before they could be
captured by MATQ-Drop.
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Itis interesting that, although most synapses displayed a low
intron fraction (7.85%, on average), we did notice that one cluster
(N-synapses) exhibited a significantly higher intron fraction (30.79%
onaverage (Fig. 3h) and PFC datain Supplementary Fig.13a), whichis
the human counterpart of the mouse Synl cluster. Through the DEG
analysis between N-synapses and the rest of the synapses (Fig. 3i and
Supplementary Table 14), we observed that the genes enriched in
N-synapses were overrepresented in synapse assembly and synapse
organization gene sets (Fig. 3j). In contrast, the genes involved in syn-
aptic signaling were overrepresented in other clusters of synapses
(Fig. 3j and Supplementary Fig. 13b,c). The results indicate that
N-synapses represent the immature synapses that are in the process
of assembly and maturation. The significantly higher percentage of
intronic reads in the N-synapses also buttresses the important roles
ofunspliced nascent RNA and the related local splicing in the synaptic
assembly and maturation process.

Transcriptome profiling of human neuron-glia junctions
Besides the clusters of synaptosomes, we also identified two major
cell-celljunctions formed between neurons and glial cells: ODC junc-
tions and ASC junctions in the hippocampus (Fig. 3a) and PFC (Sup-
plementary Fig. 11a-e). Both the noncompact myelin gene, CNP, and
compact myelin genes, PLP1 and MBP, were highly expressed in ODC
junctions (Fig. 3k and Supplementary Table 15). It is worth noting that
theupregulated genesinthe ODCjunctions are enriched in the myeli-
nation process (Fig. 31), which is consistent with the well-known axon-
ODCsignaling related to the myelination process**. Moreimportantly,
the detection of transcripts in ODC junctionsin our data suggests the
importance of local translation at the ODC junctions during myeli-
nation. This indication of local translation is also consistent with the
recent study by Wake et al.>*.

In the ASC junctions, we observed the local enrichment of
ASC-specific genes, for example, GFAP, ATP1A2, AQP4 and SLCIA3
(Fig. 3m and Supplementary Table 15). These upregulated genes are
enriched in cell adhesion, proliferation and neurotransmitter uptake
pathways (Fig. 31). Consistent with our observation of transcripts
enrichedinthe ASCjunctions, local translation has also beenrecently
observed in astrocyte peripheral processes®. Overall, the transcrip-
tome profiling of neuron-glia junctions allows the comprehensive
identification of locally translated genes in the cell-cell junctions
between neurons and glial cells. The functional roles of these genes
are worth future investigation.

Effective cell atlas construction using only nascent RNAs

To identify the connection between different subtypes of synapto-
somes and different subtypes of neurons, we next applied MATQ-Drop
to profile the total-RNA-based transcriptome for 8,112 single nuclei
isolated from two dissected frozen human hippocampi. First, in the
single-nucleus transcriptome data, we noticed that the portion of reads
that represented nascent RNAs in the brain samples was significantly
higher than that in the cell-line samples. We observed that 78% of the
UMIs were mapped to intronic regions in the brain samples (Fig. 4a),
in contrast to 63% of intronic reads in the cell lines (Fig. 1e).

Next, we calculated the gene expression matrix based only on the
unspliced transcript sequence with the reads mapped to the intron
regions. Using this nascent RNA-based gene expression matrix, we
evaluated its performance in constructing a cell atlas for the human
hippocampus samples that we profiled. InFig. 4b and Supplementary
Table 16, using the standard Seurat v4 unsupervised clustering pipe-
line, we successfully identified the following ten primary clusters in
the hippocampal nuclei: two excitatory neuronal subtypes from the
Cornu Ammonis region (ExCA) and dentate gyrus (ExDG), respec-
tively; three inhibitory neuronal subtypes (In_A, In_B, In_C); four glial
celltypes, including two subtypes of ASCs (ASC1-2), OPCs, ODCs and
MGs. AsshowninSupplementary Fig. 14, no batch-to-batch variations

were observed. In terms of detection sensitivity, the UMI and gene
detectionare showninFig.4c,d. The markers of each cluster were also
consistent with well-established cell-type-specific markers (Fig. 4e,f
and Supplementary Table 17), suggesting robust cell typing using a
nascent-transcript-based gene expression matrix.

Similar to the hippocampus, we also successfully constructed the
cell atlas for the human PFC sample of the same individuals (Supple-
mentary Fig.15). With the profiling of 939 single nuclei, we successfully
identified 15 primary clusters with high confidence, whichincluded 6
excitatory neuronal subtypes (Ex1-6), 4 inhibitory neuronal subtypes
(In1-4), 4 glial cell types (including ASCs, OPCs, ODCs and MGs) and
endothelial cells (ENDs) (Supplementary Fig.15a-c and Supplementary
Table 16). The markers of each cluster were also consistent with the
standard cell-type-specific markers (Supplementary Fig. 15d,e and
Supplementary Table 17). Based on the expression of the previously
reported layer-specific markers®, the six excitatory neuron subtypes
were assigned to different cortical layers (Supplementary Fig. 15h,i).
Among the inhibitory neurons from bothregions, we identified eight
subtypes with additional subclustering analysis (Supplementary
Fig.16a,b and Supplementary Table 18). The unique combinations
of marker genes were detected in the subtypes of inhibitory neurons
(Supplementary Fig.16c,d and Supplementary Table 19).

Differential expression between synapses and nucleiin human
Now with the single-nucleus transcriptome data from the same tissues
ofthe synaptome, we were able to connect the subclustersin the synap-
tometo different neuronal nucleus types based on the shared marker
genes (Fig.3aand Supplementary Tables10 and 17). We have identified
that three Hl-synapse clusters could be connected to the excitatory neu-
ronsin hippocampal CAl, CA3 and DG regions, and another HI-synapse
cluster could be connected to inhibitory neurons (Fig. 3a). Next, we
investigated the differential patterns of RNA expression between the
synaptic clusters and the associated nuclei in a neuron-type-specific
manner.

Intotal, weidentified anaverage of 2,126 synapse-enriched genes
and 2,548 nucleus-enriched genes (Fig. 4g-jand Supplementary Table
20). In Fig. 4k,I, we examined the overlapped genes between differ-
ent neuronal subtypes. We identified that there were a total of 4,099
synapse-enriched genes and a total of 4,848 nucleus-enriched genes;
549 synapse-enriched genes and 755 nucleus-enriched genes were
shared by all 4 neuronal subtypes, respectively (Fig. 4k,1). Next, in the
functional analysis, we observed that the 549 shared synapse-enriched
genes were overrepresented in the pathways directly related to syn-
apticsignaling (Fig. 4m and Supplementary Table 21). In contrast, the
755 nucleus-enriched genes were overrepresented in the epigenetic
regulation and RNA-processing pathways (Fig. 4m and Supplementary
Table22).

Local splicing landscape in different subtype of synapses

Similar to the mouse data, for all four clusters in HI-synapses, we
observed alongtail of outliers with clear evidence of intron retention
(Fig. 4n, Supplementary Fig.17a-c and Supplementary Table 23). It is
worth noting that 84.5% of synaptic transcripts were already spliced
(intron percentage <5%). Next, we compared the intron percentage
between synapses and nuclei for each gene and calculated the splic-
ing z-score (Fig. 40, Supplementary Fig. 17d-f and Supplementary
Table 24). We then performed GSEA with the genes preranked by the
splicing z-score and we observed that the essential cellular functions
such as translation, protein folding and metabolism were signifi-
cantly enriched in the fully spliced genes (Fig. 4p). This result con-
firms that the fully spliced genes detected in synapses are mainly
responsible for basic cellular functions. Based on the splicing z-score,
we also identified the unspliced genes with statistical significance.
In total, we detected 256 genes from different HI-synapse subtypes,
including 49 IncRNAs, 11 pseudogenes and 196 protein-coding genes
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Fig. 5| AD-associated synaptopathy. a, The comparison of cell frequency for
ODC and MGl cells between 5XFAD mice and WT mice. Two-sided Student’s t-test
was performed and Pvalues were indicated on the plot. b,immunofluorescence
staining and quantification of ODC marker OLIG2 and MG marker IBAlin

5xFAD and WT mouse hippocampus brain sections (three mice per genotype,
mean +s.d., Student’s t-test). c, Heatmap showing the fold-change of intron-
based DEGs (abs(log,(FC)) > log,(1.3), FDR < 0.05) between 5XFAD and WT mice
indifferent types of nuclei. d, Functional enrichment of the DEGs between

the single-nucleus transcriptome of 5xFAD and WT for different cell types. e,
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Heatmap showing the fold-change of DEGs (abs(log,(FC)) > log,(1.3), FDR < 0.05)
between 5xFAD and WT mice in different synaptosome and neuron-glia junction
subtypes. f, Pathways enriched in 5XFAD synapses compared with WT mice. g,
Heatmap showing the fold-change of synapse-AD-DEGs shared by at least six
subtypes and their intron-based expression fold-changes in the AD nuclei. h,
immunofluorescence staining and quantification of C1q-tagged synapses in
5xFAD and WT mouse hippocampus brain sections (three mice for each genotype
and three sections for each mouse, mean + s.d.; two-sided Student’s ¢-test was
performed).

(Fig. 4q). Itis of interest that only 41 unspliced protein-coding genes
were shared by all 4 synapse subclusters (Fig. 4r). Thisresult indicates
that asignificant portion of local synaptic splicing is uniquely associ-
ated with specific synapse types.

Characterization of synaptopathy in AD synaptome

As a hallmark of AD, -amyloid plaques are known to impair synaptic
function and induce synaptopathy. It has been shown that 3-amyloid
plaques can induce an inflammatory response that activates MGs
to prune synapses®~*® and block postsynaptic N-methyl-D-aspartic
acid receptors and, therefore, suppress trans-synaptic signaling®.
Current profiling of transcriptomic changes associated with AD

has been done only with snRNA-seq*®*. In the present study, we
applied the MATQ-Drop to characterize the synaptome changes in
the 5XFAD mouse model and examine whether different synapse
subtypes have different responses to 3-amyloid plaques. In total, we
profiled the transcriptome of 6,989 single nuclei and 20,456 single
Hoechst-negative particlesisolated from two wild-type (WT) and two
5xFAD mice.

From single-nucleus transcriptome data, we first observed a
2.3-fold overrepresentation of ODCs compared with WT mice in
terms of cell-type composition (Fig. 5a). This result is probably due
to the response to axon demyelination. We also observed a 5.4-fold
increase of the major MG subtype (MG1) in the 5XFAD mice, indicating

Nature Biotechnology



Article

https://doi.org/10.1038/s41587-022-01635-1

Chemistry
EJ MATQ_Drop
b B8 10x.v3.1
a s @ (<] 55 27
- F] 2 g o 10°° 91.5x1078 ~ 5.8x10 14
InoRNA ExCA R H : H H o 10° 211075 o0 gex10® 23%10 4 g0
X c 45 . H
EXDG  sgEill | T ‘ 3 10" N .
A HHEES B it 8 10 . ; H . )
ne ¢ i i s 00| s Te 7L 9T
In C orteas ()1 I i i > 10° i '
S R Lk L o 1 2.5
ASCT i )‘MWWW"W Scaled 10
ASC2 S |11 ! ‘\",:\M‘”\ ! expression o < 2 Q Q ) %
OPC  fiz o TR < © 3
IKISHTHG | i | » o o
SLB O S U 1 : j
G L A 5 2
T ] A S -
qG0 o 10 | i - h 62x10% 5210 37x10°2
UMAP 1 HiRGAEHG TURILETT b e 10° 3.0x10738 7.9x10°9 1210758 . 3.5x10727
= . X
- c i P . .
3.5 . H . . B
g I%+ % % # + %. é #
c LY86-AS1 DLX6-AS1 PPPIRIA-AST AC124254.2 LINCO1608 LINCO1141 o 10° R + + -
Maximum 4 o 10%°
Normalized ! A g 4 ° ]
lormalize i 4 - 10
expression k £ &
: : ] ' 5 = g g 8 2 3
o < o 9] ]
2
Qo
. [
i «i0t
2 1.2|x1'o’5° ) 1.8x1078 5 023 15,107
d e 3 2500 | H Ly 2.7x10 7 .
4921530H07RIk  Gm32647  Gmi2339  Gm28905 S 2000 | i ; 8.1x10
® = 1500 ; o P
; 1 S i ; ;
o Inc_ExCA1 5 : J £ 1000 i oo
e [nc_ExCA3 x 500 H .
* Inc_ExDG 2 0
. {nc_Ex1Sub - x c 1) 19 13} o
o [ncCEx Gm45323 Dix6os! Celrr  6030407003Rik b < B
o IncEx2 2 3 4] = £
re e
nc_ln { 8
* IncCASC =
o [nc_OPC » ] . .
® IncCODC - 4.9x10 47x10 s
® IncCMG 5 ;o 1x10° T7X07) g0 5:5x107°
* IncZFibroblast GmI6I68  AU020206  2610307PI6Rik ) g 5007 ! ax1020 :
. . . Maximum o 400 I . H S
[} § H .
-5 0 5 L Normalized $ 300 [ . H
UMAP;I expression 3 200 .
h © Z 100 | ; |
5 Sl - =
c
i x c Q [} Q [©] @
w T
2 5] 5 = 3
[
2
=
60 1 K 1 ! arc
c 09 10 P ° Ex1
~ 50 g 0.8 : ® Ex2
S i 5 N * Ex3
< 45 ] I " @ 0.7 ch X 5 @C > o Ex4
g 40 / . = 06 emistry ~ " ) -2, o i
Rel / . @ o Fibroblast ®l "3
% 301 Py Chemi > 05 [ matQDrop < O A : |An§C
5 ) emistr = = .
2 0l A y T 04 | ] 10xv31 ER wo B2 - OPG
3 /. ~+= MATQ_Drop g 0.3 ° EX3 * ODC
/ 2 4
104/ ~e- 10x_v3.1 5 02 § ° MG
/¥ O o1 -10 E ® Fibroblast
0 - 0
1 10 20 30 40 50 - ~ -
000 L 000 000 000 10 o 10 10 -5 0 5 10 15
ESARE AR SRR S ARl N Rank UMAP_1 UMAP_1
A
Read @‘?‘

Fig. 6 | The cell typing using only IncRNA species and the detection sensitivity
comparison between 10x Chromium and MATQ-Drop. a, UMAP visualization
of clustering results using only IncRNA gene expression matrix from the single-
nucleus transcriptome of the human hippocampus. b, Heatmap showing the
scaled expression levels of cell-type-specific IncRNA genes. ¢, UMAP feature plot
showing the log(normalized expression level) of cell-type-specific IncRNA genes
(excitatory neuron: LY86-ASI; inhibitory neuron: DLX6-ASI; ASC: PPP1R9A-ASI;
OPC: AC124254.2; ODC: LINC0O1608; MG: LINCO1141).d, UMAP visualization of
clustering results using only IncRNA expression matrix from the single-nucleus
transcriptome of mouse hippocampus. e, UMAP feature plot showing the
log(normalized expression level) of cell-type-specific IncRNAs (CAl excitatory
neuron: 4921539H07Rik; CA3 excitatory neuron: Gm32647; DG excitatory neuron:
GmI12339; subiculum excitatory neuron: Gm28905; inhibitory neurons: Gm45323
and DIx60s1; ASC: Celrr; OPC: 6030407003Rik; ODC: Gm16168; MG: AU020206;
fibroblast: 2610307P16Rik). f, Determination of the sequencing depth to allow
benchmark comparison at the same sequencing saturation. g,h, Transcript-based

detection sensitivity (UMI count (g) and gene count (h)) compared with10x
Chromium™. i,j, LncRNA detection sensitivity (UMI count (i) and gene count

(j)) compared with 10x Chromium*. g-j, The data were derived from two
MATQ-Drop WT mouse samples (1,520 single excitatory neurons, 479 inhibitory
neurons, 440 ASCs, 180 OPCs, 284 ODCs, 164 MGs and 108 fibroblasts) and one
10x Chromiumv.3.1sample (1,711 single excitatory neurons, 2,344 inhibitory
neurons, 493 ASCs,162 OPCs, 798 ODCs, 259 MGs and 76 fibroblasts).

g-j, Boxplots represent the center line and median, box limits the upper and
lower quartiles, whiskers the 1.5x IQR and points the outliers. Two-tailed
Student’s t-test was performed and the Benjamini-Hochberg P, values were
labeled in the plot. k, Accumulated fraction of UMIs on the axis of the ranked
IncRNA genes. I, UMAP showing the transcript-based unsupervised clustering
results with 10x Chromium v.3.1 mouse brain single-nucleus transcriptome
dataset. m, UMAP showing the IncRNA-based unsupervised clustering results
with10x Chromiumv.3.1data, cell types and subtypes colored based on the
transcript-based clusteringinl.
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an activated inflammatory response (Fig. 5a). The increased pro-
portions of ODCs and MGs in 5XFAD models are consistent with
previous studies*®* and are further confirmed through the immu-
nofluorescence staining on the brain sections (Fig. 5b). Next, for
each neuronal subtype and glial cell type, we identified the DEGs
associated with AD based on nascent RNA (Fig. 5c and Supplemen-
tary Table 25) and mature RNA, respectively (Supplementary Fig. 18
and Supplementary Table 26). In particular, we observed that MGs
consistently displayed the highest numbers of DEGs, suggesting
more sensitive roles of these cells in disease response compared
with other cell types (Fig. 5c and Supplementary Fig. 18), which
are also consistent with the previous study*’. When we performed
GSEA, myelination and multiple inflammatory response pathways,
including cell killing, complement activation and chemokine pro-
duction, were enriched in AD across various cell types (Fig. 5d). Itis
worth emphasizing that, although similar pathways were enriched
in GSEA for different cell types (Fig. 5d), the DEGs are not identical
for different cell types (Fig. 5¢c), suggesting that there are different
response mechanisms to the amyloid pathology among different
cell types.

Next, we identified DEGs of each cluster of synapses and neu-
ron-gliajunctions between the 5xFAD and WT mice in the hippocam-
pal synaptome (Fig. 5e). In total, 410 genes with significant DEGs
(abs(log,(FC)) > log,(1.3), FDR < 0.05) were identified among differ-
ent clusters, among which 42 genes were shared by more than half of
synapse clusters and 246 genes were unique to single clusters (Fig. Se
and Supplementary Table 27). In line with the single-nucleus results,
neuroinflammatory response, complement activation and myelination
pathways were significantly enriched in the AD synaptosomes (Fig. 5f),
indicating the general inflammatory stress associated with 3-amyloid
plaques. Inaddition, we also observed the enrichment of cell junction
disassembly and negative regulation of exocytosis pathways, indicating
synapse loss and decreased synaptic function. The subtype-specific
pathway enrichments for different synapse clusters are summarized
inSupplementary Fig. 19.

For the 42 AD DEGs shared by all synapse subtypes, we plotted
the corresponding gene expression changes in nuclei in Fig. 5g
(nascent RNA-based DEGs; top: nuclei, bottom: synapses). Itis worth
noting that 24 synapse AD DEGs cannot be detected from the nucleus
transcriptome data. Furthermore, eight genes exhibited opposite
dysregulation directions from the DEG changes based on the nucleus
transcriptome data. Itis interesting that we also observed that three
complement component genes, CIga, C1gb and CIgc, were signifi-
cantly upregulated in the synapses but not significantly in the nuclei,
indicating a potential role of local translation of these components
in complement-mediated synapse pruning. It is desirable to unveil
how these complement component transcripts are transported to
the abnormal synapses that require pruning. Consistent with the
transcriptome results, in the immunofluorescence staining, we
also observed a significant increase of Clq puncta and a decrease of
PSD95 puncta in the 5XFAD hippocampus compared with WT mice,
suggesting increased complement-related inflammation response
and synapse loss. More importantly, the percentage of Clq-tagged
synapses increased by approximately fourfold in the 5xFAD hip-
pocampus, which validated the upregulated, complement-mediated
synapse pruningin AD (Fig. 5h). Compared with the overall hippocam-
pus area, the Clq puncta numbers demonstrated more dramatic
fold-changesin the synapses, which highlighted the synapse-related
pathologyin AD.

We also observed the bifurcated expression of two calcium/
calmodulin-dependent protein kinase Il (CaMKII) genes: Camk2a
and Camk2d (Fig. 5g, red-labeled genes), which suggest a switch of
CaMKllisoformsinAD that potentially impacted synaptic plasticity*.
Other unique DEGs observed in the synapses are also worth detailed
investigation for their functional roles in the future.

Construction of cell atlas using only IncRNA species

It is worth pointing out that, different from mature RNA-based drop-
let platforms, the total RNA-based chemistry of MATQ-Drop allows
the efficient detection of IncRNAs. Next, we examined whether we
could successfully identify the cell types using only the IncRNA expres-
sion matrix. The successful construction of a cell atlas using only
IncRNA species will indicate that cell-type-specific IncRNA species
or cell-type-specific composition of INCRNA species exist. As shown
in Fig. 6a, by unsupervised clustering, we achieved robust construc-
tion of the cell atlas for the human hippocampus at the cell-type and
-subtyperesolution. The clustering result is also consistent with nascent
RNA-based clustering (Supplementary Table 28). The IncRNA-based
cell atlas of human PFC was also successfully constructed (Supple-
mentary Fig.20a-h and Supplementary Text 2). Our results show that
cell-type-specific IncRNA markers can be systematically identified by
MATQ-Drop (Fig. 6b,c and Supplementary Table 29).

For the mouse hippocampus, we also successfully constructed
the cell atlas using only IncRNA species (Fig. 6d). The cluster-
ing result is highly consistent between IncRNA-based and nascent
RNA-based clustering (Fig. 2d and Supplementary Table 30). As a
result, cell-type-specific IncRNA markers were systematically identified
(Fig. 6e, Supplementary Fig. 21a,b and Supplementary Table 31). It is
worth noting that IncRNAs with poly(A) tails can also be detected using
SMARTer chemistry on the Fluidigm platform**. However, MATQ-Drop
chemistry allows the detection of the complete spectrum of IncRNAs,
including those with poly(A) tails and those without poly(A) tails.
Furthermore, the droplet platform offers higher throughput thanthe
Fluidigm platform in identifying cell-type-specific IncRNA species.

Benchmark comparison between MATQ-Drop and 10x
Chromium

Using the MATQ-Drop-based, single-nucleus transcriptome data of
mouse hippocampus, we next performed a benchmark comparison
against the 10x Chromium 3’ v.3.1 platform with the mouse brain
single-nucleus transcriptome dataset by 3’ v.3.1 chemistry (10x
Genomics online data; https://www.10xgenomics.com/resources/
datasets/5k-adult-mouse-brain-nuclei-isolated-with-chromium-nucle
i-isolation-kit-3-1-standard). For equal footing comparison, we down-
sampled the sequencing depthto allow the samples to reach the same
sequencing saturation level of 45% (Fig. 6f). When counted based on
transcripts, MATQ-Drop detected a median of 11,148 UMlIs and 3,392
genes for single neuronal nuclei, and 5,634 UMIs and 2,346 genes
for glial nuclei. Both are significantly higher than the 10x Chromium
data (median 5,836 UMIs and 2,618 genes for single neuronal nuclei
or 1,513 UMIs and 994 genes for single glial nuclei; Fig. 6g,h). Overall,
MATQ-Drop demonstrated up to 135% (neurons 30%, ASCs 128%, OPCs
121%, ODCs 99%, MGs 135%) sensitivity improvement compared with
10x Chromiumv.3.1 platform.

In Fig. 6i (UMI count) and Fig. 6j (gene count), we compared the
sensitivity of the MATQ-Drop and 10x Chromium v.3.1 platforminthe
detection of IncRNA. Although statistically significant, both methods
demonstrated essentially comparable IncRNA gene detection in neu-
rons, whereas MATQ-Drop demonstrated an approximately onefold
improvement of IncRNA detection in glial cell types compared with
10x Chromium. However, when we examined the 10x Chromium data
indetail, we noticed that a single IncRNA gene, Malat1, contributed to
60% of the total UMI count (Fig. 6k). This biased detectionis probably
duetothelarge portionof the AT-rich sequencein this gene, therefore
allowing more efficient internal hybridization by oligo(dT) primers
than other genes. In contrast, we did not observe a substantial contri-
bution by one gene in MATQ-Drop.

This biased IncRNA detection in 10x Chromium could preclude
it from generating a high-resolution, IncRNA-based cell atlas. In the
unsupervised clustering based on only IncRNA with 10x Chromium
v.3.1data (Fig. 61,m), we observed that, although different neuron
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types and glial cell types were well separated, the excitatory neuronal
subtypes (Ex1-4) cannot be well distinguished. Overall, in terms of
IncRNA gene detection, MATQ-Drop shows significantly less bias than
10x Chromiumand, asaresult, MATQ-Drop performsbetter inidentify-
ing subtypes of cells.

Discussion

In the present study, we developed a total RNA detection-based,
high-throughput scRNA-seq assay. Supported by the chemistry and
sensitivity of MATQ-Drop, we profiled the transcriptome of individual
synapses in high throughput. We successfully detected different sub-
types of synaptosomes and other types of junctions between neurons
andnonneuronal cells. The enrichment of different functional pathways
between synaptosome subtypes was also observed, supporting the
existence of phenotypical heterogeneity between different synapto-
somes. We also showed that different synaptosome subtypes could be
connected to different types of neurons.

Itis worth pointing out that, during the process of synaptosome
isolation, we cannot completely rule out potential contamination
by the RNA molecules released from the cytoplasm and nuclei. How-
ever, we reason that the contamination is random and infrequent
and, therefore, will not skew the gene expression profile of individual
synaptosomes. Thisreasoningis supported by our robust detection of
synaptosome clusters across different brain samples. It is also worth
pointing out that another potential source of contamination could be
the condensates dissociated from the nucleus or cytoplasm. These con-
densatesare probably enriched with alarge number of RNA transcripts
that may affect our clustering analysis. In the present study, we reason
three possible scenarios for condensate contamination. The first sce-
nario is that the synaptosomes could be contaminated by acommon
type of condensate. To examine this, we identified the common genes
detectedin >50% of synaptosomes. Under this criterion, only 17 genes
were detected using human hippocampus synaptome data. From the
gene ontology (GO)-CC (cellular component) functional enrichment
with P,4;< 0.01, we observed that all enriched GO terms are synapse
related. Therefore, we can exclude the possibility of contamination
of common condensate from the cytoplasm or nucleus. The second
scenariois that the synaptosomes are contaminated by heterogeneous
condensates, which then lead to the different clusters we observed in
the data. However, we have observed clear synapse-related marker
genes for different clusters in both mouse and human synaptome
data, and the functional enrichment between clusters is also related
to the synapses. The third scenario is that the synaptosomes are con-
taminated by both common and heterogeneous condensates. But the
rationale described above for ruling out the first two scenarios can
be used to refute this scenario. Overall, we would like to point out the
potential sources of contamination that could affect the specificity of
our approach. On the other hand, based on the reasoning described
above, we expect these condensate contaminations to be infrequent
and random; therefore, they will not affect our clustering analysis and
functional analysis that are based on hundreds of individual synapto-
somesineach cluster.

Besides synaptome profiling, MATQ-Drop can also be used to
construct a cell atlas. More importantly, we showed that we could
successfully construct a cell atlas using only IncRNA species. Overall,
the MATQ-Drop platform permits the efficient characterization of
synaptic heterogeneity and large-scale cell atlas construction. In the
future, MATQ-Drop can be readily applied to other neurological and
neurodegenerative diseases and shed new insights into understanding
synaptic biology. It could also be used as a new tool to construct the
brain connectome.

Online content
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maries, source data, extended data, supplementary information,
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Methods

Microfluidic device design and fabrication

The design and fabrication of the hydrogel bead generation device
and the cell encapsulation device have been previously described®.

Barcoded bead synthesis

The hydrogel bead production and barcode synthesis procedures
were based on the work by Zilionis et al.*. Two modifications were
introduced in hydrogel bead production. First, the Acrydite-modified
oligonucleotide (sequence in Supplementary Table 32) was designed
to contain a dU base instead of a photocleavable moiety. Therefore,
the primers canbe released by the USER enzyme (New England Biolabs
(NEB)) instead of UV exposure. The dimillumination stepis eliminated.
Second, the concentration of the Acrydite-modified DNA primer was
reduced to 40 pMin the acrylamide-primer mix.

After hydrogel bead production, two rounds of splitand pool were
performed for barcode synthesis. In each round, the hydrogel beads
were splitinto 144 wells; each well contained primers with a unique
barcode as the template (sequences in Supplementary Table 32). Bst
2.0 warm-start DNA polymerase was used for barcode extension. The
reaction was set at 55 °C for 3 h for the first round of split and pool,
and 52 °C for 3 h for the second round. After each extension step, the
reaction was quenched with a1.5 volume of 25 mM EDTA and leftover
templateoligonucleotides were denatured by alkalineand washed away
after the protocol. Exonuclease | digestion was performed to remove
primers with failed barcode extension.

Cell culture

HEK293T and NIH/3T3 cells were grown in Dulbecco’s modified Eagle’s
medium/High Glucose medium (Gibco) with 10% fetal bovine serum
(FBS, Gibco). Cell culture was passaged every 2-3 d.

Mice

The C57BL/6 WT and 5xFAD mice were obtained from the Jackson
Laboratory. Mice were housed four per cage in a pathogen-free mouse
facility with free access to food and water on a12-h light:dark cycle at
the ambient temperature of 20.0-22.2 °C and humidity of 30-70%.
Female mice were used for all experiments. All procedures were per-
formed following the National Institutes of Health (NIH) guidelines
and approval of the Baylor College of Medicine Institutional Animal
Care and Use Committee.

Immunofluorescence staining

Animals were perfused transcardially with 4% PFAin 0.1 M phosphate-
buffered saline (PBS), pH 7.4, under ketamine (300 mg kg™) and xyla-
zine (30 mg kg™) anesthesia. Brains were harvested, postfixed in the
same fixative overnight at 4 °C, dehydrated with 30% sucrose in PBS
and serially sectioned at 30-pm thickness on a sliding microtome
(Leica). Forimmunofluorescence, sections were permeabilized in
PBS/0.1% Triton X-100 for 30 min and blocked with 4% normal don-
key serum in PBS/0.1% Triton X-100 for 1 h at room temperature.
Sections were then incubated with primary antibodies in 2% serum
in PBS/0.1% Triton X-100 overnight at 4 °C: OLIG2 (EMD Millipore,
catalog no. AB9610), IBA1 (Wako, catalog no. 019-19741), 3-amyloid
(clone 6E10, BioLegend, catalog no.803001), C1q (clone 4.8, Abcam,
catalog no. ab182451) and PSD95 (clone 6G6-1C9, Millipore, cata-
log no. MAB1596). Sections were then washed and incubated with
donkey-anti-mouse Alexa Fluor-488-conjugated secondary anti-
body (Invitrogen, catalog no. A-21202) or donkey-anti-rabbit Alexa
Fluor-555-conjugated secondary antibody (Invitrogen, catalog no.
A-31572) for1 hatroom temperature. After washing with PBS, sections
were incubated with DAPIto stain the nucleus. Images were captured
using a Laser-Scanning Confocal Microscopy (Leica) and quantified
with Image). Three animals in each group and three sections from
each animal were analyzed.

Mouse hippocampus dissection

Mice aged about 9 months were deeply anesthetized with ketamine
(300 mg kg™ and xylazine (30 mg kg™) solution, intraperitoneally, and
perfused withsaline. The brains were removed from the skull and adult
mouse brain hemispheres were separated in half; the hippocampus
was isolated from each hemisphere and immediately frozen in liquid
nitrogen.

Cell-line nucleus preparation

Cells were trypsinized and washed twice with PBS. An equal number
of HEK293T cells and NIH/3T3 cells were mixed, and then lysed into
nuclei by incubating with the ice-cold lysis buffer (10 mM Tris-HCI,
pH 7.5,10 mM NaCl, 3 mM MgCl,, 0.1% NP-40 and 0.1% Tween-20) on
ice for 5 min. Before fixation, the nuclei were washed with 3x wash
buffer (10 mM Tris-HCI, pH 7.5, 10 mM NacCl, 3 mM MgCl,, and 0.1%
Tween-20). For each wash, the nuclei were first centrifuged at 500g and
4 °Cfor3 min, thesupernatant was aspirated and the nuclei pellet was
resuspended in the wash buffer. After the third wash, we resuspended
the nuclei in the fixation buffer (10 mM Tris-HCI, pH 7.5,10 mM Nacl,
3 mM MgCl,, 0.2% Tween-20 and 3% PFA) and incubated at room tem-
perature for 10 min on an end-over-end rotator to fix the nuclei. Fixa-
tion was quenched by mixing with 3:20 volume of 2.5 M glycine. The
fixed nuclei were washed twice with the wash buffer and then passed
through a 40-pum cell strainer.

Human brain nucleus preparation from frozen samples

Frozen human brain tissues were requested from NIH NeuroBioBank,
withthe sampleinformationsummarizedinSupplementary Table 8. We
followed the protocol developed by Krishnaswami et al.** toisolate the
nucleifromthe frozen brainsamples. Briefly, the tissues were homog-
enized witha Dounce homogenizer and 0.1% Triton X-100, followed by
3% PFA fixation at room temperature for 10 min. After quenching and
washing away residual PFA, the homogenate was stained with Hoechst.
Fluorescence-activated nucleus sorting was performed to unbiasedly
collect the Hoechst-positive single nuclei.

Human brain synaptosome preparation from frozen samples
The method for synaptosome preparation s similar to nucleus prepa-
ration, but with two major differences: (1) Triton X-100 was omitted
in the homogenization buffer; (2) the Hoechst-negative population
with a diameter <5 um was sorted by FACS. The detailed procedure is
described as follows. First, an -2-mm?section of frozen brain tissues was
chopped and rinsed in the homogenization buffer (250 mM sucrose,
25 mM KCl, 5 mM MgCl,, 10 mM Tris-HCI, pH 8.0, 1 pM dithoithreitol
(DTT), 1x Halt protease inhibitor cocktail (Thermo Fisher Scientific)
and 0.2 U pl™ of RNase in ribonuclease inhibitor (Promega)). The tis-
sue was then transferred to the Dounce homogenizer (Wheaton) and
homogenized using five strokes with the loose pestle and ten strokes
with the tight pestle. The homogenate was passed through a 40-pm
cellstrainer and centrifuged at1,500g for 10 minat4 °C. The pellet was
immediately resuspended in 25 mll of fixation buffer (10 mM Tris-HCI,
pH 7.5,10 mM NaCl, 3 mM MgCl, and 3% PFA) and incubated at room
temperature for 10 min. Fixation was quenched by mixing with a3:20
volume of 2.5 M glycine. The fixed subneuronal structures were washed
with wash buffer (10 mM Tris-HCI, pH 7.5,10 mM NaCl, 3 mM MgCl,
and 0.1% Tween-20) once, passed through another 40-um cell strainer
and stained with Hoechst. FACS was then performed ona BD FACSAria
instrument to enrich the Hoechst-negative synaptosome population
<5 pmin diameter, calibrated using standard beads.

Immunostaining of the brain synaptosomes

The fixed subneuronal structures were permeabilized with 0.2% Triton
X-100in PBS for 10 min onice and then pelleted by 3,000g centrifuga-
tionat4 °C for 5 min. Blocking of nonspecific binding was performed by
incubating the samples with 5% bovine serum albumin (BSA) in PBS at
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room temperature for 30 minwith rotation. The following primary anti-
bodies were used forimmunostaining: rabbit-anti-synaptophysin (clone
SP11, Invitrogen, catalog no. MA5-14532, 1:60) and mouse-anti-PSD95
(clone 6G6-1C9, Invitrogen, catalog no. MA1-045,1:400). Primary anti-
body binding was performed by a 80-min incubation with 0.5% BSA in
PBS on anend-over-end rotor at room temperature. The samples were
washed 3x with 1 mlof PBS and 0.5% BSA. Secondary antibody binding
was performed by a 40-min incubation with 0.5% BSA in PBS on an
end-over-end rotor at room temperature, with the following second-
ary antibodies: goat-anti-rabbit Alexa Fluor-647 (Invitrogen, catalog
no. A21244,1:1,667) and goat-anti-mouse-Cy3 (Invitrogen, catalog no.
A10521,1:1,667). The subneuronal structures were washed 3x, stained
with Hoechst 33342 and then submitted to flow cytometry on a BD
FACSAriainstrument. The flow cytometry datawere analyzed using BD
FACSDivav.8.0.1software.

Western blotting

To recover protein from fixed samples, we resuspended the samples
inthe fixation lysis buffer (500 mM Tris-HCI, pH 7.4, 2% sodium dode-
cylsulfate, 25 mM EDTA, 100 mM NacCl, 1% Triton X-100, 1% NP-40 and
1x Halt protease inhibitor cocktail) and heated at 90 °C for 2 h. Protein
concentration was quantified by BioRad DC Protein Assay and 0.5 ug
of total protein was loaded for each western blot using the standard
protocol. The following primary antibodies were used in the present
study: synaptophysin (clone SP11, Invitrogen, catalog no. MA5-14532,
1:200), synapsin-I (clone D12G5, Cell Signaling Technology, catalog no.
5297,1:1,000), CNPase (clone 11-5B, Millipore, catalog no. MAB326R,
1:500), glial fibrillary acidic protein (GFAP; clone GAS, Millipore, catalog
no.MAB360,1:1,000) and -actin (clone AC-15, Sigma-Aldrich, catalog
no.A1978,1:2,000).

Permeabilization

Permeabilization of the PFA-fixed subcellular structures is required
for efficient primer hybridization. To permeabilize the subcellular
structures, weresuspended theminice-cold PBS with1% Triton X-100
and incubated them on ice for 5 min. The permeabilized subcellular
structures were washed twice with ice-cold PBS containing 0.2% Triton
X-100, and then adjusted to the concentration of ~2,300 subcellular
structures per pl before proceeding with reverse transcription.

MATQ-Drop procedure

In situ reverse transcription. For 25,000 subcellular structures,
we prepared the following in situ reverse transcription mix: 4 pl of 5x
first-strand buffer (Invitrogen), 1 pl of 0.1M DTT, 1 pl of 1.8% Triton
X-100, 0.5 pl of 10 mM dNTP, 0.5 pl of RNaseOUT (Invitrogen), 2 pl of
11.5 utMMALBAC primer mix, 1 pl of Superscript Il reverse transcriptase
(Invitrogen) and 11 pl of fixed subcellular structures resuspended in
PBS. Ten cycles of multiple annealing ramping from 8 °Cto 50 °Cwere
performed for efficient primer hybridization and reverse transcription.

In situ poly(A) tailing. The residual primers and any primer dimers
were first washed away and the subcellular structures were resus-
pendedin14.5 plof PBSwith 0.2% Triton X-100. Next, 1 pl of 1 mM dATP
(mixed with3 pM ddATP), 2 pul of 10x terminal transferase buffer (NEB),
2 plof2.5 mM CoCl,and 0.5 pl of terminal transferase (NEB) were sub-
sequently added to the subcellular structure suspension. The in situ
poly(A) tailing reaction was incubated at 37 °C for 4 h and quenched
with 1.6 pl of 0.5 M EDTA. In the reaction, we spiked in 1:333 of ddATP
to prevent the poly(A) tail from growing too long, at the cost of losing
1-(332/333)?° = 6% of the amplicons with a poly(A) tail that was too
short (<20) for efficient second-strand synthesis.

Barcoded second-strand synthesis. The fixed subcellular structures
carrying poly(A)-tailed cDNA were washed and individual subcellular
structures were encapsulated with barcoded dT20 hydrogel beads

and the 2x reaction mix using the microfluidic platform as previously
described®. After droplet encapsulation, the reaction was first incu-
batedat37 °Cfor 45 mintorelease the primers fromthe beads by USER
enzyme (NEB); meanwhile, cDNA wasreleased from RNA templates due
toRNA digestionby RNase H (NEB) and RNase I (NEB) digestion. Next,
a3-hincubation at 72 °C is performed to allow cDNA to diffuse out of
the nucleus. We performed ten cycles of (48 °C,2 minand 72 °C,1 min)
to allow the barcoded dT20 primers to hybridize to the poly(A) tail of
the released cDNA and Deep Vent (exo-) DNA polymerase (NEB) will
initiate extension from the barcoded dT20 primers and accomplish
second-strand synthesis. It is worth noting that this procedure does
notinvolve a melting step, so each amplicon can only be converted to
one double-strand DNA fragment.

Post-barcoding cleanup. After the barcoded second-strand synthe-
sis was completed, the droplet emulsion was broken by mixing the
emulsionwith 1H,1H,2H,2H-perfluoro-1-octanol (Sigma-Aldrich) in the
presence of EDTA, which immediately quenches polymerase activity
on droplet breakage and therefore prevents barcode crosstalk. The
remaining hydrogel beads in the aqueous phase were removed by
centrifugation and the supernatant was purified with 1x AMPure XP
beads (Beckman) and eluted in 37.5 pl of nucleus-free water.

The ddTTP sealing of unused bead primers. To minimize barcode
crosstalk in the amplification step, it is critical to quench the residual
barcoded bead primers by ddTTP. We prepared the following ddTTP
sealing mix: 37.5 pl of purified product, 0.5 pl of 10 mM ddTTP, 5 pl of
10x terminal transferase buffer, 5 pul of 2.5 mM CoCl, and 1 pl of terminal
transferase, and incubated at 37 °C for 3 h. The product was purified
with 1x AMPure XP beads (Beckman) and eluted in 41 pl nucleus-free
water.

Library amplification. PCR was performed to amplify 41 pl of the
purified product by adding 5 pl of 10x ThermoPol Buffer (NEB), 2.5 pl
of 10 pM GAT27 primer (GTG AGT GAT GGT TGA GGA TGT GTG GAG),
1plof10 MM dNTPand 0.5 pl of Deep Vent (exo-) DNA polymerase. The
following PCR program was used: 95 °C 2 min, 16-18 cycles of (95 °C,
205s;63°C,20s;72°C2min)and 72 °C, 3 min. The amplified product
was purified with 0.9x AMPure XP beads (Beckman) and the yield
quantified by Qubit (Invitrogen).

Sequencing of MATQ-Drop library

Sequencing library preparation. The transposase approach was used
for sequencinglibrary construction (Supplementary Fig. 1b). For each
MATQ-Drop library, 10 ng of the amplified product was mixed with
5 ploftagmentation DNA buffer (Ilumina) and 0.6 pl of tagmentation
DNA enzyme 2 (TDE2, lllumina), and the volume was brought up to
10 pl by adding nuclease-free water. The transposition mix was incu-
bated at 55 °C for 15 min. Next, the reaction was quenched by adding
0.4 plof 0.5 MEDTA and the transposase was released by 50 °C heating
for30 min.

To introduce the i5 index, the following 38.25 pl of reaction mix
was prepared and added to each tube: 4 pl of 10x ThermoPol Buffer
(NEB),2 plof0.1MMgSO,, 1l of 10 mM dNTP,1.75 pl of 10 pM lllumina
NexteraN5XXindexed primer (AAT GAT ACG GCG ACC ACC GAG ATC
TACAC (i5index) TCG TCG GCA GCG TC), 1.75 pl of 10 uM MATQ-P700
primer (ACG TGT GCT CTT CCG ATC TCG CCG AAG ATG GTT GAG GA
TGTG TGG AGA TA), 0.7 pl of Deep Vent (exo-) DNA polymerase and
28.8 plof nuclease-free water. The reaction was set on a thermal cycler
withthe following program: 65 °C,1min; 72 °C, 4 min; 95 °C, 2 min; and
7 cyclesof (95°C,20;57°C,30 s;and 72 °C,1 min)and 72 °C,2 min. The
productwas purified with 0.9x AMPure XP beads and eluted in 16 pl of
nuclease-free water.

Tointroduce thei7index, we prepared the following PCR reaction:
16 pl of preamplified product, 2 pl of 10x ThermoPol Buffer, 0.5 pl of
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10 pM P5-22b primer (AAT GAT ACG GCG ACC ACC GAG A), 0.5 pl of
10 pM P7-i7-MATQ indexed primer (CAA GCA GAA GAC GGC ATA CGA
GAT (i7index) GTG ACT GGA GTT CAGACG TGT GCTCTT CCG ATCT),
0.4 plof 10 MM dNTP and 0.3 pl of Deep Vent (exo-) DNA polymerase.
Thereactionwas set on a preheated thermal cycler with the following
program: 95°C, 2 min; 5 cycles of (95°C, 20's; 61°C, 20 s; and 72 °C,
1min) and 72 °C, 2 min. The product was purified with 0.85x AMPure
XP beads (Beckman) and eluted in 20 pl of nuclease-free water.

Sequencing. Libraries were pooled and quantified following the Illu-
minamanual and the pooled libraries were sequenced on the lllumina
Nextseq 500 platform with 150 cycle sequencingkit. Customized read
2primer (CGC CGA AGA TGG TTG AGG ATG TGT GGA GAT A) was used
following the Illumina manual. The sequencing cycles were either:
read 1: 110 cycles; index 1: 6 cycles; index 2: 6 cycles; and read 2: 45
cycles; orread1: 76 cycles; index 1: 8 cycles; index 2: 8 cycles; and read
2:45cycles. Thelibrary informationis summarized in Supplementary
Tables 33 and 34.

MATQ-Drop raw data processing

Rawsequencing fastq files were generated using the standard Illumina
bcl2fastq (v.2.20) software. The 3’-poly(A) tail of cDNA on read 1 was
trimmed with cutadapt*’ v.3.1 paired-read mode, with the read-length
filtering criteria: --minimum-length=30 --pair-filter=any. Next, a cus-
tomized Python script was used to assign the read 2 cell barcode
sequences to the predefined combination of barcodel and barcode2
sequences (Supplementary Table 32) with a maximum two mismatches
allowed for each segment of the barcode. Umi_tools*® (v.1.1.1) ‘extract’
command was used to extract the reads with successfully assigned
cell barcodes. Extracted read 1 was mapped to the hgl9 genome (or
a combined genome of hgl9 and mm10) with STAR* v.2.5.3a and the
uniquely mapped reads with mapping scores no smaller than 250 were
used for downstream analysis. Thefiltered reads were assigned to genes
by featureCounts® v.2.0.1 with Gencode annotation gtf files (human:
v.19, mouse: v.M10) and the assignment was based on transcript feature
(-ttranscript) with strandness (-s 2). For the reads with unambiguously
assigned gene features, the umi_tools ‘count’ command was used to
generate the transcript-based digital gene expression matrix (param-
eter:--per-gene --gene-tag=XT --per-cell -method=directional).

Todeterminethe cellbarcodesthatrepresent true nucleiinstead of
background crosstalk, we plotted out the (UMI counts) versus (barcode
rank by UMI) plot, and the knee point was determined as the threshold
for true nuclei (exemplified in Fig. 1b). Next, the cell barcodes repre-
senting true cells were used to generate the transcript-based gene
expression matrix for true nuclei.

To generate the exon-based gene expression matrix, we first fil-
tered out thereads withunambiguously assigned transcript-based gene
features. We then reran featureCounts assignment with exon feature
only (-t exon) and strandness (-s 2), followed by umi_tools count. The
intron-based gene expression matrix was derived by subtracting the
exon-based gene expression matrix from the transcript-based gene
expression matrix.

Benchmark analysis raw data processing

Benchmark analysis were performed against 10x Chromium 3’ v.3.1
platform with the following dataset: Sk Adult Mouse Brain Nuclei Iso-
lated with Chromium Nuclei Isolation Kit.

Wefollowed the same criteriaand referencesin the raw dataprocess-
ing as MATQ-Drop. In detail, the cell barcode and UMI were extracted
usingthe Umi_toolsv.1.1.1following the user manual and the cellnumber
threshold was automatically determined by the umi_tools software. Next,
the extracted reads were mapped to the mm10 genome with Gencode
v.M10 gtf as gene model annotation reference using STAR v.2.5.3a. The
uniquely mapped reads with mapping scores no smaller than 250 were
used for downstream analysis. The filtered reads were assigned to genes

by featureCountsv.2.0.1with the Gencode v.M10 gtffile and the assign-
mentwas based ontranscript feature (including bothexonandintron, or
exononly) with strandness. For the reads withunambiguously assigned
genefeatures, the umi_tools ‘count’command was used to generate the
transcript-based digital gene expression matrix (parameter: --per-gene
--gene-tag=XT --per-cell-method=directional). Sensitivity comparison
was performed by subsampling datasets to the same sequencing satura-
tion, whichis defined as1- (n_deduped_reads/n_reads).

Clustering analysis

Data filtering. Nuclei with mitochondrial UMI percentages >5% were
excluded for downstream analysis. In synaptome data, synapses with
mitochondrial UMI percentages <5% were excluded for downstream
analysis. Then, mitochondrial and ribosomal genes were removed
fromthe gene expression matrix. Low-quality nuclei with <200 intronic
genes were excluded and the nuclei with UMIs in the top 0.5% quantile
were removed. Low-quality, Hoechst-negative subneuronal structures
with <100 intronic genes were excluded and those with UMIsinthe top
0.5% quantile were also removed.

Unsupervised clustering. Standard Seurat4 integration pipeline with
SCTransform normalization was used for clustering analysis’"** Briefly,
the intron-based (for nuclei) or the transcript-based (for synapses)
gene expression matrix was normalized based on regularized negative
binomial regression. Doublets were identified by the R package Dou-
bletFinder*’v.2.0 with astringently estimated doublet rate (5%). Next,
datasets of different biological samples were integrated following the
Seurat scRNA-seqintegration vignette. Principal component analysis
and graph-based clustering were performed with the integrated data
slot. Visualization of the clustering was accomplished with UMAP. Mark-
ersforeach cluster were identified by the MAST** algorithm embedded
inthe Seurat package with the following parameters: only.pos=TRUE,
min.pc=0.25, logfc.threshold=0.5 for nuclei or logfc.threshold=0.25
for synapses. Cell types were empirically assigned based on the overlap
between cluster markers and canonical cell-type-specific markers.
The above pipeline also applies to subclustering and IncRNA-based
clustering analyses, except that the doublet identification and removal
step were skipped because we used only the nuclei passing the ‘singlet’
filter described above.

Doublet removal. Doublets were identified and removed by the R
package DoubletFinder® v.2.0 with a stringently estimated doublet
rate (5%).

Markers for each cluster were identified by the MAST** algorithm
embedded inthe Seurat package with the following parameters: only.
pos=TRUE, min.pct=0.25 and logfc.threshold=0.5. Cell types were
empirically assigned based on the cluster markers and the expression
of canonical cell-type-specific markers.

The same pipeline applies to subclustering and IncRNA-based
clustering analyses, except that the doublet identification and removal
steps were skipped because we used only the nuclei passing the ‘singlet’
filter described above. For IncRNA-based clustering, only the top 1,000
variable features were used for PCA.

DEG analysis

For the cluster populations of interest, a pseudobulk count matrix
was assembled for each biological sample by summarizing the total
UMI counts. Next, bulk DEGs were identified with edgeR* v.3.16. A
geneis defined as ‘differentially expressed’ if abs(log,(FC)) > log,(1.3)
and Benjamini-Hochberg FDR < 0.05. It is worth noting that, com-
pared with the single-cell approach, the pseudobulk approach yields
robust fold-change calculation when the two datasets show large dif-
ferences in UMI detection, for example, nuclei versus synapses. The
transcript-based gene expression matrix was used for DEG analysis
among different subneuronal structures, whereas the exon-based
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gene expression matrix was used for DEG analysis between synapses
and nuclei. GO enrichment analysis of the DEGs was performed using
the Database for Annotation, Visualization and Integrated Discovery
(DAVID), and we used the shared expressed genes (counts per mil-
lion (c.p.m.) >2) as the background list. GSEA was performed on the
log,(c.p.m. +1) matrix with the pseudobulk.

Identification of unspliced genes

For each type of subcellular structure, a gene is defined as ‘expressed’
ifdetected in atleast 5% of the subcellular structures. For each neuron
type, only the expressed genes shared by presynapses and nuclei were
kept for analysis. The average intron percentages of the transcripts in
presynapses (pct_introny,) and nuclei (pct_intron,,q.,;) were computed,
respectively, and the splicing score (SS) at the synapse is defined as:

min <pctjntronsyn—pct,intronnudcus 0

), if pct_intron,ycjeus # O

pCt_intron,,cleys

SS =
1, if pet_intron,ycieus = 0

For a transcript thatis fully unspliced at the synapse, SS = 0, whereas
foratranscriptthatisfully spliced at the synapse, SS = 1. For each neu-
ronal type, the distribution shows a peak at 1, with a long tail toward
0. Therefore, we transform the SS into z-scores and a gene is consid-
ered unspliced if splicing z-score <-2.58 (equivalent to P < 0.01), and
pct_intron, e > 0.25. The SS metrics were used in preranked GSEA.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The raw sequencing files are available in Gene Expression Omnibus
(GEO) database under accession no. GSE199346.

The following public datasets were used in the present study for
benchmark comparison: (1) DroNc-seq and Drop-seq on 3T3 cell line
(https://singlecell.broadinstitute.org/single_cell/study/SCP128/
dronc-seq-and-drop-seq-on-3t3-cell-line#study-download), (2) GEO
accession no. GSE106678 and (3) 5k Adult Mouse Brain Nuclei Iso-
lated with Chromium Nuclei Isolation Kit (10x Genomics, https://
www.10xgenomics.com/resources/datasets/5k-adult-mouse-brain
-nuclei-isolated-with-chromium-nuclei-isolation-kit-3-1-standard).
The mm10 genome canbeaccessed at https://www.ncbi.nlm.nih.gov/
assembly/GCF_000001635.20 and the Gencode gene annotation file
athttps://www.gencodegenes.org/mouse/release_M10.html. The hg19
genome can be accessed at https://www.ncbi.nlm.nih.gov/data-hub/
genome/GCF_000001405.25and the Gencode gene annotation file at
https://www.gencodegenes.org/human/release_19.html.

Code availability
The analysis code customized for MATQ_Drop sequencing datais avail-
able at https://github.com/zonglab/MATQ_Drop.
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Data collection  Raw sequencing data were generated using the standard Illumina bcl2fastq (v2.20) pipeline.
Flow cytometry data was acquired using BD FACSAriall (P6950002) instrument.

Data analysis The sequencing data analysis code is available online: https://github.com/zonglab/MATQ_Drop. In detail, The 3’ polyA tail of cDNA on Read 1
was trimmed with cutadapt48 v3.1 paired read mode, with the read length filtering criteria: --minimum-length=30 --pair-filter=any. Next, a
custom Python script was used to assign the Read 2 cell barcode sequences to the pre-defined combination of Barcodel and Barcode2
sequences with maximal two mismatches allowed for each segment of the barcode. Umi_tools (v1.1.1) “extract” command was used to
extract the reads with successfully assigned cell barcodes. Extracted Read 1 was mapped to the hg19 genome (or a combined genome of hg19
and mm10) with STAR v2.5.3a, and the uniquely mapped reads with mapping scores no smaller than 250 were used for downstream analysis.
The filtered reads were assigned to genes by featureCounts v2.0.1 with Gencode annotation gtf files (human: v19, mouse: vM10), and the
assignment was based on transcript feature (-t transcript) with strandness (-s 2). For the reads with unambiguously assigned gene features,
the umi_tools “count” command was used to generate the transcript-based digital gene expression matrix (parameter: --per-gene --gene-
tag=XT --per-cell -method=directional).

Standard Seurat v4 integration pipeline with SCTransform normalization was used for clustering analysis, and the R package DoubletFinder
v2.0 was used to identify potential doublets. MAST algorithm embedded in Seurat v4 package and edgeR (v3.16) was used for differential
analysis.

The flow cytometry data was analyzed using BD FACSDiva Version 8.0.1 software.
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The sequencing data and processed files have been deposited in GEO under the accession code GEO: GSE199346.

The following public datasets were used in this study for benchmark comparison: (1) DroNc-seq and Drop-seq on 3T3 cell line (https://singlecell.broadinstitute.org/
single_cell/study/SCP128/dronc-seg-and-drop-seq-on-3t3-cell-line#fstudy-download), (2)GEO: GSE106678, and (3) 5k Adult Mouse Brain Nuclei Isolated with
Chromium Nuclei Isolation Kit (10X Genomics, https://www.10xgenomics.com/resources/datasets/5k-adult-mouse-brain-nuclei-isolated-with-chromium-nuclei-
isolation-kit-3-1-standard).

The mm10 genome can be accessed at https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.20/, and the Gencode gene annotation file can be accessed at
https://www.gencodegenes.org/mouse/release_M10.html. The hg19 genome can be accessed at https://www.ncbi.nlm.nih.gov/data-hub/genome/
GCF_000001405.25/, and the Gencode gene annotation file can be accessed at https://www.gencodegenes.org/human/release_19.html.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender The frozen postmortem human brain tissues were obtained from NIH NeuroBioBank and they are IRB exempt. The samples
were dissected from one biological male and one biological female.

Population characteristics NA. The frozen postmortem human brain tissues were obtained from NIH NeuroBioBank for synaptosome and nucleus
isolation and are IRB exempt.

Recruitment NA. The frozen postmortem human brain tissues were obtained from NIH NeuroBioBank for synaptosome and nucleus
isolation and are IRB exempt.

Ethics oversight NA. The frozen postmortem human brain tissues were obtained from NIH NeuroBioBank for synaptosome and nucleus
isolation and are IRB exempt.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sampling size was pre-determined for accommodate robust clustering.

Data exclusions  Nuclei with mitochondrial UMI percentages higher than 5% were excluded for downstream analysis. In synaptome data, synapses with
mitochondrial UMI percentages lower than 5% were excluded for downstream analysis. Then, mitochondrial and ribosomal genes were
removed from the gene expression matrix. Low-quality nuclei with fewer than 200 intronic genes were excluded, and the nuclei with UMIs in
the top 0.5% quantile were also removed. Low-quality Hoechst-negative subneuronal structures with fewer than 100 intronic genes were
excluded, and those with UMs in the top 0.5% quantile were also removed. Doublets were identified and removed by the R package
DoubletFinder with a stringently estimated doublet rate (5%).

Replication The clustering results and cluster marker genes are reproducible, as demonstrated by the consistency among biological and technical
replicates. In the immunofluorescence staining experiments, three animals were used for each genotype, and each animal had three slides as

technical replicates.

Randomization Pseudobulk data were assembled by randomly assigning single cells into three groups. Randomization was accomplished using the "random"
library in python3.

Blinding Not applicable. No experiments need blinding for analysis.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |:| |Z Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
[] clinical data

|:| Dual use research of concern
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Antibodies

Antibodies used The following primary antibodies were used in western blot: synaptophysin (clone SP11, Invitrogen, MA5-14532), synapsin-I (clone
D12GS, Cell Signaling Technology, 5297), CNPase (clone 11-5B, Millipore, MAB326R), GFAP (clone GAS, Millipore, MAB360), and B-
actin (clone AC-15, Sigma-Aldrich, A1978). The following primary antibodies were used for immunostaining of synaptosomes:
synaptophysin (clone SP11, Invitrogen, MA5-14532), and PSD95 (clone 6G6-1C9, MA1-045). The following primary antibodies were
used for immunofluorescence staining on brain sections: Olig2 (Millipore, AB9610), Ibal (Wako, 019-19741), beta-amyloid (clone
6E10, Biolegend 803001), Clq (clone 4.8, Abcam, ab182451), and PSD95 (clone 6G6-1C9, Millipore, MAB1596). The following
secondary antibodies were used for immunofluorescence staining: donkey-anti-mouse Alexa Fluor 488 (Invitrogen A-21202), donkey-
anti-rabbit Alexa Fluor 555 (Invitrogen A-31572), goat-anti-rabbit-Alexa Fluor 647 (Invitrogen, A21244) and goat-anti-mouse-Cy3
(Invitrogen, A10521).

Validation The synaptophysin (Invitrogen, MA5-14532) antibody was verified by Knockout by the manufacturer to ensure that the antibody
binds to the antigen stated in human SH-SY5Y cells. The C1g antibody (Abcam, ab182451) were verified by Knockout to ensure that
the antibody binds to the antigen in mouse samples stated by the manufacturer. Synapsin-1 antibody (Cell Signaling Technology,
5297), CNPase antibody (Millipore, MAB326R), GFAP antibody (Millipore, MAB360), B-actin antibody (Sigma-Aldrich, A1978), Olig2
antibody (Millipore, AB9610) Ibal antibody (Wako, 019-19741), 6E10 antibody (Biolegend, 803001), and PSD95 antibody (Millipore,
MAB1596) were verified by western blot using mouse and human samples with expected target size by the manufacturer. PSD95
antibody (Invitrogen, MA1-045) was verified by western blot and relative expression to ensure that the antibody binds to the antigen
stated by the manufacturer.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) HEK293T was acquired from MD Anderson cell line core facility. 3T3 cell line was acquired from Dr. Yi Li's lab at Baylor College
of Medicine.
Authentication Authentication of two cell lines have been performed by MD Anderson and BCM cell line cores based on morphology and

karyotyping.
Mycoplasma contamination Both cell lines were tested negative for mycoplasma contamination.

Commonly misidentified lines  No commonly misidentified cell lines were used in this study.
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals The C57BL/6 WT and 5xFAD mice were obtained from the Jackson Laboratory (Bar Harbor, ME). Mice were housed four per cage in a
pathogen-free mouse facility with ad libitum access to food and water on a 12-hour light/dark cycle at the ambient temperature of
20.0-22.27? and the humidity of 30%-70%. Nine-month-old female mice were used for all experiments.

Wild animals No wild animals were used in this study.

Reporting on sex Only female mice were used for AD-related synaptome study.

Field-collected samples  No field-collected samples were used in this study.




Ethics oversight All procedures were performed following National Institutes of Health (NIH) guidelines and approval of the Baylor College of
Medicine Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation The frozen brain samples are homogenized with Dounce Homogenizer, PFA-fixed, and then stained with Hoechst 33342.
Instrument BD FACSAriall (P6950002)
Software BD FACSDiva Version 8.0.1
Cell population abundance Post-sort is performed to guarantee that the purity of sorted single nuclei or Hoechst-negative sub-neuronal structures
exceeds 99.9%.
Gating strategy UV450-A was used to identify single nucleus originated from diploid cells (therefore removing doublets generated during PFA

fixation). The UV450-A low population with the FSC-A smaller than 5-um beads is considered as Hoechst-negative sub-
neuronal structures.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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